Today

1. finish AEL construction
 + GI algorithm

2. Codes & complexity

 AEL Codes

 3 ingredients:
 ① \(C_0 \): small code \([d_1, R_0d, S_0d]_2 \)
 ② \(G \): bipartite graph with \(n \) left & right vertices
 & degree \(d \); \(G \)-uniform
 ③ \(C_{\text{big}} \): big code \([n, k, D^2]_2 \)

 Combined code: \(C = \{ n, R_0k, 2^d \} \)

 Defn: \(G \) is \(E \)-uniform if \(\forall X \subseteq L \),
 \(\forall Y \subseteq R \),
 \[|\# E(x, y) - d \cdot n \cdot \frac{1 \times 1}{n} n!| \leq \epsilon n. \]
Lemma: $S(c) \geq S_0 - \frac{\varepsilon n}{Dd}$

Proof: Let $w_{C_{big}}$ be word of distance $\geq D$.
- Let $X \subseteq L$ be set where $w_i \neq 0$.
- Let $Y \subseteq R$ be set where $w_j \neq 0$.

\[
\# \text{non-zero edges} \geq |X||. S_0 \cdot d
\]

But \# edges $\leq E(x, y)$

\[
\leq \frac{|X|}{n} \cdot \frac{|Y|}{n} \cdot d \cdot n + \varepsilon n
\]

\[
\Rightarrow \frac{|X|}{n} \geq \left(\frac{|X| \cdot S_0 \cdot d - \varepsilon n}{|X| \cdot d} \right)
\]

\[
= S_0 - \frac{\varepsilon \cdot n}{|X| \cdot d} \geq S_0 - \frac{\varepsilon \cdot n}{Dd}
\]

Will skip decoding but it leads to

$O(n)$ time decoding with $\frac{1}{4} - \varepsilon$ error (in binary code) \cite{Gurumani-Hdyak}
Codes & Computational Complexity

Obvious Direction:

- Codes need Encoding + Decoding.
- Needs efficient algorithms.
- When are they possible? Intractable?
- Will briefly discuss today.

Non-obvious direction

- Codes are combinatorial structures with some nice properties.
- Most extremal structures are connected to one another.
- Errors, model uncertainty / lack of knowledge. Often captures adversary.
Theme I - Pseudorandomness

(See excellent survey by [Salil Vadhan])

Background: Randomized algorithms

Computational Problem

Function $x \xrightarrow{f} y = f(x)$

or

Relation $x \xrightarrow{R} y$ s.t. $(x, y) \in R$

P = class of functional problems solvable in polytime, where range of f is $\{0, 1\}$ (Boolean).
Randomized algorithm

\[x \xrightarrow{} A \xrightarrow{} A(x,y) \]

A probabilistically computes f if

\[\forall x \quad \Pr_y \left[A(x,y) = f(x) \right] \leq \frac{1}{3} \]

A is polytime if

1. $|y| \leq |x|^c$ for constant c.
2. Running time of A is poly.
Example: MAX 3SAT:

Input: \(\phi = C_1, C_2, \ldots, C_m \).

Clause

\[C_j = x_{i_1(j)} \lor x_{i_2(j)} \lor x_{i_3(j)} \]

Literal \(= \) variable or its complement.

(Desired) Output: \(a_1, \ldots, a_n \in \{0,1\} \)

that maximizes

\[\# \sum_j \{ C_j \text{ "satisfied" }, \text{i.e. one } \]

\(\phi \text{ literals in } C_j \text{ is } \geq \frac{7}{8} \}

Well known: \(\text{NP-hard to solve optimally.} \)

Can we do something "near optimally?"

\[\exists \text{ prob. } \frac{7}{8} \text{-approximator:} \]

finds \(\overline{a} = a_1, \ldots, a_n \) s.t.

\[\# \text{ satisfied clauses } \geq \left\lfloor \frac{7}{8} m \right\rfloor \]
Alg: Pick a_1, \ldots, a_n at random
(uniformly in \mathbb{F}_2^n)

Analysis:

\[
\Pr \left[C_j \text{ satisfied} \right] = \frac{7}{8} \\
\Rightarrow \mathbb{E} \left[\# \{ j \mid C_j \text{ satisfied} \} \right] = \frac{7}{8} m
\]

(more formal analysis would pick many vectors $a \in \mathbb{F}_2^n$ and output best)

Question: Can we build "deterministic"
algorithm?

Or an algorithm that uses less randomness?

Or doesn't need "pure" (unbiased, independent) randomness?
The Randomness Processing Industry

\[z \xrightarrow{\text{P}} y \]

\[P: \mathbb{Z}_q^n \rightarrow \mathbb{Z}_q^n \]

- Exact functionality of \(P \) is unimportant.

- Key issue: if \(z \sim D_1 \)
 then how is \(P(z) \) distributed?

- Pseudorandom generator: (for \((A,f) \))
 - \(d \ll n \)
 - if \(z \) uniform over \(\mathbb{Z}_q^n \)

\[\forall x \]

\[Pr[A(x, P(z)) = f(x)] \approx \sum_{y} Pr[A(x, y) = f(x)] \]
Other concepts: Dispersers, Extractors, Condensers, Mergers ...
(can be seeded/unseeded, lossless/lossy, zero-error/\texttt{re}-error)

Today: Pseudo-Randomness.

if p.r.g.s exist for every polytime A, with $l = O(Lgn)$,
then $\text{BPP} = \text{P}$

```
\uparrow
\text{prob. polytime}
```

"for every A" — open
but simple A — like MAX 3SAT
above can be derandomized.
I. Limited Independence

- Note that a_1, \ldots, a_n don't have to be completely independent; only limitedly so.

- Sufficient that for i, j, k

 $$(a_i, a_j, a_k) \text{ are uniform.}$$

- **Defn:** ℓ-wise independence

 $Y = (y_1, \ldots, y_n) = P(z_1, \ldots, z_\ell)$ is ℓ-wise independent if

 $\forall S \subseteq [n], \ |S| = \ell$

 $\forall b \in \{0, 1\}^\ell$

 $$\Pr_{Y} \left[P(z) \big|_{S} = b \right] = \frac{1}{2^\ell}$$

 ("$P(z)$ restricted to S is uniform")
Claim: Mx 3SAT algorithm works as well with 3-wise independent sources.

Lemma: Let \(C \) be an \([n, k, \geq t]\) code with \(C^\perp = [n, n-k, t+1]\) code.

Let \(\mathcal{E}: \{0,1\}^k \rightarrow \{0,1\}^n \) be encoder of \(C \). Then \(\{\mathcal{E}(z)\}_{z \in \{0,1\}^k}^{2^{-t}} \) is \(t \)-wise independence.

Proof: Follows from definitions.

No codewords in \(C^\perp \) of wt. \(\leq t \)

\(\Rightarrow \) No linear dependence in \(\leq t \) coordinates of \(C \)

\(\Rightarrow \) No dependence on \(\leq t \) coordinates of \(C \)
To make generator good, use smallest \(k \) possible \(\Rightarrow \) use best possible (highest rate) \(C^+ \).

Using best known codes

1. **Pairwise Independence**:

 \(C = \text{Hadamard Code} = \text{linear function} \)

 \(C^+ = \text{Hamming Code} \)

 \(k = \log n \quad [\text{no} \quad "O(\cdot)"\] \)

2. **\(t \)-wise independence**:

 \(C = \text{dual-BCH code} \)

 \(C^+ = \text{BCH code} \)

 \(k \approx \frac{t}{2} \log n \)

3. **3-wise independence**

 \(C = \text{affine functions.} \)

 \(|C| = 2n \)
II. Small-Biased Spaces

Definition:

\[
\bar{y} \in \epsilon \text{-biased if } \forall \, S \subseteq \{n\}, S \neq \emptyset \quad \left| \Pr_\bar{y} \left[\bigoplus_{i \in S} y_i = 1 \right] - \Pr_\bar{y} \left[\bigoplus_{i \in S} y_i = 0 \right] \right| \leq \epsilon
\]

Motivation:

- **Definitionally:** Output of \(P \) "fools" every linear algorithm.

- **Real reason:**
 1. Almost limited independence
 2. Ingredients in fooling many other algorithms.
almost ϵ-wise independence

if $\forall S \subseteq [n], |S| = t$

$$\sum_{b \in \mathbb{F}_{2^t}} |\Pr[y|_S = b] - 2^{-t}| \leq \epsilon$$

Lemma: G-biased space

is $\epsilon \cdot 2^t$-almost ϵ-wise independent

Lemma: Let $P_1 : \mathbb{F}_{2^t} \rightarrow \mathbb{F}_{2^t}$ generate G-biased bits

- Let $P_2 : \mathbb{F}_{2^t} \rightarrow \mathbb{F}_{2^t}^n$ be linear and ϵ-wise independent

- Then $P_2 \circ P_1 : \mathbb{F}_{2^t} \rightarrow \mathbb{F}_{2^t}^n$

\((\epsilon \cdot 2^t)$-almost ϵ-wise independent\)
Lemma: Let $G \in \mathbb{F}_{2}^{K \times N}$ be the generator of code of distance $(\frac{1}{2} - \epsilon)N$. Let \mathcal{T}^c be code (G).

Then the map

$P: \mathbb{F}_{2}^{\log N} \rightarrow \mathbb{F}_{2}^{K}$

that maps $i \mapsto i^{th}$ column of G

is an ϵ-biased generator. \blacksquare

Putting all together with MAX 1OSAT

<table>
<thead>
<tr>
<th>Random assignment</th>
<th>$1 - 2^{-10}$</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-wise indep.</td>
<td>$1 - 2^{-10}$</td>
<td>n^5</td>
</tr>
<tr>
<td>ϵ-bias with $\epsilon = 2^{-22}$</td>
<td>$1 - 2^{-10} - 2^{-n}$</td>
<td>$O\left(\frac{n}{\epsilon^3}\right)$</td>
</tr>
<tr>
<td>$\epsilon 2^{10}$-almost 10-wise indep.</td>
<td>$\left(\frac{\log n}{\epsilon^3}\right)^5$</td>
<td></td>
</tr>
</tbody>
</table>

- Method
- Fraction of clauses sat.
- Sample space