February 13, 2013

Lecture 3

Lecturer: Madhu Sudan

Scribe: Adam Hesterberg

1 Today

1.1 Administrivia

Pset 1 out today, due on 2013-02-27 (in two weeks).

Sign up to scribe if you haven't yet.

1.2 Converse to Shannon's Coding Theorem

Theorem 1.1. $\forall p \in (0, \frac{1}{2})$ (channel error probability), $\forall \epsilon > 0$ (amount above the channel capacity), $\exists \delta > 0$ (describing the exponential decay of the success rate w.r.t. message length), $\exists n_0, \forall n \ge n_0$ (message length), $\forall E : \{0,1\}^k \to \{0,1\}^n$ (encryption function), $\forall D : \{0,1\}^n \to \{0,1\}^k$ (decryption function), where $k := \lfloor (1-H(p)+\epsilon)n \rfloor$, the probability over $m \in \{0,1\}^k$ and error η from a binary symmetric channel of error probability p that $D(E(m)+\eta) = m$ is at most $2^{-\delta n}$.

Proof. We'll ignore the case where the number of errors in η is less than $(p - \frac{\epsilon}{2})n$ or more than $(p + \frac{\epsilon}{2})n$, since a Chernoff bound shows that that happens with probability at most $2^{-\delta_1 n}$. So the error rate is roughly p.

The probability over m and η that you decode correctly is

$$\sum_{x \in \{0,1\}^k, y \in \{0,1\}^n} \Pr[x = m, y = E(m) + \eta, D(y) = x].$$

Without loss of generality, the encoding and decoding are deterministic functions. (If some probabilistic functions violated the theorem, then some hardcoding of random inputs would make a deterministic function violating the theorem.)

So, that probability is

$$\sum_{x \in \{0,1\}^k, y \in \{0,1\}^n} \Pr[x = m, y = E(m) + \eta, D(y) = x] = \sum_{y \in \{0,1\}^n} \Pr[D(y) = m] \Pr[y = E(m) + \eta | m = D(y)]$$
$$= \sum_{y \in \{0,1\}^n} \Pr[D(y) = m] \Pr_{\eta}[y - E(D(y)) = \eta]$$

Let wf(w) be the number of 1s in $w \in \{0,1\}^n$. Then $Pr[\eta = w] \leq \frac{1}{\binom{n}{wf(w)}}$, since all errors with equal weight have equal probability and sum to at most 1. That's at most $\frac{1}{\binom{n}{(p-\frac{\epsilon}{2})n}}$, which is roughly $2^{-H(p)n}$ as $\epsilon \to 0$.

By assumption, y - E(D(y)) has weight between $(p - \frac{\epsilon}{2})n$ and $(p + \frac{\epsilon}{2})n$ (or the decryption was incorrect), and it's deterministic, so the probability that it's η is at most $Pr[\eta = w] \leq 2^{-H(p)n}$, so the chance you decode correctly (given that the weight of the errors is within $\frac{\epsilon}{2}$ of p) is at most

$$\sum_{y \in \{0,1\}^n} \Pr[D(y) = m] 2^{-H(p)n} \le 2^n 2^{-k} 2^{-H(p)n} \le 2^{-\epsilon n},$$

as desired.

Shannon's 1948 work mentioned all this stuff about existence of optimal codes (by choosing a random one), but mentioned Hamming's work as a potential way to do it practically. Shannon's has both error and message probabilistics; Hamming's has both of them worst-case.

1.3 Linear Codes: Some Existence Results

Reminder: $(n, k, d)_q$ is a not necessarily linear error correcting code, and $[n, k, d]_q$ is a linear one. q is the alphabet size—the alphabet is an arbitrary set Σ , but is assumed to be the finite field \mathbb{F}_q if it exists, n is the length of the codewords (shorter is better) (the set of codewords C has $C \subseteq \Sigma^n$), k is the length of the message (longer is better; $n \ge k$) ($|C| = q^k$), and $d = \Delta(C) = \min_{x,y \in C, x \neq y} \{\Delta(x, y)\}$ is the minimum distance between codewords (larger is better).

For simplicity, we'll work instead with the (message) rate $R := \frac{k}{n}$ and the error rate $\delta := \frac{d}{n}$.

Theorem 1.2. For every alphabet Σ (or \mathbb{F}_q), there's a code with $R \ge 1 - H_q(\delta)$, where H_q is the "q-ary entropy" $H_q(\delta) = -\delta \log_q(\delta) - (1 - \delta) \log_q(1 - \delta) + \delta \log_q(q - 1)$, which is maximized at $\delta = \frac{q-1}{q}$.

The motivation for q-ary entropy is that the volume of a ball of radius δn in Σ^n is $q^{H_q(\delta n)}$, which can be proven like the q = 2 version (take the log of $\binom{n}{\delta n}(q-1)^{\delta n}$.)

Proof Techniques:

- 1. Random code:
 - (a) Pick a random code with $2q^{Rn}$ codewords (twice as many as we want).
 - (b) Throw out codewords that are too close (throwing out at most half, with high probability).
- 2. Greedy (Gilbert) code:
 - (a) Pick a codeword among the remaining words.
 - (b) Throw away every word at distance d-1 from the new word.
 - (c) Repeat.
- 3. Random linear code:
 - (a) Pick random basis vectors $b_1, \ldots, b_k \in \mathbb{F}_q^n$.
 - (b) Choose $C = span(b_1, \ldots, b_k)$.
- 4. Greedy parity check matrix (Varshamov): details later; basically, pick codewords greedily, making sure not to create codewords of weight less than d.

5. Wozencraft Ensemble of Codes (details if there's time)

Greedy code:

- 1. Initially, $C = \emptyset$, $S = \Sigma^n$.
- 2. While $S \neq \emptyset$:
- 3. Pick $w \in S$ arbitrarily.
- 4. Add w to C.
- 5. Remove the ball of radius d-1 around w from S.

After each iteration, $|C| \cdot |B(0, d-1)| + |S| \ge q^n$, since we remove at most |B(0, d-1)| strings from S each time we add a codeword to C, so at the end $|C| \ge \frac{q^n}{|B(0, d-1)|}$, which is asymptotically $q^{n(1-H_q(\delta))}$. So the worst maximal code is at least that good, that is, $k = \log_q(|C|) \ge n(1-H_q(\delta))$, as claimed.

For sufficiently large values of q (at least, say, 48 or 49), there exist codes which beat that. We don't have any significantly better codes for $q \in \{2, 3\}$, though. We can do slightly better as follows:

Consider the graph $G_{n,d,q}$ on vertices Σ^n with edges between pairs of vertices at distance less than d. Then an error-correcting code is precisely an independent set. Then the previous proof said precisely that there's an independent set of size at least $\frac{|\Sigma^n|}{1+\deg(G)}$ (which might be a theorem of Turán), and that can be tight, for instance, for a graph that's a disjoint union of cliques of size $\deg(G) + 1$.

In general, a graph G has at most $|V(G)|\Delta(G)^2$ triangles, since each vertex is in at most $\Delta(G)^2$ triangles. Ajtai, Komlos, and Szemerédi proved that in random graphs, there's an independent set of size $\log(\Delta(G))\frac{|V(G)|}{\Delta(G)}$. All they needed was that the number of triangles was at most $|V(G)|\Delta(G)^{2-\epsilon}$ (as is true for a random graph), and that happens to be true for our graph G(n, d, q), so there is a code with $H_q(\delta)nq^{n(1-H_q(\delta))}$ codewords, which is an asymptotically trivial improvement.

If we fix $\delta > 0$ and let $q \to \infty$, then $H_q(\delta) = \delta + O(\frac{1}{\log(q)})$. But that's not the best possible, because there are "algebraic geometry" (AG) codes where $R \ge 1 - \delta - \frac{1}{\sqrt{q-1}}$, so for large enough q we can do better.

Greedy Parity Check Code:

Let m := n - k. We'll greedily pick an $n \times m$ matrix one row at a time, and choose the code $C = \{x \in \mathbb{F}_q^n : x \cdot H = 0\}$. The code tolerates d errors iff every subset of d - 1 rows of the matrix is linearly independent. So, never include a row that's a linear combination of up to d - 2 of the existing rows. If we have l rows already, there are $(q - 1)^{d-2} \binom{l}{d-2}$ such linear combinations, which is exactly the volume of a ball of radius d-2 in \mathbb{F}_q^n , so we can get a code with $\frac{|\mathbb{F}_q^n|}{|B(q,n,d-2)|}$ codewords. That's slightly better than the Gilbert bound, which has $\frac{|\mathbb{F}_q^n|}{|B(q,n,d-1)|}$ codewords.