
6.440 Essential Coding Theory February 13, 2013

Lecture 3

Lecturer: Madhu Sudan Scribe: Adam Hesterberg

1 Today

1.1 Administrivia

Pset 1 out today, due on 2013-02-27 (in two weeks).
Sign up to scribe if you haven’t yet.

1.2 Converse to Shannon’s Coding Theorem

Theorem 1.1. ∀p ∈ (0, 1
2) (channel error probability), ∀ε > 0 (amount above the channel capacity),

∃δ > 0 (describing the exponential decay of the success rate w.r.t. message length), ∃n0, ∀n ≥ n0

(message length), ∀E : {0, 1}k → {0, 1}n (encryption function), ∀D : {0, 1}n → {0, 1}k (decryption
function), where k := b(1−H(p) + ε)nc, the probability over m ∈ {0, 1}k and error η from a binary
symmetric channel of error probability p that D(E(m) + η) = m is at most 2−δn.

Proof. We’ll ignore the case where the number of errors in η is less than (p − ε
2)n or more than

(p+ ε
2)n, since a Chernoff bound shows that that happens with probability at most 2−δ1n. So the

error rate is roughly p.
The probability over m and η that you decode correctly is∑

x∈{0,1}k,y∈{0,1}n
Pr[x = m, y = E(m) + η,D(y) = x].

Without loss of generality, the encoding and decoding are deterministic functions. (If some
probabilistic functions violated the theorem, then some hardcoding of random inputs would make
a deterministic function violating the theorem.)

So, that probability is∑
x∈{0,1}k,y∈{0,1}n

Pr[x = m, y = E(m) + η,D(y) = x] =
∑

y∈{0,1}n
Pr[D(y) = m]Pr[y = E(m) + η|m = D(y)]

=
∑

y∈{0,1}n
Pr[D(y) = m]Prη[y − E(D(y)) = η]

Let wf(w) be the number of 1s in w ∈ {0, 1}n. Then Pr[η = w] ≤ 1

( n
wf(w))

, since all errors

with equal weight have equal probability and sum to at most 1. That’s at most 1

( n
(p− ε

2 )n)
, which is

roughly 2−H(p)n as ε→ 0.
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By assumption, y−E(D(y)) has weight between (p− ε
2)n and (p+ ε

2)n (or the decryption was

incorrect), and it’s deterministic, so the probability that it’s η is at most Pr[η = w] ≤ 2−H(p)n, so
the chance you decode correctly (given that the weight of the errors is within ε

2 of p) is at most∑
y∈{0,1}n

Pr[D(y) = m]2−H(p)n ≤ 2n2−k2−H(p)n ≤ 2−εn,

as desired.

Shannon’s 1948 work mentioned all this stuff about existence of optimal codes (by choosing a
random one), but mentioned Hamming’s work as a potential way to do it practically. Shannon’s
has both error and message probabilistics; Hamming’s has both of them worst-case.

1.3 Linear Codes: Some Existence Results

Reminder: (n, k, d)q is a not necessarily linear error correcting code, and [n, k, d]q is a linear one.
q is the alphabet size—the alphabet is an arbitrary set Σ, but is assumed to be the finite field
Fq if it exists, n is the length of the codewords (shorter is better) (the set of codewords C has
C ⊆ Σn), k is the length of the message (longer is better; n ≥ k) (|C| = qk), and d = ∆(C) =
minx,y∈C,x6=y{∆(x, y)} is the minimum distance between codewords (larger is better).

For simplicity, we’ll work instead with the (message) rate R := k
n and the error rate δ := d

n .

Theorem 1.2. For every alphabet Σ (or Fq), there’s a code with R ≥ 1−Hq(δ), where Hq is the
“q-ary entropy” Hq(δ) = −δ logq(δ) − (1 − δ) logq(1 − δ) + δ logq(q − 1), which is maximized at

δ = q−1
q .

The motivation for q-ary entropy is that the volume of a ball of radius δn in Σn is qHq(δn, which
can be proven like the q = 2 version (take the log of

(
n
δn

)
(q − 1)δn.)

Proof Techniques:

1. Random code:

(a) Pick a random code with 2qRn codewords (twice as many as we want).

(b) Throw out codewords that are too close (throwing out at most half, with high probabil-
ity).

2. Greedy (Gilbert) code:

(a) Pick a codeword among the remaining words.

(b) Throw away every word at distance d− 1 from the new word.

(c) Repeat.

3. Random linear code:

(a) Pick random basis vectors b1, . . . , bk ∈ Fnq .

(b) Choose C = span(b1, . . . , bk).

4. Greedy parity check matrix (Varshamov): details later; basically, pick codewords greedily,
making sure not to create codewords of weight less than d.
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5. Wozencraft Ensemble of Codes (details if there’s time)

Greedy code:

1. Initially, C = ∅, S = Σn.

2. While S 6= ∅:

3. Pick w ∈ S arbitrarily.

4. Add w to C.

5. Remove the ball of radius d− 1 around w from S.

After each iteration, |C| · |B(0, d − 1)| + |S| ≥ qn, since we remove at most |B(0, d − 1)| strings
from S each time we add a codeword to C, so at the end |C| ≥ qn

|B(0,d−1)| , which is asymptotically

qn(1−Hq(δ)). So the worst maximal code is at least that good, that is, k = logq(|C|) ≥ n(1−Hq(δ)),
as claimed.

For sufficiently large values of q (at least, say, 48 or 49), there exist codes which beat that.
We don’t have any significantly better codes for q ∈ {2, 3}, though. We can do slightly better as
follows:

Consider the graph Gn,d,q on vertices Σn with edges between pairs of vertices at distance less
than d. Then an error-correcting code is precisely an independent set. Then the previous proof
said precisely that there’s an independent set of size at least |Σn|

1+deg(G) (which might be a theorem

of Turán), and that can be tight, for instance, for a graph that’s a disjoint union of cliques of size
deg(G) + 1.

In general, a graph G has at most |V (G)|∆(G)2 triangles, since each vertex is in at most ∆(G)2

triangles. Ajtai, Komlos, and Szemerédi proved that in random graphs, there’s an independent set of
size log(∆(G)) |V (G)|

∆(G) . All they needed was that the number of triangles was at most |V (G)|∆(G)2−ε

(as is true for a random graph), and that happens to be true for our graph G(n, d, q), so there is a
code with Hq(δ)nq

n(1−Hq(δ)) codewords, which is an asymptotically trivial improvement.
If we fix δ > 0 and let q → ∞, then Hq(δ) = δ + O( 1

log(q)). But that’s not the best possible,

because there are “algebraic geometry” (AG) codes where R ≥ 1− δ− 1√
q−1 , so for large enough q

we can do better.
Greedy Parity Check Code:
Let m := n − k. We’ll greedily pick an n ×m matrix one row at a time, and choose the code

C = {x ∈ Fnq : x ·H = 0}. The code tolerates d errors iff every subset of d− 1 rows of the matrix
is linearly independent. So, never include a row that’s a linear combination of up to d − 2 of the
existing rows. If we have l rows already, there are (q − 1)d−2

(
l

d−2

)
such linear combinations, which

is exactly the volume of a ball of radius d−2 in Fnq , so we can get a code with
|Fnq |

|B(q,n,d−2)| codewords.

That’s slightly better than the Gilbert bound, which has
|Fnq |

|B(q,n,d−1)| codewords.
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