6.440 Essential Coding Theory February 13, 2013

Lecture 3
Lecturer: Madhu Sudan Scribe: Adam Hesterberg

1 Today

1.1 Administrivia

Pset 1 out today, due on 2013-02-27 (in two weeks).
Sign up to scribe if you haven’t yet.

1.2 Converse to Shannon’s Coding Theorem

Theorem 1.1. Vp € (0, 3) (channel error probability), Ve > 0 (amount above the channel capacity),
36 > 0 (describing the exponential decay of the success rate w.r.t. message length), Ing, Vn > ng
(message length), VE : {0,1}* — {0,1}" (encryption function), VD : {0,1}"* — {0,1}* (decryption
function), where k := | (1 — H(p) + €)n], the probability over m € {0,1}* and error n from a binary
symmetric channel of error probability p that D(E(m) 4+ 1) = m is at most 27",

Proof. We'll ignore the case where the number of errors in 7 is less than (p — §)n or more than
(p + §)n, since a Chernoff bound shows that that happens with probability at most 27917 §o the
error rate is roughly p.

The probability over m and 7 that you decode correctly is

> Priz =m,y = E(m)+n,D(y) = z].
z€{0,1}* ye{0,1}m

Without loss of generality, the encoding and decoding are deterministic functions. (If some
probabilistic functions violated the theorem, then some hardcoding of random inputs would make
a deterministic function violating the theorem.)

So, that probability is

> Prls=my=Em)+nDy) =x]= >  Pr[D(y)=m|Prly = E(m)+nlm = D(y)
z€{0,1}* ye{0,1}m ye{0,1}n
= Z Pr[D(y) = m|Pryly — E(D(y)) = n]
yE{O,l}"

Let wf(w) be the number of 1s in w € {0,1}". Then Pr[n = w]| < (fl), since all errors
wf(w)
with equal weight have equal probability and sum to at most 1. That’s at most (7,11), which is
(p—5)n
roughly 2= H®)" a5 ¢ — 0.
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By assumption, y — E(D(y)) has weight between (p — §)n and (p + §)n (or the decryption was
incorrect), and it’s deterministic, so the probability that it’s 7 is at most Pr[n = w] < 2-7®" g0

the chance you decode correctly (given that the weight of the errors is within § of p) is at most

> PrD(y) = m]2~H@n < gng~hy=HEn < gen,
ye{071}n

as desired. m

Shannon’s 1948 work mentioned all this stuff about existence of optimal codes (by choosing a
random one), but mentioned Hamming’s work as a potential way to do it practically. Shannon’s
has both error and message probabilistics; Hamming’s has both of them worst-case.

1.3 Linear Codes: Some Existence Results

Reminder: (n,k,d), is a not necessarily linear error correcting code, and [n, k,d], is a linear one.
q is the alphabet size—the alphabet is an arbitrary set 3, but is assumed to be the finite field
[F, if it exists, n is the length of the codewords (shorter is better) (the set of codewords C' has
C C X", k is the length of the message (longer is better; n > k) (|C| = ¢¥), and d = A(C) =
ming yec z2£y{A(x,y)} is the minimum distance between codewords (larger is better).

For simplicity, we’ll work instead with the (message) rate R := % and the error rate § := .

U

Theorem 1.2. For every alphabet 3 (or Fy), there’s a code with R > 1 — Hy(5), where Hy is the
“g-ary entropy” Hy(6) = —dlog,(d) — (1 — 6)log,(1 — &) + dlog,(q — 1), which is mazimized at
— a1
6=1-.
The motivation for g-ary entropy is that the volume of a ball of radius én in " is ¢"«(®” which
can be proven like the ¢ = 2 version (take the log of (J})(g —1)°".)
Proof Techniques:

1. Random code:

(a) Pick a random code with 2¢®" codewords (twice as many as we want).

(b) Throw out codewords that are too close (throwing out at most half, with high probabil-
ity).

2. Greedy (Gilbert) code:

(a) Pick a codeword among the remaining words.
(b) Throw away every word at distance d — 1 from the new word.
(c) Repeat.

3. Random linear code:

(a) Pick random basis vectors b1, ..., b € Fy.
(b) Choose C = span(by, ..., bg).

4. Greedy parity check matrix (Varshamov): details later; basically, pick codewords greedily,
making sure not to create codewords of weight less than d.
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5. Wozencraft Ensemble of Codes (details if there’s time)
Greedy code:

1. Initially, C =0, S = 3"

2. While S # :

3. Pick w € S arbitrarily.

4. Add w to C.

5. Remove the ball of radius d — 1 around w from S.

After each iteration, |C|-|B(0,d — 1)| + |S| > ¢", since we remove at most |B(0,d — 1)| strings
from S each time we add a codeword to C, so at the end |C| > m, which is asymptotically
q"1=Ha(9) S0 the worst maximal code is at least that good, that is, k = log,(|C]) > n(1— Hy(9)),
as claimed.

For sufficiently large values of ¢ (at least, say, 48 or 49), there exist codes which beat that.
We don’t have any significantly better codes for ¢ € {2,3}, though. We can do slightly better as
follows:

Consider the graph G,, 4, on vertices X" with edges between pairs of vertices at distance less
than d. Then an error-correcting code is precisely an independent set. Then the previous proof
said precisely that there’s an independent set of size at least H‘dzei;l(;) (which might be a theorem
of Turén), and that can be tight, for instance, for a graph that’s a disjoint union of cliques of size
deg(G) + 1.

In general, a graph G has at most |V (G)|A(G)? triangles, since each vertex is in at most A(G)?
triangles. Ajtai, Komlos, and Szemerédi proved that in random graphs, there’s an independent set of
size log(A(G)) |ng§‘. All they needed was that the number of triangles was at most |V (G)|A(G)?~¢
(as is true for a random graph), and that happens to be true for our graph G(n,d, q), so there is a
code with H,(8)ng"'~H4(9) codewords, which is an asymptotically trivial improvement.

If we fix 6 > 0 and let ¢ — oo, then Hy(6) = § + O(@). But that’s not the best possible,

because there are “algebraic geometry” (AG) codes where R > 1 —6 — ﬁ, so for large enough ¢

we can do better.

Greedy Parity Check Code:

Let m :=n — k. We’'ll greedily pick an n X m matrix one row at a time, and choose the code
C={r €Fy:x-H =0} The code tolerates d errors iff every subset of d — 1 rows of the matrix
is linearly independent. So, never include a row that’s a linear combination of up to d — 2 of the
existing rows. If we have [ rows already, there are (¢ — 1)d*2( ! ) such linear combinations, which

d—2
is exactly the volume of a ball of radius d—2 in Fy, so we can get a code with ‘B(W% codewords.
, q,n,d—2)|
That’s slightly better than the Gilbert bound, which has % codewords.
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