
6.440: Essential Coding Theory Spring 2013

Lecture 5 — February 20, 2013

Prof. Madhu Sudan Scribe: Shravas Rao

1 Administrative

Problem Set 1 is due next Wednesday.

2 Overview

Today we will do the following.

• Prove the Elias-Bassalygo-Johnson Bound introduced in the previous lecture. Recall that the
proof consists of the two lemmas described roughly below

– List decodable codes have poor rate.

– Good error correcting codes are nicely decodable.

• Introduce some algebraic codes along with some helpful idea from algebra.

3 Elias-Bassalygo Theorem

The following is the Elias Bassalygo Theorem. Note that this version of the theorem is for the case
q = 2. Although a similar statement exists for all q, the proof is significantly more involved.

Theorem 1. Any code of relative distance δ has rate

R ≤ 1−H(τ)

where τ ≤ 1
2(1−

√
1− 2δ).

Recall that H is the entropy function defined a few lectures ago. The bound on τ comes in part
from the solution for τ in the equation 2τ(1− τ) = δ.

The proof of this theorem consists of the following two lemmas.

Lemma 2. A (τ, poly(n))-list decodable code has rate

R ≤ 1−H(τ).

Before continuing on to the next lemma we will define list decodable codes.

1

Definition 3. A code C ⊆ Σn is (τ, L)-list decodable if for all x in Σn

|Ball(x, τn) ∩ C| ≤ L.

Here, we define Ball(x, τn) to be the set of all y so that δ(x, y) ≤ τn.

Lemma 4. (Johnson Lemma) If a code C has relative distance δ, then it is (τ, poly(n))-list decodable
for τ = 1

2(1−
√

1− 2δ).

3.1 Intuition behind Lemma 2

We will not give a rigorous proof of this lemma, but we will provide the intuition behind the bound.
Consider the ball around x for any x ∈ {0, 1}n. Without loss of generality, we can let x be 0n, and
adjust the other elements of {0, 1}n accordingly.

The ball sorrounding 0n just consists of all words with at most τn 1’s. If we choose two random
words, y and z, from this ball, then it is very likely that both words have exactly τn 1’s. The
expected value of the distance between two words with exactly τn 1’s is 2τ(1 − τ). If we let this
value be δ, then it follows that τ is approximately equal to 1

2(1−
√

1− 2δ).

To see this, consider each coordinate seperately. The probability that two words differ on any given
coordinate is 2τ(1 − τ). Either the coordinate of one word is 0 and the coordinate of the other
is 1, or the coordinate of the first word is 1 and the coordinate of the other is 0. Note that the
probability that a random coordinate of a word with τn 1’s is τ .

3.2 Proof of the Johnson Lemma

Given a word x ∈ {0, 1}n, consider all codewords c1, . . . , cm ∈ C ⊆ {0, 1}n so that

• δ(x, ci) ≤ τn for all i.

• δ(ci, cj) ≥ δn for all i and j.

Our goal is to find an upper bound m that is a polynomial in n. To do this, we will start by
transforming words in {0, 1}n to vectors in {−1, 1}n. For each coordinate, we map 0 to 1, and 1 to
−1. The intuition behind this map is to give an isomorphism from an additive group consisting of 0
and 1 to a multiplicative group consisting of 1 and −1. Additionally, note that this map preserves
distances up to a multiplicative factor.

Let the word x get mapped to the vector y, and codewords ci get mapped to vectors vi. Then the
above relations on the distances can be rewritten as follows

• 〈y, vi〉 ≥ n(1− 2τ) for all i.

• 〈ci, cj〉 ≤ (1− 2δ)n for all i and j.

Additionally, all vectors y and ci have `2-norm n.

2

To find an upper bound on m, we will try to use the theorem stated last class that given a set of
m vectors in n dimensions, w1, . . . , wm, so that 〈wi, wj〉 ≤ 0 for all i and j, that m ≤ 2n, and is
upper bounded by a polynomial in n. Unfortunately, this might not always be able to be applied
to the vectors vi directly.

Instead, we can look at the vectors vi − αy, for some α ∈ (0, 1). The inner product between any
two of these vectors is

〈vi − αy, vj − αy〉 = 〈vi, vj〉 − α〈vi, y〉 − α〈vj , y〉+ α2〈y, y〉.

Using the bounds listed above, this value is upper bounded by n[1− 2δ − 2α(1− 2τ) + α2]. It can
be checked that if 2τ(1 − τ) ≤ δ, then there exists an α so that 〈vi − αy, vj − αy〉 is less than or
equal to 0 for all i and j, and therefore m is upper bounded by 2n. This completes the proof of
the Johnson Lemma.

3.3 Proof of polynomial bound on the number of vectors

In the last section, we use the following lemma.

Lemma 5. Given unit vectors v1, . . . , vm ∈ Rn,

1. If for all i and j, 〈vi, vj〉 ≤ −ε, then m = O
(
1
ε

)
.

2. If for all i and j, 〈vi, vj〉 < 0, then m ≤ n− 1.

3. If for all i and j, 〈vi, vj〉 ≤ 0, then m ≤ 2n.

We will prove the third statement, which was used in the proof of the the Johnson Lemma. The
proofs of the other statements use similar techniques. Assume that there exist 2n+ 1 unit vectors,
v1, . . . , v2n+1 ∈ Rn so that 〈vi, vj〉 ≤ 0 for all i and j. There exists some unit vector x so that for
all i, the inner product 〈x, vi〉 is non-zero. In fact, this is the case for most unit vectors x. Without
loss of generality, assume that n + 1 of these vectors, specifically the first n + 1 of them, satisfy
〈x, vi〉 ≥ 0. If this is not the case, then we can just negate the coordinates of x.

Because we are working in n-dimensional space, these n + 1 vectors must be linearly dependent.
Specifically, there exist α1, . . . , αn+1 so that

α1v1 + · · ·+ αn+1vn+1 = 0.

If we let the first k of these αi be those that are positive, and if we denote those αi that are not
positive by −βi, then we have that ∑

i≤k
αivi =

∑
j>k

βjvj .

Because
∑

i≤k αivi+
∑

j>k βjvj = 0, it follows that both
∑

i≤k αivi and
∑

j>k βjvj are 0. Therefore,

0 = 〈
∑
i≤k

αivix〉 =
∑
i≤k

αi〈vi, x〉.

3

But because 〈x, vi〉 is strictly positive when i is less than or equal to k, and all the first k αi
are strictly positive, k = 0. This implies that x = −

∑
j>k βjvj = 0, which is a contradiction.

Therefore, 2n is an upper bound on m.

As described in the previous class, such a bound can be achieved by considering the unit vectors in
each dimension, and their negatives, and therefore the bound is tight. However, the question still
remains if this bound is tight if we only consider words from {0, 1}n and require that the distance
between any two vectors be at least n/2.

We can answer this by mapping vectors from {0, 1}n to {−1, 1}n as before, and requiring that
the inner product of any pair of vectors be less than or equal to 0. Such a construction can be
achieved by using Hadamard matrices, which are n × n matrices, H, whose entries are −1 and 1
and are so that HHT = nI where I is the n× n identity matrix. In particular, the vectors used in
the construction are the rows of a n × n Hadamard matrix, along with their negatives. It can be
checked that this construction is valid.

In the case where n is a power of 2, there is a simple recursive construction of an n× n Hadamard
matrix. In particular, we can let H1 be the 1 × 1 Hadamard matrix [1], and let Hi be a 2i × 2i

matrix defined as

Hi =

[
Hi−1 Hi−1
Hi−1 −Hi−1

]
.

3.4 Summary

This concludes our discussion for now on impossibility results for codes. Later in the course we will
give an improvement to this bound called the Linear Programming Bound.

4 Algebraic Codes

The previous construction that used Hadamard matrices suggest that cleverly chosen codes could
behave very nicely. Some of these codes include algebraic codes. In this section we will introduce
some algebraic codes, along with a few ideas from algebra that will be needed.

4.1 Reed-Solomon Codes

All algebraic codes have the same general structure. In particular, the messages consists of some
algebraic function, whose coordinates are some subset of points (or domain of the functions), and
the encoding is to evaluate the message at all chosen points. These codes are useful because the
functions chosen are so that two different functions are unlikely to agree on many points.

One particular example of an algebraic code that will appear later in the class is the Reed Solomon
code. The functions in this case are polynomials from a certain field F of degree at most k, while
the coordinates are some subset of F. As in all algebraic codes, the encoding is to just evaluate the
polynomial at all chosen points. If the number of points used is at least k, then we are guaranteed
that no two functions will have the same encoding.

4

4.2 Fields

There are many useful properties of fields. The properties of fields allow for many theorems in linear
algebra to work out. The polynomial ring of a field F, denoted as F[x], is a unique factorization
domain. Additionally, there are a few interactions that fields have with their respective polynomial
rings. These include

1. A field extension of a field F can be created by taking the quotient ring F[x]/g(x) where g(x)
is a polynomial in F.

2. A field extension of a field F can be greated by considering the field of fractions, F(x) that
consist of elements f/g where f and g are polynomials, and g is non-zero. The two elements
f/g and f ′/g′ are equal if fg′ = f ′g.

We can repeat this process to get a polynomial ring F(x)[y], which is again a unique factorization
domain that consists of bivariate polynomials.

4.3 Reed-Muller Codes

We will introduce one more type of code, called Reed-Muller codes. These codes are defined by
three parameters: Fq, the finite field used, m, the number of variables, and r, the degree. The
messages in this code are all polynomials of degree at most r and individual degree at most q − 1,
in m variables with coefficiants from Fq. The coordinates are the points from Fmq , and the encoding
is the usual encoding. Note that the Reed-Solomon codes are a special case of the Reed-Muller
codes when m = 1.

The following lemmas give the distances of this code for various values of r.

Lemma 6. If r < q then the relative distance of the code is 1− r
q .

The proof of this follows from the Schwartz-Zippel Lemma which states that at most r points of
any given finite subset of points are rots of any multivariate polynomial with total degree at most
r. The general idea behind the proof of this lemma is to do induction on the number of variables.
In particular, we can express a polynomial P (x1, . . . , xm) as

P (x1, . . . , xm) = x01P0 + x11P1 + · · ·+ xt1Pt

where the Pi are polynomials in x2, . . . , xm. Note that because the total degree of P is r, the degree
of any Pi is at most r − i.

This lemma can be extended for larger values of r as follows.

Lemma 7. If r = a(q−1)+b where 1 ≤ b ≤ q, then the relative distance of the code is
(

1− b
q

)
q−a.

We will not prove this, but a good starting point is to consider the polynomial

(xq−11 − 1) · · · (xq−1a − 1)(xa+1 − α1) · · · (xa+1 − αb)

5

