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Lecture 9
Lecturer: Eli Ben-Sasson Scribe: Mohamamd Bavarian

Madhu is traveling, so we are happy to have Eli Ben-Sasson from Technion to give us a lecture today on
limits of list decoding Reed Solomon codes. List Decoding is an important task is coding theory, and RS
codes are probably one of the most useful codes out there, both in theory and applications. So it is important
to understand the limits of this task. By the way, this work mostly addresses the phenomenon of full list
decoding. It seeks to find ranges of parameter where the list becomes too large and hence even combinatorial
list decoding becomes impossible. However, there are many other variant of the problem such as uniformly
sampling from the list, or even producing a single element of the list where this result does not prove any
limitation for. That’s one frontier of research if you like these kind of topics. Most of this lecture is based
on joint work with Swastik Kopparty and Jaikumar Radhakrishnan.[BSKR10]

1 Prelimineries

As mentioned previously, we will work with Reed-Solomon codes in this lecture. In RS codes, the codewords
are evaluations of polynomials of degree ≤ d on the whole field FN . Notice the block length N here coincides
with field size q. We will mostly be interested in parameter regime where K = Nδ for some 0 < δ < 1. So
in our cases of interest d = N −K + 1 would be asymptotically close to N . Now recall that given a linear
code C = [n, k, d]q and w ∈ Fnq , the decoding problem is the problem of finding a codeword c ∈ C close to
received message w. If we assume the agreement between codeword and the message, Ag(w, c) > n − d/2,
then finding c is called the unique decoding problem. The list decoding question was raised by Elias and
Wozencraft: How large the agreement parameter need to be so that we can at least produce decode a list
candidate codewords ∃c1, c2, . . . , cl Find c1, c2, . . . , cl in proximity of message w. The following theorem of
Johnson shows that in principle list-decoding might be possible,

Theorem 1 (Johnson) Let α denote the agreement parameter for the list decoding radius. If α >
√
N(N − d)

for all w ∈ FN . Then Lα(w) = {c ∈ C |Ag(w, c) > α} Then,

|Lα(w)| < O(N2)

Let’s put Johnson’s bound into perspective in our regime of parameters. As d→ N the agreement parameter
for unique decoding goes to 1+x

2 and then the agreement goes to
√
x in list decoding regime where x is

relative rate. The algorithmic breakthrough came through by the work of Sudan, which later was improved
by Gursuwami and Sudan. [Sud97, GS99]

Theorem 2 (Sudan, GS) There exist an efficient algorithm that given FN ,K,N,A and a received message
w ∈ FNN produces all the RS(N,K) codewords with Ag(c, w) > A as long as A >

√
NK.

Our main result proves some limitation to list decoding of Reed-Solomon codes,

Theorem 3 ([BSKR10]) Let q be a prime power and n some positive integer. Let 0 ≤ u ≤ v ≤ m then

there exists P ⊆ F≤q
u

qm [X] and w ∈ Fqm → Fqm such that,

1. |P | ≥ q(u+1)m−v2

2. ∀f ∈ P we have Ag(w, f) > qv

3. w(X) = Xqv +
∑v−1
i=u+1 ciX

qi

Now by setting the parameters in above theorem we get some corollaries.

9-1



Corollary 4 (Low Rate) Let δ ≤ ρ be in (0, 1). Then for infinitely many N there is a word w : FN → FN∣∣{f ∈ RS[N,N δ] : Ag(w, f) ≥ Nρ}
∣∣ ≥ N (δ−ρ2) log2N

If you compare with Johnson bound you see that when α > N (1+δ)/2 then |Lα(w)| < O(N2). However,

above corollary says if α = N
√
δ then |Lα(w)| > NΩ(logN). So we have a super polynomial lower bound on

the list size..
The above separation was striking in the regime when the rate is small say going slowly to zero. Can we get
something in the constant rate regime?

Corollary 5 Let r′ ≤ r ≤ 2r′ and R = 2−r and A = 2−r
′
. Then for RS[N,K = RN ] and α = R′N . (Note

α > K). We have ∃w ∈ FN such that |Lα(w)| ≥ N2r′−r

Once more, let’s compare this to the Johnson bound: If α >
√
RN ⇒ |Lα(w)| < N2 But if α = R(1+ε)/2N ⇒

|Lα(w)| > N cR we have cR →∞. Now let’s see more directly a corollary for limits of list decoding:

Corollary 6 For all ε > 0, there is no polynomial time algorithm that, for any N and K and received word
w : FN → FN , produces a list P ∈ RS[N,K] with Ag(w,P ) > K1/2+εN1/2−ε.

2 Subspace Polynomials

The main ingredient for the proof is the following class of very useful polynomials which we shall call
subspace polynomials. Subspace polynomials are a subclass of linearized polynomials. These are polynomials
P : Fqm → Fqm that satisfy P (aα + bβ) = aP (α) + bP (β) for all α, β ∈ Fqm and a, b ∈ Fq. Given this
definition, the following lemma is obvious.

Lemma 7 The zero set of linearized polynomials is a vector space over Fq.

Now let’s define subspace polynomials.

Definition 8 Let K = Fqm be the degree m field extension of Fq. K can be seen naturally as vectors space
of dimension m over Fq. Let V ⊆ K be d dimensional space over Fq. Consider

PV (X) =
∏
v∈V

(X − v)

This is the polynomial corresponding the subspace V .

Theorem 9 (Ore) Let PV be the subspace polynomial corresponding to a d dimensional subspace V ⊆ K,
where K is a finite field of characteristic q. For some coefficient ci ∈ K,

PV (X) = Xqd +

d−1∑
i=0

ciX
qi

Notice that because (aα + bβ)q
s

= aαq
s

+ bβq
s

it follows that any polynomial of above form is indeed a
linearized polynomial.
Proof Let {v1, v2, v3, . . . , vd} be a basis for V . Consider the d× (d+ 1) matrix A as follows,

A =


1 vq1 vq

2

1 . . . vq
d

1

1 vq2 vq
2

2 . . . vq
d

2
...

...
...

. . . . . .

1 vqd vq
2

d . . . vq
d

d


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Since the number of columns is more than rows Ax = 0 has a non-trivial solution. This corresponds to a
non-zero polynomials of degree at most qd where {vi} all are roots. Now since the only non-zero coefficients
of this polynomial is at powers of q we see that this is a linearized polynomial and hence vanishes on whole
V . Since this means the polynomial has qd roots we see that it has be degree at least qd which proves that
V is the only zero points of the polynomial. Dividing by the coefficient of qd which we know is non-zero
finishes the proof.

Subspace polynomials are important mostly because two properties: Their sparsity and their abundance of
zeroes. They have applications in following areas:

1. Limits to Reed Solomon List decoding which is our present concern.

2. Super-efficient verification of computation. [ Ben Sasson with Sudan, Sudan Vadhan et al, and with
Chiesa et al]

3. Analyzing affine extractor. [Ben Sasson and Kopparty]

While we are at it let’s mention a few more simple facts about subspace polynomials which we won’t need
but they are amusing so you must learn them: As they are linear their image is also a subspace. Let U be
the subspace PV (K). The dimension U is m − d since V the kernel of the linear map. By composing the
linear maps, it follows that

PU (PV (X)) = PV (PU (X)) = Xqm −X

The above relationship is a notion of duality.

3 Proof of The Main Theorem

Theorem 10 ([BSKR10]) Let q be a prime power and n some positive integer. Let 0 ≤ u ≤ v ≤ m then

there exists P ⊆ F≤q
u

qm [X] and w ∈ Fqm → Fqm such that,

1. |P | ≥ q(u+1)m−v2

2. ∀f ∈ P we have Ag(w, f) > qv

3. w(X) = Xqv +
∑v−1
i=u+1 ciX

qi

Proof Consider all subspace V ’s of dimension v of K. By counting the number of bases and dividing by
the number of all the elements of GL(Fqm) we see that the number of such subspaces is as follows,

(qm − 1)(qm − q) . . . (qm − qv−1)

(qv − 1)(qv − q) . . . (qv − qv−1)
≥ qv(m−v)

There exist q−m(v−u−1) fraction of such subspaces whose subspace polynomials have the coefficients the same
αi’s for degree qv, qv−1, . . . qu+1. So take this set of qv(m−v) × q−m(v−u−1) = q(u+1)m−v and let P to be the
union of the subspace polynomials for them. Consider the word w : Fqm → Fqm given by

w(X) = Xqv +

v∑
i=u+1

αiX
qi

Now consider q(X) = w(X) − f(X) for any f ∈ P . It is clear that any such q is a polynomial of degree at
most qu and it agrees with w in number of roots of f which is qv. Since |P | ≥ q(u+1)m−v this finishes the
proof.
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