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Lecture 13
Lecturer: Madhu Sudan Scribe: Badih Ghazi

This lecture is about list-decoding folded Reed-Solomon codes. Folded Reed-Solomon codes will be list-
decodable codes from a1 − R − ǫ fraction of errors whereR is the rate andǫ > 0. This class of codes was
introduced by Guruswami and Rudra [GR06] and was inspired bythe work of Parvaresh and Vardy [PV05].
The particular algorithm that we will describe is due to Guruswami [Gur11].

1 History

This line of work has an interesting history that we now briefly describe. Fix a prime powerq and let
α1, . . . , αn ∈ Fq. The message will consist of2 polynomialsp1(x), p2(x) ∈ Fq[x] of degree less thank. The
codeword will consist of the evaluations ofp1 andp2 on the set{αi | i ∈ [n]}. Instead of viewing this code
as having length2n overFq, we will view it as having lengthn overF2

q. Note thatF2
q is not a finite field.

Such codes are usually referred to as “Interleaved Reed-Solomon Codes”.

1.1 Coppermisth-Sudan

Coppermisth and Sudan gave an algorithm for list-decoding interleaved codes but they needed to assume
that the error pattern was “random” [CS03]. More precisely,the assumption was that some symbols are
received uncorrupted whereas other symbols are completelyrandom. The given algorithm recovers from a
1−O((k/n)2/3) fraction of “random” errors.

1.2 Parvaresh-Vardy

Instead of lettingp1(x) andp2(x) be unrelated, Parvaresh and Vardy related them in the following way. Let
F
<k
q [x] be the ring of all polynomials of degree< k and with coefficients inFq. We define an operator

Φ : F<k
q [x] → F

<k
q [x] and letp2(x) = Φ(p1(x)). They were able to show that if the operatorΦ is “nice”,

then there is an algorithm that can recover from a1 − (k/n)2/3 fraction of errors in the adversarial setting.
The drawback of this scheme is that the rate got divided by2. In fact, sincep2(x) is determined byp1(x),
k/n is now twice the rate. Thus, this code is list-decodable for a1 − (2R)2/3 fraction of errors. This code
can be generalized for any constantc ∈ N where we can recover from a1 − (cR)c/(c+1) fraction of errors.
It looked as if the factorc next to the rateR was inevitable until Guruswami and Rudra came up with the
following idea.

1.3 Guruswami-Rudra

Guruswami and Rudra [GR06] introduced the following “nice”operatorφ. We fix a primitive elementω
of F∗

q and we letφ map p1(x) to p1(ωx). Note that the choice of the operator in the Pavaresh-Vardy
construction does not change the rate of the code. The first row of the interleaved codeword looks like
p(ω), p(ω2), . . . , p(ωq−1) whereas the second row looks likep(ω2), p(ω3), . . . , p(ωq). All those symbols
can be read fromp(ω),. . . ,p(ωq). Thus, the rate went up from12

k
n to 4

5
k
n . Thus, this code can recover from a

1 − ( 54R)2/3 fraction of errors, which is an improvement over the Parvaresh-Vardy codes. The Guruswami-

Rudra codes can be further generalized so that we can recoverfrom a 1 − ( (m+s)R
m )

s

s+1 fraction of errors
wheres is the number of blocks that we are interleaving and the alphabet isFm

q . We will next present
a simplified version of the Guruswami-Rudra codes due to Guruswami [Gur11] that allows us to recover
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from an s
s+1 (1 − (m+s)

m R) fraction of errors. Note that this is slightly worse than theperformance of the
Guruswami-Rudra codes.

2 Description and analysis of the folded Reed-Solomon codes

The number of blockss that we are interleaving is a parameter of the algorithm. In the following description,
we will assume for simplicity thats = 2. Moreover, we letm = 2 i.e., the code will be over the alphabetF

2
q.

2.1 Encoding

The encoding of the message corresponding to the polynomials p1(x), p2(x) ∈ F
<k
q [x] consists of2 vectors

(β1, . . . , βn) and(γ1, . . . , γn) whereβi = p1(αi) andγi = p2(αi) for all i ∈ [n].

2.2 List Decoding

The goal of list-decoding is to find all polynomialsp(x) ∈ Fq[x] of degree less thank s.t.

|{i | βi = p(αi) andγi = p(ωαi)}| ≥ n/3 + (2k)/3 (1)

Note that this is better than unique decoding sincen/3 appears in the equation as opposed ton/2. A priori,
it is not clear that the number of polynomials that satisfy Equation (1) is small. We start by finding some
“algebraic explanation” for the polynomials that satisfy this equation. Namely, we findQ(x, y, z) = A(x) +
B(x)y + C(x)z s.t. Q(x, y, z) is not identically equal to0 butQ(αi, βi, γi) = 0 for all i ∈ [n], deg(A) <
n+2k

3 , deg(B) ≤ n−k
3 anddeg(C) ≤ n−k

3 . Note that this is a system of linear homogeneous equations.

Claim 1. Q(x, y, z) can be found.

Proof. This can be done by solving the big linear homogeneous systemof equations above.

We can thus findA(x), B(x), C(x) which determineQ(x, y, z).

Claim 2. Q(x, p1(x), p2(x)) is identically equal to0 provided that the number of agreements is at least
n
3 + 2k

3 .

Proof. Define g(x) = Q(x, p1(x), p2(x)). Sincedeg(g) < n
3 + 2k

3 and sinceg(αi) = 0 for all i s.t.
p1(αi) = βi andp2(αi) = γi, we conclude thatg is identically equal to0.

Thus, the set of allp1(x), p2(x) ∈ F
<k
q [x] s.t.A(x)+B(x)p1(x)+C(x)p2(x) = 0 andp2(x) = p1(ωx)

includes the polynomials that we are interested in. Note that we can writep1(x) andp2(x) as follows

p1(x) =

k−1∑

i=0

cix
i

p2(x) =

k−1∑

i=0

c̃ix
i

whereci, c̃i ∈ Fq for all i ∈ {0, 1, . . . , k−1}. We need to find all suchp1(x) andp2(x) and ensure that there
are not too many of them. To do so, we use the following nice idea from the work of Pavaresh and Vardy. We
mod outFq[x] by some irreducible polynomialh(x) ∈ Fq[x] in order to get a field. Guruswami and Rudra
pickedh(x) = xq−1 − ω. We will use the following fact.

Fact 3. If ω is a primitive element ofF∗

q , thenxq−1 − ω is irreducible overFq.
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Then,K = Fq[x]/(x
q−1 − ω) is a field. Note that inK, we have thatω = xq−1 which implies that

ωx = xq. Thus, we have thatp2(x) = p1(ωx) = p1(x
q) = (p1(x))

q. We need to solve the equation
A(x) + B(x)p1(x) + C(x)(p1(x))

q = 0 whereA(x), B(x), C(x) ∈ K are given andp1(x) ∈ K is the
unknown. We can find the set of all solutions(p1(x), p2(x)) by factoring the polynomialf(x) = A(x) +
B(x)p1(x) + C(x)(p1(x))

q in Fq[x]. Sincef(x) has degreeq, the number of solutions is at mostq. Thus
the size of the list is at mostq. For general values ofs, this construction yields a list size bound ofqs−1. We
next consider the question of whether we can somewhat reducethe list size.

3 Reducing the list size

The Guruswami-Rudra construction and the Guruswami construction both have the property that for suffi-
ciently large values ofs andm (that depend onǫ), the list decoding radius exceeds1−R− ǫ but the list size
bound isnΩ( 1

ǫ
) which has a rather poor dependence on the distance parameterǫ to the optimal tradeoff. Note

that existentially a list size as small asO(1/ǫ) is possible. In order to reduce the list size, Guruswami [Gur11]
came up with the proposal which was later implemented of Dvirand Lovett [DL12]. Since the polynomial
p1(x) comes from an(s− 1)-dimensional affine subspace, we can restrict the space of all possible messages
to those that don’t have too many polynomials in any particular low-dimensional subspace. Previously, we
were thinking ofp1(x) as an element ofFk

q . Now we think ofp1(x) as an element ofS ⊆ F
k
q whereS

has the following property: For every affine subspaceL ⊆ F
k
q s.t. dim(L) = s − 1, |L ∩ S| is “small” i.e.

|L ∩ S| ≤ τ = poly(1/ǫ). Such as setS is said to be(s, τ)-evasive. Guruswami proved existentially that
|S| ≥ q(1−o(1))k and Dvir and Lovett later gave an explicit construction.

4 Linearity of the codes

Note that the types of codes described above are not linear. Guruswami and Rudra noted that by an “appro-
priate composition” with an appropriate code, we can get thefollowing statement.

Theorem 4. ([GR06])
For all ǫ, R > 0, there existsq, n ∈ N, and Fq-linear codes of lengthn over Fq, rate R and that are
list-decodable from a1−R− ǫ fraction of errors, with lists of sizenpoly(1/ǫ).
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