6.440 Essential Coding Theory March 20, 2013

Lecture 13
Lecturer: Madhu Sudan Scribe: Badih Ghazi

This lecture is about list-decoding folded Reed-Solomateso Folded Reed-Solomon codes will be list-
decodable codes fromla— R — ¢ fraction of errors where is the rate and > 0. This class of codes was
introduced by Guruswami and Rudra [GRO6] and was inspirethéyvork of Parvaresh and Vardy [PVO05].
The particular algorithm that we will describe is due to Gawami [Gurl1].

1 History

This line of work has an interesting history that we now byiefescribe. Fix a prime power and let
ai,..., o, € Fy. The message will consist 8fpolynomialsp; (z), p2(x) € F,[z] of degree less thain The
codeword will consist of the evaluations pf andp, on the sef«; | i € [n]}. Instead of viewing this code
as having lengti2n overF,, we will view it as having lengt over]Fj Note that]F§ is not a finite field.
Such codes are usually referred to as “Interleaved Reenhy&wl Codes”.

1.1 Coppermisth-Sudan

Coppermisth and Sudan gave an algorithm for list-decoditgyrleaved codes but they needed to assume
that the error pattern was “random” [CS03]. More preciséig assumption was that some symbols are
received uncorrupted whereas other symbols are completetiom. The given algorithm recovers from a
1 — O((k/n)?/?) fraction of “random” errors.

1.2 Parvaresh-Vardy

Instead of lettingy; () andpz(z) be unrelated, Parvaresh and Vardy related them in the follpway. Let
F;k[x] be the ring of all polynomials of degree & and with coefficients irF,. We define an operator
® : F¥[x] — F¥[z] and letps(z) = ®(p1(x)). They were able to show that if the operafis “nice”,
then there is an algorithm that can recover from-a (k/n)2/3 fraction of errors in the adversarial setting.
The drawback of this scheme is that the rate got divide@.bin fact, sinceps(z) is determined by, (z),

k/n is now twice the rate. Thus, this code is list-decodable for-a(2R)?/? fraction of errors. This code
can be generalized for any constant N where we can recover fromla— (cR)</(¢+1) fraction of errors.

It looked as if the factor: next to the rateR was inevitable until Guruswami and Rudra came up with the
following idea.

1.3 Guruswami-Rudra

Guruswami and Rudra [GRO06] introduced the following “nicaderator¢. We fix a primitive element

of F; and we let¢p mapp:(z) to p;(wz). Note that the choice of the operator in the Pavaresh-Vardy
construction does not change the rate of the code. The finstofadhe interleaved codeword looks like
p(w), p(w?),...,p(wi™1) whereas the second row looks lik€&w?), p(w?),...,p(w?). All those symbols
can be read from(w),... p(w?). Thus, the rate went up frok~ to %% Thus, this code can recover from a

1 — (2R)?/3 fraction of errors, which is an improvement over the Parsiarardy codes. The Guruswami-

Rudra codes can be further generalized so that we can reftoveral — (W)siﬁl fraction of errors
where s is the number of blocks that we are interleaving and the &aigh&F;*. We will next present
a simplified version of the Guruswami-Rudra codes due to &uami [Gurll] that allows us to recover
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from an Sjl(l - (mmi“)R) fraction of errors. Note that this is slightly worse than tre¥formance of the

Guruswami-Rudra codes.

2 Description and analysis of the folded Reed-Solomon codes

The number of blocks that we are interleaving is a parameter of the algorithmhénftllowing description,
we will assume for simplicity that = 2. Moreover, we letn = 2 i.e., the code will be over the alphah@.

2.1 Encoding

The encoding of the message corresponding to the polynemiét), p2(x) € F;k[a@] consists of vectors
(B1s- -5 Bn) @and (i, ..., vn) wheres; = pi(a;) andvy; = pa(a;) for alli € [n].

2.2 List Decoding
The goal of list-decoding is to find all polynomiaiéx) € F,[z] of degree less thahs.t.

{i | Bi = p(es) andy; = p(wai)} = n/3 4 (2k)/3 @)

Note that this is better than unique decoding sin¢g appears in the equation as opposed t@. A priori,
it is not clear that the number of polynomials that satisfy&ipn (1) is small. We start by finding some
“algebraic explanation” for the polynomials that satidfistequation. Namely, we fin@(z, y, z) = A(z) +
B(z)y + C(z)z s.t. Q(z, y, ) is not identically equal t® but Q(«a, 8;,7;) = 0 forall i € [n], deg(A) <

n£2k deg(B) < =% anddeg(C) < “z%. Note that this is a system of linear homogeneous equations.

Claim 1. Q(z,y, z) can be found.
Proof. This can be done by solving the big linear homogeneous systequations above. O
We can thus findd(z), B(z), C(x) which determin&)(x, y, 2).

Claim 2. Q(z,p1(z),p2(x)) is identically equal to) provided that the number of agreements is at least
oy 2k
3 3

Proof. Define g(z) = Q(z,p1(z), p2(z)). Sincedeg(g) < 2 + 2% and sinceg(e;) = 0 for all i s.t.
p1(a;) = B; andpa(«;) = i, we conclude thag is identically equal td. O

Thus, the setof ajp (z), p2(z) € F¥[a] s.t. A(z) + B(x)p1(z) + C(2)p2(x) = 0 andpz () = p1(wz)
includes the polynomials that we are interested in. Notewleaecan writep; () andps(x) as follows

k—1
p1(x) = Z it
i=0

k-1
pa(x) = Z &t
i=0

wherec;, ¢; € F,foralli € {0,1,...,k—1}. We need to find all such, (z) andp» (z) and ensure that there
are not too many of them. To do so, we use the following nice fdem the work of Pavaresh and Vardy. We
mod outF,[z] by some irreducible polynomidl(x) € F,[x] in order to get a field. Guruswami and Rudra
pickedh(x) = 277! — w. We will use the following fact.

Fact 3. If w is a primitive element df;, thenz?~! — w is irreducible overF,.
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Then,K = F,[z]/(z7! — w) is a field. Note that irK, we have thatv = 29~ which implies that
wz = x%. Thus, we have thaty(z) = pi(wz) = p1(2?) = (p1(z))?. We need to solve the equation
A(z) + B(z)p1(z) + C(z)(p1(x))? = 0 where A(x), B(z),C(z) € K are given and; (z) € Kis the
unknown. We can find the set of all solutiofs (z), p2(x)) by factoring the polynomiaf (z) = A(z) +
B(z)pi(z) + C(z)(p1(x))? in F,z]. Sincef(x) has degreg, the number of solutions is at magt Thus
the size of the list is at mogt For general values &f, this construction yields a list size boundgf'. We
next consider the question of whether we can somewhat retladist size.

3 Reducingthelist size

The Guruswami-Rudra construction and the Guruswami coctitn both have the property that for suffi-
ciently large values of andm (that depend on), the list decoding radius exceetls- R — ¢ but the list size
bound isn2() which has a rather poor dependence on the distance parametée optimal tradeoff. Note
that existentially a list size as small@§1/¢) is possible. In order to reduce the list size, Guruswami {Gr
came up with the proposal which was later implemented of Brit Lovett [DL12]. Since the polynomial
p1(x) comes from arjs — 1)-dimensional affine subspace, we can restrict the spacémisgible messages
to those that don't have too many polynomials in any paréicidw-dimensional subspace. Previously, we
were thinking ofp; (z) as an element dF’qf. Now we think ofp;(z) as an element of C IF’; where S
has the following property: For every affine subspace F’; s.t.dim(L) = s — 1, |[L N S| is “small” i.e.
|ILN S| <7 =poly(1/e). Such as se$ is said to be(s, 7)-evasive. Guruswami proved existentially that
|S| > ¢(1—°()k and Dvir and Lovett later gave an explicit construction.

4 Linearity of the codes

Note that the types of codes described above are not lineaus@&ami and Rudra noted that by an “appro-
priate composition” with an appropriate code, we can gefdhewing statement.

Theorem 4. (JGRO6])
For all ¢, R > 0, there existsy,n € N, andF,-linear codes of lengtm over F,, rate R and that are
list-decodable from & — R — ¢ fraction of errors, with lists of sizeP°v(1/€),
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