
Algebra and Computation (MIT 6.s897) Lecturer: Madhu Sudan
Problem Set 1 Due: Friday, March 6, 2015

Instructions

Goal: The goal of this problem set is to induce some “finite field” thinking. So while it
would be great if you can solve the problem without consulting texts, if that makes
things better feel free to do so.

Collaboration: Collaboration is allowed, but try to think of the solutions you eventually
came up with (possibly collaboratively) in isolation and make sure you understand it
(and internalize it).

Writeup: The due date is a recommendation rather than a deadline. It is best if you think
of the questions and answers sooner rather than later. The goal of this pset is only
to get you to think about potentially weak points in your background. So submission
of answers is optional - but I would like to get an email acknowledging that you have
thought about the questions and know how to answer them. If you have any questions,
email me. If you think you would like to run your solutions by me to verify them or to
check if there are alternate solutions, do write them up and send to me by email.

Exercises

1. Prove Fq[x]/(g(x)) is a field of cardinality qd if and only if g is an irreducible polynomial
of degree d.

Solution: Main thing to do here is to just verify that there are no zero divisors if g(x)
is irreducible; and then to count cardinality.

2. Prove that the multiplicative group of the finite field Fq, denoted F∗q is cyclic. Conclude
that every field has a primitive element.

Solution: The following shows how you can prove this with some finite field thinking,
and truly no counting!

Let µn(m) denote the number of elements of order m in Zn and let φn(m) denote
the number of elements of order dividing m in Zn. If m divides n we have

φn(m) = m and φn(m) =
∑
t|m

µn(t).

We also know that µn(m) ≥ 1 for every m dividing n (the element n/m has order
m).

(Throughout the below, we will consider m dividing q−1.) Now let F = Fq be the
field of q elements and let φF(m) denote the number of elements of order dividing
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m in F∗q (th multiplicative subgroup) and let µF(m) denote the number of elements
of order exaclty m. We show below that µF(m) = µq−1(m) for every m. (This
is sufficient since we then have µF(q − 1) ≥ 1.) We do so by noticing that φF
and µF satisfy many of the conditions that φq−1 and µq−1 do. For instance, we
have φF(m) =

∑
t|m µF(t). Since every element of order dividing m is a root of

the polynomial xm − 1, we have that φF(m) ≤ m = φq−1(m). Note also that if
µF(m) ≥ 1 then there is an element α ∈ F of order m, and so there are at least m
elements of order dividing m (all powers of α), and since φF(m) ≤ m we have that
there are exactly m elements of order dividing m and they form a cyclic subgroup
of order m. We conclude that µF(m) ≥ 1 implies µF(m) = µq−1(m), which in turn
implies µF(m) ≤ µq−1(m). But since every non-zero element is a root of xq−1 − 1
we have φF(q− 1) = q− 1 and so we have

∑
t|q−1 µF(t) =

∑
t|q−1 µq−1(t). But term

by term the left hand side is upper bounded by the right, and so the only way to
get equality is if each term on the left equals the corresponding term on the right
and so we have µF(t) = µq−1(t).

3. If ω is a primitive element in Fqd then prove that ω is a generator of Fqd over Fq.

Solution: Recall that Fqd is a d-dimensional vector space over Fq. Let ω be primitive
in Fqd and consider the elements 1, ω, ω2, . . . , ωd. Since we have d + 1 elements
here there must be an Fq relation over them (or else we have a vector space of
dimension d + 1 or larger). But 1, ω, . . . , ωd−1 must be linearly independent over
Fq or else every power of ω can be expressed in the Fq span of 1, ω, . . . , ωd−2 which
violates the assumption that there are qd − 1 distinct powers of ω.

4. Let α ∈ Fqd have g ∈ Fq[x] as it minimal polynomial. Prove that K = Fq[x]/(g) is a
subfield of Fqd and so the degree of g divides d.

Solution: Since g is the minimal polynomial it must be irreducible. So we know from
Problem 1 that K is a field of size qk where k is a degree of g. Since K is generated
by elements of Fqd it is a subfield of Fqd . Now using the fact that if some field F
extends some field K then F forms a vector space over K and so |F| = |K|r, we
have that qd = |K|r for some integer r. Using |K| = qk we have d = k · r or in
other words, k, the degree of g, divides d.

5. Prove the identity xq − x =
∏

a∈Fq
(x− a).

Solution: From the fact that Fq[x] is a UFD, and the division algorithm, this is equiv-
alent to showing that aq = a for every a ∈ Fq which is equivalent to showing
aq−1 = 1 for every non-zero a, which in turn follows from Lagrange’s theorem in
group theory.

6. Prove xq
d − x =

∏
g∈Pq,d

g(x) where

Pq,d = {g ∈ Fq[x]|g irreducible, monic, with deg(g)|d}.
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Solution: Consider a irreducible polynomial g of degree k dividing d. Consider the field
K = Fq[x]/(g(x)). Note that for every α ∈ K we have αqk = α and hence αqd = α
(since k divides d). We conclude that for every polynomial p(x) ∈ Fq[x] we have

p(x)q
d

= p(x) (mod g(x)). In particular we have this for the polynomial p(x) = x

from which we get xq
d

= x (mod g(x)) or equivalently g(x) divides xq
d − x. We

conclude that the polynomial on the right hand side divides the one on the left.

To prove the reverse direction, first consider any irreducible monic polynomial h
dividing xq

d − x. Since all roots of xq
d − x are in Fqd (Problem 5), h has a root

α ∈ Fqd and so h is a minimal polynomial of α. By Problem 4 we have that h is of

degree dividing d. Thus all irreducible factors of xq
d − x appear in the polynomial

on the right. It only remains to note that xq
d − x has no repeated factors and

this is immediate since its derivative is the constant polynomial −1 which has no
common factors with xq

d − x.

7. Prove that if g ∈ Fq[x] is irreducible of degree d, then it splits completely in Fqd . (In
class we claimed that g has a root in Fq[x]/(g), and if one combines this with the
assertion that fields of cardinality qd are unique then it follows that Fqd has a root of
g(x). But the way to prove the uniqueness is by proving that g has a root in Fqd .)

Solution: By Problem 6 we have that g(x) divides xq
d − x, and by Problem 5, we have

that xq
d−x splits into linear factors over Fqd . It follows that g(x) splits into linear

factors over Fqd .

8. Prove that there is a unique field of any given cardinality: In particular suppose g ∈
Fp[x] is irreducible of degree a · b and h ∈ Fpa [x] is irreducible of degree b. Then prove
that Fp[x]/(g(x)) ∼= Fpa [x]/(h(x)).

Solution: Let q = pa and let K be any field of cardinality qb. Note that it suffices to
show that Fq[x]/(h(x)) ∼= K. By Problem 7, h has a root in α ∈ K. It can be
verified that the map φ that maps p(x) to p(α) is a bijection among polynomials
of degree less than b and preserves addition and multiplication modulo h.

9. Write down the full details of the reduction alluded to in the beginning of Lecture 7
reducing factorization of a polynomial f ∈ Fq[x] with all irreducible factors having
degree d, to root finding in Fqd .

Solution: TBD
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