
6.S897 Algebra and Computation Feb 4, 2015

Lecture 1
Lecturer: Madhu Sudan Scribe: Itay Berman

1 Administrative Topics

• Website: http://people.csail.mit.edu/madhu/ST15/.

• Mailling list – if you are not in it, please email Madhu with your details.

1.1 Responsibilities

1. Scribe: each student in the course (registered, listener or attending just for fun) must scribe at least
one lecture. Please sign up for dates to scribe (see instructions in the course website).

2. Project: will mainly include reading and presenting a new topic to the class. A written report is also
required, but no new results are expected.

3. Participation: please participate in class.

4. Problem Sets: maybe will be, and if so then maybe be submitted.

2 Motivating Example — Factoring Polynomials [1]

Consider the following question: Given p1(x), p2(x) ∈ F[x] (where F[x] is the polynomial ring in formal
variable x over the field F, i.e., the set of polynomials in x whose coefficients are elements of F) with

deg(p1), deg(p2) < n and the sets {p1(α1), p2(α1)}, {p1(α2), p2(α2)}, . . . , {p1(α10n), p2(α10n)}, where {αi}10ni=1

are distinct elements in F, can you compute p1 and p2?
If we could have known in the i’th set which element corespondents to evaluation of which polynomial on

αi, we can simply interpolate and get both p1 and p2. We can, however, compute A = p1 +p2 and B = p1 ·p2
without knowing this correspondence. We cen now define the bivariate polynomial q ∈ F[x, y] as

q(x, y)
def
= (y − p1(x)) · (y − p2(x)) = y2 −A(x) · y +B(x).

Note that the roots of q with respect to y are exactly p1 and p1, so by the quadratic formula we can write

y =
A±
√
A2 − 4B

2
.

But can we really use the quadratic formula for bivariate polynomials as we did? Can we divide by 2 in the
field? What does square root means? It turns out that we can answer the above questions, and to show that
this approach works.

What if we have more polynomials, say p1, p2, . . . , p10? We can define again

q(x, y)
def
= (y − p1(x)) · (y − p2(x)) · . . . · (y − p10(x)) = y10 −A1(x) · y9 +A2(x) · y8 + · · ·+A10(x).

Now, q is no longer quadratic in y, and we don’t have a formula to use to factor it. Can we solve this
problem? Can we do so efficiently? The above questions and more will be addressed in this course.

1-1

http://people.csail.mit.edu/madhu/ST15/

3 Course Topics

3.1 Primer on Algebra

Some examples:

1. degree n polynomials has at most n roots (this theorem is used everywhere in CS).

2. (x+ y)p = xp + yp over fields with characters p.

3. spare polynomial with many roots:
∏
α∈Fq

(x− α) = xq − x, where |Fq| = q.

3.2 Algorithms for Polynomials

1. addition, multiplication, division, GCD.

2. Factorization:

(a) univariate polynomials factorization over finite fields.

(b) univariate polynomials factorization over rationals.

(c) multivariate polynomials factorization.

(d) (root finding over real polynomials.)

We’ll see that the relation between the above algorithms relies on a connection between Z to F[x].

3. primality testing (much more algebra than number theory).

4. solving systems of polynomial equations (NP-hard): Grobner basis, ideal membership.

3.3 Complexity

1. Models: circuits and formulas.

2. Determinant (easy) vs. Permanent (hard).

3. P = NC (in the algebraic sense), or small circuits are equivalent to small depth.

4. Lower bounds.

5. Polynomial identity testing: we know how to do it with randomized algorithms, but not deterministic
ones (how to prove a polynomial is the zero polynomial?)

4 Membership in Permutation Group

You are given a cube and a set of legal moves. Can you transform the cube, using only legal moves, to some
specific configuration? This question is exactly the problem of membership in permutation group.

Let [n]
def
= {1, . . . , n}, let Sn denote the set of permutations from [n] to [n], let e ∈ Sn denote the identity

permutation, and for f, g ∈ Sn let (g · f)(i)
def
= g(f(i)). For T ⊆ Sn, let 〈T 〉 denote the group generated by T

with respect to operation ‘·’.

Definition 1 (Permutation Group Membership) Given T ⊆ Sn such that T = {t1, t2, . . . , tk} and
σ ∈ Sn, decide if σ ∈ 〈T 〉 (in time poly(n,k)).

1-2

We we’ll see how to implement the following natural strategy. Our goal is to transfer the identity
permutation e (which always belongs to 〈T 〉) to σ using only moves from T . Namely, we want to find
T1, T2, . . . , Tr ∈ T such that e · T1 · . . . · Tr ≡ σ with the following restrictions. Each Ti fixes the first i − 1
elements of [n] (i.e., Ti(j) = j for j < i) and transfer σ−1(i) to i (i.e., Ti(σ

−1(i)) = i). What guarantees that
such Ti’s exists? If T1 does not exists, then σ /∈ 〈T 〉 (since σ itself meets T1’s requirements). If T1, . . . , Ti
exist, then if Ti+1 does not exists, it follows that σ /∈ 〈T 〉 (since σ ·T−11 · . . . ·T−1i meets Ti+1’s requirements).

So, if we can efficiently find these Ti’s, or determined that there are none, we can solve the permutation
group membership problem. To do so we use the following generators.

Definition 2 A permutation π ∈ Sn has type(π) = i if π(j) = j for every j ∈ [i− 1] and π(i) 6= i.

Definition 3 A set S ⊆ 〈T 〉 is Strong Generating Set for 〈T 〉 if

∀i < j : (∃π ∈ 〈T 〉 s.t. type(π) = i ∧ π(j) = i) =⇒ ∃!τ ∈ S s.t. type(τ) = i ∧ τ(j) = i

Note that the size of every strong generating set is at most
(
n
2

)
.

Given a strong generating set for 〈T 〉, we can use the above approach to find these Ti’s, or to de-
termined that σ /∈ 〈T 〉. It is left to show how to find such strong generating set. For S ⊂ Sn let
|S〉 = {πr · πr−1 · . . . · π1 : πi ∈ S ∧ type(πi) > type(πi−1)} and for π /∈ |S〉 let FinalEle(π, S) denote the
final permutation generated by taking the previous permutation, starting with π, and compose it with a
permutation from S such that the resulting permutation has larger type than the previous permutation.

Sims’ Algorithm (T)
S ← ∅
while ∃σ, τ ∈ S ∪ T s.t. σ · T /∈ |S〉:

S ← FinalEle(σ · τ, S) ∪ S.

At the end of Sims’ algorithm, the set S is strong generating set for 〈T 〉 (we did not show this in class).

References

[1] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstructing algebraic functions
from mixed data. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Penn-
sylvania, USA, 24-27 October 1992, pages 503–512, 1992.

1-3

	Administrative Topics
	Responsibilities

	Motivating Example — Factoring Polynomials ArLRS92
	Course Topics
	Primer on Algebra
	Algorithms for Polynomials
	Complexity

	Membership in Permutation Group

