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Lecture 4
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In this lecture, we will review some of the basics of algebra for this course. Primarily we will cover three
things - Factoring - When is it reasonable to think about Factorization? Then we will cover Finite fields and
finally look at the Trace function.

This course assumes that you know concepts like Groups, Rings, Fields and Vector spaces over fields.
We briefly review the definitions, but do not treat the topic in detail. We will mostly deal with enumerable
objects and not fields like R - which require us to deal with imprecise calculation.

1 Basic Definitions

Definition 1 (Group) A set G with an operator · : G × G → G, is a Group iff it satisfies the following
properties:

1. (Closure) For all a, b ∈ G, a · b ∈ G.1

2. (Associativity) For all a, b, c ∈ G, a · (b · c) = (a · b) · c.

3. (Identity) There exists e ∈ G such that for all a ∈ G, e · a = a · e = a.

4. (Inverse) For all a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

A group is Abelian if a · b = b · a for all a, b ∈ G. For the sake of brevity we now drop the ·.

Definition 2 (Ring) For a set R and binary operators · and + over R, the triple (R,+, ·) is a ring iff the
following properties are satisfied:

1. (Commutative addition) (R,+) is an Abelian group with identity element 0.

2. (Multiplication) · is closed and associative.2

3. (Distributivity) For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.
A ring (R,+, ·) is a commutative iff for all a, b ∈ R, a · b = b · a. A ring is an integral domain if it has

no zero divisors.

Definition 3 (Field) A tuple (F,+, ·) is a field iff the following properties are satisfied:

1. (F,+, ·) is an integral domain.

2. (F − {0}, ·) is an Abelian group.

Definition 4 (Vector space) A set V (whose elements are called vectors), along with a addition + :
V × V → V and a scalar multiplication · : F× V → V , is a vector space over the field F when the properties
hold:

1. (Closure) (V,+) is an Abelian group.

2. (Distributivity) For all α ∈ F, u, v ∈ V , α · (u+ v) = α · u+ α · v. and

For all α, β ∈ F, u ∈ V ,(α+ β)u = αu+ βu.

3. (Associativity): For all α, β ∈ F, u ∈ V ,α(βu) = (αβ)u.

4. (Identity): For all u ∈ V , 1 · u = u, where 1 is the multiplicative unit of F.

1This is redundant but we still state it
2Also called a semi-group
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2 Factoring and Unique Factorization Domains

In this section we will only consider Unique Factorization Domains (UFDs) - they are subclasses of rings
which admit unique factorizations. Here we assume that ring has an identity.

An element of a ring is a unit if it has an inverse. Also an element a is reducible if there exist non-unit
elements b, c such that a = bc. An element is irreducible if it is not reducible.

Definition 5 (Unique Factorization Domain) A UFD is an integral domain R in which every non zero
element x of R can be written as a product of irreducible elements x = p1p2 . . . pt. This representation is
unique upto permutation or multiplication by units.

We now look at the first construction of a field from a ring. If R is an integral domain, then we can
construct the ring of fractions denoted by R̃ as follows -

Definition 6 (Ring of Fractions) The field R̃ is the set R×R/{0} where we represent elements as tuples
(a, b) where a ∈ R and b ∈ R/{0} with the operations defined as -

1. (Equality) (a, b) = (c, d) if and only if ad = bc.

2. (Addition) (a, b) + (c, d)
def
= (ad+ bc, bd)

3. (Multiplication ) (a, b) · (c, d)
def
= (ac, bd).

We can do this for every ring. It is an easy exercise to show that if R is a UFD then R̃ is a Field.

3 Getting bigger fields from fields

We have seen one way of constructing Fields from rings, now we will see how to construct rings and fields
via polynomials.

If we are given a field F we consider F[x] the ring of polynomials over F. Also from the previous section,
we know that the ring of fractions of F[x] that is the ring of rational functions over F will be a field if F[x]
is a UFD. We claim that this is true.

Theorem 7 If F is a field, then F[x] the ring of polynomials is a UFD.

The proof proceeds from the “Division Algorithm” which says that for all f, g ∈ F[x] then ∃!q, r such
that deg(r) < deg(g) such that f = qg + r

As an aside, this also gives us the notion of modular arithmetic in this ring and the idea of evaluation
f(α) can be defined as the remainder when f is divided by (x − α). Furthermore from here we can argue
that every degree d polynomial over a field has at most d roots.

A more general version of Theorem 7 stated below is due to Gauss.

Theorem 8 If R is a UFD then R[x] is a UFD

Sketch of Proof To prove the theorem, we first observe that R̃[x] is a UFD. This follows from the fact
that R̃ is a field and then we apply Thm 7.

The meat of the proof is the so called Gauss’s Lemma which we just state.

Lemma 9 (Gauss’s Lemma) For a polynomial p ∈ R[x]. If p has a non trivial factorization in R̃[x] then
it has a non trivial factorization in R[x].
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Using Gauss’s Lemma, we see that R[x] has to be a UFD because R̃[x] is a UFD. Since R̃[x] is a UFD,
there cannot be multiple factorizations for a polynomial in R[x] because these would imply non-unique
factorizations in R̃[x] and that the existence of a factorization is guaranteed by the Gauss’s lemma.

As an interesting fact, we note that this procedure not only gives us larger UFD’s but also the Hensel’s
Lifting which we will encounter later in the course, allows a near black box translation of algorithms for
factoring on R to give algorithms for factoring on R[x]. We have seen one way to construct bigger fields
from fields - F(x) - the field of fractions. Now we see another way of constructing fields.

Consider a field F and an irreducible polynomial g ∈ F[x] and consider F[x]/g to be the polynomials
modulo g. We claim that this is a field. This gives us a way to construct bigger Finite fields from smaller
finite fields.

4 Finite Fields

For most of this course, we will deal with finite fields. We cover some of the basics here.
Let p be a prime and q = pt be a prime power. We denote fields like F.

4.1 Prime fields

Prime fields are fields of a prime size. We show that for every prime p, there is a field of size p which is
simply given by Z/pZ that is the set of residues modulo p.

Theorem 10 For every prime p, a finite field of size p exists, and moreover, it is unique up to isomorphism.
We denote this field by Fp.

Definition 11 (Characteristic) The characteristic of a finite field char(F) is the smallest integer n such
that the multiplicative identity 1 added to itself n times is equal to the additive identity 0.

Fields are said to be characteristic 0, if they do not have finite characteristic. All finite fields have a finite
characteristic which is in fact a prime.

4.2 Representing Finite Fields

To perform computation efficiently, we want to succinctly represent the elements in a form amenable to
algebraic manipulation. We will see three representations.

Vector Representation We can show that if K and F are finite fields such that F ⊆ K then K is in fact
a vector space over F.

Also if we start with a finite field K such that |K| = pt then Fp ⊆ K and hence the finite field has to have

a size |Fp|t for some t. We can now represent it as a vector over Fp. This representation is succinct and can
be used to efficiently perform addition but is inadequate for multiplication.

Matrix Representation Let α ∈ F. Now α defines a linear map from FtoF β → αβ. So we can represent
it as a matrix Mα.

This representation is good for both addition and multiplication because for α, γ ∈ F, Mα+γ = Mα +Mγ

and Mαγ = MαMγ . The representation is fairly compact - it takes log(|F |)2 bits.

4.3 Existence of Finite Fields

Constructing non-prime fields is more interesting; we will actually construct them starting with prime fields.
We will now prove the theorem that a finite field of size r exists if and only if r = pt for some prime p

and natural number t.
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The first attempt One way of showing this is to start with the observation that for a field Fp consider
an irreducible polynomial of degree d and construct the field F[x]/g. The size of this field will be pd.

This approach works, but we need to show the existence of an irreducible polynomial for every degree.
There is a sophisticated non constructive argument that does this.

But instead we here take a different approach. This requires us to introduce some machinery.

4.3.1 The right approach

First we start off with an observation.

Claim 12 That if g(y) is an irreducible polynomial in F[y] and K = F[x]/g(x) be the field constructed. Then,

(y − x)|g(y)

Proof Substitute y = x to get g(x) mod g(x) = 0 and hence it is a factor. Now we consider the notion

of a splitting field

Definition 13 (Splitting Field) The splitting field of g(x) ∈ F[x] is the smallest field K such that F ⊆ K
such that g splits into linear factors over K[x].

Now we know from Claim 12 that splitting fields exist. Now for the construction. Suppose we want to
construct a field of size q = pt. Consider the polynomial xq − x over F[x]. Let K be its splitting field. We
consider the set of roots - S = α ∈ K | αq − α = 0. We first see that |S| ≤ q because a polynomial has at
most degree many roots. Also, we can observe that |S| ≥ q because it is the splitting field. And hence
|S| = q. It is left as an exercise to show that the set S is a field and hence the exact field we want.

This completes the existence argument.

4.4 Additional properties of Finite fields

Theorem 14 The multiplicative group over any finite field F is cyclic.

Theorem 15 All finite fields have generators. Let F,K be finite fields such that |K| = |F|t. Then ∃α ∈ K
such that the F-span of

{
1, α, α2, . . . αt−1

}
3 spans K.

Theorem 16 For field K of characteristic p, the unique embedding of Fp is given by the set {α ∈ K | αp = α}

5 Trace

Trace is an important function that maps a large field to its corresponding base field.

Definition 17 (Trace) The trace Tr : Fqr → Fq is defined as Tr(x) = x+ xq + · · ·+ xq
r−1

.

A priori it is not clear why the trace should be in Fq, to show that it is well defined, we consider

Tr(β)q = (β + βq + . . . βq
r−1

)q = βq + βq
2

+ . . . βq
r−1

+ βq
r

= Tr(β).4 Hence Tr(β) ∈ Fq.

Lemma 18 Tr is linear. That is Tr(x+ y) = Tr(x) + Tr(y) and Tr(αx) = αTr(x)

Lemma 19 Tr is a qr−1-to-1 map.

3F-span is the linear span with scalars from F
4We make use of the fact that (a + b)p

t
= ap

t
+ bp

t
in fields of characteristic p
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Proof Let α ∈ Fq. Then Tr(x) − α is a polynomial that maps Fqr to Fq with degree qr−1, and thus it
has at most qr−1 zeros. But that means every α ∈ Fq has a preimage under Tr of size qr−1: otherwise there
would be elements of Fqr that would not map to anything under Tr, which is absurd.

Trace also has a very nice composition property. If we denote the trace from field K to F by TrK→F where
F ⊆ K then if L further extends K then we have

TrL→F = TrK→F ◦ TrL→K.

So, trace has these nice properties and also trace is a very sparse polynomial and this has interesting
consequences that we will see in the course.

Finally, trace allows us to represent a elements of a K in terms of F in the following way. If γ1, γ2, . . . γr
in K are F-linearly independent, then the function α → (Tr(αγ1),Tr(αγ2), . . .Tr(αγr)) is a bijection. This
bijection again is very nice with respect to addition and not so much for multiplication.

Acknowledgments Quite a few things in this scribe have been recycled from the scribed notes of the
previous iteration of the course.
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