
6.S897 Algebra and Computation Feb 18, 2015

Lecture 5
Lecturer: Madhu Sudan Scribe: Ilya Razenshteyn

1 Multiplication of polynomials

In this lecture we will study, how to multiply two polynomials in time O
(
n logO(1) n

)
, where n is the degree

of a product. First let us define two problems that are useful for fast multiplication, and, at the same time,
very important by themselves.

In the multipoint evaluation we are given a polynomial p ∈ R[x] and several points α1, . . . , αn ∈ R. The
goal is to compute β1, . . . , βn ∈ R, where βi = p(αi). The näıve algorithm works in time O(deg p · n), but
the hope is that for special sets of points the evaluation can be sped up substantially.

The complementary problem is that of polynomial interpolation. Here we are given n distinct points
α1, . . . , αn ∈ R and n arbitrary values β1, . . . , βn ∈ R. The goal is to construct a polynomial p ∈ R[x] of
degree less than n such that p(αi) = βi for every i. A caveat is that such a polynomial does not necessarily
exist. A conceptually simple (if slow) algorithm is to solve the corresponding system of linear equations.
This algorithm implies, in particular, that over a field interpolation is always possible.

Our overall strategy to multiply two polynomials p and q will be the following:

• Evaluate p and q on some set of points αi

• Multiply the corresponding values “pointwise”

• Interpolate the corresponding values to recover pq.

We need αi’s to satisfy the following two conditions. First, the points should be nice enough to be able
to evaluate and interpolate quickly. Second, there should be enough of them to be able to interpolate.

1.1 Discrete Fourier Transform

The first simple case is when a ring of interest R contains a primitive root of unity ω of sufficiently high
degree. Namely, suppose that ωn = 1, where n = 2k, for every 0 < i < n one has ωi 6= 1, and that
deg p+ deg q < n, where p and q are the polynomials we are willing to multiply.

In this case, it turns out, one can quickly evaluate and interpolate for the set of points αi = ωi,
0 ≤ i < n using Fast Fourier Transform (FFT). The key observation is that the map x 7→ x2 is 2-to-1
between

{
ω0, ω1, . . . , ωn−1

}
and

{
ω0, ω2, ω4, . . . , ωn−2

}
. This observation allows the following clean recur-

sive procedure for the evaluation of p with deg p < n on ωi:

• Decompose p(x) = x · p1(x2) + p0(x2)

• Recursively evaluate p0 and p1 on
{
ω0, ω2, . . . , ωn−2

}
• Compute p(ωi) using evaluations of p0 and p1.

After a moment of reflection, it is clear that we can perform decomposition and the final computation
in the linear time O(n). Since p0 and p1 are of degree less than n/2, the overall running time is O(n log n).
This consists of O(n log n) additions and multiplications of the special form (by a power of ω).

To perform the interpolation on ωi, one can just observe that we can literally invert the FFT going
bottom-up.

5-1



1.2 Evaluation on subspaces

If we live in characteristic 2, we can instead evaluate a polynomial on all points of some additive subspace
V = span

〈
α1, . . . , αk

〉
that consists of 2k points.

Here one can observe that the map x 7→ q(x) = x2−α1x is a 2-to-1 map from V to span
〈
q(α2), . . . , q(αk)

〉
,

since q is a linear map (q(0) = 0, q(x+ y) = q(x) + q(y)).
The only difference between FFT and evaluation on V is we need to decompose p as follows: p(x) =

x · p1(q(x)) + p0(q(x)). The existence of such a decomposition is not obvious. In addition to it, we need to
compute p0 and p1 quickly. Both of these issues can be addressed: one can show that such p0 and p1 exist
and can be computed in time O(n log n). Thus, the overall time is O(n log2 n).

Moreover, recently Lin, Chung and Han showed how to evaluate a polynomial on V in time O(n log n),

if one is given coefficients in a carefully chosen basis P 0
V , . . . , P 2k−1

V that depends on V . This turns out to
be useful for encoding and decoding certain Reed-Solomon codes.

1.3 Schönhage-Strassen

What if we do not have a good root of unity, but still want to multiply polynomials quickly? This was
addressed by Schönhage and Strassen, who showed how to multiply two polynomials over a ring R in time
O(n log n log logn), provided that 2 is a not a zero divisor. That is, we barely assume anything about our
ring!

The algorithm is pretty intricate, so we only sketch a high-level idea of it.
The first näıve approach would be to consider an extension of R that contains a good root of unity and

perform FFT there. Unfortunately, if done näıvely, we may end up with an extension, where it is very
expensive to perform multiplications.

We will be considering an extension of the form A = R[y]/(yl + 1). A new variable y ends up being a
2l-th root of unity. So, the larger l is, the more we would be able to “reduce” our polynomial of degree n.
On the other hand, elements of A are polynomials of degree l− 1, so the smaller l is, the cheaper operations
in A end up being.

Turns out the optimal choice of l is around
√
n. We can represent any polynomial p(x) as p(x) = Q(x, xl),

where degxQ(x, y) < l and degy Q(x, y) ≤ n/l. Now we map p into Q(x, y) ∈ A[x]. This map is invertible.
Then, to multiply polynomials in Q(x, y) we will be using powers of y for evaluation and interpolation. It

turns out that performing FFT and Inverse FFT is cheap (since we only need multiplications of the special
form), and the bottleneck is pointwise multiplication. But this can be done recursively, since points in A are
polynomials over R of degree less then l!

For the real description and all the details filled see excellent notes of Zachary Abel from the previous
offering of the class.

5-2


	Multiplication of polynomials
	Discrete Fourier Transform
	Evaluation on subspaces
	Schönhage-Strassen


