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Outline:

• Nearly linear-time algorithms

– Division

– GCD

• Factorisation

– Over finite fields.

From last week: For the running time of the algorithm for multiplying polynomials from last class, we
had the following recurrence:

T (n) = c
√
n+ T (

√
n) +O(n log n)

It turns out that the precise value of c does matter in determining the asymptotic behaviour of T . If c = 1,
we get T (n) = O(n log n), and if c is something larger, in general we get T (n) = O(n logO(1) n). In our case
it turns out that c = 2, and T (n) = O(n log n log log n).

The fact that the above problem of multiplying polynomials has a nearly linear-time algorihm is not
as surprising as it might seem at first glance, as one way one might do this is by abandoning finite fields
and multiplying the polynomials as though they were over C, where the requisite roots of unity are present
to multiply using Fourier transforms. The catch is that these roots may not have short descriptions, but
this may be overcome by taking only O(log n) bits of precision, which should still give us the answer in

O(n logO(1) n) time.
That the problems we shall now study also have nearly linear-time algorithms, though, should actually be

surprising. But also perhaps not, as we do not really know a natural problem that has inherent super-linear
(ω(n logO(1) n)) complexity.

1 Division

The problem of univariate polynomial division over a field F is as follows:

• Input: f, g ∈ F[x]

• Output: q, r ∈ F[x] such that f = q.g + r, and deg(r) < deg(g)

As it turns out, the complexity of division is Θ(complexity of multiplication). This is as a result of the
reduction of division to the problem of inverting polynomials, which is as follows:

• Input: g ∈ F[x] such that g(0) 6= 0 and t ∈ Z+.

• OutputL a ∈ F[x] such that a.g = 1(mod xt).
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1.1 Complexity of Inversion

Note that without loss of generality, we may assume deg(g) ≤ t.
Modulo xt, no multiple of x is invertible, but any other polynomial is (this is an implication of Bezout’s

theorem, which we shall see in a later class), which is why g(0) 6= 0 is part of the input promise.
We shall show now how to solve the above problem in nearly-linear time, making use of the algorithm

for multiplication that we know. We shall use the idea of Hensel lifting, which is a general technique useful
in several cases to solve a problem modulo x2t given the ability to solve it modulo xt.

Suppose we have obtained an a such that a.g = 1(mod xt) =⇒ a.g = 1 + xtb. We want to lift this to
get an ã such that ã.g = 1(mod x2t).

First, as we only care about a.g modulo xt to start with, we don’t care about terms of a that have degree
greater than xt. We shall set these higher degree terms in an appropriate manner to get ã.

Let ã = a + xta1. Then, ãg = ag + xta1g = 1 + xt(b + a1g). What we want now is for (b + a1g) to be
divisible by xt, that is, b+ a1g = 0(mod xt), which is the same as a1 = −bg−1(mod xt). But g−1 modulo xt

is a, and we get that a1 = −ba will do.
Substituting, we can check that ãg = a(1− bxt)g = (1 + bxt)(1− bxt) = 1− b2x2t.
This way, from a solution to the inversion problem modulo xt, we have obtained the inverse of a polynomial

module x2t with just a constant number (2, in fact) of extra polynomial multiplications. This gives us a
nearly-linear time algorithm for inversion (which may be seen by writing down the recursion for the running
time as in the case of multiplication).

Note that Hensel lifting may be done not just from xt to x2t, but from any p to p2, and in general, even
modulo ideals.

1.2 Reduction to Inversion

Next we describe how to reduce division to inversion, which is a bit of a hack, rather.
Given f =

∑
i aix

i, define Revn(f) =
∑

i aix
n−i, when n ≥ deg(f).

If f = qg + r, it may be verified that Revn(f) = Revdeg(g)(g)Revn−deg(g)(q) +Revn(r).

As r has degree at most deg(g), Revn(r) is divisible by xn−deg(g). So if we work modulo xn−deg(g), we can
findRevn−deg(g)(q) modulo xn−deg(g) by invertingRdeg(g)(g) modulo xn−deg(g) and usingRevn−deg(g)(q)Revdeg(g)(g) =

Revn(f)(mod xn−deg(g)). This is enough to retrieve q because deg(q) = n−deg(g), and everything just works
out.

2 GCD

It is somewhat remarkable that Euclid’s algorithm from all that long ago continues to work to compute GCD
of polynomials in polynomial time. This algorithm, GCD(f, g) (where deg(f) > deg(g)) is as follows:

• If g = 0, output f .

• Else, run GCD(g, f mod g).

It is clear that this algorithm makes at most as many iterations as the degree of either of its arguments.
But it is still far from linear-time, as it is unclear how one would compute f mod g fast enough. To remedy
this, note that each iteration of the algorithm is something like this:

(
g

f mod g

)
=

(
0 1
1 −q

)(
f
g

)
And the whole algorithm looks something like this:
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(
GCD(f, g)

0

)
=

(
0 1
1 −qm

)
· · ·
(

0 1
1 −q1

)(
f
g

)
Note that there is a point in the algorithm such that till that point the degree of at least one arguments

to GCD was more than n/2, and after this point both degrees are less than n/2. The idea, roughly, is that
till that point, we find the qi’s by ignoring terms of f and g of degree less than n/2, and at that point put
the terms back appropriately and resume. This breaks the computation of GCD of degree n polynomials
down into two computations of GCD of degree n/2 polynomials, and some more work.

Can we have pathological cases where the original algorithm is much worse than the improved algorithm?
Yes. In fact, it would seem that most cases would be so.

3 Factorisation

“Something of a miracle.”
Without loss of generality, we work always with monic polynomials, as we are working over finite fields.

We start with factorisation of quadratic polynomials.
Given x2 + ax+ b ∈ F[x], how do we even know whether it can be factorised? One might do something

like check if the (a2 − 4b) is a quadratic residue, but we want something more general.
We take (xq − x), which has exactly all linear terms as factors, and compute GCD(x2 + ax+ b, xq − x).

Before seeing what this gives us, note that doing so normally would require time linear in q, and this is too
much for us. But we can actually compute f(mod g) in time poly(deg(g), log deg(f), sparsity(f)), by looking
at each monomial cix

i, and using x mod g, x2 mod g, . . . to find cix
i(mod g). This is very good for us as

xq − x is very sparse, and using this to compute the GCD algorithm lets us do so fast enough.
So if deg(f) = 2, and GCD(f, xq − x) is of degree 0, then f is irreducible, and if it is of degree 2, then f

is reducible. If the degree is 1, then f has repeated roots.
In general, to deal with repeated roots in polynomials, we can take the GCD of the polynomial with

its derivative, which separates the repeated part which we can deal with separately. While it is easy to see
that this works over R, it also works over finite fields, for somewhat non-trivial reasons, as sometime the
derivative of a polynomial of degree n has degree less than n− 1, for example, f(x) = xp. What we can say
is the following:

Lemma 1 () If f ′ 6= 0, GCD(f, f ′) = 1 iff f has no repeated factors.

If f ′ = 0, then f (in a field of characteristic p) is of the form f =
∑

i cix
ip, which can be written as

(
∑

i c
1/p
i xi)p. In Fq of characteristic p, c1/p = cq/p, and q/p is an integer. Now we just factorise

∑
i c

1/p
i xi.

Now that we have dealt with repeated factors, we have a reducible quadratic polynomial whose factors
are distinct, and GCD(xq − x, f) = f . How do we factorise this?

Suppose x2+ax+b = (x−α)(x−β), and it happened to be the case that α is a quadratic residue while β is
not. Then, as we know that all quadratic residues are roots of (x(q−1)/2−1), we have GCD((x(q−1)/2−1), f) =
(x− α), and we can factorise f . (Note that xq − x = x(x(q−1)/2 − 1)(x(q−1)/2 + 1).

If we are not so fortunate as to have this happen to be the case with our polynomial, we are going to
come up with a randomised polynomial such that knowledge of its factorisation enables us to factorise our
polynomial, and it is likely to be of this form.

Given x2 + ax + b with roots α, β, the quadratic polynomial with roots (cα + d), (cβ + d) is
(
x−d
c

)2
+

a
(
x−d
c

)
+ b. If we choose c and d at random, with good probability we end up with a polynomial that fits

the case above.
This extends to factorising polynomials of higher degrees with all linear factors, by repeating above

process till we find all of them. This is a special case of the algorithm due to Berlekamp from 1972, before
notions like NP were even defined, and the theory of randomised algorithms wasn’t as developed as it is
today.
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3.1 Even Characteristic

Note that all we did above was only for fields of odd characteristic, as quadratic residuosity only makes sense
then. What we were essentially doing earlier was looking at the multiplicative group of the field and using
the fact that it has a non-trivial subgroup and looking at it and its coset (namely, roots of (x(q−1)/2 − 1)
and (x(q−1)/2 + 1)). Now we are going to try to do that with the additive group.

Given field Fq of characteristic 2, we define Tr : Fq → F2 as Tr(x) = x+ x2 + · · ·+ x2
s−1

, where q = 2s,
and use the fact that xq − x = Tr(x)(Tr(x) − 1). Now we use this identity to do with the additive group
what we did with the multiplicative group earlier. Note that we can do this for any constant characteristic
field.

3.2 Higher Degree Factors

But what about polynomials that have non-linear factors? Well, to begin with, we can still get all the linear
factors by the above method.

For the rest, we use the following identity: xq
d − x =

∏
g(x) over all g that are monic, irreducible and

deg(g) divides d. So to find product of factors of degree d of f if f has no factors of degree smaller than

d, we just take GCD(xq
d

, f). So, for a square-free f , we have the sequence (f1 = GCD(xq − x, f), f2 =

GCD(xq
2 − x, f/f1), . . . ), which are factors of f such that all of their factors have the same degree. So if

we can factorise all of the fi’s, we will be done.
This we leave for the next lecture, where we shall also talk about making some of these algorithms

deterministic.
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