
6.S897 Algebra and Computation Mar 2, 2015

Lecture 8
Lecturer: Madhu Sudan Scribe: Badih Ghazi

Announcement Problem Set 1 is posted on the course website. Try the
problems by Friday.

1 Introduction

We saw in previous lectures how to factor univariate polynomials. In this lecture,
we are interested in factoring bivariate polynomials. The algorithm that we
will describe shortly will apply to factoring bivariate polynomials of the forms
f(x, y) ∈ F[x, y] where F is a field, but some of the tools that we will develop will
be more general. To this end, we will consider polynomials f(x) ∈ R[x] where
R is any commutative ring. Note that setting R = F[y] will give us bivariate
polynomials as a particular case. Furthermore, we will assume throughout the
lecture that the polynomials are monic.

One tool that we will use in the analysis of bivariate factoring is the resul-
tant Res(f, g) of polynomials f(x), g(x) ∈ R[x], which has the property that
Res(f, g) = 0 if and only if f(x) and g(x) share a non-trivial factor. The re-
sultant has many applications beyond factoring polynomials, and we will see at
the end of this lecture one of these applications, namely, proving one direction
of Bezout’s theorem in the plane.

2 Overview of Approach

Let f(x) ∈ R[x] be a monic polynomial over a commutative ring R. As we
mentioned above, we will be interested in this lecture in the case where R = F[y]
where F is some field. Some of the ideas presented in this lecture will also be
used in a later lecture when we will talk about factoring polynomials over the
integers, in which case R = Z. At a high level, the algorithm for factoring f has
the following four steps:

1. Find an ideal I ⊆ R. In the case where R = F[y], we will take I = (y) :=
{α · y | α ∈ F[y]}. Recall that an ideal of a ring R is a subset that is
closed under addition (i.e., for all a, b ∈ I, a + b ∈ I) and closed under
multiplication with arbitrary elements of R (i.e., for all a ∈ R and all
b ∈ I, ab ∈ I).

2. Factor f modulo the ideal I, i.e., write f as f = f1 . . . fk(modI) where
fi is irreducible for every i ∈ [k]. The hope is that our treatment in
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previous lectures implies that this step is “easy”. Indeed, in the case where
R = F[y], taking any f ∈ R[x] modulo the ideal (y) yields a univariate
polynomial in x, which we know how to factor (from previous lectures).

3. “Lift” the factors fi to polynomials f̃i s.t. f = f̃1f̃2 . . . f̃k(modIt) for
some sufficiently large value of t. This uses an important technique, called
Hensel lifting, that will be covered in a later lecture, and that we will also
be useful later in the course. Note that here It is the additive closure of
{α1α2 . . . αtβ | αi ∈ I, β ∈ R}.

4. Go from the lifted factor f̃1 to a polynomial g that divides f in R[x]. This
step is the main focus of today’s lecture, and we will see that it essentially
reduces to solving a linear system over F when R = F[y].

Already, one might be a bit skeptical about this approach. Consider the
polynomial f = xp − x + y ∈ Fp[x, y], which is irreducible over Fp. Taking
f modulo the ideal I = (y) yields the polynomial xp − x, and we know from
previous lectures that this polynomial splits into p distinct linear factors over
Fp. However, all factors of f modulo It for any t ≥ 2 must be trivial (i.e., either
1 or f).

More generally, suppose that f has the factorization g1 · . . . · g` in R[x]. Can
f have fewer factors when it is taken modulo I? Can it have more factors? The
answer to both questions is, in fact, yes. To see that it can have fewer factors,
consider the case when gi = α + y · h(x) for some h ∈ F[x] and α ∈ F. Then
gi (mod I) is a constant, so f will have fewer (non-trivial) factors modulo I.
However, this is actually a “rare” event, and we can circumvent this case by
instead using a different ideal I = (y + β) for an appropriately chosen β ∈ F.

To see that f can have more factors modulo I, consider the irreducible
polynomial f = xp−x+ y above which has p factors modulo I. Unlike the case
where f ( mod I) has fewer factors, we cannot simply circumvent this possibility,
and there is a potentially one-to-many correspondence between the factors of f
and the factors of f (mod I):

f(x, y) = g1(x, y) · g2(x, y) · . . . · g`(x, y)

f (mod I) =
︷ ︸︸ ︷
f1(x) · . . . · fi1(x) ·

︷ ︸︸ ︷
fi1+1(x) · . . . · fi2(x) · . . . ·

︷ ︸︸ ︷
fi`−1

(x) · . . . · fk(x)

However when we cover Hensel lifting we will see that this state of affairs is
acceptable, and that repeatedly lifting f1 will give an f̃1 that has enough infor-
mation to recover g1.

3 The Jump Step

We now explain Step 4 of the above algorithm.
Suppose that the polynomial f splits into factors g1 · . . . · g` (unknown to

us), and that we have the factorization f = f1 · . . . · fk (mod I). Then, this
is also a factorization of

∏
i gi (mod I), and so f1 is a factor of one of the

gi (mod I); say without loss of generality that it’s a factor of g1. In step 3

of the algorithm, we obtain via Hensel lifting the factors f̃1 · . . . · f̃k, with the
guarantee that f̃1 is a factor of g1 (mod It) under our assumption that f1 is a
factor of g1 (mod I). (Note that we have not yet specified an appropriate value

of t.) Define d := degx(f̃1) to be the x-degree of f̃1. Note that d < degx(f)
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(unless f is irreducible modulo It), but degy(f̃1) might be very large. Given
this setup, we can now state the Jump Problem that we are interested in.

The Jump Problem. Find two polynomials g, h ∈ F[x, y] that satisfy the
following conditions:

1. degx(g) ≤ d and degy(g) ≤ d.

2. g = f̃1 · h (mod It).

3. g has minimal x-degree.

Later on, we will come to the reason why such polynomials might be useful
for us, but let’s first focus on solving this problem. One thing to notice is
that if (g, h) and (g′, h′) are two pairs that satisfy condition 2, then their sum
(g + g′, h + h′) also satisfies condition 2. In fact, it turns out that the Jump

Problem reduces to simply solving a system of linear equations determined by f̃1
and It, where the unknowns are the coefficients of g and h. (That this is indeed

a linear system relies on the fact that multiplying by f̃1 and reducing modulo It

are both linear operations.) Solving such a system can be done efficiently using
basic linear algebra.

We now explain why a solution to the Jump Problem is useful for us. Recall
that we are hoping to find the irreducible polynomial g1 such that f = g1 · h1,
where here h1 := g2 · . . . ·g`. The following lemma shows that, given any solution
(g, h) to the Jump Problem, we can find a non-trivial factor of f containing g1
by computing gcd(f, g). (If f is irreducible, this gcd will give f .)

Lemma 1 If (g1, h1) is a solution to the Jump Problem with g1 irreducible, and
(g2, h2) is any other solution, and if t > d2, then g1|g2.

(Note that this also specifies the value of t we need to choose in step 3.) We
will not prove this lemma today. Instead we will introduce the resultant, which
is a generally useful tool that in particular will help us prove this lemma.

4 The Resultant

In this section, we introduce the resultant, an algebraic tool that will aid in the
proof of Lemma 1. To start, consider the following problem:

Given two polynomials A =

k∑
i=0

aix
i and B =

∑̀
i=0

bix
i in R[x],

decide if A and B have a common non-constant factor.

The resultant Resx(A,B) solves this problem. It can be shown to satisfy the
following properties.

1. Resx(A,B) ∈ R.

2. Resx(A,B) is a polynomial in the coefficients {ai}i≤k, {bi}i≤`.

3. Resx(A,B) is contained in the ideal generated by (A,B).

4. Resx(A,B) = 0 if and only if A and B have a common non-constant factor.
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Note that we use the subscript x to indicate the variable under consideration.
If we are working in the ring R = F[y], as we will below, then the ai and bi
coefficients are actually polynomials in y.

So, how is the resultant defined? Resx(A,B) is the determinant of the
following (k+ `)× (k+ `) matrix, known as the Sylvester matrix associated with
A and B.

M(A,B) =



a0 0 · · · 0 b0 0 . . . 0
a1 a0 0 b1 b0 0

a2 a1
...

... b1
...

...
...

. . . a0 b`
...

. . . 0
ak ak−1 a1 0 b` b0
0 ak a2 0 0 b1
...

...
...

...
...

...
0 0 · · · ak 0 0 · · · b`


Resx(A,B) := det(M(A,B))

This already establishes properties 1 and 2 above, though we will look more
closely at the second in a moment. But first, a natural question: where does
M(A,B) come from ? Its motivation can be found in the proof of the following
lemma, which establishes property 4.

Lemma 2 Let G := gcd(A,B). Then, G is non-constant if and only if det(M(A,B)) =
0.

Proof Assume that G is non-constant. Then, A·(B/G)+B ·(−A/G) = 0, and
thus there exist two non-zero polynomials C :=

∑
i cix

i and D :=
∑
i dix

i such
that AC + BD = 0, deg(C) < deg(B), and deg(D) < deg(A). Then, defining
the (column) vector v = (c0, . . . , c`−1, d0, . . . , dk−1) 6= 0, we have M(A,B) · v =
AC + BD = 0 and thus det(M(A,B)) = 0. This argument also holds in the
other direction, i.e. if det(M(A,B)) 6= 0 then there is no such v 6= 0 and so G
must be constant.

We now note a few other facts about the resultant. Applying the following
general lemma to our matrix shows that the vector (Resx(A,B), 0, . . . , 0) is in
the column span of M(A,B), which establishes property 3.

Lemma 3 For all M ∈ Rn×n, the vector (det(M), 0, . . . , 0) is in the column
span of M .

Proof M can be put in lower-triangular form by performing only column
operations. Letting M denote the triangularized matrix, we have det(M) =∏
i≤nM ii. Finally, observe that the vector

(∏
i≤nM ii, 0, . . . , 0

)
is in the col-

umn span of any triangular matrix M .

In the case when R = F[y], the following lemma bounds the y-degree of
Resx(A,B).

Lemma 4 If A,B ∈ F[x, y] have total degree k and ` respectively, then Resx(A,B) ∈
F[y] has degree at most k`.
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Proof This is essentially a counting argument. Consider the degree of the
(i, j)th element of M(A,B):

deg(M(A,B)ij) ≤

{
k − i+ j, if j ≤ `
j − i, if j > `.

Therefore for every permutation σ : [k+ `]→ [k+ `], deg
(∏

jM(A,B)σ(j),j

)
≤

k`, and so Resx(A,B) = det(M(A,B)) is a sum of degree ≤ k` polynomials.

We conclude by showing how the resultant can be used to prove one direction
of Bézout’s Theorem in the plane.

Theorem 5 If A,B ∈ F[x, y] have total degree at most k and ` respectively, and
they share more than k` common zeros, then they have a common non-constant
factor.

Proof We will show that ifA andB have> k` common zeros, then Resx(A,B) =
0. Suppose that (α1, β1), . . . , (αk`+1, βk`+1) are the common zeros. We know
that Resx(A,B) is in the ideal generated by A and B, so it must vanish on each
of the βi. Because Resx(A,B) has y-degree ≤ k` by Lemma 4, if each of the βi
are distinct then Resx(A,B) must be identically zero. Of course, the assump-
tion that the βi are distinct is not justified. However, if we work over a large
enough extension field K ⊇ F, and perform the following linear transformation
for a random θ ∈ K

(αi, βi) 7−→ (αi, βi + θ · αi)

then with non-zero probability the new βi will all be distinct, which again gives
k`+ 1 distinct points on which Resx(A,B) vanishes.

Note 1 In the case where R = F[y], one can alternatively define the resultant
as follows. Given polynomials f(x, y), g(x, y) ∈ F[x, y], the resultant Resy(f, g)
of (f, g) is the minimal non-zero degree polynomial in x, that’s then minimal in
y, s.t. Resy(f, g) ∈ (f, g) := {af + bg | a, b ∈ F[x, y]}.

Acknowledgments Some of the material in this lecture is taken from the
very nice scribe notes of Eric Miles in the 2012 iteration of the course.
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