
6.S897 Algebra and Computation March 11, 2005

Lecture 11
Lecturer: Madhu Sudan Scribe: Alex Wein

Today

• Gauss and LLL lattice algorithms

• Summary of factorization

1 Shortest Vector Problem

Definition 1 (Shortest Vector Problem) Given v1, . . . , vk ∈ Zk, find α1, . . . , αk ∈
Z (not all zero) to approximately minimize ‖

∑
i αivi‖2 in the following sense: if

∃ {α̃i}ki=1 such that ‖
∑

i α̃ivi‖ < β then we will find {αi} such that ‖
∑

i αivi‖ ≤
γ(k) · β.

We will see two algorithms that solve this problem. Gauss’ algorithm solves
the k = 2 case exactly, i.e. γ(k) = 1. The LLL algorithm solves the general case
(arbitrary k) with γ(k) = 2k.

1.1 Gauss Algorithm

The algorithm will maintain a basis consisting of a “small” vector s ∈ Z2 and
a “big” vector b ∈ Z2. The idea is to subtract multiples of s off of b in order to
make b smaller. Then s and b swap roles and we repeat. Formally, the algorithm
proceeds as follows.

Gauss Algorithm

1. Input: s, b ∈ Z2

2. b← b− is where i minimizes ‖b− is‖

3. If b is sufficiently small then swap(b, s) and go to step 2; otherwise stop

To complete the description of the algorithm, we need to specify what is
meant by sufficiently small. Imagine viewing the vectors s and b in the plane,
with s aligned with the positive horizontal axis. Draw an axis-aligned square,
centered at the origin with side-length ‖s‖ (so that the square passes through
s/2). We will say that b is sufficiently small if it lies in this square. Note that
step 2 ensures that the projection of b onto s lies between −s/2 and s/2, i.e. the
horizontal coordinate of b lies within the square. If the vertical coordinate of b

11-1

also lies within the square then the algorithm terminates; otherwise we swap b
and s and continue.

To see that the algorithm terminates, note that at each iteration, the length
of s decreases by a factor of 1/

√
2 because any vector inside the square has length

at most ‖s‖/
√

2. All that remains is to show the correctness of the algorithm.

Claim 2 When Gauss’ algorithm terminates, either b or s is the shortest (nonzero)
vector in the lattice.

Proof Let v = is+jb be the true shortest vector, where i, j ∈ Z. If j = 0 then
‖v‖ ≥ ‖s‖ which means s is the shortest vector and we are done. Otherwise,
write b = b∗ + αs with − 1

2 ≤ α ≤ 1
2 , b∗ ∈ R2, and b∗ ⊥ s. The termination

condition implies that b lies outside the square and so ‖b∗‖ ≥ 1
2‖s‖. If j ≥ 2

then again ‖v‖ ≥ ‖s‖ and we are done. Consider the remaining case, j = 1. We
have ‖b‖2 = ‖b∗‖2 + α2‖s‖2 ≤ ‖b∗‖2 + (i + α)2‖s‖2 = ‖b + is‖2 = ‖v‖2 using
the fact that |α| ≤ 1

2 implies |i+ α| ≥ |α| for any i ∈ Z. This shows ‖b‖ ≤ ‖v‖
so we are done.

1.2 LLL Algorithm

Now we present the LLL (Lenstra-Lenstra-Lovász) lattice basis reduction algo-
rithm, which finds a 2k-approximation to the shortest vector in any number of
dimensions k. The basic outline of the algorithm is as follows.

LLL Algorithm

1. Input: b1, . . . , bk ∈ Zk

2. Orthogonalize b1, . . . , bk

3. Find some i for which ‖b∗i+1‖ ≤ 1
2‖b

∗
i ‖, swap(bi, bi+1) and go to step 2; if

no such i exists then stop and output b1

In the following, we will clarify what is meant by orthogonalize, and we will
define the b∗i ’s mentioned in step 3. The idea of the orthogonalization step is
to subtract copies of bi’s from one another in order to get an approximately
orthogonal basis for the lattice. This is done in a similar manner to the Gram-
Schmidt process, except we can only subtract integer multiples of one vector
from another so that we stay in the lattice. Formally, for i = 1, . . . , k, let
b∗i ∈ Rk be the projection of bi orthogonal to span(b1, . . . , bi−1) so that b∗i ⊥
span(b1, . . . , bi−1). Note that {b∗i } are orthogonal but do not necessarily lie
in the lattice. For each i we can write b∗i = bi +

∑
j<i µijbj for some scalars

µij ∈ R. The orthogonalization step (step 2 of the algorithm) is to update
the bi’s according to bi ← bi +

∑
j<i[[µij]]bj where [[·]] denotes rounding to

the nearest integer. Although the algorithm does not explicitly use the b∗i ’s or
µij ’s, for purposes of analysis we keep the b∗i ’s unchanged but update the µij ’s
according to µij ← µij − [[µij]] so that the relation b∗i = bi +

∑
j<i µijbj still

holds. Note that the new µij ’s satisfy |µij | ≤ 1
2 .

Next we discuss step 3 of the algorithm. The idea is to swap pairs (bi, bi+1)
in order to bring shorter vectors closer to the front (i.e. to lower indices).
The condition ‖b∗i+1‖ ≤ 1

2‖b
∗
i ‖ is analagous to the swap condition for Gauss’

algorithm (check if b is inside the square). After we swap a single pair we re-
define the b∗i ’s (and µij ’s) according to their definition, i.e. b∗i is the projection

11-2

of the new bi orthogonal to the span of the new b1, . . . , bi−1. Note however,
that swapping (bi, bi+1), only changes b∗i and b∗i+1 (and leaves the other b∗j ’s
unchanged). After performing a single swap (bi, bi+1) the algorithm returns to
the orthogonalization step (step 2).

The analysis of the LLL algorithm has two components. We need to show
that the algorithm terminates after a polynomial number of iterations, and we
need to prove the 2k approximation guarantee.

Claim 3 The LLL algorithm terminates after a polynomial number of itera-
tions.

Proof Define the potential function Φ =
∏k

i=1 Φi where Φi =
∏

j≤i ‖b∗j‖.
Equivalently, Φi = |det(b1, . . . , bi)|, which is the i-dimensional volume enclosed
by the vectors b1, . . . , bi. When we swap (bi, bi+1), Φi changes but the remaining
Φj ’s are unchanged; this is because the only b∗j ’s that change are b∗i and b∗i+1,
and the product ‖b∗i ‖ · ‖b∗i+1‖ is unchanged (since by the volume interpretation,
Φi+1 is unchanged). Furthermore, we will show that Φi decreases by a constant
factor, similarly to the analysis of Gauss’ algorithm. The implies the claim
because the initial value of Φ is only exponential in the size of the input. Let b∗j
denote the variables before swapping (bi, bi+1), and let b̃∗j denote the variables

after swapping. We need to show that b̃∗i is shorter than b∗i by a constant factor.
The swap procedure and definition of the b∗j ’s ensure that b̃∗i is the projection
of bi+1 orthogonal to the span of b1, . . . , bi−1. Start with the equation b∗i+1 =
bi+1 +

∑
j<i+1 µi+1,jbj and project both sides orthogonal to b1, . . . , bi−1 to get

b∗i+1 = b̃∗i +µi+1,ib
∗
i and so b̃∗i = b∗i+1−µi+1,ib

∗
i . Since b∗i+1 ⊥ b∗i , ‖b∗i+1‖ ≤ 1

2‖b
∗
i ‖

(by the swapping criterion), and |µi+1,i| ≤ 1
2 (by the orthogonalization step),

we have ‖b̃∗i ‖ ≤ ‖b∗i ‖/
√

2. At each iteration, Φi decreases by a factor of 1/
√

2
and so Φ also decreases by this factor.

Claim 4 The LLL algorithm outputs a 2k-approximation of the shortest (nonzero)
vector in the lattice.

Proof Consider {bi} and {b∗i } upon termination and write the true shortest

vector v as an integer combination v =
∑k

i=1 αibi with αi ∈ Z. Find the largest
j for which αj 6= 0. The swapping criterion implies ‖b∗i+1‖ ≥ 1

2‖b
∗
i ‖ for all i and

so by induction, ‖b∗j‖ ≥ 2−j‖b∗1‖. Now we have ‖v‖ = ‖
∑
αibi‖ ≥ ‖αjb

∗
j‖ ≥

‖b∗j‖ ≥ 2−j‖b∗1‖ = 2−j‖b− 1‖ ≥ 2−k‖b1‖ and so ‖b1‖ ≤ 2k‖v‖.

2 Summary of Factorization

We have seen how to factor over Fp[x] and Q[x]. Two natural ways to take a
field F and construct a bigger field are F → F(y) (e.g. bivariate polynomials)
and F → F[y]/g(y) where g is irreducible (e.g. finite fields Fq). We have seen
via Hensel lifting that if you can factor over F then you can factor over F(y).

2.1 Factoring over F[y]/g(y)
We can also show that if you can factor over some field F then you can factor
over F[y]/g(y). Suppose we want to factor Q(x, y) = A(x, y)B(x, y) (mod g(y))
where A,B are unknown. We want to reduce the problem to factoring a different
polynomial q(x) ∈ F[x]. By assumption we know how to factor q(x) = a(x)b(x)

11-3

and we want the factors a, b to tell us something about the factors A,B of
Q. The idea is to take resultants of Q,A,B with respect to y. The resultant
RQ(x) generates the ideal (Q, g)∩ (x), and similarly RA(x) and RB(x) generate
(A, g) ∩ (x) and (B, g) ∩ (x) respectively. Here the purpose of intersecting with
(x) is to only consider polynomials that are purely polynomials in x (and not
y). Assuming RA(x) and RB(x) are relatively prime, RQ(x) = RA(x)RB(x).
Therefore, given Q(x, y) we can factor q(x) ≡ RQ(x) to recover a(x) ≡ RA(x)
and b(x) ≡ RB(x). Then let A(x, y) = gcd(RA(x), Q(x, y)) and B(x, y) =
gcd(RB(x), Q(x, y)) to recover the factorization A(x, y)B(x, y) of Q.

2.2 Factoring in n Variables

The conclusion from the above is that (informally) we know how to factor over
any field that we can describe to a computer. (Note that of course we can’t
factor over the ring of integers Z.) Namely, we can factor over any field that
can be obtained from Fp or Q by a finite number of extensions of the form
F → F(y) and/or F → F[y]/g(y). The one caveat is that the runtime degrades
with each extension, so if we want a polynomial-time algorithm, we can only
take a constant number of extensions. This begs the question of whether we
can factor a polynomial f ∈ Q[x1, . . . , xn] of degree n, in time poly(n). There is
one potential issue with this question, which is that such a polynomial f might
have an exponential number of nonzero coefficients. And even if f is sparse
(few nonzero coefficients), one of its factors might not be. However, we can
avoid these problems as follows. Suppose we have a black-box procedure that
can compute f on any input (α1, . . . , αn). Then there is indeed an algorithm to
factor f in time poly(n). Similarly to the input, each factor g in the output is
described succinctly as a procedure Pg that can evaluate g on any (α1, . . . , αn).
The procedure Pg is allowed to make calls to the original black box for f . The
key ingredient in this factorization algorithm is Hilbert’s irreducibility. The
main idea is to look at f on a 2-d surface, i.e. perform the change of variables
xi ← αiθ + βiγ + δi for random constants αi, βi, γi to get a problem in only
two variables θ, γ. With high probability, reducing to two variables preserves
irreducibility of factors. When Pg is asked to evaluate g on a point α that is
not on the 2-d surface, it considers the 3-d surface containing the 2-d surface
and α.

11-4

