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1 Overview - Deterministic Primality Testing

Last time we saw the major components of the AKS deterministic test for
primality. Today we will finish the analysis. We first present the approach
given in the original paper which relies on a rather strong number theoretic
statement. We then give a more sophisticated analysis which will allow us to
use a weaker number theoretic statement, which follows straightforwardly from
the prime number theorem. In fact, we will even show an elementary proof
of the prime number theorem, allowing us to prove that primality testing is
achievable in polynomial time without any number-theoretic assumptions.

2 Review of AKS Algorithm

Let N be the number that we are testing for primality. Let A = {1, 2, . . . , polylog(N)}.
Choose prime r = O(polylogN). The method by which we choose our prime r
will depend on our number-theoretic assumption. Assume for now that it is
given. The test for primality is as follows:

• Verify that N has no divisors in A.

• Verify that N is not a prime power. This can be accomplished in polylog
time by checking that for each t ∈ {2, 3, . . . , logN} that N 6= mt by binary
searching on the value of m.

• For all a ∈ A verify

xN + a ≡ (x + a)N (mod N, xr − 1)

• If all tests pass, then output that N is prime.

3 Analysis

It is clear that the test passes if N is a prime. Assume, by contradiction, that
N passes the test but is composite. In particular, let p be some prime divisor of
N . Although the algorithm is really working in the ring R := Z[x]/(N, xr − 1),
it will be convenient in the analysis to work with the rings L := Z[x]/(p, xr− 1)
and K := Z[x]/(p, h(x)) where h(x) is an irreducible factor of the polynomial
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xr−1
x−1 ∈ Zp[x]. Notice that identities in R, imply identities in L and K, and

that identities in L imply identities in K. The magic of the proof is finding nice
properties of certain polynomials in L, which will therefore hold in K; however,
the fact that K is actually a field, will allow us to draw a contradiction.

Definition 1 A polynomial f ∈ Z[x] is introverted with respect to m if

f(xm) ≡ f(x)m (mod p, xr − 1)

Because we assumed N passed the test, we have that the polynomial x + a
is introverted with respect to N and p for all a ∈ A. Furthermore, by the
properties of introversion that we saw last time, we have that all polynomials
in the family

F :=

{∏
a∈A

(x + a)da | da ≥ 0

}
are introverted with respect to any element of {N ipj | i, j ≥ 0}.

Lemma 2 If f is introverted with respect to distinct m1,m2 but m1 ≡ m2

(mod r), then f(x) is a root of zm1 − zm2 ∈ K[z].

Proof
f(x)m1 ≡ f(xm1) ≡ f(xm2) ≡ f(m)m2

where the first and last equalities use introversion, and the second equality
leverages the fact that we are working mod xr − 1 in K.

The reason that we want to work in the field K now becomes clear. Because
K is a field, the polynomial zm1−zm2 has at most max(m1,m2) roots. If we can
find m1 and m2 that are relatively small compared to the number of polynomials
that are roots of zm1 − zm2 , we will have arrived at a contradiction.

If we choose m1 and m2 from the set {N ipj | i, j ≥ 0}, then F is a natural
large class of functions where we can look for a contradiction. This is exactly
what we will do.

Lemma 3 ∃ distinct m1,m2 ∈ {N ipj | i, j ≥ 0} such that m1 ≡ m2 (mod r)
and max(m1,m2) ≤ N2

√
r.

Proof First notice that all elements of {N ipj | i, j ≥ 0} are distinct because
N is composite and not a prime power. Therefore, there if we consider i and
j in the range from 0 to

√
r, we have (b

√
rc + 1)2 > r distinct numbers of the

form N ipj which are less than N2
√
r. By the pigeonhole principle we must have

two settings of i and j such that N ipj are equivalent mod r.

There are two things one might now worry about. First, for a, b ∈ A perhaps
x + a is equivalent to x + b in K so that these two polynomials are actually
identical (i.e. ruining our argument that the polynomial has too many roots).
This would imply however that either a ≥ p or b ≥ p, which shows that p is an
element of A. Recall now that we explicitly checked for this condition in the
test, so this is impossible.

Secondly, one might worry that many different elements in F would be equiv-
alent mod h(x). This is where we will invoke the strong number theoretic state-
ment that we can in fact find an h(x) such that deg h(x) ≥ r1/2polylog(N). If
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we only consider polynomials in F of degree less than the degree of h(x), then
they will all be distinct in K. This motivates the following definition.

Let Ft := {f ∈ F | deg(f) ≤ t}. A simple counting argument shows that

|Ft| =
(
t+|A|

t

)
. If we let |A| = t = deg h − 1, we get that |Ft| ≥ 2r

1/2polylogN �
N2
√
r, which completes the argument that primality testing can be done in

polynomial time.

4 Analysis that Relies on Less Number Theory

We now give up the assumption that we can find an h(x) with large degree.
We instead rely on a relatively weak number-weak theoretic fact that we can
find a prime r with large order. First define ordr(N) := |{N mod r,N2

mod r, . . . , Nr mod r}|.

Claim 4 There exists prime r such that ordr(N) ≥ polylogN .

Let l := |{N ipj (mod r) | i, j ≥ 0}|. It is clear that ordr(N) ≤ l ≤ r.
Using the same pigeonhole argument of Lemma 2, we can show that there exist

distinct m1,m2 ≤ N2
√
l such that m1 ≡ m2 (mod r). Notice then that if we let

|A| = l we get

|Fl−1| ≥ 2l � N2
√
l

if l > log2 N , which we get from our number-theoretic assumption. If we can
show that all polynomials in Fl−1 are distinct when viewed in the field K, then
we would be done. This is what we will show.

Lemma 5 If f, g ∈ Fl−1, then f 6= g (mod h(x)).

Proof First view f, g as polynomials in Zp[z]. Since Zp is a subfield of K,
we can consider f(z) − g(z) as a polynomial in K[z]. Assume now that f ≡ g
(mod h(x)), which implies that h(x)|f(x)−g(x), so x is a root of the polynomial
f(z)− g(z).

We now give l possible roots of f(z) − g(z) of the form xm. This follows
from the fact that for every m ∈ {N ipj (mod r)} we have

f(xm)− g(xm) ≡ f(x)m − g(x)m

= (f(x)− g(x))(f(x)m−1 + f(x)m−2g(x) + . . . + g(x)m−1)

≡ 0 (mod h(x))

Since the degree of f(z) − g(z) is less than l we must have that xa ≡ xb

(mod p, h(x)) for a < b, so h(x)|xa(xb−a − 1). Recall that h(x)|xr − 1 and
is irreducible, so there must be some i < r such that h(x)|xi − 1. This implies
that h(x)|xgcd(i,r)−1. We know r is prime, so h(x)|x−1; however, we explicitly
forbid h(x) dividing x− 1 in our choice of h(x) leading to the contradiction.

We now show that the number theoretic fact follows easily from a weak form
of the prime number theorem. Let #(m) be defined as the number of distinct
primes less than m.

Theorem 6 (Prime Number Theorem)

#m ≥ c
m

logm

for some constant c.
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Proof Consider the integral
∫ 1

0
xm(1− x)mdx. If we just expand out xm(1−

x)m and use the power rule, then we get that this integral is equal to some posi-
tive integer z divided by the lcm(m+1,m+2, . . . , 2m+1) = lcm(1, 2, . . . , 2m+1).
Also, in the interval [0,1], we have that x(1− x) ≤ 1/4. Stringing this together
we have

z

lcm(1, 2, . . . , 2m + 1)
=

∫ 1

0

xm(1− x)mdx ≤ 1

4m

Noticing that lcm(1, 2, . . .m) ≤ m#(m) we get

z4m ≤ lcm(1, 2, . . . , 2m + 1) ≤ (2m + 1)#(2m+1)

Changing variables we get

#m ≥ logm z2m−1 =
log(z2m−1)

logm
≥ m− 1

logm
≥ c

m

logm

for some appropriately chosen c.

Using the prime number theorem, we can now derive our weak number the-
oretic claim.

Claim 7 There exists prime r such that ordr(N) ≥ polylogN .

Proof Suppose that for all prime r ≤ polylogN , we have that ordr(N) ≤ k.
For each r there is some i in the range 1 to k such that r|N i − 1. For every
prime r ≤ polylogN we have

r

∣∣∣∣ k∏
i=1

(N i − 1)

but that
∏k

i=1(N i − 1) is at most Nk2

. Assuming that k ≤ polylogN and using
the prime number theorem, we know there exists an m ≤ k2 log2 N ≤ polylogN
such that #(m) > k2 logN . If all primes of size at most m divide Nk2

, then so
must their products. However, the product of all the primes is at least 2#(m),
which is greater than Nk2

by construction.

Relating this back to the original AKS algorithm, we can now find r deter-
ministically by simply brute forcing all possible primes less than some polylogN .
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