1 Today

1. Depth reduction in arithmetic circuits
2. Lower bounds on circuit size

2 Depth Reduction in Arithmetic Formulae

Recall the theorem of Ben-Or and Cleve [BOC92] from last time.

Theorem 1 If f is computed by a polynomial size formula, then f can also be computed by a polynomial size register machine using only 3 registers.

Let us write $\text{BP-size}(f)$ (for branching process size) to denote the size of the smallest such 3 register machine computing f.

We essentially proved Theorem 1 by noting that

$$f = f_1 + f_2 \Rightarrow \text{BP-size}(f) \leq \text{BP-size}(f_1) + \text{BP-size}(f_2)$$

and

$$f = f_1 \times f_2 \Rightarrow \text{BP-size}(f) \leq 2[\text{BP-size}(f_1) + \text{BP-size}(f_2)].$$

This is not quite enough to prove the theorem, however, since it is not clear at this point how many times we will incur this factor 2 blow-up in the BP-size. In particular, this will only imply the result if we can argue that f is in fact computed by a low depth formula.

The idea for depth reduction in arithmetic formulae is essentially the same as in the boolean case, which goes as follows. First, find an interior gate v such that $(2/3)\text{size}(f) \geq \text{size}(v) \geq (1/3)\text{size}(f)$. This is always possible due to the tree structure of the circuit. Intuitively, the size conditions ensure that the sub-formula computing v and the sub-formula computing f conditioned on the value of v are of comparable size, and so we should try to compute these in parallel.

To be precise, we create two copies of the sub-circuit computing f conditioned on the value of v: one hard-wired with the value $v = 0$, and the other with $v = 1$. To compute f, then, we compute v along with the conditional values of f in parallel and output the correct value once v is observed.

We cannot apply this program directly in the arithmetic setting, since the gate v may take an infinite set of values, but the idea is essentially the same.
If we condition on knowing the value of \(v \), then \(f \) is a linear function of \(v \), i.e., \(f = Av + B \) for polynomials \(A \) and \(B \). Now we can compute \(A \), \(v \), and \(B \) in parallel as before to achieve the depth reduction. Thus, in the setting of Theorem 1, we may assume that the formula computing \(f \) has logarithmic depth, and hence we incur only a polynomial blow-up in the BP-size.

Things will be much more difficult with arithmetic circuits (as opposed to formulae) because in this case \(f \) may depend on a gate \(v \) in a significantly non-linear fashion.

3 Depth Reduction in Arithmetic Circuits

The main result here is the following theorem from [VSBR83].

Theorem 2 If \(f \) is a polynomial of degree \(\leq d \) and is computed by a circuit of size \(\leq s \), then \(f \) can also be computed by a circuit of size \(\text{poly}(s, d) \) with depth \(\leq (\log s)(\log d) \).

We would like to proceed analogously to the case of arithmetic formulae, but in order to do this, we need a way to quantify how useful the partial functions \(f_v \) are for computing \(f \). The key here is to introduce a notion of partial derivative.

Definition 3 Given an arithmetic circuit computing a function \(f \), and two gates \(v \) and \(w \), we write

\[
\partial_w(v) = \left. \frac{\partial f_{v,w}}{\partial w} \right|_{w=f_w},
\]

where \(f_{v,w}(x_1, \ldots, x_n, w) \) denotes the partial function \(f_v \) as a function of the value of the gate \(w \).

It is instructive to think of \(\partial_w(v) \) as a measure of the number of paths from \(w \) to \(v \) in the circuit. We will not make this statement entirely precise, but one useful fact is that if there are no paths from \(w \) to \(v \), then we do indeed have \(\partial_w(v) = 0 \).

Now, to compute \(f \), we will compute all the \(f_w \) and all the \(\partial_w(v) \) in some order. In particular, at stage \(i \), we will compute:

1. all the \(f_w \) with \(2^i \leq \deg(f_w) \leq 2^{i+1} \)
2. all the \(\partial_w(v) \) with \(v \) and \(w \) satisfying \(2^i \leq \deg(f_v) - \deg(f_w) \leq 2^{i+1} \) and \(\deg(f_w) \leq \deg(v) \leq 2 \deg(w) \).

If we can manage to do this, it is clear we will have computed \(f \) by stage \(\log d \) since \(f \) has degree \(\leq d \). Before we can specify the details of this computation, we need one more definition.

Definition 4 We write

\[
\mathcal{G}_m = \{ t \mid \deg(f_t) > m, \ f_t = f_{t_1} \times f_{t_2}, \ \deg(f_{t_i}) \leq m \ \forall i \}.
\]

Now, Theorem 2 will follow from the following claim.

Claim 5 For all \(v, w \) such that \(m < \deg(f_v) \leq 2m \) and \(\deg(f_v) \leq m < \deg(f_w) \leq 2 \deg(f_w) \), we have
1. \(f_v = \sum_{t \in G_m} f_t \partial_t(v) \)

2. \(\partial_w(v) = \sum_{t \in G_m} \partial_w(t) \partial_t(v) \)

Notice that, if we have computed all the values \(f_w \) and \(\partial_w(v) \) from stage \(i \) above, then it follows from Claim 5 that we can compute all the values in stage \(i + 1 \) using a circuit of depth at most \(\log s \) (this is to compute a sum of at most \(s \) values). Hence, since there can be at most \(\log d \) stages, the theorem follows.

Proof The proof will be by a fairly simple induction on the depth of the circuit. Also, note that it will suffice to prove (1), since (2) follows by applying \(\partial_w \) to both sides.

An easy case to pick off is when \(v \) itself lies in \(G_m \). In this case, we can write (1) as

\[
 f_v = f_v \partial_v(v) + \sum_{t \in G_m \setminus \{v\}} f_t \partial_t(v).
\]

But since there are no paths among elements of \(G_m \), \(\partial_t(v) = 0 \) for every \(t \), and further, \(\partial_v(v) = 1 \), and so (1) reduces simply to \(f_v = f_v \).

Now, there are two distinct cases to check for the induction, depending on whether gate \(v \) is an addition or a multiplication gate.

First, if \(f_v = f_{v_1} + f_{v_2} \), then by induction on \(v_1 \) and \(v_2 \) (here we assume that the circuit is suitably homogenized so that \(f_{v_1} \) and \(f_{v_2} \) both satisfy the degree conditions)

\[
 f_v = f_{v_1} + f_{v_2} = \sum_{t \in G_m} f_t \partial_t(v_1) + \sum_{t \in G_m} f_t \partial_t(v_2) = \sum_{t \in G_m} f_t \partial_t(v),
\]

since \(\partial_t \) is a linear operator when we conflate \(v \) with \(f_v \).

Next, if \(f_v = f_{v_1} \times f_{v_2} \), then either \(v_1 \) and \(v_2 \) both have degree \(\leq m \), in which case \(v \in G_m \) and we are done (see above), or one of the two gates (say, \(v_1 \)) has degree \(> m \) which in turn implies that \(v_2 \) has degree \(\leq m \). Thus, by induction we have

\[
 f_{v_1} = \sum_{t \in G_m} f_t \partial_t(v_1).
\]

However, by the product rule for partial derivatives, for any \(t \in G_m \) we have

\[
 \partial_t(v) = f_{v_1} \partial_t(v_2) + \partial_t(v_1) f_{v_2} = \partial_t(v_1) f_{v_2},
\]

since there are certainly no paths from \(t \) to \(v_2 \) (by considering degrees). Hence, (1) follows from \(f_{v_1} = \sum_{t \in G_m} f_t \partial_t(v_1) \) by multiplying through by \(f_{v_2} \). \(\blacksquare \)

4 Lower Bounds

At this point, we have seen some upper bounds on circuit size and depth by explicitly constructing or manipulating a circuit. On the other hand, it is generally much more difficult to give super-linear lower bounds for any reasonably expressive model of computation. For arithmetic circuits, at least, we will see that it is not so hard.

Consider a circuit computing the function \(f : \mathbb{F}^n \to \mathbb{F}^n \) that maps \((x_1, \ldots, x_n)\) to \((x_1', \ldots, x_n')\) for some fixed integer \(r \). One of the main results of Strassen
[Str75] is that this function has no arithmetic circuit of size smaller than $n \log r$. From this result, one can also show (see [BS83]) that the function sending $(x_1, \ldots, x_n, y_1, \ldots, y_r)$ to $\sum_{i=1}^r y_i x_i^*$ has no size $n \log r$ circuit.

The proof of Strassen is almost trivial, although it does rely on some (still reasonably easy) results from algebraic geometry. The idea is to write the gates of a circuit computing f as polynomial constraints that equate their input to their output. Precisely, for an addition gate $v = u + w$ we add the constraint

$$y_v - (y_u + y_w) = 0,$$

and for a multiplication gate $v' = u' \times w'$ we add the constraint

$$y_{v'} - y_{u'} y_{w'} = 0.$$

Finally we add constraints enforcing the values of the output gates (to some fixed values).

If a circuit of size s can compute f, then in this manner we obtain a system of s polynomial equations that are either linear or quadratic. Now consider a primitive r-th root of unity ω in the field (this is essentially the only assumption that needs to be made on the field). The powers $1, \omega, \omega^2, \ldots, \omega^{r-1}$ are all distinct, and taking any n of these (with replacement) as inputs to f will evaluate to $(1, \ldots, 1)$. Hence, if we set all of the output gates to 1 in our polynomial constraints, the resulting system of polynomial equations has at least r^n common zeros.

However, it follows from a result in algebraic geometry known as Bézout’s Theorem that a system of s polynomial equations of degree ≤ 2 has either $\leq 2^s$ common zeros, or else has an infinite number. Since all the solutions to $f(x_1, \ldots, x_n) = (1, \ldots, 1)$ are roots of unity, of which there are a finite number, the former case of Bézout’s Theorem applies and we obtain

$$r^n \leq 2^s \Rightarrow s \geq n \log r.$$

References

