
6.S897 Algebra and Computation April 22, 2015

Ideal Membership Problem and Gröbner Basis
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1 Overview

Today we will discuss an algorithm for solving the ideal membership problem: the method
of Gröbner bases. Gröbner bases were introduced in the last lecture, but today we will see
the math behind them. The Gröbner bases algorithm was due to Buchberger. It solves the
ideal membership question, and suggests the notion of a canonical remainder.

2 Ideal Membership Problem

We begin by defining the Ideal Membership Problem

Definition 2.1. Ideal Membership Problem: Given a target polynomial f and poly-
nomials f1, . . . , fm ∈ K[x1, . . . , xn], is f ∈ 〈f1, . . . , fm〉, where 〈f1, . . . , fm〉 denotes the ideal
generated by the fi

We note that an equivalent formulation of the problem is: Does there exist polynomials
g1, ...gm such that f =

∑
figi.

We will solve this question by using Gröbner bases. The Gröbner basis gives us a
representation of an ideal, that allows us to easily decide membership, and the basis is
constructed via Buchberger’s algorithm. An important question regarding Buchberger’s
algorithm is its complexity, or given a set of n polynomials with degree m, what is the
running time of the algorithm. In order to learn the complexity of this problem, it becomes
necessary to determine the degree of the polynomials gi. However, we leave the discussion
of the algorithm’s complexity to the next lecture.

First, we focus on the idea of finding the remainder of a polynomial modulo an ideal.
This problem is simple if we restrict ourselves to univariate polynomials. We order the
polynomials by the highest degree and repeatedly take the remainder modulo the highest
degree we can remove.

However, with multivariate polynomials, we have a notion of preference: which terms
would we prefer to reduce? For example, consider the polynomial x2y + y2x divided by
x + y. It is unclear what answer should be, as the remainder can be written as either a
polynomial purely in x or purely in y, or we can reduce the total degree of the polynomial.

The Gröbner basis seeks to solve this question by imposing an order on the division
for multivariate polynomials. We first order the monomials in K[x1, . . . , xn] by some total
order (called an admissible order) such that

• m1 < m2 =⇒ m1 ∗m < m2 ∗m

• 1 ≤ m ∀m, so 1 is the canonical smallest element
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We note that there are many possible orders, but we must fix a single order. An example
of an admissible total ordering is lexicographic ordering in which xi ≥ xdi−1 ∀d. Thus we
prioritize all powers of xi before any power of xi−1. Another admissible total ordering is
one where

∑
di ≤

∑
ei implies xd < xe, and ties are broken in lexicographic order.

The choice of monomial orderings is important to the complexity of the solution. Certain
orderings might quickly reveal that a function is not in the ideal, while other orderings will
reveal this after more work has been completed. Furthermore, there exist ideals such that
even an optimal ordering of the monomials cannot be used to solve the membership problem
faster than doubly exponential time. Thus Buchberger’s algorithm attempts to limit the
amount of work done given a particular monomial ordering.

However, even with the monomial ordering, we have not completed the notion of dividing
a polynomial by an ideal. This problem can be tricky to solve, even in the univariate case.
Consider x(x+1) and x(x+2). This is the ideal generated by x. However, until we realize
this, it is difficult to answer what the remainder should be when we divide x2. We can
report a remainder of x or 2x, but neither is the correct answer, since x2 is in the ideal
generated by x.

Thus we need to understand the relationship between the polynomials. This brings us
to the notion of GCD. If we are able to compute the GCD of x(x+1) and x(x+2), we can
learn that x is generating these polynomials.

However, the GCD is defined primarily for univariate polynomials because they can
belong to a principal ideal domain. This is not true for multivariate polynomials.

For example, consider the set {xiyd−i|0 ≤ i ≤ d} which generates polynomials of total
degree at least d. It is clear that this is a minimal generating set. Every other monomial
xiyj for i+ j < d is not in there, and no member of this set can be generated by any other.
Thus d monomials are necessary for ideal, even if the polynomial has at most 2 variables.
This illustrates that there is no a priori bound on the number of elements necessary to
generate the ideal that is based on the number of variables. Thus every ideal has a finite
generating set, but the size can be arbitrarily large.

Thus when we are discussing ideals, we need to describe the notion of the canonical
remainder, and we want the remainder calculation to be ”not too variable”. The Gröbner
basis gives us a very nice, unique remainder, once we fix the ordering of the polynomials.

The Gröbner basis is useful by reducing the complexity of the polynomials by not focus-
ing on the entire polynomial at once. Instead, it focuses on the leading term in polynomial
first, and considers the ideal formed by the leading terms of the polynomials.

Thus, we describe the useful properties of the Gröbner basis in more detail.

3 Gröbner Basis

We begin by formally defining the leading term of a polynomial

Definition 3.1. Leading Term: Given a polynomial f = sum cdx
d, the leading term or

LT(f) = cdx
d where xd is maximal monomial according to the total ordering. The leading

monomial, denoted LM(f), is thus xd.

Then we can use the leading terms to define a weak notion of a canonical remainder.
Given a monomial f and polynomials < g1, ...gt >, we want to repeatedly reduce the power
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of f by scaling out the powers of gi. This gives us a remainder r = f −
∑
αigi such that for

every monomial m ∈ f ∀i ∈ [t], m is not divisible by LT (gi). Due to the total ordering of
the gi, we guarantee that the remainder has a strictly decreasing leading term.

Considering our earlier example, with x2, and the ideal of x(x+1) and x(x+2), it is clear
that x2 should not be a remainder because its power has not strictly decreased. However,
r = x and r = 2x are valid remainders.

Now, we consider monomial ideals, which are simply ideals generated by monomials.
If we have a collection of monomials M = m1, ...mt it is trivial to determine whether a
particular monomial m is in the ideal generated by (M) since m ∈ (M) ⇐⇒ ∃i such that
mi | m

This gives us an intuition for Dickenson’s Lemma.

Lemma 3.2 (Dickson’s Lemma). Let J ⊆ K[x1, . . . , xn] be a monomial ideal, that is, an
ideal generated be a (possibly infinite) set of monomials. Then J is finitely generated, by a
finite set of monomials.

Proof Sketch. The proof is by induction on the number of variables. We will sketch how
the proof goes for n = 2. Consider an ideal J , with monomial xiyj . Now observe that if we
have another monomial xkyl which is a multiple xiyj , then the monomial xkyl is “covered”
by xiyj . In particular, in the set of monomial generators for J , we can discard any such
xkyl.

Now consider those monomials of the form xkyl for any fixed k < i. These monomials
are only really on one variable, y, so we can appeal to induction to show that for any fixed
k < i that set of monomials is also finitely generated. We can also make the same argument
for any fixed l < j. As there are a finite number of k < i, and a finite number of l < j,
we can simply union all of these generators together, and thus generate the entire space of
monomials.

Thus, we can finally define a Gröbner basis.

Definition 3.3. 〈g1, . . . , gt〉 is a Gröbner basis for the ideal J := 〈f1, . . . , fm〉 if: g1, . . . , gt ∈
J , and 〈LT (g1), . . . , LT (gt)〉 = 〈LT (J)〉.

Thus the ideal formed by 〈LT (g1), . . . , LT (gt)〉 is a monomial ideal. If we take the ideal
generated by the leading terms of all of the polynomials in J , then this ideal is also generated
by the leading terms of the gi alone. They have a special structure, and in particular the
following, easily proven, fact holds. Given a monomial ~x~a in a monomial ideal generated by

{~x~b}~b∈S , where S is possibly infinite, it must be that there is some~b ∈ S such that ~x
~b divides

~x~a. Thus, these conditions imply that our above reduction step f 7→ f − g · LT (f)/LT (g)
can always make progress when working on a Gröbner basis, as there will always some g
so that LT (g) divides LT (f). We will show shortly that these conditions on the Gröbner
basis also imply that the gi also generate J .

Note that we have not yet shown that 〈g1, . . . , gt〉 form a basis of J. However, this tells
us gi are sufficiently representative of J. There may be multiple Gröber bases for an ideal
J, but modulo simple translations, the Gröber basis is unique.

Additionally, remainders are unique with respect to a Gröber basis. This also relies on
the idea of the leading terms.
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Lemma 3.4. Let g1, . . . , gt be a Gröbner basis for the ideal J = 〈g1, . . . , gt〉. Then for any
f , the weak remainder with respect to the gi’s is unique.

Proof. Suppose f = r1 +
∑
aigi = r2 +

∑
bigi are two weak remainders of f . Then

r1 − r2 =
∑

(ai − bi)gi ∈ J . As the gi form a Gröbner basis, it follows that if r1 − r2 is
non-zero then its leading monomial of r1 − r2 must be divisible by some LT (gi). But the
monomials of r1 − r2 are a subset of the union of the monomials of r1 and r2, and none
of those monomials are divisible by any gi. Thus, it follows that r1 − r2 must be zero, so
r1 = r2. Thus the remainder is unique.

Finally, we note that the remainder is unique given an ideal and a total ordering, without
requiring the basis as a condition of uniqueness.

As a special case of this, if f is in the ideal, the remainder should be 0. If f is in J, then
the of remainder f by 〈g1, ...gt〉 is 0. We know that LT(f) ∈ LT(J). Thus we would get some
reduction in degree since ∃ gi such that LT (gi)|LT (f) so we subtract aigi from f to get
lower degree. We continue until have 0, with sequentially lower degree polynomials along
the way.

As a consequence of this, we have proved Hilbert’s Basis Theorem.

Theorem 3.5. If J ⊂ K[x1, ..., xn] is an ideal, then there are finitely many polynomials
f1, ..., fn ∈ J so that J = 〈f1, ...fn〉.

Therefore, if we have a Gröbner basis, we can complete membership testing.

4 Construction of Gröbner Bases

Having shown that Gröbner bases solve the ideal membership problem, we now show an
algorithm, that runs in finite time, for constructing these objects. The essential problem
is that given the set of polynomials f1, ...fn, can we construct the basis g1, ...gm. Thus we
need to do nontrival work to find polynomials that were not previously represented. For
example, given x2 + x, x2 + 2x,we need to complete cancellations to realize the common x
term. But how can we to do this cancellation within a time bound?

This is the essence of Buchberger’s algorithm, in which shows how to transform any set
of generators to the Gröbner basis. The algorithm to solve this problem will require the
syzygy, which will allow us to cancel the high-degrees of polynomials.

Definition 4.1. Let f and g be two monic polynomials. Let m = LCM(LT (f), LT (g)).
Define S(f, g), the syzgy of f and g, to be S(f, g) = mf/LT (f)−mg/LT (g).

Note that this produces the desired cancellation, though the remainder r may be larger
than f or g.

We now give the Gröbner basis algorithm, starting with the polynomials f1, . . . , ft. We
use the operator mod to denote the canonical weak remainder.

• B ← {f1, . . . , ft}

• iterate until no additions: if ∃gi, gj ∈ B so r := S(gi, gj) mod B has r 6= 0, then
B ← B ∪ {r}.
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• output B.

We note that the syzgy S(f, g) is in the ideal generated by f and g.
The algorithm terminates in a finite amount of time. Consider the ideal 〈LT (B)〉 over

the course of the algorithm, which grows in size, and the ideals generated by LT(B). Then
the first ideal I1 = 〈LT (f1), ..., LT (fk), I2 = 〈LT (f1), ..., LT (fk), LT (r1), and so forth.
Thus the sequence of ideals is I1 ⊂ I2 ⊂ ... ⊂ I is finitely generated. Then I is a monomial
ideal, and by Dickson’s lemma, it has a finite basis, and therefore the algorithm terminates
finitely.

Next we prove correctness. At termination, the syzgyies have a remainder of 0. But we
still need to show that LT(B) will generate our ideal.

Lemma 4.2. Let J = 〈g1, . . . , gt〉. If S(gi, gj) mod {g1, . . . , gt} = 0 for all i, j, then ∀f ∈
J = (f1, ..., fk), 〈LT (f)〉 = 〈LT (g1), . . . , LT (gt)〉.

Proof. Consider any f ∈ J . Then f =
∑k

j=1mjgij , where each mj is a monomial. Thus
following condition holds

• degree(migij ) ≥ degree(mi+1gij+1))

Then we want to show that 〈LT (f)〉 = 〈LT (g1), . . . , LT (gt)〉. Suppose for a contradic-
tion that this statement was false. Then we want to find the polynomial with the smallest
m1gi1 that violates the statement. Now, m1gi1 is divisible by the claim. This isn’t sufficient
because there could be a cancellation between m1gi1 and m2gi2 , and a lower order term is
the leading term of f.

Then consider the following f with leading terms m1g1 and m2g2 with the same leading
terms. They we must have taken the syzgy of m1g1 and m2g2 and multiplied it by some
polynomial. Then m1 = m′a1 and m2 = m′a2. Thus a1g1 − a2g2 = syz(g1, g2). Note that
m1gi1−m2gi2 has cancellation at the leading term, as these two polynomials have the same
multi-degree. Thus, there exists a monomial w such that m1gi1 − m2gi2 = wS(gi1 , gi2).
As S(gi1 , gi2) mod {g1, . . . , gt} = 0 we have that S(gi1 , gi2) =

∑
qigi, and as this is by the

weak remainder algorithm, we have mdeg(w)+mdeg(qigi) ≤ mdeg(w)+mdeg(S(gi1 , gi2)) <
mdeg(m1gi1). So we can express

m1gi1 −m2gi2 =
∑

(aiw)gi

as desired, as the right hand side has lower multi-degree than the mdeg(m2gi2).

So putting this all together, the algorithm must terminate with a set of polynomials,
whose syzygies have zero weak remainder on this set. This then implies the set is a Gröbner
basis for itself, and as it contains the fi, is a basis for the fi. We can then use this basis for
testing membership in the ideal 〈f1, . . . , fm〉.

Acknowledgements Many of the proofs have been drawn from Lecture 15 ST12 scribe
notes by Michael Forbes.
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