
6.S897 Algebra and Computation April 29, 2015

Lecture 22
Lecturer: Madhu Sudan Scribe: Michael Cohen

We talked about the history of the use of algebra in broader parts of the-
oretical computer science, in particular complexity theory and coding theory.
The first part of the class covered complexity (and cryptography) and the rest
was about coding theory (Reed-Solomon codes).

1 Algebra in complexity and cryptography

We discussed several different results in complexity and cryptography:

1.1 Shamir’s Secret Sharing Scheme

One of the earliest “algebraic” results in general computer science, Shamir in-
troduced his “secret sharing” scheme in [Sha79]. The problem here was simple:
one wishes to share some secret among n people such that any subset of k of
them can recover the secret, but any subset of fewer than k of them has no
information.

The solution was to first embed the secret as an element s of a finite field F ,
then generate a random degree-k polynomial P having s as its constant term.
One then gives person i P (xi), where the xi are distinct, nonzero elements of
F . The polynomial is uniquely determined by its values on k points, but its
distribution of values on any k− 1 points are random regardless of the constant
term.

1.2 Testing equivalence of read-once branching programs

Testing whether two algebraic formulae are equivalent is often easy (if they
compute low-degree polynomials): this is polynomial identity testing, and es-
sentially follows from the fact that degree d polynomials have at most d roots.
Testing this for boolean functions, on the other hand, is generally quite hard (for
instance, SAT corresponds to checking whether a boolean formula is equivalent
to 0).

[BCW80], however, introduced a natural and fairly powerful description of
boolean functions, sometimes called read-once branching programs. These are
decision graphs–each node corresponds to reading an input bit, then branching
to one of two other nodes depending on its value. The “read-once” constraint
means that no possible path through the graph reads the same variable more
than once.

The authors were able to find a low-degree polynomial associated with each
boolean function (independent of any branching programs that compute it) and

22-1

showed that this polynomial may be evaluated efficiently using any read-once
branching program computing that function. Polynomial identity testing on the
polynomials from two read-once branching program thus tests the equality of
the functions they compute.

This argument is also described in Sipser’s undergraduate theory textbook!

1.3 #P-completeness of 0-1 Permanent

In [Val79], Valiant proved that computing permanent is #P-hard. In fact, he
was able to show that this hardness applies to the permanent even if the entries
of the matrix are restricted to being from {0, 1}.

The argument for this is interesting to us. First, one may easily reduce
computing a permanent modulo a prime p to computing a permanent of integers
all nonnegative and bounded by p− 1; this in turn may be reduced to a {0, 1}
permanent around p times larger. But one may compute the permanent of any
matrix, if bounded by B, by computing it mod primes of size O(logB) and then
applying the Chinese Remainder Theorem to get it modulo the product of all
these primes (which will be larger than B).

1.4 Secure multi-party computation

This was similar type of idea to Shamir’s Secret Sharing Scheme: computing
a function when the inputs are spread among several actors, without leaking
extra information. This kind of scenario was analyzed in [BOGW88].

1.5 Constant-depth circuit lower bounds

A famous early circuit lower bound was that Parity is not in AC0. Smolensky
extended this in [Smo87] to showing that even AC0 augmented “mod p gates”
cannot compute Parity (or indeed test for multiples of any prime q 6= p). He
was also able to show that Majority could not be computed in these settings.

These results worked by associating the circuit with polynomials over Fp,
and showing that certain polynomials must have high “complexity.” This also
worked as a reasonable alternative proof even of the plain Parity not in AC0

result.

1.6 Toda’s Theorem

Toda proved, in [Tod91], that P#P contains the whole polynomial hierarchy
(“Toda’s theorem”). His proof logically split into two steps. First, he proved
that any language in the polynomial hierarchy could be expressed as the set of
all z satisfying

Prx

[⊕
y

φ(x, y, z) = 1

]
≥ 2/3

with x and y ranging over bitstrings of some polynomial size, and φ a polynomial-
time computable function.

Then, he proved that any such language can be recognized by a machine in

P#P. The mechanism for this was interesting and algebraic.
He provided a low-degree (poly(k)) polynomial mapping anything with par-

ity 0 to something 0 mod 2k, and anything with parity 1 something −1 mod 2k.

22-2

The argument was essentially Hensel-lifting: values 0 and 1 could be lifted from
2k to 22k by applying a constant-degree polynomial. φ could be transformed,
with polynomial blowup, to apply such a polynomial to its total number of so-
lutions. If this was set so that k is at least the number of bits in x, then simply
taking the total number of solutions in x and y (after the transformation), and
taking the negation of the result mod 2k, will give the number of x for which
φ has a number of solutions with parity 1. A threshold on this then solves the
problem.

1.7 PP closed under intersection

[BRS91] proved that PP is closed under intersection. Similar to Toda’s theorem,
it involved applying transformations to the number of inputs making a Turing
machine accept. However, instead of simply applying polynomials, the authors
used rational functions. They used pre-existing constructions of certain rational
function approximations.

1.8 Later results

By the 1990s, arithmetization and algebraic techniques in general became com-
mon in complexity theory. They figured prominently in famous results like
IP = PSPACE and the PCP theorem.

2 Algebra in coding theory: the Reed-Solomon
code

2.1 Basics of error-correcting codes

We consider sending a message m ∈ Σk (k symbols from alphabet Σ) over a
noisy channel. Instead of sending it directly, we will have encoding and decoding
functions E and D, so that E maps Σk to Σn and D maps Σn to Σk, for some
n > k. That is, we blow up the length of a message to make it more robust to
noise.

We specifically define a t-error-correcting code as one such that if x = E(m)
and x̃ has Hamming distance at most t from x, then D(x̃) = x–corrupting any
encoding by up to t symbols does not prevent its valid decoding.

If we do not care about computational issues, the validity of such a code is
determined solely by the image of E (assuming E is injective). A necessary and
sufficient condition is that the minimum Hamming distance, ∆, between two
distinct elements of the image of E is at least 2t+ 1 (if this is the case, there is
always at most one m such that x̃ has Hamming distance at most t from E(m)).

There is a universal lower bound that

k

n
+

∆

n
≤ 1 +

1

n

2.2 The Reed-Solomon code

The Reed-Solomon code is a specific example of an error correcting code. Here,
the alphabet Σ is some finite field F. The message m is interpreted as the

22-3

coefficients of a polynomial Pm of degree at most k − 1 over F, and the en-
coding function simply returns (Pm(x1), Pm(x2), ..., Pm(xn)) for n distinct field
elements xi. Thus, this is only valid for |Σ| ≥ n.

Given any two distinct valid codewords m and m′, their encoding is different
everywhere except at xi where Pm − Pm′ = 0. As a degree k − 1 nonzero
polynomial, this has at most k − 1 zeroes, so E(m) and E(m′) have Hamming
distance at least n − k + 1. This matches the universal bound above, so the
Reed-Solomon code is in some sense optimal (though it requires a somewhat
large alphabet).

The alphabet size issue is not as fatal as it may sound. If one needs to send
the message as bits, one need not naively encode the field elements as binary
numbers from 1 to |F|. Rather, one can encode these themselves with an error
correcting code. Furthermore, since these strings are now only O(log n) bits,
one has much more flexibility in choosing codes–strategies like random codes
now have only polynomial complexity.

2.3 Encoding and decoding Reed-Solomon

Encoding is trivially polynomial time for the Reed-Solomon code: just evaluate
the polynomial. In fact, using fast multipoint evaluation it can be nearly linear
time.

Decoding, however, is trickier. There are many different algorithms which
decode them in different regimes. We will examine one by Madhu Sudan, and
will focus on the case n >> k (this corresponds to a very high error rate). This
algorithm can perform “list decoding”, returning the nearest codewords even if
they are further than ∆−1

2 away.
The input to this algorithm are values xi and yi, 1 ≤ i ≤ n, such that there

exists a degree k polynomial M(x) such that M(xi) = yi for at least a values of
i. We will require that a > 2k

√
n.

The idea is to find a bivariate polynomial Q with x and y degrees at most
b
√
nc such that

Q(xi, yi) = 0

for all i.
Such a polynomial is guaranteed to exist: this is a system of n linear equa-

tions in (b
√
nc+ 1)2 > n variables, and all right hand sides are 0, so its solution

space must be a linear subspace of (b
√
nc+ 1)2 − n ≥ 1 dimensions. In partic-

ular, it has nonzero solutions, which can be found with standard linear algebra
routines.

But the polynomial y − M(x) is 0 for a (xi, yi) points, all of which are
also zeroes of Q(xi, yi). Then Bezout’s theorem implies that if a > 2k

√
n (the

product of the degree of Q and the degree of y−M(x)), Q and y−M(x) must
have a common factor; since y −M(x) is irreducible, it must be a factor of Q.
Thus we can find M by simply factorizing Q and looking for factors of that
form.

References

[BCW80] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equiv-
alence of free boolean graphs can be decided probabilistically in

22-4

polynomial time. Information Processing Letters, 10(2):80 – 82,
1980.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed com-
putation. In Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, STOC ’88, pages 1–10, New York, NY,
USA, 1988. ACM.

[BRS91] Richard Beigel, Nick Reingold, and Daniel Spielman. Pp is closed
under intersection. In Proceedings of the Twenty-third Annual ACM
Symposium on Theory of Computing, STOC ’91, pages 1–9, New
York, NY, USA, 1991. ACM.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, November 1979.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, STOC ’87, pages 77–82,
New York, NY, USA, 1987. ACM.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy.
SIAM J. Comput., 20(5):865–877, October 1991.

[Val79] L.G. Valiant. The complexity of computing the permanent. Theo-
retical Computer Science, 8(2):189 – 201, 1979.

22-5

