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Singleton bound

Thm: n>k+d—1
e Note: Independent of g.

e Codes meeting the Singleton bound are
called MDS codes (Max. Dist. Seperable).
(Only) example: Reed-Solomon codes.

Proof (of Thm):

e Pick (any) & — 1 coordinates and project
code.

e Two codewords collide (PHP).

e Implies distance < n — k + 1.
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Topic: Bounds on Codes

This lecture will focus on limitations on the
performance of codes. l.e., Upper bounds
on rate/distance, or Lower bounds on block
length.
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Greismer bound
Thm: For linear codes, n > Zf:_ol [%-‘.
In particular, n > q;EId + k —log, d.
Note: Strictly improves Singleton bound.

Proof: (for binary case)

e Every row of G has > [g] zeroes.
e (&' generates [n — d, k — 1, (gﬂq code.
e Theorem follows.

Madhu Sudan, : 4



Recall Hamming Balls

e V(n,r,q) = “volume" of B(-,r) in X",

e Let H,(p) be g-ary entropy function.

I1—p

Hy(p) = plog, (%) +(1-p) log, (L>

e Fact:
V(n,pn,q) ~ gHa®n
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Intermission

e Have met Singleton, Griesmer and
Hamming.

e Will soon meet Plotkin, Elias-Bassalygo,
and Johnson.

e Will view MacWilliams and LP from afar.

e Why?
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Packing (Hamming) Bound

Thm: £ < (I—Hq (%%))n

Proof: Consider balls of radius % around
codewords.

e Balls don't intersect.

e Thus: V(n,d/2,q)¢" < q"

e Using approximation, get theorem.

Note: Codes meeting the inequality in
proof tightly are called Perfect codes. e.g.
Hamming codes (and only few others).

Compare with random linear codes:
(Letting 6 = d/n and R = k/n)

1—H,(§) < R < 1—Hq(g).
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Comparing Bounds

e Obviously want the best bound for a given
choice of parameters.

e Say fixed ¢, R = k/n, what is the best
distance § = d/n?

e But relationship is not yet known!

e Further known relationships involve
complicated functions - even if one is
better, can verify this only by calculations?
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Broad Issues

e Behavior at high rate? Hamming bound is
good enough.

e Behavior at low-rate? Codes can't have
d > 1—1/q, but Hamming bound can't
prove this! Griesmer bound does, but only
good for linear codes. Plotkin bound will
work.

e Asymptotic behavior? Given £, ¢, How does
n behave is we want 6 = 1—1/g—e¢. Elias-
Bassalygo bound will give a decent bound:
n = Q(k/e). LP bound gives the correct
result n = Q(k/€e?).
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Proof Idea

e Will omit proof of Plotkin bound.

e Will start with Elias-Bassalygo and this will
motivate the Johnson bound.

e Johnson bound: Proven via a geometric
argument. (Proof + improved bound from
[Guruswami+S."01].)
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Bounds - Round 11

Plotkin Bound:

Ifd>(1+¢€)-( —$)~nthen
# codewords < 1+ 1.

Elias-Bassalygo Bound:

Rg1—Hq((1—§)-(1— 1—(1%15)).

Johnson Bound: If C is an (n, 7, d), code then

any Hamming ball of radius at most e contains
at most n¢g codewords, provided

e/n<(1—é)-<1— 1—L>.

(Never mind the actual numbers for now.)
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Elias-Bassalygo Bound

e Pushes the packing bound.
e Go to larger radius.

e Suppose: Can prove that at most 4 balls
of radius e = 2d/3 contain any one given
point.

e Prveious argument gives:
V(n,2d/3,q)q¢" < 4¢™.

e Lose almost nothing on RHS.

e Improve LHS (significantly).

Motivates the Johnson question.
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Johnson Bound

Question: Given i € X", (n,k,d), code C.
How many codewords in B(7,¢)?

Motivation: (for binary alphabet)
How to pick a bad configuration?
l.e. many codewords in small ball.
W.lo.g. set 7= 0.

Pick ¢;'s at random from B(0,e).

Expected’ dist. between codewords = 7

Let € = ¢/n.

Codewords simultaneously non-zero on
€2 fraction of coordinates;

Thus distance ~ (2¢ — 2¢2)n.

Johnson bound shows you can’t do better!
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Hamming to Euclid (contd).

In our case:
Given: c¢i,... ¢, codewords in X" and 7 €
" s.t.

[} A(Ci,f) S €

® A(CZ',C]') Z d
Want: Upper bound on m.

After mapping to R™9
(and abusing notation)

Given: ¢q,...,¢,, R™ and 77 € R", s.t.
o (F,T) =mn.
e (c;,c;) =n.
e (c;,7) >mn—e
e ((eirej) <n—d
Want: Upper bound on m.
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Hamming to Euclid

e Map ¥ — R%: ith element — 0°~1 1 09—

e Induces natural map > — R9"™:

— Maps vectors into Euclidean space.
— Hamming distance large implies Euclidean
distance large.

Argue: Can’t have many large vectors with
pairwise small inner products.
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Hamming to Euclid (contd).

c2
Main idea: Find a new point O’ to set as
origin, such that the angle subtended by C;
and C; at O’ is at least 90°.

Conclude: # vectors < dimension = ng.
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Johnson bound (contd).

How to pick the new origin?
Idea 1: Try some point of the form a7

Then (¢; — i, ¢c; — aF)

= {ci, ¢j) — aleir)
_O‘<cj>7#> +a2<F7f>
<(1-a)’n+2ae—d

Setting o = 1, says: Need e < d/2.

Setting o = 1 — e/n yields:

Need ¢/n <1 —+/1—14.

(Not quite what was promised.)
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Back to Elias Bound

Plugging Johnson bound into earlier
argument:

k< (1~ Hy(O)n + oln),

where € such that the Johnson bound holds
for e = en.

Importance:

e Proves e.g. No codes of exponential growth
with distance (1 — 1/q)n.

e Decently comparable with existential lower
bound on rate from random code.
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Johnson bound (contd).

A better choice for origin.

Idea 2: Try some point of the form
ar+ (1 — a)Q,
where () = (é)q".

Appropriate setting of @ = 1 —¢/n yields, the
desired bound.
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MacWilliams ldentities

Defn: ~ Weight distribution of code is
(Ag,...,A,), where A; is # codewords of
weight 7.

o MacWilliams lIdentity determines weight
distribution of code from weight
distribution of its dual.

e Quite magical.

e Many nice consequences.
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MacWilliams ldentities

Thm:
o Let Ag,... , A, wt. dist. of C.
oLet A),..., Al wt. dist. of C*.
o Let W(y) =5, Aiy”.
o Let W/(y) = >, Aly'.

o Then TW(y) = CHUZL0 7 (o)

e Implications: Equating coefficients of 7/,
get n + 1 linear equations in 2(n + 1)
variables.

e Natural use, gives weight distribution of
primal given dual or vice-versa.

e Interesting use: Can compute weight
distribution of MDS codes!
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MacWilliams Identities (contd).

Trivial Claim: Given W¢, can compute W ..

Explicit version: (non-trivial)
We(z1+y1,%1 = Y1, -+« s Tn + Yny Tn — Yn)
- |C| : Wcl(xl, Y1y« yTn, yn)

Proof steps:

Bit case:
Wy (z+y, z—y) = Zbe{o,1}(_1)<b’b >Wb(37ay)-

Vector case:
We(z1 +y1,21 — Y15 - s Tn + Yny, Tro — Yn)

- ZbE{O,l}n(_l)w’C)Wb(’rl’ Yty - axnayn)-
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MacWilliams ldentities: Proof

(Will only do the Binary case)
Defn: The verbose generating function

(a) The generating function of a bit:
Wi(z,y) = (1 —b)z + by

(b) The generating function of a word:
Wc<$1a Yi,-.. yTn, yn) = H?:l Wci(xia yz’)

(c) The generating function of a code:
Wc(xla Yty .- axn’yn)
= ZCGC Wc(wla Yt .- 7$n7yn)

E.g. if C = {000,011,101,111}, then
We(z1,y1, 2, Y2, 3, Y3)
= X1T2x3 + T1Y2Y3 + Y1X2Y3 + Y1Y2T3
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Proof (contd).

Code case:

We(z1 4 Y1,21 — Y1y - -+ T + Yny T — Yn)

:Z Z (_1)<bac>Wb(x1’y1,...,:L'n,yn)

c€C be{0,1}n

= Z Wb(l’l,yl,... ,wn’yn) Z(_l)(b,c)

be{0,1}n ceC
= |C| : WCL(xlv Yi,--- 7xn7yn)

MacWilliams Identity follows using:
s L —Y .

and W'(y) = Wei(l,y,...,1,y)
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MDS Codes

Fact: Dual of MDS code is MDS.
Proof: Along lines of Singleton bound.

Fact: MDS code of dim k has (¢ —1)(})
codewords of minimum weight.

Proof: By inspection.

Consequence: Have values for n + 1 variables
out of 2(n+ 1) used in M.l. System turns out
to have full rank.

Thm: # poly of degree < k with w non-zero
evaluations at n points is:

0 E e

Jj=0
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LP bound

Let Ag,..., A, bedist. of [n,?,d], code.

# codewords = Ay + --- + A,,.

Know Ag=1, A1 =---=A4,_1=0.

Further A[ =1, A}, ... /Al > 0.

How large can Ag+---+ A,, be under above
conditions?

Above is a linear program ... Gives best
known bound [MRRW].

Note: Extends to non-linear codes also.
Define A; = E.cc[|S(c,i) NC|],
S(c,1) = sphere of radius ¢ around c.
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LP bound

e One more bound in literature.
e Strongest known bound.
e Analysis hard.

e So hard, one only has upper bounds on the
LP bound.

e Current upper bound on LP bound is still
far from random code or AG-code (so may
not be optimal either).

e Will see LP later.

e However (only) bound proving that if d =

(% — €)n, then n = O(k/€e?). (Matches

random code for small €.)

Madhu Sudan, : 26

Alon’s proof for e-biased spaces

Thm: Suppose have binary code with K
codewords of length n s.t. no two are have

distance less than (3 — €)n or greater than
1 . : .

(5 +¢€)n: Then K < 2n, provided € < ONGE
Proof:

— Map 0 to 1 and 1 to —1, and normalize
so that vectors have unit norm.

— Then inner products lie between —2¢ and
2e€.

— Let M be K x K matrix of inner products.

— M close to identity matrix and hence
has rank close to that of identity matrix.
Specifically: rank > WK_I)@.

— On the other hand, rank(1/) < n.
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