A Crash Course on Coding Theory

Madhu Sudan MIT

Topic: Bounds on Codes

This lecture will focus on limitations on the performance of codes. I.e., <u>Upper bounds</u> on rate/distance, or <u>Lower bounds</u> on block length.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Singleton bound

Thm: $n \ge k + d - 1$

• Note: Independent of q.

 Codes meeting the Singleton bound are called <u>MDS</u> codes (Max. Dist. Seperable). (Only) example: Reed-Solomon codes.

Proof (of Thm):

- ullet Pick (any) k-1 coordinates and project code.
- Two codewords collide (PHP).
- Implies distance $\leq n k + 1$.

Greismer bound

Thm: For linear codes, $n \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil$.

In particular, $n \ge \frac{q}{q-1}d + k - \log_q d$.

Note: Strictly improves Singleton bound.

Proof: (for binary case)

Let
$$G = \begin{bmatrix} \overbrace{00\cdots 0}^{n-d} & \overbrace{11\cdots 1}^{d} \\ G' & G'' \end{bmatrix}$$

- ullet Every row of G'' has $\geq \lceil rac{d}{q}
 ceil$ zeroes.
- ullet G' generates $[n-d,k-1,\lceil rac{d}{q}
 ceil]_q$ code.
- Theorem follows.

Recall Hamming Balls

- $\bullet \ V(n,r,q) = \text{ "volume" of } B(\cdot,r) \text{ in } \Sigma^n.$
- Let $H_q(p)$ be q-ary entropy function.

$$H_q(p) = p \log_q \left(\frac{q-1}{p}\right) + (1-p) \log_q \left(\frac{1}{1-p}\right)$$

• Fact:

$$V(n, pn, q) \approx q^{H_q(p)n}$$

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Packing (Hamming) Bound

Thm: $k \leq \left(1 - H_q\left(\frac{1}{2} \cdot \frac{d}{n}\right)\right) n$.

Proof: Consider balls of radius $\frac{d-1}{2}$ around codewords.

- Balls don't intersect.
- Thus: $V(n, d/2, q)q^k \leq q^n$
- Using approximation, get theorem.

Note: Codes meeting the inequality in proof tightly are called <u>Perfect</u> codes. e.g. Hamming codes (and only few others).

Compare with random linear codes:

(Letting
$$\delta = d/n$$
 and $R = k/n$)

$$1 - H_q(\delta) \le R \le 1 - H_q(\frac{\delta}{2}).$$

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Intermission

- Have met Singleton, Griesmer and Hamming.
- Will soon meet Plotkin, Elias-Bassalygo, and Johnson.
- Will view MacWilliams and LP from afar.
- Why?

Comparing Bounds

- Obviously want the best bound for a given choice of parameters.
- Say fixed q, R=k/n, what is the best distance $\delta=d/n$?
- But relationship is not yet known!
- Further known relationships involve complicated functions - even if one is better, can verify this only by calculations?

Broad Issues

- Behavior at high rate? Hamming bound is good enough.
- ullet Behavior at low-rate? Codes can't have $\delta>1-1/q$, but Hamming bound can't prove this! Griesmer bound does, but only good for linear codes. Plotkin bound will work.
- Asymptotic behavior? Given k, ϵ , How does n behave is we want $\delta = 1 1/q \epsilon$. Elias-Bassalygo bound will give a decent bound: $n = \Omega(k/\epsilon)$. LP bound gives the correct result $n = \Omega(k/\epsilon^2)$.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Proof Idea

- Will omit proof of Plotkin bound.
- Will start with Elias-Bassalygo and this will motivate the Johnson bound.
- Johnson bound: Proven via a geometric argument. (Proof + improved bound from [Guruswami+S.'01].)

Bounds - Round II

Plotkin Bound:

If
$$d \ge (1 + \epsilon) \cdot (1 - \frac{1}{q}) \cdot n$$
 then $\# \operatorname{codewords} \le 1 + \frac{1}{\epsilon}$.

Elias-Bassalygo Bound:

$$R \le 1 - H_q \left(\left(1 - \frac{1}{q} \right) \cdot \left(1 - \sqrt{1 - \frac{q}{q - 1}} \delta \right) \right).$$

<u>Johnson Bound</u>: If C is an $(n,?,d)_q$ code then any Hamming ball of radius at most e contains at most nq codewords, provided

$$e/n < (1 - \frac{1}{q}) \cdot \left(1 - \sqrt{1 - \frac{q}{q - 1}\delta}\right).$$

(Never mind the actual numbers for now.)

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Elias-Bassalygo Bound

- Pushes the packing bound.
- Go to larger radius.
- Suppose: Can prove that at most 4 balls of radius e=2d/3 contain any one given point.
- Prveious argument gives:

$$V(n, 2d/3, q)q^k \le 4q^n.$$

- Lose almost nothing on RHS.
- Improve LHS (significantly).

Motivates the Johnson question.

Johnson Bound

Question: Given $\vec{r} \in \Sigma^n$, $(n,k,d)_q$ code \mathcal{C} . How many codewords in $B(\vec{r},e)$?

Motivation: (for binary alphabet) How to pick a bad configuration? I.e. many codewords in small ball. W.l.o.g. set $\vec{r} = \vec{0}$.

Pick c_i 's at random from $B(\vec{0}, e)$.

Expected' dist. between codewords = ? Let $\epsilon=e/n.$

Codewords simultaneously non-zero on ϵ^2 fraction of coordinates;

Thus distance $pprox (2\epsilon - 2\epsilon^2)n$.

Johnson bound shows you can't do better!

Hamming to Euclid

- Map $\Sigma \to \mathcal{R}^q$: *i*th element $\mapsto 0^{i-1} \ 1 \ 0^{q-i}$.
- Induces natural map $\Sigma^n \to \mathcal{R}^{qn}$:
 - Maps vectors into Euclidean space.
 - Hamming distance large implies Euclidean distance large.

Argue: Can't have many large vectors with pairwise small inner products.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

13

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

. .

Hamming to Euclid (contd).

In our case:

Given: c_1, \ldots, c_m codewords in Σ^n and $\vec{r} \in \Sigma^n$, s.t.

- $\Delta(c_i, \vec{r}) \leq e$
- $\Delta(c_i, c_j) \geq d$

Want: Upper bound on m.

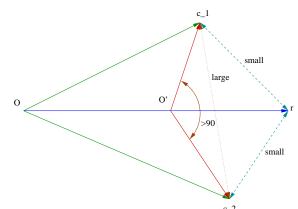
After mapping to \mathcal{R}^{nq} (and abusing notation)

Given: c_1,\ldots,c_m \mathcal{R}^{nq} and $\vec{r}\in\mathcal{R}^{nq}$, s.t.

- $\bullet \langle \vec{r}, \vec{r} \rangle = n.$
- $\langle c_i, c_i \rangle = n$.
- $\langle c_i, \vec{r} \rangle \ge n e$
- $\langle (\rangle c_i, c_j) \leq n d$

Want: Upper bound on m.

Hamming to Euclid (contd).



Main idea: Find a new point O' to set as origin, such that the angle subtended by C_i and C_i at O' is at least 90° .

Conclude: # vectors \leq dimension = nq.

Johnson bound (contd).

How to pick the new origin?

Idea 1: Try some point of the form $\alpha \vec{r}$.

Then
$$\langle c_i - \alpha \vec{r}, c_j - \alpha \vec{r} \rangle$$

$$= \langle c_i, c_j \rangle - \alpha \langle c_i \vec{r} \rangle$$

$$-\alpha \langle c_j, \vec{r} \rangle + \alpha^2 \langle \vec{r}, \vec{r} \rangle$$

$$\leq (1 - \alpha)^2 n + 2\alpha e - d$$

Setting $\alpha = 1$, says: Need $e \leq d/2$.

Setting $\alpha = 1 - e/n$ yields: Need $e/n \le 1 - \sqrt{1 - \delta}$.

(Not quite what was promised.)

Johnson bound (contd).

A better choice for origin.

Idea 2: Try some point of the form $\alpha \vec{r} + (1-\alpha)\vec{Q}$, where $\vec{Q} = (\frac{1}{a})^{qn}$.

Appropriate setting of $\alpha=1-e/n$ yields, the desired bound.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

Back to Elias Bound

Plugging Johnson bound into earlier argument:

$$k \le (1 - H_q(\epsilon))n + o(n),$$

where ϵ such that the Johnson bound holds for $e=\epsilon n$.

Importance:

- Proves e.g. No codes of exponential growth with distance (1-1/q)n.
- Decently comparable with existential lower bound on rate from random code.

MacWilliams Identities

Defn: Weight distribution of code is $\langle A_0, \ldots, A_n \rangle$, where A_i is # codewords of weight i.

- MacWilliams Identity determines weight distribution of code from weight distribution of its dual.
- Quite magical.
- Many nice consequences.

MacWilliams Identities

Thm:

- Let A_0, \ldots, A_n wt. dist. of \mathcal{C} .
- Let A_0', \ldots, A_n' wt. dist. of \mathcal{C}^{\perp} .
- Let $W(y) = \sum_i A_i y^i$.
- Let $W'(y) = \sum_i A_i' y^i$.
- Then $W'(y) = \frac{(1+(q-1)y)^n}{|\mathcal{C}|} W\left(\frac{1-y}{1+(q-1)y}\right).$
- Implications: Equating coefficients of y^i , get n+1 linear equations in 2(n+1) variables.
- Natural use, gives weight distribution of primal given dual or vice-versa.
- Interesting use: Can compute weight distribution of MDS codes!

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

21

MacWilliams Identities: Proof

(Will only do the Binary case)

Defn: The verbose generating function

- (a) The generating function of a bit: $W_b(x, y) = (1 b)x + by$
- (b) The generating function of a word: $W_c(x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^b W_{c_i}(x_i, y_i)$
- (c) The generating function of a code: $W_C(x_1, y_1, \dots, x_n, y_n)$

$$W_{\mathcal{C}}(x_1, y_1, \dots, x_n, y_n)$$

= $\sum_{c \in \mathcal{C}} W_c(x_1, y_1, \dots, x_n, y_n)$

E.g. if
$$\mathcal{C}=\{000,011,101,111\}$$
, then
$$W_{\mathcal{C}}(x_1,y_1,x_2,y_2,x_3,y_3)\\ =x_1x_2x_3+x_1y_2y_3+y_1x_2y_3+y_1y_2x_3$$

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

0.0

MacWilliams Identities (contd).

Trivial Claim: Given $W_{\mathcal{C}}$, can compute $W_{\mathcal{C}^{\perp}}$.

Explicit version: (non-trivial)

$$W_{\mathcal{C}}(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n)$$

= $|\mathcal{C}| \cdot W_{\mathcal{C}_1}(x_1, y_1, \dots, x_n, y_n)$

Proof steps:

Bit case:

$$W_{b'}(x+y, x-y) = \sum_{b \in \{0,1\}} (-1)^{\langle b,b' \rangle} W_b(x,y).$$

Vector case:

$$W_c(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n) = \sum_{b \in \{0,1\}^n} (-1)^{\langle b,c \rangle} W_b(x_1, y_1, \dots, x_n, y_n).$$

Proof (contd).

Code case:

$$W_{\mathcal{C}}(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n)$$

$$= \sum_{c \in \mathcal{C}} \sum_{b \in \{0,1\}^n} (-1)^{\langle b,c \rangle} W_b(x_1, y_1, \dots, x_n, y_n)$$

$$= \sum_{b \in \{0,1\}^n} W_b(x_1, y_1, \dots, x_n, y_n) \sum_{c \in \mathcal{C}} (-1)^{\langle b,c \rangle}$$

$$= |\mathcal{C}| \cdot W_{\mathcal{C}^{\perp}}(x_1, y_1, \dots, x_n, y_n)$$

MacWilliams Identity follows using:

$$(1+y)^n W(rac{1-y}{1+y}) = W_{\mathcal{C}}(1+y,1-y,\dots,1+y,1-y)$$
 and $W'(y) = W_{\mathcal{C}^\perp}(1,y,\dots,1,y)$

MDS Codes

Fact: Dual of MDS code is MDS.

Proof: Along lines of Singleton bound.

Fact: MDS code of dim k has $(q-1)\binom{n}{k}$ codewords of minimum weight.

Proof: By inspection.

Consequence: Have values for n+1 variables out of 2(n+1) used in M.I. System turns out to have full rank.

Thm: # poly of degree < k with w non-zero evaluations at n points is:

$$\binom{n}{w} \sum_{j=0}^{w+k-n} (-1)^j \binom{w}{j} (q^{w+k-n-j} - 1)$$

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

25

• One more bound in literature.

- Strongest known bound.
- Analysis hard.
- So hard, one only has upper bounds on the LP bound.

LP bound

- Current upper bound on LP bound is still far from random code or AG-code (so may not be optimal either).
- Will see LP later.
- However (only) bound proving that if $d=(\frac{1}{2}-\epsilon)n$, then $n=O(k/\epsilon^2)$. (Matches random code for small ϵ .)

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Four

LP bound

- Let A_0, \ldots, A_n be dist. of $[n,?,d]_q$ code.
- # codewords = $A_0 + \cdots + A_n$.
- Know $A_0 = 1$, $A_1 = \cdots = A_{d-1} = 0$.
- $\bullet \ \mbox{Further} \ A_0'=1, A_1', \ldots \, , A_n' \geq 0.$
- How large can $A_0 + \cdots + A_n$ be under above conditions?
- Above is a linear program ... Gives best known bound [MRRW].
- Note: Extends to non-linear codes also. Define $A_i = \mathbb{E}_{c \in \mathcal{C}}[|S(c,i) \cap \mathcal{C}|]$, S(c,i) = sphere of radius i around c.

Alon's proof for ϵ -biased spaces

Thm: Suppose have binary code with K codewords of length n s.t. no two are have distance less than $(\frac{1}{2}-\epsilon)n$ or greater than $(\frac{1}{2}+\epsilon)n$: Then $K\leq 2n$, provided $\epsilon\leq \frac{1}{2\sqrt{n}}$.

Proof:

- Map 0 to 1 and 1 to -1, and normalize so that vectors have unit norm.
- Then inner products lie between -2ϵ and 2ϵ .
- Let M be $K \times K$ matrix of inner products.
- -M close to identity matrix and hence has rank close to that of identity matrix. Specifically: rank $\geq \frac{K}{1+4(K-1)\epsilon^2}$.
- On the other hand, $rank(M) \le n$.