A Crash Course on Coding Theory

Madhu Sudan
MIT

Topic: Decoding Algorithms

This lecture will focus on algorithms for decoding of algebraic codes.

Erasure correction problem

(Gentle introduction to errors).

Defn: Erasure channel either transmits symbol faithfully, or outputs ?.

Erasure decoding problem:

Given: G generator for code C.

$\{r_1, \ldots, r_m\} \subseteq \mathbb{F}_q \cup \{?\}$.

Task: Find $c \in C$ s.t. $r_i \neq ? \Rightarrow r_i \neq c_i$

Prop: c_i unique if $\#$?’s is less than d.

Erasure correction (contd).

Alg:

\bullet Delete rows of G corresponding to ?’s.

Call resulting matrix G'.

Let r with ?’s deleted be r'.

Find x s.t. $xG' = r'$

by solving linear system.

\bullet Output c if unique

Else, output A, c s.t. $c + yA$

are all the solutions.

Conclusion:

\bullet Erasure decoding easy for linear codes.

\quad Can find soln. if unique.

\quad Can enumerate all if not!
The Error Correction Problem

Task:
(Implicitly given) Code C.
Explicit Input: $r = \langle r_1, \ldots , r_n \rangle \in \mathbb{F}_q^n$.
Parameter: Integer e.
Goal: Compute $c \in C$ s.t. $\Delta(r, c) \leq e$.

Error correction radius

Combinatorial question:
When is c uniquely specified (by r, e and C)?
Prop: If $e < d(C)/2$ then at most one c.
(Maybe none!)
Food for thought: Which comes first? Error-correction radius? or distance? (I.e., which one to optimize, given rate?)
Answer: Doesn’t matter - they are essentially optimized simultaneously!

Decoding Reed Solomon Codes

Problem Statement

Given:
- $x_1, \ldots, x_n \in F$ distinct.
- $r_1, \ldots, r_n \in F$.
- Integers k, e

Task: Find a poly p of deg. $k - 1$ s.t.
$p(x_i) \neq r_i$
for at most e values of $i \in \{1, \ldots , n\}$.
Decoding Reed Solomon Codes

[Peterson60, Berlekamp66, Massey66]
[Welch-Bkmp86, Gemmell-S.92]

Key concept: Error locator polynomial

\[Y(x) \text{ s.t. } Y(x_i) = 0 \text{ if } p(x_i) \neq r_i \]

1. \(Y \) has low-degree (\(\leq e \))
2. \(Z = Y \cdot p \) has low-degree (\(\leq e + k - 1 \))
3. \(\forall i, \ Z(x_i) = Y(x_i) \cdot p(x_i) = Y(x_i) \cdot r_i \)

Main Idea: Ignore all references to \(p \) above and look for \(Y, Z \).

Decoding RS Codes (contd.)

I. Find \((Y, Z)\) s.t.

- \(Y \neq 0 \)
- \(\deg Y \leq e \)
- \(\deg Z \leq e + k - 1 \)
- \(\forall i, \ Z(x_i) = Y(x_i) \cdot r_i \)

II. Output \(Z(x) \frac{Y(x)}{Y(x)} \).

Demystifying Step I: Just linear algebra!

Why does it work?

Claim 1: Pair of polynomials \(Y, Z \) satisfying the requirements of Step I do exist!

(In fact we just proved the existence.)

Claim 2: Linear Algebra can find one such pair.

(But pair may not be unique. How do we guarantee \(Y \) is the error-locator?)

Claim 3: If \(Y, Z \) and \(Y', Z' \) both satisfy conditions of Step I, then \(\frac{Z}{Y} \equiv \frac{Z'}{Y'} \).

Proof of Claim 3

Consider the polynomials \(Y' \cdot Z \) and \(Y \cdot Z' \).

- Both have deg. \(\leq 2e + k - 1 \).
- For every \(i \in \{1, \ldots, n\} \), \(Z(x_i) = Y(x_i) \cdot r_i \) and \(Y'(x_i) \cdot r_i = Z'(x_i) \).
- Multiplying and cancelling \(r_i \)'s: \((Y' \cdot Z)(x_i) = (Y \cdot Z')(x_i) \).
- But above happens for \(n \) points, while degrees are smaller than \(n \!\!).
- So \(Y' \cdot Z \equiv Y \cdot Z' \)

Thm: Alg. works if \(e \leq \frac{n-k}{2} \).

(As given, runs in time \(O(n^3) \) time. Best implementations take \(O(n \text{poly log } n) \).)
Musings

- Algorithm essentially in [Peterson’60]. Before “polytime” was formalized.
- Magic of algebra! Also a warning shot! Beware if you intend to base cryptography on algebra ...
- Roots of the specific algorithm. CS literature: [Berlekamp-Welch’86]. All ideas are there, but not the exposition. Exposition is from [Gemmell-S.’92].
- We’ll describe their knowledge next.

Abstract decoding (contd.)

Fix a code \(\mathcal{C} = [n, k, d] \).

Defn: \((\mathcal{Y}, \mathcal{Z})\) are \(e\)-error-correcting pair for \(\mathcal{C} \) if the following hold:
- \(\mathcal{Y} \) are linear codes.
- \(\mathcal{Y} = [n, e+1, n-d+1] \) code.
- \(\mathcal{Z} = [n, ?, e+1] \) code.
- \(\mathcal{Y} \times \mathcal{C} \subset \mathcal{Z} \), where

\[
A \times B = \{ a \times b | a \in A, b \in B \}
\]

and \(a \times b \) denotes coordinatewise product.

Thm: If \(\mathcal{C} \) has a \(e\)-error-correcting pair then it has an \(e\)-error-correcting algorithm.

Algorithm

Given: \(r = \langle r_1, \ldots, r_n \rangle \in \mathbb{F}_q^n \).

- Find \((y \in \mathcal{Y}, z \in \mathcal{Z})\) s.t.
 - \(y \neq 0 \).
 - \(y \times r = z \).
- Set \(c_i = r_i \) if \(y_i \neq 0 \) and erasure otherwise.
- Erasure decode for \(c \).
Proof steps

1. Such a pair \((y, z)\) exists:
 - Set \(y_i\) to zero whenever \(c_i \neq r_i\).
 - Find non-zero \(y \in \mathcal{Y}\) subject to above. (Exists by dim. of \(\mathcal{Y}\).)
 - Set \(z = c \ast y\).

2. Pair can be found (linear system).

3. For any \((y, z)\) found by alg. and any \(c\) s.t. \(\Delta(c, r) \leq \epsilon\), we have \(y \ast c = z\). (Follows from distance of \(\mathcal{Z}\).)

4. Any pair \(y, z\) has at most one \(c\) s.t. \(y \ast c = z\). (Follows from distance of \(\mathcal{Y}\).)

Decoding Concatenated Codes

Recall concatenation:

\[
[n_1, k_1, d_1]_{q^k_2} \circ [n_2, k_2, d_2]_{q}
\]

Simple decoding

Prop: If outer code decodable up to \(e_1\) errors (in poly time), then concatenated code is decodable up to \(e_1 \cdot \frac{d_2}{2}\) errors in poly \(+O(n_1 q^{k_2})\) time.

Alg: Decode each symbol of inner code by Brute force. Then decode the “received word” corr. to outer code.

[Forney’66]: Also gave decoding algorithms.
Generalized Min. Dist. Decoding

More sophisticated decoding. Stronger assumptions. Stronger result. [Forney].

Assumption: Outer code has error and erasure decoder. Decodes if $2e + s < d_1$,
where $e = \#$ errors, $s = \#$ erasures.

Consequence: Concat. code can be decoded for up to $d_1d_2/2$ errors (= half the minimum distance).

GMD Analysis

- Let m be s.t. $\Delta(E_2(E_1(m)), r) < d_1d_2/2$.
 Let $\langle z_1, \ldots, z_{n_1} \rangle = E_1(m)$.
 Let $l_i = \Delta(z_i, r_i)$.
 Let $b_i = 1$ if $z_i \neq y_i$.

- Assume decoding unsuccessful. Then following inequalities hold:
 (1) $\forall j, (n_1 - j) + 2 \cdot \sum_{i=1}^{j} b_i \geq d_1$
 (2) $\forall i, l_i \geq \max\{w_i, b_i(d_2 - w_i)\}$
 (3) $\forall i, w_i \leq w_{i+1} \leq d_2/2$

- Above imply:
 $\sum_{i=1}^{n_1} l_i \geq \frac{d_1d_2}{2}$

GMD Algorithm

Alg:
- Let $w_i = \min\{\Delta(r_i, y_i), d_1/2\}$.
- W.l.o.g. $w_1 \leq w_2 \leq \cdots \leq w_{n_1}$.
- For $i = 1$ to n_1 do
 - Declare $\{i, \ldots, n_1\}$ to be erasures.
 - Decode prefix.

Analysis (details)

(2) $\Rightarrow l_i \geq w_i + b_i(d_2 - 2w_i)$

So suffices to show:
$\sum_i w_i/d_2 + \sum_i b_i(1 - 2(w_i/d_2)) \geq d_1/2$.

- Let $x_i = 1 - 2w_i/d_2$.
- Then x_i’s are non-increasing, with $0 \leq x_i \leq 1$.
- Suffices to show:
 $\sum_i (1 - x_i/2) + \sum_i b_i x_i \geq d_1/2$
 given $(n_1 - j)/2 + \sum_{i=1}^{j} b_i \geq d_1/2$

- Above follows if the vector
 $\langle x_1, \ldots, x_{n_1}, -\sum_i x_i \rangle$
 is in the convex hull of the vectors
 v_1, \ldots, v_{n_1}, where $v_j = \langle 1^{j0^{n_1-j}}, (-j) \rangle$.

- Last is easily verified.
Summarizing

- Can decode Reed-Solomon codes efficiently, up to half the minimum distance.

- Can decode algebraic codes efficiently, up to some close approximation to half the distance.

- Can decode concatenated codes also up to half the distance, provided outer code is nicely decodable.

- Why half the distance?
 - Algorithmic limitation? (Can’t handle more errors?)
 - Combinatorial limitation? (Answer is not unique!)