
Online Algorithms for Locating Checkpoints

Marshall Bern ∗ Daniel H. Greene ∗ Arvind Raghunathan †

Madhu Sudan ‡

Abstract

Motivated by applications in data compression, debugging, and physical simulation,
we consider the problem of adaptively choosing locations in a long computation at which
to save intermediate results. Such checkpoints allow faster recomputation of arbitrary
requested points within the computation. We abstract the problem to a server problem
in which k servers move along a line in a single direction, modeling the fact that most
computations are not reversible. Since checkpoints may be arbitrarily copied, we allow
a server to jump to any location currently occupied by another server. We present
online algorithms and analyze their competitiveness. We give lower bounds on the
competitiveness of any online algorithm and show that our algorithms achieve these
bounds within relatively small factors.

1. Introduction

Suppose you are building software for accessing an encyclopedia. To save space, you store
the encyclopedia in compressed form using an adaptive data compressor [9, 17]. Your
software must handle requests from users wishing to read arbitrarily-located articles within
the encyclopedia. Here a problem arises: in order to decompress a specific article, you must
recreate the compression statistics as they were at the time that article was compressed.

There are several possible approaches to this problem. You could save all compression
statistics, but this defeats the purpose of compression. You could break the encyclope-
dia into smaller files—or equivalently restart the compressor occasionally—but this, too,
compromises compression. A similar solution is to occasionally save—or checkpoint—the
compression statistics while compressing; then a request is handled by finding the closest
previous checkpoint and recomputing statistics from that point up to the requested article.
The space cost of a checkpoint is typically comparable to (perhaps twice) the cost of restart-
ing the compressor. The most flexible solution allows the locations of the checkpoints to
move and adapt to the pattern of requests. In this paper we investigate adaptive solutions
to the problem of locating checkpoints.
∗Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA, 94304
†Computer Science Division, UC - Davis, work done partly while at Courant Institute, New York

University
‡Computer Science Division, UC - Berkeley, supported in part by NSF grant CCR-8947792

1



Besides data compression our work applies to a number of other contexts.

• In debugging a long program, one typically probes an irreversible computation at
various points in order to check intermediate values [12].

• In studying an irreversible physical system, one would like to interactively probe a
computer simulation.

• In testing a VLSI design, different members of a design team may work on different
parts of a critical path simultaneously. Thus a useful feature of a waveform simulator
such as Spice would be the capability to answer probes at arbitrary points along a
path. As above, the computation of a waveform is typically irreversible.

We model the problem as follows. (Here we use the terminology of the data compression
application.) We can afford k “permanent” checkpoints; in addition, we set aside scratch
space for one temporary checkpoint. We think of the temporary checkpoint as residing in
fast memory so that it can be rapidly updated as we read through the encyclopedia; the
other k checkpoints may reside in slow memory. We will be presented with a sequence
of n requests, each at a real number in the half-open interval [0,m). We must respond
to requests online, that is, we must respond to each request before the next one arrives.
A permanent checkpoint may (1) move forward (towards larger numbers) along positions
in [0,m), incurring cost equal to the difference between starting and ending positions; (2)
fork , that is, immediately move at no cost, to a position currently occupied by another
checkpoint; or (3) restart , at no cost, at position 0. Any number of these moves may be
made in response to a request. After these moves, the request at r ∈ [0,m) is serviced by
the temporary checkpoint, incurring fixed cost 1 plus the distance to the request from the
closest checkpoint at a position no greater than r. In the terminology of Manasse et al.
[13], each request is serviced by an excursion from the nearest permanent checkpoint. The
temporary checkpoint does not persist between requests.

We would like to minimize the total cost of a sequence of requests; that is, we are
interested in maximizing throughput rather than minimizing worst-case latency. In our
model, the only costs are computation; copying one block of memory to another, as in a
fork move, is free.

For simplicity, we carry out our analysis assuming that positionm coincides with position
0, that is, the encyclopedia is circular. This assumption eliminates move (3) and clarifies
our arguments. We then show how to transfer most of our results back to the linear case.

We analyze the competitiveness of our algorithms [3, 11, 13, 16]. That is, we compare the
performance of an online algorithm against the performance of an optimal offline algorithm
that sees all requests in advance. An algorithm is called c-competitive if its cost on any
sequence of n requests is at most O(1) greater than c times the offline algorithm’s cost. This
style of analysis refines traditional worst-case analysis. Competitive analysis is worst-case
in that no assumptions about the distribution or correlation of requests are made; however,
it measures performance relative to what is achievable by an omniscient algorithm, rather
than in absolute terms.

2



1.1. Related Work

A discretized version of our problem is an example of a task system as defined by Borodin
et al. [3]. Borodin et al., however, study a more general model in which the costs of
servicing requests—rather than just request locations—may be chosen by an adversary, so
their bounds have no nontrivial implications for our problem. Other related work includes
a number of recent papers on server problems [2, 4, 5, 6, 8, 13, 15, 10].

The paper that addresses the problem most similar to our work is by Chrobak et al. [5].
Chrobak et al. present an optimally (i.e., k-) competitive algorithm for k servers moving on
a line. Our problem differs from their problem in several ways: our servers move in only
one direction, we include the additive cost of 1 for each request, we allow excursions, and,
most crucially, we allow the fork move. To our knowledge, our work introduces the fork
move to the server literature. This move is very natural for applications in which servers
represent information rather than physical objects. Cole and Raghunathan have recently
analyzed the effect of forking in finger searching [7].

1.2. Summary of Results

We obtain the following results, comparing online algorithms against offline algorithms with
an equal number of checkpoints.

1. For the case of k equal to one, that is, only one permanent checkpoint, we give a lower
bound of (m1/3/2)-competitiveness that applies to any deterministic online algorithm.

2. For the case of only one permanent checkpoint on a circle, we give a memoryless
4m1/3-competitive algorithm. Notice that with only one server, there can be no fork
move.

3. For k checkpoints moving on a circle, we give a 2(k + 1)m1/3-competitive algorithm
when the fork move is disallowed for both online and offline algorithms. This result
generalizes the upper bound for k equal to one and separates the difficulties introduced
by one-way motion and forking.

4. For 3 ≤ k ≤ m1/3, we give a lower bound of Ω(m1/2)-competitiveness. (Here Ω
notation implies a constant independent of k as well as m.)

5. For k at least two, we give a memoryless 3(km)1/2-competitive algorithm for both the
circle and the line segment.

Our lower bounds hold for both the circle and line segment versions of the problem. Upper
bounds 2 and 3 above hold only for the circle, as the restart move of the line segment version
introduces many of the same complexities as forking. In the next-to-last section of the paper,
we give lower bounds on the competitiveness of an online algorithm compared with an offline
algorithm with fewer checkpoints. This result shows a limit on the effectiveness of increasing
the number of checkpoints. Finally, we give algorithms for the offline problem.

The variable m is the ratio between the total amount of computation and the minimum
amount of work to answer a request. In some sense it represents the number of smallest
units: articles in an encyclopedia or lines of code in a program to be debugged. For the

3



location of checkpoints to matter, m must be much greater than k. Thus, for the circle
version of the problem, we have obtained algorithms that match our lower bounds up to
relatively small factors, except when k equals two. For the line segment version of the
problem, our bounds match up to relatively small factors when k is at least three.

From a practical point of view, our results are mixed. Although it is encouraging that
there exist algorithms more competitive than the (m/k)-competitiveness of static check-
points, our performance guarantees are quite weak for interesting values of m (say 200,000)
and k (say 20). Our lower bounds show that no deterministic online algorithm can always
be satisfying when viewed retrospectively. Furthermore, we believe that our lower bound
proofs can be adapted to show that randomization cannot improve an online algorithm by
more than a constant factor.

Finally, we believe our work introduces an interesting test case for competitive analysis.
We are extending this type of analysis to a problem more difficult than those previously
considered (caching, list access, online scheduling of elevators and disk drives), as indicated
by our strong lower bounds. Can competitive analysis nevertheless lead us to algorithms
for locating checkpoints that perform well in practice?

2. Preliminaries

In subsequent sections, we refer to the permanent checkpoints as servers and the temporary
checkpoint as the temporary server . In analyzing competitiveness, we usually refer to the
online algorithm under consideration as the player and the optimal offline algorithm as the
adversary .

Player servers and adversary servers (sometimes called simply players and adversaries
when no confusion is likely) both move on a directed circle of circumference m, with m1/3 ≥
max{3, k}, where k is the number of player servers. On the directed circle, all servers move
only in the clockwise direction.

We use interval notation to denote arcs of the directed circle. For example [x, y) with
x < y ≤ m denotes the clockwise half-open arc from x to y, i.e., the one that does not
contain y, while [y, x) denotes the complementary arc. The distance d(s, x) is the length of
[s, x].

The sequence of request locations is denoted r1, r2, . . . , rn, where each ri is a real number
in [0,m). The subsequence rs, rs+1, . . . , rtis denoted R[s, t].

By the term online, we mean that the player chooses the positions of his servers at time
t deterministically as a function of the request history R[1, t]. If in addition, the player uses
only the current request rt and the current positions of his servers to choose his next move,
then the algorithm is called memoryless [13, 15]. The offline algorithm (i.e., the adversary)
may use all of R[1, n] to choose server locations at any time t. For an online algorithm P ,
let Ratio(P,R[1, n]) denote the ratio of the cost incurred by P to the cost incurred by the
adversary on request sequence R[1, n]. The competitiveness of online algorithm P is then
defined to be the “worst ratio” lim supn→∞ supR[1,n] Ratio(P,R[1, n]).

4



3. 1-Server Lower Bound

This section gives the first in a series of lower bounds on the competitiveness of determin-
istic online algorithms as compared to optimal offline algorithms. There appears to be no
advantage in allowing the online algorithms to make probabilistic choices based on R[1, t],
but for clarity the proofs are restricted to deterministic algorithms. (See Ben-David et al
[1] for more on randomization.)

Theorem 1. An online 1-server algorithm can be no better than (m1/3/2)-competitive.

Proof: We describe an adversary strategy that can be repeated on epochs of n = dm1/3e
requests. Let the adversary’s server be at location z and the history of requests be R[1, t].
The adversary considers extending the history by n−1 requests at location z+m1/3 followed
by one request at either (1) z or (2) z+m1/3. Case (2) is used if the player algorithm would
keep its server in (z + m1/3, z] for the entire subsequence R[t + 1, t + n] (most likely by
holding back at z). In this case the adversary moves up to z + m1/3, incurring a cost of
m1/3, and then has n requests at cost 1. By contrast the player has n requests at cost at
least m1/3 + 1 each, for a total of at least n(m1/3 + 1). The ratio n(m1/3 + 1)/(n + m1/3)
is at least m1/3/2. If the player ever leaves the arc (z +m1/3, z], then case (1) is used; the
adversary holds back at z, spending n(m1/3 + 1) ≤ 2m2/3 to process the requests, and the
player must spend m−m1/3 + n because of the empty arc. In either case the player incurs
cost at least m1/3/2 times the adversary’s cost for the epoch.

Essentially the same argument works for the case of servers moving on the line rather
than the circle. The adversary first moves its server to m/2. There follow at least m2/3/2
epochs of the form above, as the adversary’s server progresses from m/2 to m. In each epoch
the ratio of the player’s cost to the adversary’s cost is at least m1/3/2. The player’s total
work before the adversary must reset at m/2 is at least m4/3, so over an entire “superepoch”
the player’s ratio can be no better than m1/3/2− 1.

4. 1-Server Upper Bound

In this section we give an algorithm for the movement of a single server. This algorithm will
lead us to the more general algorithm for an arbitrary number of servers when both player
and adversary are not allowed to fork. We show that the following simple, memoryless
algorithm, called Two-Phase, is 4m1/3-competitive.

for each request r do
(Phase 1) Move the server (at s) towards r by

max{0, d(s, r)−m2/3}
(Phase 2) Move the server (now at s′) further

towards r by max{0, d(s
′,r)−m1/3

m1/3+1
}

Serve r using the temporary server od

In order to analyze the performance of this algorithm and later online algorithms, we
think of player and adversary working in parallel on r1, r2, . . . , rn.

We define a potential function Φ that is used to “smooth” the induction. The player’s
work typically reduces Φ by at least the work done, while the adversary’s work increases Φ

5



by at most the competitive factor times the amount of work done. These bounds, along with
bounds on the initial and final values of Φ, suffice to bound the player’s work on sequence
R[1, n] by a multiple of the adversary’s.

In this section, we define Φ as follows, where s denotes the position of the player’s server
and x denotes the position of the adversary’s server.

Φ1 = d(s, x) Φ2 = min{m,m1/3 · d(s, x)}

Φ3 = max{0, 2m2/3(m1/3 − d(s, x))}

Φ = Φ1 + Φ2 + Φ3

Function Φ, thus defined, is a piecewise-linear function of the distance between player and
adversary. When adversary and player are further than m2/3 apart, Φ decreases with slope
1 as the player approaches the adversary, reflecting the rapid motion of Phase 1. When
adversary and player are between m2/3 and m1/3 apart, Φ decreases with slope about m1/3

to compensate for the slower motion of Phase 2. Closer than m1/3 apart, Φ increases with
slope about 2m2/3 so that it does not jump discontinuously when the player crosses the
adversary or vice versa.

As above, let s denote the player’s position before Phase 1, s′ the player’s position after
Phase 1 and before Phase 2, and s′′ the player’s position after Phase 2. Similarly let x and
x′ be the adversary’s starting and final positions. Let WP denote the total cost incurred
by the player in servicing request r, that is, 1 plus the total permanent and temporary
checkpoint motion. Similarly let WA denote the total cost incurred by the adversary.

For ease of analysis, the actions following the receipt of a request r (= ri for some i)
are conceptually divided into the following steps: (1) the adversary moves arbitrarily; (2)
the player executes an iteration of Two-Phase; and, (3) the adversary services the request
without moving a permanent checkpoint. The first two lemmas analyze the changes in Φ
during steps (1) and (2).

Lemma 1. When the adversary moves from x to x′, Φ increases by at most (m1/3 + 1) ·
d(x, x′).

Proof: First note that Φ varies continuously when the adversary crosses over the player or
when the player crosses over the adversary (i.e., when d(s, x) changes from m to 0 or 0 to
m). Next observe that when the adversary moves distance d without crossing the player,
Φ1 increases by at most d, Φ2 increases by at most m1/3d, and Φ3 does not increase. Thus
Φ increases by at most (m1/3 + 1) · d(x, x′) when the adversary moves from x to x′.

Lemma 2. Assume d(x′, r) ≤ m2/3 − m1/3. Then in Phase 1, Φ decreases by at least
d(s, s′), and in Phase 2, Φ decreases by at least (m1/3 + 1) · d(s′, s′′)− 2m1/3 · d(x′, r).

Proof: If d(s, s′) = 0, then the player does not move in Phase 1, so Φ cannot increase. On
the other hand, if d(s, s′) > 0 then d(s′, r) = m2/3, and the adversary at x′ is at least m1/3

ahead of the player. Hence Φ1 decreases by at least d(s, s′) and neither Φ2 nor Φ3 increase.
We now analyze the change in Φ during Phase 2. As above, the case that d(s′, s′′) = 0 is

trivial. So assume d(s′, s′′) > 0 and consider the case that x′ ∈ (r, s′], that is, the adversary
lies behind the player at the end of Phase 1. Then in Phase 2, Φ1 decreases by d(s′, s′′) and

6



Φ2 and Φ3 do not increase. Thus Φ decreases by a positive amount, so it decreases by at
least (m1/3 + 1)d(s′, s′′)−2m1/3d(x′, r), which is negative.

So assume x′ ∈ (s′, r]. To handle this difficult case we further subdivide the player’s
Phase 2 motion.

Let z be such that m1/3d(s′, z) = d(x′, r), and let s∗ be the first of s′′, z, and x′ after s′.
As the player moves from s′ to s∗, Φ1 decreases by d(s′, s∗) and Φ2 decreases by m1/3d(s′, s∗).
Now let r∗ be the point such that d(r∗, r) = m1/3d(s′, s∗). Note that r∗ = x′ exactly when
s∗ = z; otherwise, r∗ is in (x′, r]. Also note that r∗ ∈ [s′′, r] since

d(r∗, r) = m1/3d(s′, s∗)
≤ m1/3d(s′, s′′)

≤ m1/3d(s′, r)−m1/3

m1/3 + 1
≤ d(s′, r)−m1/3

≤ d(s′′, r).

The increase in Φ3 as the player moves from s′ to s∗ is at most 2m2/3d(s′, s∗) = 2m1/3d(r∗, r).
Altogether, Φ decreases by at least (m1/3+1)d(s′, s∗)−2m1/3d(r∗, r) in this first “subphase”.

For the second subphase—from s∗ to s′′—we separately consider the three cases: (1)
s∗ = s′′, (2) s∗ = z (and hence x′ = r∗), and (3) s∗ = x′. We show below that in each case,
Φ decreases by at least (m1/3 + 1) · d(s∗, s′′)− 2m1/3d(x′, r∗). Summing this decrease with
the decrease for the first subphase will complete the proof.

In case (1), d(s∗, s′′) = 0 and it is trivially true that Φ decreases by at least (m1/3 + 1) ·
d(s∗, s′′)− 2m1/3d(x′, r∗). In case (2),

d(s′′, x′) = d(s′, r)− d(s′, s′′)− d(x′, r)
≥ d(s′, r)− d(s′, s′′)−m1/3d(s′, s∗)
≥ d(s′, r)− (m1/3 + 1) · d(s′, s′′)
≥ d(s′, r)− (d(s′, r)−m1/3)
≥ m1/3

follows from the definition of Two-Phase. Thus Φ3 does not increase during the motion
from s∗ to s′′. Φ1 + Φ2 decreases by at least (m1/3 + 1)d(s∗, s′′), so the total decrease in Φ
satisfies the desired bound.

In case (3), the player crosses over the adversary at s∗. In the subsequent motion from
s∗ to s′′, Φ1 decreases by d(s∗, s′′), while Φ2 and Φ3 remain fixed at m and 0. So Φ decreases
by d(s∗, s′′) = (m1/3 + 1)d(s∗, s′′) − m1/3d(s∗, s′′), which is at least (m1/3 + 1)d(s∗, s′′) −
2m1/3d(x′, r∗) since d(x′, r∗) = d(s∗, r∗) ≥ d(s∗, s′′).

The next lemma relates ∆Φ, the total change in Φ during steps (1) and (2), to the total
player and adversary costs WP and WA (in all three steps).

Lemma 3. For each request r, WP + ∆Φ ≤ 4m1/3 ·WA.

Proof: The adversary’s work WA = 1+d(x, x′)+d(x′, r), since an optimal offline algorithm
would not waste motion by going all the way around the circle.

7



Assume first that d(x′, r) > m2/3 −m1/3. In this case the lemma follows from WP ≤ m
and the fact that at all times 0 ≤ Φ ≤ 2m.

So assume that d(x′, r) ≤ m2/3 −m1/3. By Lemma 1, the increase in Φ in step (1) is
bounded by

(m1/3 + 1)d(x, x′).

The player’s work WP in step (2) is 1 + d(s, s′′) + d(s′′, r), which is no greater than

d(s, s′) + (m1/3 + 1)d(s′, s′′) +m1/3 + 1.

Finally, by Lemma 2, Φ decreases in step (2) by at least

d(s, s′) + (m1/3 + 1)d(s′, s′′)− 2m1/3d(x′, r).

Subtracting this expression from the sum of the first two and then dividing by 1+d(x, x′)+
d(x′, r), we obtain (WP + ∆Φ)/WA ≤ 2m1/3, which implies the lemma.

Theorem 2. Two-Phase is 4m1/3-competitive.

Proof: Let Φi be the initial value of Φ before request sequence R[1, n], and let Φf be the
final value of Φ after R[1, n]. The theorem then follows from Lemma 3—summed over all
requests—and the fact that Φf − Φi ≤ 2m.

The 1-server problem on the line is quite different. The restart move, in which a server
jumps to location 0, introduces many of the complexities of forking. We do not have an
O(m1/3) upper bound for this problem.

5. Forking Disallowed

In this section we generalize Theorem 2 to give a 2(k + 1)m1/3-competitive algorithm for
locating checkpoints in the case that neither the online nor the offline algorithm is allowed
to fork. The 1-server lower bound argument can be extended to give an Ω(m1/3) lower
bound by adding requests that “freeze” k − 1 of the player’s servers, as in the proof of
Theorem 4 of Section 6.

In response to each request r, the algorithm applies Two-Phase to the server nearest
to r. We analyze this algorithm’s performance as in Section 4, only this time the potential
function is somewhat more elaborate. For a player server at s and adversary server at x we
define the following functions:

l(s, x) = d(s, x) + max{0,m2/3(m1/3 − d(s, x))},

f(s, x) = m− d(s, x) + min{m,m1/3 · d(s, x)}.

Let the positions of player (adversary) servers 1, 2, . . . , k be denoted s1, s2, . . . , sk (respec-
tively, x1, x2, . . . , xk). Next we define M to be the minimum weight of a matching of player
servers to adversary servers where the weight of matching player server i to adversary server
j is l(si, xj). We now define our potential function,

Φ = (k + 1)M +
∑
i,j

f(si, xj).

8



Roughly speaking, we match players to adversaries in Φ so that a player’s motion is paid
for by increased proximity to its matched adversary. As in the previous section, weights are
piecewise-linear functions in order to compensate for the varying “speed” of Two-Phase.

As above we divide the response to request r into steps: (1) the adversary moves ar-
bitrarily; (2) the player executes Two-Phase; and (3) the adversary services r without
moving a permanent checkpoint.

Lemma 4. When an adversary server moves distance d, Φ increases by at most (k+ 1)d+
km1/3d.

Proof: Observe first that l(s, x) and f(s, x) are both continuous when d(s, x) changes
from m to 0 or from ) to m. Hence M and Φ are continuous at crossovers as well. When
adversary server xj moves distance d without crossing a player, M increases by at most d
and for each i, f(si, xj) increases by at most m1/3d.

Again let s denote the initial position of the player that services r, and s′ and s′′ its
positions after Phase 1 and Phase 2, respectively. Denote by x′ the position of the adversary
closest to r after step (1).

Lemma 5. If x′ ∈ [s, r] then after step (1) and before step (2), there exists a minimum
weight matching in which the distance from the player at s to its matched adversary is at
least d(s, x′).

Proof: Assume that s is matched to some adversary at x∗ with x∗ ∈ [s, x′), while the
adversary at x′ is matched to some other player at s∗, necessarily behind s (i.e., in (r, s)). We
show that switching these two matched pairs does not increase the weight of the matching,
that is,

l(s, x∗) + l(s∗, x′) ≥ l(s, x′) + l(s∗, x∗).

In backwards order from r, we have x′, x∗, s, and s∗. Our first observation is d(s, x∗) +
d(s∗, x′) = d(s, x′) + d(s∗, x∗). Thus we have only to show that

max{0,m−m2/3d(s, x∗)}+ max{0,m−m2/3d(s∗, x′)} ≥

max{0,m−m2/3d(s, x′)}+ max{0,m−m2/3d(s∗, x∗)}.

This follows from our first observation if all quantities within the brackets are nonnegative.
Also if d(s∗, x′) > m1/3 and all other distances are no greater than m1/3, the inequality
holds strictly. If one of the distances on the righthand side is greater than m1/3, then so is
d(s∗, x′), and then the inequality holds since d(s, x′) and d(s∗, x∗) are both at least d(s, x∗).

Lemma 6. Assume d(x′, r) ≤ m2/3 − m1/3. Then in Phase 1, Φ decreases by at least
d(s, s′), and in Phase 2, Φ decreases by at least (m1/3 + 1) · d(s′, s′′)− (k+ 1)m1/3 · d(x′, r).

Proof: We consider Phase 1 first and assume d(s, s′) > 0 (so d(s, r) > m2/3). If the player
at s is not matched to the adversary at x′, then by Lemma 5, we may assume that it
is matched to an adversary at x∗ with x∗ ∈ (r, s). In either case the matched adversary
is at least m1/3 past s′, so the weight of the current minimum matching decreases by
d(s, s′) as player moves from s to s′. Hence M decreases by at least this amount. The

9



k functions f(s, xj) each increase by at most d(s, s′). So overall Φ decreases by at least
(k + 1)d(s, s′)− kd(s, s′), which is d(s, s′).

For Phase 2, first assume that the player at s′ is not matched to an adversary in [s′, r] by
any minimum weight matching. Then the adversary matched to s′ lies at least m1/3 beyond
s′′. Thus the matching part of the potential function decreases by at least (k+1)d(s′, s′′) as
the player moves from s′ to s′′. Since d(s′, x′) ≤ m2/3, the function that is initially f(s′, x′)
decreases by (m1/3 − 1)d(s′, s′′) during this motion. Each of the other f(s′, xj) terms
increases by at most d(s′, s′′), and thus overall Φ decreases by at least (m1/3 + 1)d(s′, s′′).

So assume that the player at s′ is matched to an adversary in [s′, r]. By Lemma 5, we
may assume that s′ is matched to x′. The analysis of this case closely follows that of Lemma
2 and shows that Φ decreases by at least (m1/3 + 1) · d(s′, s′′)− (k + 1)m1/3 · d(x′, r).

Lemma 7. For each r, WP + ∆Φ ≤ 2(k + 1)m1/3WA.

Proof: Let ∆1 represent the change in Φ in step (1) and ∆2 represent the change in Φ in
step (2). The adversary’s cost WA is at least 1 + d(x′, r) plus the distance d moved in step
(1). By Lemma 4, ∆1 ≤ (k + 1)d+ km1/3d ≤ 2d(k + 1)m1/3.

Now we bound the sum of ∆2 and WP (the player’s cost). First assume d(x′, r) ≤
m2/3−m1/3. Then WP = d(s, s′)+d(s′, s′′)+d(s′′, r)+1, which is no greater than d(s, s′)+
(m1/3 + 1)d(s′, s′′) +m1/3 + 1. By Lemma 6,

∆2 ≤ −
(
d(s, s′) + (m1/3 + 1)d(s′, s′′)− (k + 1)m1/3d(x′, r)

)
. Thus WP + ∆2 ≤ (k + 1)m1/3d(x′, r) +m1/3 + 1 ≤ 2(k + 1)m1/3(1 + d(x′, r)).

If d(x′, r) > m2/3 − m1/3, then the inequality WP + ∆2 ≤ 2(k + 1)m1/3(1 + d(x′, r))
follows from WP ≤ m, 1 + d(x′r) ≥ m2/3 −m1/3 + 1, and the fact that the increase in Φ
due to the movement of any one player is at most (2k + 1)m− km2/3.

Theorem 3. Two-Phase is 2(k + 1)m1/3-competitive for locating k checkpoints in the
case that forks are disallowed.

6. Lower Bounds for Three or More Servers

In this section forking is allowed. We prove a lower bound of Ω(m1/2), which—in the case
of large m and small k—is asymptotically much larger than the upper bound proved in the
last section. Thus the fork move is major contributor to the complexity of the problem.

Theorem 4. For k ≥ 3, a k-server algorithm can be no better than Ω(m1/2)-competitive.

Proof: We first give the proof in the case that k = 3, followed by the modifications for the
general case.

The adversary incurs a one-time cost of m/2 to position two servers on opposite sides
of the circle, and then the proof proceeds as before in epochs, where each epoch begins
with two of the adversary’s servers at z1 and z2 = z1 + m/2 and with history R[1, t].
The adversary considers extending R[1, t] by dm1/2e alternating requests at z1 +m1/2 and
z2 +m1/2, followed by a single request at either z1 or z2, and the adversary processes these

10



requests by placing servers at z1+m1/2, z2+m1/2, and at one of z1 or z2 for the last request.
Thus the adversary’s solution will have cost 2m1/2 +dm1/2e for the epoch. If the player fails
to leave a server in both (z1 + m1/2, z2] and (z2 + m1/2, z1] then the last request is at the
forward endpoint, z2 or z1, of the arc that was empty at some time during the epoch. This
last request implies at least m/2 −m1/2 + dm1/2e player cost for the epoch. On the other
hand, if the player maintains servers in both (z1 + m1/2, z2] and (z2 + m1/2, z1], then the
alternating requests must be processed with only one additional server, so one of the arcs
(z1, z1 +m1/2] or (z2, z2 +m1/2] is left empty after each alternation, and yet both forward
endpoints must be processed during each alternation. The player obtains a total cost of at
least dm1/2em1/2/2. In either case the player is no better than ((m1/2 − 1)/6)-competitive.

After this epoch, the adversary can repeat the pattern with z1 + m1/2 and z2 + m1/2

playing the roles of z1 and z2. By using the fork move, the adversary moves its third server
to whichever of these two positions will be the endpoint of an arc of length m/2−m1/2 not
occupied by a player server at some point in the next epoch.

We now consider the case of k > 3. As above the adversary places servers at 0 and m/2.
It also places servers at k − 3 other locations z1, z2, . . . , zk−3 that are m1/2 apart in the
interval [m/8, 3m/8]. Using the fork move, the adversary incurs total set-up cost at most
m and has one server left over.

Now we have epochs of size 3dm1/2e. Each epoch is divided into cycles of 3 requests.
Each cycle consists of a request at m1/2, another at m/2 +m1/2, and a third request at one
of the locations zi.

The adversary considers all possible ways to extend the current history R[1, t] with an
epoch of this form. If the player leaves either (m −m/8, 0] or (3m/8,m/2] empty at any
time in one of these extensions, the adversary chooses that extension and follows the epoch
with a request at whichever of 0 and m/2 is at the endpoint of a vacated arc. In this case
the player’s cost exceeds m/8. In answering this epoch, the adversary does not move its
servers at z1, z2, . . . , zk−3. It advances its servers at 0 and m/2 to m1/2 and m/2 + m1/2,
leaving its leftover server at the location of the final request. Thus the adversary incurs
total cost about 5m1/2.

So assume that the player leaves arcs (m − m/8, 0] and (3m/8,m/2] occupied at all
times. In this case, either the player pays at least m1/2 per request for one of the locations
m1/2 or m/2 + m1/2, or the player leaves an arc of the form (zi −m1/2, zi] empty at some
point during each cycle. If the latter is true, then the adversary “hits ’em where they ain’t”
by choosing the third request of each cycle to be at a location zi that was—at some time
during that cycle—the endpoint of an empty arc. Either way the player’s cost per cycle is
at least m1/2 and cost for the entire epoch at least m/3. As above the adversary’s cost is
about 5m1/2.

The pattern can now repeat with m1/2 and m/2 +m1/2 serving as 0 and m. Locations
z1, z2, . . . , zk−3 need not change until the adversary server that occupies successive positions
0, m1/2, 2m1/2, . . ., comes too close to the first zi. This happens only after Ω(m1/2) epochs,
by which time the player has incurred Ω(m3/2) total cost. The adversary can now reset,
incurring an asymptotically negligible cost of O(m).

It is straightforward to show that Theorem 4 also holds for the case of servers moving
on a line.

11



7. An Upper Bound for the Problem with Forking

In this section the number of servers is at least 2 and as above both adversary and player
may fork (though in our algorithm the player never does). We show that the following
algorithm, called Holdback, is 3(km)1/2-competitive.

for each request r do
Let s be the position of the server nearest r
Move the closest server max{0, d(s, r)− (km)1/2}
Serve r using the temporary server od

For B a subset of the set of adversary servers A, let M(B) be the minimum cost of
a matching of members of B to player servers, where the cost of matching adversary
server j with player server i behind j is d(si, xj). For adversary server j, let prev(j) =
minl 6=j{d(xl, xj)} if d(xl, xj) > 0 for all l 6= j. If several adversary servers occupy a single
position, let all but one of them have prev value 0 and an arbitrarily chosen one, say j, have
prev value equal to the minimum nonzero value of d(xl, xj). Now define

Φ(B) = M(B) + 2(km)1/2
∑
j /∈B

prev(j)

and our potential function
Φ = min

B⊆A
{Φ(B)}.

Here the new ingredient in Φ is that we choose a subset of the adversaries to match. This
added level of optimization keeps Φ from jumping up when the adversary forks.

We think of the actions following request r as consisting of the following steps: (1) the
player moves according to Holdback above, and (2) the adversary moves arbitrarily (and
serves request r). First observe that at all times 0 ≤ Φ ≤ km since M(A) ≤ km. Let
s = si be the position of player server i, a closest player server to request r, and let s′ be
the position of server i after step (1).

Lemma 8. Assume d(s, r) ≥ (km)1/2 and that there is an adversary server at position x
such that d(x, r) ≤ (km)1/2/2. Then in step (1), Φ decreases by at least d(s, s′).

Proof: The assumptions above imply that there is an adversary server between s and r.
Thus in a matching M(B) for which Φ(B) is minimum, some adversary l is paired with
player server i. If xl lies in [s′, s) then M(B) decreases by d(s, s′) in step (1), so Φ must
decrease by at least d(s, s′).

So assume xl lies in nonempty [s, s′). In this case d(s′, r) = (km)1/2, so there must
be another adversary server h in [s′, r]. Let us now assume h ∈ B for a choice of B that
minimized Φ(B) before step (1). Then since player server i was the closest player to r,
adversary h must have been paired with a server between r and s. After step (1) we can
pair adversary h with player i and adversary l with h’s old partner. This new pairing
reduces M(B) by d(s, s′); hence Φ must decrease by at least d(s, s′).

The remaining case is that all adversary servers in [s′, r] are in A\B (before step (1)) for
each B that minimizes Φ(B). Then Φ before step (1) is at least 2(km)1/2

∑
prev(j), where

the sum is over all adversaries between s′ and r. Either this sum is greater than d(s′, r)/2,
which is at least (km)1/2/2, or there is no adversary server h such that d(xh, r) ≤ (km)1/2/2.
The latter case contradicts one of our assumptions; the former case contradicts Φ ≤ km.

12



Lemma 9. (1) When the adversary forks, Φ cannot increase. (2) When an adversary server
j moves distance d, Φ increases by at most 2d(km)1/2.

Proof: When adversary j is forked to be coincident with adversary l, we may assume that
prev(j) becomes 0 and prev(l) retains its former value. So j’s contribution to Φ decreases
to 0. The contribution of the first adversary ahead of j’s old location increases by no more
than j’s old contribution to Φ.

In order to prove (2), let B be a set of adversary servers that minimizes Φ(B) before
the adversary motion. After j moves, Φ(B) has increased by at most d in the case j ∈ B
and by at most 2d(km)1/2 in the case that j /∈ B and 2(km)1/2 · prev(j) appears in Φ(B).
Hence Φ increases by at most 2d(km)1/2.

Theorem 5. Holdback is 3(km)1/2-competitive.

Proof: We show that for each request r,

WP + ∆Φ ≤ 3(km)1/2WA,

where ∆Φ is the total change in the potential function in both steps. This inequality and
the invariant 0 ≤ Φ ≤ km suffice to prove the theorem.

First assume that there is no adversary server j such that d(xj , r) ≤ (km)1/2/2 when
request r arrives. Then WA > (km)1/2/2 and the right-hand side above is greater than
(3/2)km. The work done by the player is at most m, and the increase in Φ can be at most
km, so the left-hand side is smaller than the right-hand side for k ≥ 2.

Now assume that there is an adversary server j such that d(xj , r) ≤ (km)1/2/2. If
WP < (km)1/2, then the player does not move in Holdback, and hence does not increase
Φ. By Lemma 9, ∆Φ ≤ 2(km)1/2WA, and the fact that WA ≥ 1 implies the inequality
above. So we now assume that WP ≥ (km)1/2. Then by Lemma 8, in step (1) Φ decreases
by at least the distance that the player server moves before sending a temporary server,
that is, at least WP − (km)1/2. By Lemma 9, the increase in Φ during step (2) is at most
2(km)1/2WA. Thus WP + ∆Φ ≤ (km)1/2 + 2(km)1/2WA ≤ 3(km)1/2WA.

Holdback and other checkpoint algorithms for the circle can be extended to the line
by thinking of the line as a circle with k + 1 servers, one of which is fixed at 0. (This
restriction applies to both the player and the adversary.) Whenever Holdback tries to
move the server at 0, instead the closest server behind 0 should be moved to the same spot.
The analysis can be carried out in almost the same manner as above to prove that this
version of Holdback is O((km)1/2)-competitive for the checkpoint problem on the line.

8. Lower Bounds for Unequal Numbers of Servers

So far we have only compared online algorithms against offline algorithms with the same
number of servers. Time was the resource used to measure competitiveness. It is natural to
explore the space resource as well by allowing the online algorithms more servers than the
offline algorithms. (Here we are following the lead of Manasse et al. [13].) The next theorem
also shows that our lower bounds are robust; strong (i.e., mε) lower bounds still hold even
when the player is allowed k servers and the adversary only 1. Below we implicitly assume
that k is much smaller than m, say k is o(mε) for any fixed ε > 0.

13



Theorem 6. On-line algorithms with k servers can be no better than Ω(m
1

2k+1−1 ) com-
petitive when compared to the 1-server optimal algorithm.

Proof: The proof depends on a hierarchy of epoch sizes dmα1e, dmα2e, . . . , dmαke, (given
largest to smallest) defined by the recurrence:

αi = 2αi+1 + αk, αk =
1

2k+1 − 1

or the closed form:

αi =
2k+1−i − 1
2k+1 − 1

.

At the beginning of an epoch, the adversary is at an arbitrary location z1. (Thus the
adversary’s strategy can be repeated for any number of epochs.) The adversary considers
all possible ways of extending the current request sequence R[1, t] by dmα1e requests in
the arc [z1 + mα1 , z1 + kmα1 ]. If one of these (infinite number of) extensions causes the
player to vacate the arc (z1 + kmα1 , z1], then the adversary chooses this extension, followed
by a request at z1, and processes the sequence by leaving its server at z1. This results in
player cost Ω(m) while the adversary cost is only O(m2α1), giving the ratio claimed in the
theorem.

On the other hand, if the player would maintain a server in (z1 + kmα1 , z1] for all
possible extensions, then the adversary divides the epoch into Ω(mα1−α2) subepochs of
duration dmα2e each. The adversary starts the jth subepoch with its server at location
z1 +mα1 + (j − 1)(k − 1)mα2 . In each subepoch, the adversary considers all extensions of
R[1, t] by dmα2e requests in an arc of length (k − 2)mα2 starting mα2 ahead of its server.
If the player fails to maintain a server behind the adversary’s location, a final request at
that location forces the player’s cost to Ω(mα1) while the adversary’s cost is O(mα2), thus
giving the ratio claimed in the theorem. If the player would maintain a server, then that
subepoch is further divided into subsubepochs of duration dmα3e comprising requests in
subarcs of the subepoch’s arc. In the ith level of this recursion a subarc has the form
[zi +mαi , zi + (k− i+ 1)mαi ], where the choices of zi are such that these subarcs are evenly
spaced within a subarc of level i− 1. The recursion terminates with a case identical to the
single server proof of Section 3, since the player has k − 1 confined servers and hence only
one server free to process requests in the most deeply nested, zero-length subarc.

9. The Offline Problem

In this section we sketch dynamic programming algorithms for the problem of computing
offline an optimal sequence of responses to a sequence of requests r1, r2, . . . , rn. For consis-
tency our algorithms will be for the directed circle, though they can be easily modified for
the directed line segment. Our algorithms are relatively slow, with a running time expo-
nential in k. Although standard k-server problems have polynomial-time algorithms due to
a reduction to minimum-cost flow [5], the checkpointing problem is quite nonlinear due to
forking and excursions.

We first treat the case of only one permanent checkpoint. Let Ci(s) be the minimum
cost of servicing requests r1, r2, . . . , ri and leaving the server at position s ∈ [0,m). We have

14



the recurrence
Ci(s) = min{Ci−1(s) + d(s, ri), Ci−1(ri) + d(ri, s)},

where the first term corresponds to the option of leaving the server at s and servicing the
ith request with the temporary checkpoint and the second term corresponds to the option
of leaving the server at ri after the previous request and then moving to position s after
servicing the ith request. Other possibilities, such as leaving the server at a position s′ and
then moving from s′ to ri to s, are dominated by these two options. A reasonable initial
condition is C0(s) = s.

It is not hard to see that each Ci(s) function is piecewise linear, with i + 1 pieces and
maximum slope one. Using the recurrence above, a representation of function Ci(s) (say
as a list of breakpoints and values) can be computed from a representation of Ci−1(s)
in time O(i). We also keep a record of the values zi such that Ci−1(zi) + d(zi, ri) =
Ci−1(ri)+d(ri, zi), that is, the crossover point in each minimization. The optimum sequence
of server positions s1, s2, . . . , sn after requests r1, r2, . . . , rn can then be computed in reverse
order. The minimum value of Cn(s) is necessarily achieved at sn = rn. If sn lies in interval
[rn−1, zn) then the last motion of the server is a move from rn−1 to rn and sn−1 = rn−1.
If sn lies in interval [zn, rn−1), then rn−1 should be serviced by an excursion from sn and
sn−1 = sn. Similarly, if sn−1 ∈ [zn−1, rn−2), then rn−1 is also serviced by an excursion. In
this way, we recover the optimal sequence of server moves.

The running time of this algorithm is O(n2). We can also state the running time as
O(np), where p is the number of distinct locations among r1, r2, . . . , rn. In many applications
p� n. It is possible to improve the running time to O(n log p) by building a segment tree
data structure [14] in which Ci(s) values are stored implicitly, as a sum of linear functions
along a leaf-root path. The tree can be updated in time O(log p) to store Ci+1(s). We leave
details to the interested reader.

Theorem 7. For k = 1, the offline problem can be solved in time O(n log p), where p ≤ n
is the number of distinct request locations.

We now give a theorem for the case of more than one checkpoint. We present a straight-
forward algorithm, though we expect that a single factor of O(p) in the running time can
be replaced by O(log p) using a suitable multi-dimensional data structure. The follow-
ing technical lemma limits the number of cases we must consider in the general dynamic
programming algorithm.

Lemma 12. An optimal sequence of moves for requests r1, . . . , rn can be rearranged into
an optimal sequence that uses only moves of the following form: checkpoint i closest to the
request is moved 0 or more distance towards the request, the temporary checkpoint serves
the request from distance 0 or greater, and 0 or more other checkpoints are forked to occupy
locations traversed by i or the temporary checkpoint.

Proof: Assume we have an optimal sequence of moves in which checkpoint i and checkpoint
j both make smooth (that is, nonforking) motion in response to a request rl. Assume
that the temporary leaving from checkpoint i’s position actually serves rl. Then, without
increasing the cost of the sequence of moves, we may delay the motion of j until the first
request served by one of the following: j itself, a checkpoint forked to a position occupied
by j, or the temporary checkpoint launched from a position occupied by j.

15



Theorem 8. For fixed k ≥ 2, the offline problem can be solved in time O(npk).

Proof: Let Ci(s1, s2, . . . , sk) be the minimum cost of servicing requests r1, r2, . . . , ri
and leaving checkpoints at locations s1 ≤ s2 ≤ . . . ≤ sk. Let Ci(s1, s2, . . . , sl, ∗), with
l ≤ k, denote the minimum cost of servicing requests r1, r2, . . . , ri and leaving checkpoints
at locations s1 ≤ s2 ≤ . . . ≤ sl and any other k − l locations. Note Ci(s1, . . . , sk, ∗) =
Ci(s1, . . . , sk). We have the recurrence

Ci(s1, . . . , sk) = min
{
Ci−1(s1, . . . , sj−1, ri, sj+1, . . . , sk) + d(ri, sj),

min
h<j
{Ci−1(s1, . . . , sh, sj , . . . , sk, ∗) + d(sh, ri)}

}
,

where j is such that sj−1 ≤ ri ≤ sj . The first part of the minimization above corresponds
to the option of leaving a checkpoint at ri and then moving it without forks to sj . The
second part corresponds to servicing request ri with a temporary checkpoint from location
sh while forking processors to occupy positions sh+1, . . . , sj−1. These positions are exactly
the ones left open in the expression Ci−1(s1, . . . , sh, sj , . . . , sk, ∗). By Lemma 12, other
possibilities are dominated by these two options. Let S denote an ordered sequence of k
request locations in [0,m). We also have the recurrence

Ci(s1, . . . , sl, ∗) = min{Ci(S) | (s1, . . . , sl) is a subsequence of S},

and the initial condition
Ci(s1, . . . , sl, ∗) = sl.

We store the values of Ci(s1, . . . , sl, ∗) in a sequence of k arrays, A1, A2, . . . , Ak. Array
Aj is a j-dimensional array storing all values of Ci(s1, . . . , sj , ∗). Since k is assumed fixed,
indexing into this sequence of arrays and updating an entry takes time O(1).

Array Ak is updated using the first recurrence given above. When Ci(s1, . . . , sk) is
changed, 2k (which is O(1)) entries in arrays A1, . . . , Ak−1 must also be updated. This
procedure implicitly implements the second recurrence. Altogether we obtain time O(npk)
for computing Cn(s1, . . . , sk). As in the algorithm for k = 1, the optimal sequence of moves
can be reconstructed by maintaining a record of all minimizing choices.

10. Conclusions

We have explored adaptive online schemes for locating checkpoints. To do so we introduced
a server problem that includes several nonstandard features: a fixed cost per request, one-
way motion, excursions, and forking. Including the fixed cost of one per request enabled us
to differentiate algorithms that would otherwise have simply been declared noncompetitive.
One-way motion and excursions taken together raise the optimal competitiveness from k
(the number of servers [5, 13]) to about m1/3, where m is in effect the size of the playing field.
Forking further raises this bound to about m1/2. A number of interesting open problems
remain:

• Does there exist an O(m1/3)-competitive algorithm for locating two checkpoints?
(This question raises the important issue of whether forking is of any use to the player.
For two checkpoints, we can prove a lower bound of Ω(m1/2) on the competitiveness
of any online algorithm that does not fork.)

16



• Except for k equal to two, our upper and lower bounds match in their dependence
on the dominant factor m. There remain, however, nontrivial constant gaps and gaps
depending on k. Can these be closed?

• What happens to our bounds if we disallow excursions? That is, memory is now
assumed homogeneous.

• What is the effect of allowing forking on other server problems? (See Cole and Raghu-
nathan for an application of forking to a natural data structures problem [7].)

For some problems, most notably accessing a linear list, competitive analysis seems to
give “the right answer”—that is, it leads to an algorithm that arguably dominates all others.
For the checkpointing problem, the situation is less clear. We believe that competitive
analysis has demonstrated the utility of an initially rapid, then increasingly slow, approach
to a repeated request location. We also think that it has invalidated some initially attractive
algorithms, such as one that always moves halfway towards a request. On the other hand,
due to its emphasis on worst-case sequences, competitive analysis may have led us to overly
conservative algorithms. In practice one would probably want to move a checkpoint closer
than the distance (km)1/2 prescribed by Holdback.

In fact the choice of a practical algorithm, whether Holdback, Two-Phase (which is
slightly more aggressive), or something else, should depend on how “adversarial” are the
expected request sequences. In applications such as debugging or physical simulation, there
may be a small number of “hot spots” and users may often step backwards in time. In such
situations request sequences may indeed appear quite adversarial.

It would be interesting to investigate the checkpoint location problem using other styles
of analysis, such as probabilistic analysis assuming random (possibly correlated) requests.

Acknowledgements

We would like to thank Mike Paterson and Howard Karloff for some valuable discussions.

References

[1] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the Power
of Randomization in Online Algorithms, 22th ACM Symp. on Theory of Computing ,
1990, 379–386.

[2] P. Berman, H. Karloff, and G. Tardos, A Competitive Three-Server Algorithm, 1st
ACM-SIAM Symp. on Discrete Algorithms, 1989, 280–290.

[3] A. Borodin, N. Linial, and M. Saks, An Optimal Online Algorithm for Metrical Task
Systems, 19th ACM Symp. on Theory of Computing , 1987, 373–382.

[4] A. Calderbank, E. Coffman, and L. Flatto, Sequencing Problems in Two-server Sys-
tems, Math. Oper. Research 10, 1985, 585-598.

[5] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan, New Results on Server
Problems, 1st ACM-SIAM Symp. on Discrete Algorithms, 1989, 291–300.

17



[6] M. Chrobak and L. Larmore, An Optimal On-Line Algorithm for k Servers on Trees,
manuscript, UC - Riverside, 1989.

[7] R. Cole and A. Raghunathan, Online Algorithms for Finger Searching, 31st IEEE
Symp. on Foundations of Computer Science, 1990, 480–489.

[8] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, Random Walks on Weighted
Graphs, and Applications to On-line Algorithms, 22th ACM Symp. on Theory of
Computing , 1990, 369–378.

[9] E. Fiala and D. Greene, Data Compression with Finite Windows, CACM 32, April
1989, 490-505.

[10] E. Grove, The Harmonic Online K-Server Algorithm is Competitive, to appear in 23rd
ACM Symp. on Theory of Computing , 1991.

[11] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, Competitive Snoopy Caching,
Algorithmica 3, 1988, 79-119.

[12] R. Korf, Complexity of Reverse Execution, manuscript, 1981.

[13] M. Manasse, L. McGeoch, and D. Sleator, Competitive Algorithms for On-line Prob-
lems, 20th ACM Symp. on Theory of Computing , 1988, 322-333.

[14] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985.

[15] P. Raghavan and M. Snir, Memory vs. Randomization in Online lgorithms, 16th Int.
Colloquium on Automata, Languages, and Programming , volume 372 of Lecture Notes
in Computer Science, Springer-Verlag, 1989, 687–703.

[16] D. Sleator and R. Tarjan, Amortized Efficiency of List Update and Paging Rules,
CACM 28, February 1985, 202-208.

[17] J. Storer, Data Compression, Computer Science Press, 1988.

18


