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behaves in a more adversarial manner by changing thefunction it computes between successive calls.Self-testing is a much harder task. Previously it wasknown how to self-test for a few special examples of func-tions, such as the class of linear functions. We show thatone can self-test the whole class of polynomial functionsover Zp for prime p.We initiate the study of self-testing (and self-correcting)programs which only approximately compute f . This set-ting captures in particular the digital computation of realvalued functions. We present a rigorous framework andobtain the �rst results in this area: namely that the classof linear functions, the log function and 
oating point ex-ponentiation can be self-tested. All of the above functionsalso have self-correctors.1 IntroductionSuppose someone gives us an extremely fast program Pthat we can call as a black box to compute a function f .Rather than trust that P works correctly, a self-testingprogram for f ([8]) veri�es that program P is correct onmost inputs, and a self-correcting program ([8] [12]) for ftakes a program P that is correct on most inputs and usesit to compute f correctly on every input (with high proba-bility). Self-testing/correcting is an extension of programresult checking as de�ned in [5],[6], and if f has a self-tester and a self-corrector, then f has a program resultchecker.To make this somewhat more precise, consider a functionP : X ! Y that attempts to compute f . We considertwo domains, the \test" domain Dt � X and the \safe"domainDs � X (usually Dt = Ds). We say that programP �-computes f on Dt if Prx2Dt [P (x) = f(x)] > 1� �. An(�1; �2)-self-tester (0 � �1 < �2) for f on Dt must fail anyprogram that does not �2-compute f onDt, and must passany program that �1-computes f on Dt (note that the be-havior of the tester is not speci�ed for all programs). The1



tester should satisfy these conditions with error probabil-ity at most �, where � is a con�dence parameter input bythe user. An �-self-corrector for f on (Dt; Ds) is a pro-gram C that uses P as a black box, such that for everyx 2 Ds, Pr[CP (x) = f(x)] � 2=3, 2 for every P which �-computes f on Dt. Furthermore, all require only a smallmultiplicative overhead over the running time of P andare di�erent, simpler and faster than any correct programfor f in a precise sense de�ned in [6].Section 2 is devoted to self-correcting polynomial func-tions, and Section 3 is devoted to the self-testingof polynomial functions. Section 4 introduces self-testing/correcting and checking for programs which onlyapproximately compute f , including the digital computa-tion of real valued functions.2 Self-Correcting PolynomialsIn addition to the aforementioned application, self-correcting is interesting because of its independent ap-plications to complexity theory: (1) The existence of aself-corrector for a function implies that the function hassimilar average and worst case complexities. (2) [4],[12]�rst observed that low degree polynomials over �nite �eldshave self-correctors. This simple fact turned out to be akey ingredient in two recent results in complexity theory,mainly IP=PSPACE [14][18] and MIP=NEXPTIME [3].Self-correcting is usually easy when the function hasthe random self-reducibility property [8][12]. Informally,the property of k-random self-reducibility is that f(x)can be expressed as an easily computable function off(x1); : : : ; f(xk), where the xi's are each uniformly dis-tributed, and are easy to choose. Several functions havebeen shown to have this property: examples of such func-tions are integer and matrixmultiplication,modular expo-nentiation, the mod function and low degree polynomialsover �nite �elds.Our �rst aim is to study the scope under which this phe-nomenon occurs. We extend the above results in variousdirections, and to this end, we de�ne the following generalsetting.Let R be any ring, and X = fx1; x2; : : :xng a set of inde-terminates (we assume nothing about R, in particular theindeterminates may not commute). LetDc � R be the do-main of coe�cients (often Dc = R). De�ne a R-monomialoverDc to be an arbitrary word w 2 (Dc[X)�, and its de-gree, deg(w), the number of occurrences of indeterminates.An R-polynomial f over Dc is simply the sum f =Piwiof R-monomials, and its degree, deg(f) = maxideg(wi).2this can be ampli�ed to 1�� by O(log 1=�) independent repetitionsand and a majority vote.

Denote the set of all degree d polynomials (where jXj = n)Rdn(Dc). If Dc = R, we omit Dc from the above de�ni-tions, and in particular, the set of all degree d polynomialsis Rdn.For example, if R is the ring of matrices over some �eld,Ds = Dt = Dc = R, and A;B;C;D;E; F 2 R, thenf(X1; X2) = A +BX1C +X2DX1EX2 +X21F is a poly-nomial of degree 2 in the two variables X1; X2.If for every f 2 Rdn(Dc) there is an �-self-corrector on(Dt; Ds), we say that Rdn(Dc) is �-resilient on (Dt; Ds).When R = Dc = Ds = Dt, then we say that Rdn is �-resilient. The interesting issues are of course for whatrings and domains this is possible, how small should � be,and what is the complexity of the corrector program C,separating its actual computation and the number of callsto the black box P .The results of [4] [12] can be compressed to:Theorem 1 ([4][12]) If F is a �nite �eld, jF j > d + 1,then for every n, F dn is 13d+3 � resilient with O(d) calls toP .The self-corrector used to prove this theorem is very sim-ple to implement and is based on the existence of the fol-lowing interpolation identity relating the function valuesbetween points: for all univariate polynomials f of degreeat most d, 8x; t 2 F ,Pd+1i=0 �if(x+ai �t) = 0 where the ai'sare distinct elements of F , �0 = �1 and �i depends onlyon F; d and not on x; t. 3 Then the self-correcting algo-rithm for evaluating f(�x) = f(x1; : : : ; xn) is to randomlychoose �t = (t1; : : : ; tn) 2 Fn with uniform distributionand outputPd+1i=1 �iP (�x+ i � �t). With probability at least2=3, all the calls to the program will return correct values,and the output will be correct.2.1 New Domains2.1.1 Non-Commutative RingsOur �rst generalization shows, perhaps surprisingly, thatthe [4][12] trick works in many non-commutative rings aswell. This may have complexity theoretic consequences,as many complexity classes are characterized by non-commutative group theoretic problems. De�ne C(R), thecenter of the ring R, to be all elements in R which com-mute with every element. De�ne R� to be all the elementsin R which have inverses.3In particular, if F = Zp, ai can be chosen to be i, and then�i = (�1)i+1�d+1i �. FurthermorePd+1i=0 �if(x+ i � t) can be computedin O(d2) time using only additions and comparisons by the method ofsuccessive di�erences in [20].2



Theorem 2 If a random element of R can be uniformlygenerated, and jC(R)\R�j � d+ 1, then for every n, Rdnis 1=(2d)-resilient with O(d) calls to P .We note that the condition that jC(R) \ R�j � d + 1 issatis�ed by rich classes of rings, most notably �nite groupalgebras over �nite �elds of size � d + 1. A special caseis the algebra of square matrices of any order over a �-nite �eld (here the center is simply all diagonal matrices).Note that here uniform generation is trivial. In general,we know only a few more examples where uniform genera-tion is possible. For any �nite group, given by generators,almost uniform generation is possible by the recent MonteCarlo algorithm of [2], but whether this result extends tothe group algebra is open.The proof is based on the fact that such rings can also beshown to have interpolation identities:Lemma 1 For every ring R for which jC(R)j � d + 1,there are weights �1; : : : ; �d+1 such that for any f 2 Rd1,f(0) = Pd+1i=1 �if(ci) where c1; : : : ; cd+1 2 C(R) and aredistinct.Proof: We will show that it is possible to select weightsso that the identity is true for all monomials mj(x) =xa1x : : :xaj of degree j for 0 � j � d. The lemma followsby linearity. The constraints on the weights are that forj = 0; : : : ; d,Pd+1i=1 �imj(x) = �j where �0 = 1 and �j = 0for j > 0. Since ci 2 C(R), we have that for all 1 � k �d+1, mj(ck) = a1a2 : : :adcjk. Thus this is a linear systemof equations in the weights. Since the matrix of the systemis a Vandermonde matrix, the system of equations has asolution.If ci has an inverse, we have the property that for �xedx and uniformly distributed t, then x + cit is uniformlydistributed. The rest of the proof of the theorem is as in[4][12].2.1.2 Fixed Point ArithmeticOur second theorem concerns computation over domainsthat are not as nice as �nite �elds. The only similar re-sult we know appears in [3]. Motivated by the fact thatevery boolean function has a multilinear representationwith small integer coe�cients, they considered R = Z,Dc = Z2n , Dt = Ds = Z10d and showedTheorem 3 ([3]) Zdn(Dc) is 12d -resilient on (Dt; Ds)with O(d) calls to P .We consider rational domains, speci�cally binary �xedpoint arithmetic. Let FIXs;r = fys : integers jyj � rg.We use the notation that ~x = (x1; : : : ; xn).

A nice property of �nite �elds that is used to get self-correctors for polynomials over �nite �elds is that any�xed element of the �eld, when multiplied by a randomuniformly distributed element of the �eld, gives a resultthat is uniformly distributed over the �eld. This is not aproperty of the �xed point domain (�xed point domainsdo not even have the property of \wraparound"). Thoughthe proof of the self-corrector has the same spirit as theprevious one, it is technically more involved. Here we usethe generalization of the de�nitions of self-correcting givenin [8],[12] and assume that more than one domain is tested.In addition, this is an example of a class of functions forwhich the test domains are larger than the safe domain: inorder to get resilience on a particular precision, one shoulduse a program that is known to be usually correct bothon a slightly �ner precision and over a larger range.We have the polynomial interpolation formula f(y) =Pd+1i=1 �if(y + ait) where a1; : : : ; ad are distinct integersand �1; : : : ; �d+1 depend only on d and not on y or t. LetA = lcm(a1; : : : ; ad), and A(i) = Aai . Let L = 10npdd+1,R = FIXns;L, Ds = FIXns;p. Then the d+ 1 test domainsare Dti = faiA ~yj~y 2 FIXns;Lg (1 � i � d + 1), wherethe precision on the inputs is �ner than that of the safedomain.The self-corrector uses the interpolation formula over thenew domain to compute f(x) by picking a random ~t 2FIXns;L. The domains of the d+1 calls to P are dependenton the input and are Dqi = f~x + aiA ~yj~y 2 FIXns;Lg (1 �i � d + 1). We show that for all 1 � i � d + 1, Dti andDqi are very close (considered as uniform distributions ontheir respective domains), so the program returns correctanswers on all inputs with probability at least 3=4. Whenthis happens, f(~x) is computed correctly.Theorem 4 Rdn(Dc) is 18(d+1) -resilient on(Dt1 ; : : : ; Dtd+1 ; Ds).Definition 2.1�(x; y) = � x if x = y0 otherwiseDefinition 2.2 For random variables �X; �Y over domainD, �( �X; �Y ) = Ps2D �(Pr[ �X = s];Pr[ �Y = s]) (note that0 � �( �X; �Y ) � 1).Lemma 2 If �( �X; �Y ) � 1 � �1 and Pr[ �X 2 S] � 1 � �2then Pr[ �Y 2 S] � 1� �1 � �2.Proof: Assume Pr[ �Y 2 S] � 1��1��2 and Pr[ �X 2 S] �1��2. ThenPs2S Pr[ �X = s]��(Pr[ �X = s];Pr[ �Y = s]) ��1. Since Ps=2S Pr[ �X = s]� �(Pr[ �X = s];Pr[ �Y = s]) � 0,we have �( �X; �Y ) � 1� �1.Lemma 3 For 1 � i � d, �(Dti ; Dqi ) � 1� 18(d+1)3



Proof: For all 1 � j � n, we have that:Pr[xjs + aiuijAs = yjA(i)s ] = Pr[xjA(i) + uij = yj ]= 12L+1 if yj 2 [�L+ xjA(i);+L+ xjA(i)]0 otherwisePr[aiuijAs = yjA(i)s ] = Pr[uij = yj ]= 12L+1 if yj 2 [�L;+L]0 otherwiseThus Pr~x2Dqi [~x = ~y] = ( 12L+1)n if yi 2 [�L+ xiA(i); L+xiA(i)] for all i = 1; : : : ; n and Pr~x2Dti [~x = ~y] = ( 12L+1 )nif yi 2 [�L;L] for all i = 1; : : : ; n. The claim follows bythe choice of L.2.2 Programs with Weaker Constraints2.2.1 ResiliencyNote that the resiliency in Theorem 1 degrades with thedegree. We show that using the theory of error correctingcodes [17], constant resiliency can be achieved. This the-orem was proved independently, using similar techniquesby Don Coppersmith [11].Theorem 5 If F is a �nite �eld, and for some m, 3d+1 < m, m divides jF j � 1, then for every n, F dn is 1=9-resilient with O(m) calls to P .Proof: (sketch) Let ! be a primitivemth root of unity inF . The queries that C makes are fP (x+ !ir)gm�1i=0 , Thissequence di�ers from ff(x + !ir)gm�1i=0 in at most m=3places with probability � 2=3. As the second sequence isa codeword in the generalized BCH code [17], it can berecovered from the �rst e�ciently, and then C(x) can becomputed again by interpolation. Note here that thereare m (usually m = O(d)), queries to P , but as the errorcorrection procedure requires linear algebra, the runningtime of C is O(d3).We can also generalize this to some non-commutativerings:Theorem 6 If R is a �nite group algebra over a �nite�eld F , satisfying the conditions of Theorem 5, and wecan uniformly sample from R, then for every n, Rdn is1=9-resilient.We do not know how to increase the resiliency over �xedpoint domains.2.2.2 Memory Bounded ProgramsUntil now, we have assumed that the program P is a func-tion, i.e. a non-adaptive memoryless object. Here we ad-dress the case where the program is not a function, but

an adversary A. Under the assumption that there aremore than one independent copies of the program (non-communicating adversaries), [7] show how to get checkersfor any function that has a checker in the original model.Here we address the case of a single adversary A whoseonly limitation is space. The adversary can apply di�er-ent programs depending on his memory state, which canbe a�ected by previous queries. Formally, a space s ad-versary A (over R) is an automaton with 2s states wherestate i is labeled by Pi : Rn ! R, and the transition al-phabet is Rn. When at state i, given input z 2 Rn, Areturns Pi(z) and moves to a new state j along the uniquetransition labeled z. We say that A �-computes f 2 Rdn iffor every i, Pi �-computes f . Rdn is (s; �)-resilient if thereis a program C such that Pr[CA(x) = f(x)] � 2=3 for allx 2 Rn and for all space s adversaries A.There were no previous results of (s; �)-resiliency, even for1-bit memory s = 1. We give an algorithm C, for the caseof �nite �elds, that is (�(log jF j); 116d2 )-resilient.Theorem 7 If jF j > d8, then for every n, F dn is(14 log jF j; 1=(16d2))-resilient with O(d2) calls to P .As mentioned above, for the algorithm C we give, this isoptimal: it fails if s � 4 log jF j. The algorithm queriesA on points fx + irg with r 2R Fn and i 2R F . Weuse the fact that the pair (x; r) acts on i as a 2-universalhash function, and the small information A has on (x; r)enables the use of results on the distribution of hash valuesby [16][15] to show that the queries are fairly uniformlydistributed in Fn.We observe that this implies that bigger �elds are better.When the choice of a �eld is ours, we have:Corollary 4 In polynomial time, we can achieve re-siliency to any adversary that is polynomial space bounded!Proof: [of Theorem 7]Let H = fh : U ! Zg be a family of universal hashfunctions [9] from a domain U to range Z. This meansthat for any u; u0 2 U , z; z0 2 Z and random h 2R H,Pr[h(u) = z; h(u0) = z0 = 1=jZj2.Let s denote space, and m = 2s. We shall describe aspace s "tree automaton" which is stronger than the aboveadversary, and with which it will be convenient to work.Schematically, it will look like a jU j-ary tree, in whichevery path is a width m branching program. Thus everynode (labeled by a word from U�) will have m states, andwill have a separate transition function (with alphabet Z)to each child.Formally, for every word w 2 U� and u 2 U let �w;u :[m] � Z ! [m] be an arbitrary (transition) function.4



Let P ; be an arbitrary partition of H into m parts,S;1 ; S;2 ; � � �S;m. This partition and the transition func-tions naturally de�ne partitions Pw = fSw1 ; Sw2 ; � � �Swmgfor every w 2 U� inductively as follows. For any u 2 U ,h is in Swuj i� h 2 Swi and �w;u(i; h(u)) = j. For conve-nience, we denote by Pw the nodes of the tree as well asthe partition ofH in that node. The parts of this partitionare the states of that node.Let Sw(h) denote the part (state) containing h in the par-tition (node) Pw. If h is chosen uniformly at random fromH, then clearly its state S;(h) is chosen proportional to itscardinality, and within it h is uniformly distributed. It iseasy to prove inductively that for every word w, the stateSw(h) is reached by h on w with probability proportionalto its cardinality, and within it h is uniformly distributed.We now show that under this distribution (i.e. knowingSw(h)), h(u) remains essentially uniformly distributed forrandom u 2R U .Claim: Let P be any partition of H into m partsS1; S2; � � �Sm. Let B1; B2; � � �Bm be arbitrary subsets of Zwith jBij=jZj < �, and B(h) = Bi for the same i satisfyingS(h) = Si. Then, Pr[h(u) 2 B(h)jS(h)] � �+ 2jU j�1=4.Proof: We use Lemma 10 of [15] and simple algebra toget: Pr[h(u) 2 B(h)jS(h)]= mXi=1(jSij=jU j) Pr[h(u) 2 BijS(h) = Si]� (1=m) + maxfi:jSi jm2�jUjgPr[h(u) 2 Bi]� jU j�1=4+ �+ jU j�1=4� �+ 2jU j�1=4We used m = jU j1=4 and the [15] lemma for a subset ofhash functions of density at least jU j�1=2.Now we can �t our algorithm and the space s boundedadversary into this framework. Our domain U is the �eldF , and pairs x; r 2 Fn map �eld elements u 2 F to Z =Fn by (x; r)(u) = x+ ur, which is universal hashing.We want to evaluate f(x), and let us assume for a mo-ment that x is random. We pick a random r 2 Fn, and arandom sequence of �eld elements u1; u2; � � �. We requestfrom the adversary the value of f(x+uir) allowing him toknow and remember for free the value of ui. This createsthe tree structure above and guarantees that the statesrepresent only information about the pair (x; r). We con-tinue until we ask d + 1 distinct questions (the expectedtime until this happens is O(d) as the �eld is large). Since

it was �-resilient, at every state it can err only on a subsetof density � of the queries h(d). These are exactly the con-ditions in the claim which guarantee that the probabilityof a wrong answer is at most 2�. Hence � < 1=(4d) guaran-tees that with high probability all replies are correct andwe can interpolate safely.For the general case x is �xed and not random. We handlethis by repeating the above procedure for x + it, witht 2R Fn and i = 1; 2; � � �d + 1, from which f values wecan interpolate f(x). We use the same random r in allprocedures. Each (x + it; r) is a random pair, so eachsingle procedure fails with probability at most 1=4d when� < 1=16d2. To see that the correlation between di�erentpairs cannot help the adversary, note that it was allowed tostart with an arbitrary partition P ;. Hence, by telling theadversary when we are done with (x+ it; r) and start with(x+(i+1)t; r), we let him convert in an arbitrary way hisinformation (partition) on the old pair into another aboutthe new pair. The details are left to the reader.3 Self-Testing PolynomialsSelf-testing is a much harder task than self-correcting. In[8] it is shown how to get self-testers for the two specialcases of any function that is downward self-reducible inaddition to being random self-reducible, and any functionthat is linear. In this section we show that the much richerclass of all polynomial functions can be self-tested.As in [8], our testers are of a nontraditional form: thetester is given a short speci�cation of the function in theform of properties that the function must have, and ver-i�es that these properties \usually" hold. We show thatthese properties are such that if the program \usually"satis�es these properties, then it is essentially computingthe correct function.Complementing the results of [4][12], we �rst show how toconstruct a self-tester for any univariate polynomial func-tion provided that the value of the function is known on atleast one more than the degree number of points. Theseresults extend to give self-testers for polynomial functionsof degree d with m variables, provided the function valueis known on at least (d+ 1)m well chosen points, by com-bining the univariate result with the results of [3][13][19].In the �nal version we show that the results can also begeneralized to give self-testers and self-correctors for func-tions in �nite dimensional function spaces that are closedunder shifting and scaling.Theorem 8 If f is a degree d (univariate) polynomialover Zp, then f has an ( �2(d+2) ; 4�)-self-tester on Zp withO(d �min(d2; 1� )) calls to P .5



Corollary 5 If f is a degree d polynomial in m variablesover Zp, then f has a (0; �)-self-tester on Zp with O((d+1)m=�+ poly(d;m; 1� )) calls to P .The self-tester algorithm is almost as simple as the self-corrector algorithm, though the proof of correctness ismore di�cult. We present the proof of Theorem 8 at theend of this section. The self-testing is done in two phases,one verifying that the program is essentially computing adegree d polynomial function, and the other verifying thatthe program is computing the correct polynomial function.When the number of variables is small, the provision thatthe value of the function is known on at least (d + 1)mpoints is not very restrictive since the degree is assumed tobe small with respect to the size of the �eld: Suppose onehas a program for the RSA function x3 mod p. Traditionaltesting requires that the tester know the value of f(x) forrandom values of x. Here one only needs to know thefollowing simple and easy to generate speci�cation: f is adegree 3 polynomial in one variable, and f(0) = 0; f(1) =1; f(�1) = �1; f(2) = 8. These function values are thesame over any �eld of size at least 9.In [3][13][19], there are tests, which in our setting allowsthe self-tester to be convinced that the program is com-puting a multivariate polynomial function of low degree inpolynomial time. Although the test is in polynomial time,it is somewhat complicated to perform because it involvesthe reconstruction of a univariate polynomial given its val-ues at a number of points (which in turn requires multi-plications and matrix inversions), and later the evaluationof the reconstructed polynomial at random points. If thenumber of variables in the original multivariate polyno-mial is relatively small, this is more di�cult than comput-ing the polynomial function from scratch, and therefore isnot di�erent than the program in the sense de�ned by [8].We now present the proof of Theorem 8 for the specialcase of univariate polynomials of degree d over Zp andwhen � � O(1=d2).For simplicity, in the description of our self-testing pro-gram, we assume that whenever the self-tester makes acall to P , it veri�es that the answer returned by P is inthe proper range, and if the answer is not in the properrange, then the program notes that there is an error.We use x 2R Zp to denote that x is chosen uniformly atrandom in Zp.

program Polynomial-Self-Test(P; �; �;(x1; f(x1)); : : : ; (xd+1; f(xd+1)))Membership TestRepeat O(1� log (1=�)) timesPick x; t 2R Zp and test thatPd+1i=0 �iP (x+ i � t) = 0Reject P if the test fails more thanan � fraction of the time.Consistency Testfor j going from 0 to d doRepeat O(log (d=�)) timesPick t 2R Zp and test thatf(xj) =Pd+1i=1 �iP (xj + i � t).Reject P if the test fails morethan 1=4th of the time.Let � � Prx;t[Pd+1i=0 �iP (x+ i � t) = 0]Definition 3.1 We say program P is �-good if � � �2 and8j 2 f0; � � � ; dg, Prt[f(xj) =Pd+1i=1 �iP (xj + i � t)] � 3=4.We say P is �-bad if either � > 2� or if 9j such thatPrt[f(xj) =Pd+1i=1 �iP (xj+ i � t)] < 1=2. (Note that thereare programs which are neither �-good or �-bad).The following lemma is easy to prove :Lemma 6 With probability at least 1�� a �-good programis passed by Polynomial-Self-Test. With probability at least1� � a �-bad program is rejected by Polynomial-Self-Test.It is easy to see that if a program P �2(d+2) -computes f ,then it is �-good. The hard part of the theorem is to showthat if program P does not �-compute f then it is �-bad.We show the contrapositive, i.e. that if P is not �-bad,then it 4�-computes f .If P is not �-bad, then � � 2�. Under this assumption,we show that there exists a function g with the followingproperties:1. g(x) = P (x) for most x.2. 8x; t Pd+1i=0 �ig(x+ it) = 0, and thus g is a degree dpolynomial.3. g(xj) = f(xj) for j 2 f0; 1; � � �; dg.De�ne g(x) to be majt2ZpPd+1i=1 �iP (x+ it).Lemma 7 g and P agree on more than 1�2� fraction ofthe inputs from Zp.6



Proof: Consider the set of elements x such thatPrt[P (x) = Pd+1i=1 �iP (x + i � t)] < 1=2. If the fractionof such elements is more than 2� then it contradicts thecondition that Prx;t[Pd+1i=0 �iP (x+ i � t) = 0] = �. For allremaining elements, P (x) = g(x).In the following lemmas, we show that the function g satis-�es the interpolation formula for all x; t and is therefore adegree d polynomial. We do this by �rst showing that forall x, g(x) is equal to the interpolation of P at x by mosto�sets t. We then use this to show that the interpolationformula is satis�ed by g for all x; t.Lemma 8 For all x 2 Zp, Prt �g(x) =Pd+1i=1 �iP (x+ i �t)� � 1� 2(d+ 1)�.Proof: Observe that t1; t2 2R Zp impliesx+ i � t1 2R Zp and x+ j � t2 2R Zp) Prt1;t2[P (x+ i � t1) = d+1Xj=1�jP (x+ i � t1 + j � t2)] � 1� �) Prt1;t2[P (x+ j � t2) = d+1Xi=1 �iP (x+ i � t1 + j � t2)] � 1� �Combining the two we getPrt1;t2 � d+1Xi=1 �iP (x+ i � t1)= d+1Xi=1 d+1Xj=1�i�jP (x+ i � t1 + j � t2)= d+1Xj=1�iP (x+ j � t1)� � 1� 2(d+ 1)�The lemma now follows from the observation that theprobability that the same object is drawn twice from a setin two independent trials lower bounds the probability ofdrawing the most likely object in one trial. (Suppose theobjects are ordered so that pi is the probability of draw-ing object i, and p1 � p2 � : : :. Then the probability ofdrawing the same object twice is Pi p2i �Pi p1pi = p1.)Lemma 9 For all x; t 2 Zp, if � � 12(d+2)2 , thenPd+1i=0 �ig(x + i � t) = 0 (and thus g is a degree d poly-nomial [20]).Proof: Observe that, since t1 + it2 2R Zp, we have forall 0 � i � d+ 1Prt1;t2 �g(x + i � t) = d+1Xj=1�jP ((x+ i � t) + j � (t1 + it2))�

� 1� 2(d+ 1)�.Furthermore, we have for all 1 � j � d+ 1Prt1;t2 � d+1Xi=0 �jP ((x+ j � t1) + i � (t+ j � t2)) = 0� � 1� �Putting these two together we getPrt1;t2 �Pd+1i=0 �ig(x + i � t) =Pd+1j=1 �jPd+1i=0 �iP ((x+ j � t1) + i � (t+ j � t2)) = 0� > 0.The lemma follows since the statement in the lemma isindependent of t1; t2, and therefore if its probability ispositive, it must be 1.Lemma 10 g(xj) = f(xj)Proof: Follows from the de�nition of g and the fact thatP is not �-bad.Theorem 9 The program Polynomial-Self-Test is a( �2(d+2) ; 4�)-self-testing program for any degree d polyno-mial function over Zp speci�ed by its values at any d + 1points, if � � 14(d+2)2 .Proof: Follows from Lemmas 6,9, and 10.4 Approximate and Real-Valued FunctionsIn the notions of a result checker andself-testing/correcting pair considered so far, a result ofa program is considered incorrect if it is not exactly equalto the function value. Some programs are designed only tocorrectly approximate the value of a function. One impor-tant setting where this is the case is with functions dealingwith real inputs and outputs: due to the �niteness of therepresentation, the program computes a function which isonly an approximation to the desired function. Anotherexample of this is the quotient function f̂ (x;R) = x divR,a commonly used system function, which can be thoughtof as an approximation to the integer division functionf(x;R) = (x div R; xmod R).Below we give a formal framework to study checkers, self-testers and self-correctors in this setting. We give a gen-eral technique for self-correcting in the case that the func-tion is approximately linear, and apply it to the quotientfunction, the 
oating point exponentiation function andthe logarithm function. We assume that there is a well-de�ned metric space as the range of f .We use a �� b to denote that ja� bj � �. We say that g�-approximates f on Dt if for all x 2 Dt, g(x) �� f(x).We say that P (�; �)-approximately computes f on Dt ifthere is a g such that P �-computes g on Dt and g �-approximates f on Dt.7



An approximate self-tester veri�es that that the programcorrectly approximates the function on most inputs: An(�1; �2; �1; �2)-approximate self-tester (0 � �1 < �2; 0 ��1 < �2) must fail any program that does not (�2; �2)-approximately compute f on Dt, and must pass any pro-gram that (�1; �1)-computes f on Dt. The error probabil-ity of the self-tester should be at most �.An approximate self-corrector for f takes a program Pthat approximately computes f on most inputs and usesit to approximately compute f on all inputs. More for-mally, an (�; �; �0)-approximate self-corrector is a programC that uses P as a black box, such that for every x 2 Ds,Pr[CP (x) ��0 f(x)] � 2=3, for every P which (�; �)-approximately computes f on Dt.An analogous de�nition of an approximate checker can bemade. An approximate result checker checks that the pro-gram correctly approximates the function on a particularinput.Intuitively, we say that a function is (k; �1; �2)-approximate-random self-reducible if the function value ata particular point can be approximated to within �2 givenapproximations to within �1 of the function at k points,where the k points are uniformly distributed and easy tochoose. Regarding when we can self-correct, we have thefollowing theorem:Theorem 10 If f is (k; �1; �2)-approximate-random self-reducible, then f has an ( 14k ; �1; �2)-approximate self-corrector.The proof of this theorem is very similar to the proof thatany random self-reducible function has a self-corrector,except that instead of taking the majority answer, theapproximate self-corrector must take the \median" answer(the median is not well-de�ned over �nite groups, but anappropriate candidate can be chosen).4.1 Approximate Self-Testers for LinearFunctionsWe make the following de�nition:Definition 4.1 A function f from a group G to a groupH is �-approximately linear if 8a; b 2 G, f(a + b) ��f(a) + f(b) + E(a; b), where E(a; b) is some easily com-putable function from G � G to H. We call a functionlinear if it is 0-approximately linear. Notice that our de�-nition of a linear function encompasses a much larger classof functions than the traditional de�nition.In this section we assume that we have a linear function fmapping from Zm to Zn or Z, given by f(0) = 0, f(1) andf(a), where a is close to pm. (the property required of ais that any x 2 Zm should be expressible as b�a+c where

b+c � 3pm). We show that the following self-tester testsf(x) �� P (x).Program Approximate-Self-Test(P;�; �; �)Approximate Linearity TestRepeat O(1� log 1� ) timesPick random x; y and test thatP (x+ y) �� P (x) + P (y) + E(x; y)Reject P if the test fails more than�=2 fraction of the time.Neighborhood TestsRepeat O(log 1� ) timesPick random x and test thatP (x+ 1) �� P (x) + f(1) + E(x; 1)P (x+ a) �� P (x) + f(a) +E(x; a)Reject P if test fails more than1=4th of the time.Definition 4.2 We say that P is (�;�)-good if:Prx;y[P (x+ y) �� P (x) + P (y) +E(x; y)] > 1� � and, ifR = Zn, Prx[P (x+1) �� P (x)+ f(1)+E(x; 1)] > 34 andPrx[P (x+ a) �� P (x) + f(a) +E(x; a)] > 34The following lemma establishes con�dence in the self-tester and can be proved using Cherno� bounds.Lemma 11 If P is not (�;�)-good then the probabilitythat P passes the basic linear test is less than �. If P is( �4 ;�)-good then the probability that P passes the self-testis at least 1� �.It is clear that if a program ( �12 ;�=3)-approximately com-putes f then it is ( �4 ;�)-good. The other direction isharder to prove. From this point on we assume that theprogram P is (�;�)-good.We de�ne the discrepancy disc(x) = f(x) � P (x). It iscleaner to work with the discrepancy of x because it allowsus to ignore the e�ect of E(x; y). We have:Prx;y[disc(x+ y) �� disc(x) + disc(y)] > 1� �Prx [disc(x+ 1) �� disc(x)] � 34Prx [disc(x+ a) �� disc(x)] � 34The rest of this section shows that disc(x) is always ap-proximately 0. This is achieved by �rst showing thatchanging the value of disc(x) at only a few places givesa function h which always passes the approximate linear-ity test (Lemma 12). Lemma 13 shows that h is bounded8



well away from n. This is used in lemma 14 to showthat h is actually very close to 0 everywhere, implyingin turn that disc is within 6� of 0 at most points. Finallylemma 15 shows that for most points the discrepancy isactually much smaller than 6�.Lemma 12 There exists a function h with the followingproperties:1. 8x; y 2 Zm; h(x+ y) �6� h(x) + h(y)2. Prx[h(x) = disc(x)] > 1� 2p�Proof: Let A = fy 2 ZmjPrx[disc(x+ y) �� disc(x) +disc(y)] > p�g be the set of \good" values of y 2 Zm. Fory 2 A de�ne h(y) = disc(y). For other values of y, pickx; z 2 A such that x+z = y and de�ne h(y) = h(x)+h(z).It can be shown, by techniques similar to those in [8], thath so de�ned has the property that 8y; Prx[disc(y+x) �2�disc(x) + h(y)] > 1 � 2p�. This in turn can be used toshow that h has the approximate linearity property, i.e.,h(x + y) �6� h(x) + h(y). The fact that the cardinalityof A is large completes the proof of this lemma.Lemma 13 8x; h(x) �27pm� 0Proof: Since P is (�;�)-good, h(1) �3� 0 and h(a) �3�0. Lemma12 now implies that for all x 2 Zm, h(x+1) �9�h(x) and h(x + a) �9� h(x). The fact that any x 2 Zmcan be expressed as b�a+c, where b+c � 3pm completesthe proof.Lemma 14 If 27pm� < n=4 then 8x; h(x) �6� 0 andPrx[disc(x) �6� 0] > 1�p�Proof: Assume that 9x such that dist(h(x); 0) >6�. Pick x such that dist(h(x); 0) is maximum. Sinceh(x) �27pm� 0 we have dist(h(2x); 0) � 2dist(h(x); 0) �6� > dist(h(x); 0) which is a contradiction.The second part of the assertion follows from the fact thatdisc(x) equals h(x) with probability 1�p�.(Notice that to prove this lemma for the case where therange of f is Z, lemma 13 is not required. In turn thisimplies that the case where range of f is Z does not requireany neighborhood tests.)To get even tighter bounds on the discrepancy of mostelements we use the following lemma which illustrates animportant tradeo� between � and �.Lemma 15 For all k > 0, Pr[disc(x) �1+ 52k� 0] > 1 �(4k + 1)p�

Proof: Let i be the smallest value of k such thatPr[(1 + 52k )� < disc(x) < 6�] > 2kp�. Let S = fx 2Zmj(1 + 52k )� < disc(x) < 6�g. Consider the set S0 =f(x; y)jx; y 2 S; and disc(x) + disc(y) �� disc(x + y)g.The size of this set is at least jSj2��m2. The size of S00 =fx+yjx; y 2 S0g is at least (jSj2��m2)=jSjwhich is at least(2i � 1)p�m. At most p�m of these elements have discgreater than 6� (by lemma14). Thus at least 2(i�1)p�melements of S00 satisfy (1+ 52(i�1))� < disc(x) < 6�. Thisviolates the minimality of i.Similarly we have Pr[(1 + 52k )� < n � disc(x) < 6�] >2kp�. An application of lemma 14 completes the proof.Thus we have proved:Theorem 11 If f is a linear function from Zm to Zn andn > 54pm�, then f has a (�=12; (4k + 1)p�;�=3; (1 +52k�))-approximate self-tester on G.It should be noted that, though our proof as presentedhere requires that n > 54pm�, this condition can beeasily relaxed by throwing in some more neighborhoodtests. For instance, if n = �(m1=d), and f(ai) is knownfor i = 1; : : : ; d+ 1 (where ai is close to mi=d+1, then foreach i we test that P (x+ ai) �� P (x) + f(ai) +E(x; ai).These tests su�ce to carry out the proof here with littlemodi�cations to lemma 13.4.2 Extending the approximate-linear self-tester to other functions4.2.1 The Quotient FunctionThe mod function, f(x;R) = x mod R , and the divisionfunction given by f(x;R) = (x div R; xmod R ), are bothlinear, but the quotient function f 0(x;R) = x div R is not.However the quotient function can be thought of as a 1-approximately linear function mapping into Z, because(x1 + x2) div R = x1 div R + x2 div R � E(x1; x2) + �,where � 2 f0; 1g, and E(x1; x2) = �((x1+x2) div 2nR)2nis an easy to compute function. Hence the approximate-linear self-tester applies to the quotient function and weget the following corollary. (Note again that since therange of the quotient function is Z, no neighborhood testsare needed.)Corollary 16 The quotient function has a (�=16, p�,0; 6) self-tester over the domain [0 : : :2nR].4.2.2 Floating Point ExponentiationThe 
oating point exponentiation function f computesf(x) = 2x for inputs from the domain D0 = f l2k 2expj0 �9



l < 2k; C0 < exp < C1g, where C0 < C1 are constants.(The domain here models a typical 
oating point wordin a computer with l representing the mantissa and exprepresenting the exponent. Typically C0 is negative andC1 is positive).We �rst restrict our attention to the exponentiation func-tion working on the domain D = f l2k j0 � l < 2kg. Ob-serve that D forms a group over modular addition de-�ned as x +0 y = (x + y)mod1. Furthermore f(x +0 y) =f(x) � f(y) � E(x; y), making f a linear function, whereE(x; y) = 1 if x + y < 1 and 1=2 otherwise. Thus f canbe self-tested over D using our approximate linearity self-tester. (D0 on the other hand does not form a group,hence our methods are not directly applicable to it.)Next observe that computing f over D and computing fover D0 are equivalent in an approximate sense. A pro-gram computing f over D0 also computes f over D. Forthe other direction, observe that 8x 2 D0, x �2�(k+1)a+ l2k where a 2 Z. Thus f(x) �2�k 2af( l2k ). (Here themetric used on the range is d(x; y) = j logx� logyj.) Thusgiven a program computing f on the domainD we can geta program computing f in the domain D0 approximately.The approximate equivalence of the two domains yieldsthe following corollary to theorem 11.Corollary 17 The 
oating point exponentiation functionfor numbers with k bits of precision has a (�=16;p�,log(1 + 12k+1 ); log(1 + 92k ))-approximate-self-tester.4.2.3 Floating Point LogarithmThe 
oating point log function f takes an input from thedomain D0 = f(1 + l2k )2expj1 � l < 2k;�C0 < exp < C1gwhere C0; C1 are constants and computes f(x) = logx. Inthis section we outline a self-tester for the 
oating pointlog function.As in the case of 
oating point exponentiation, the prob-lem reduces to testing on the smaller domain D = f(1 +l2k )j1 � l < 2kg (computing log 2exp is easy). But un-like the 
oating point exponentiation case there seems tobe no obvious group structure on this domain. The nat-ural binary operation over D, given by a � b = a � b ifa � b < 2 and a � b=2 otherwise, is not associative. But, itcan be shown that it satis�es the following approximateassociativity property.(a� (b� c)) � 32k ((a � b)� c)The tester for the log function performs the approximatelinearity test and the following neighborhood tests for j =

1; 2; 3.for random x test if P (x� j2k ) � 12k P (x) + j2kThe correctness of this tester can be proved now in a man-ner similar to the proof of theorem 11 using the approxi-mate associativity property instead of associativity. Thedetails are omitted from this version.Theorem 12 The 
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