Self-Testing/Correcting for Polynomials and for Approximate Functions

Peter Gemmell *

Madhu Sudan ¢

Abstract

The study of self-testing/correcting programs was intro-
duced in [8] in order to allow one to use program P to
compute function f without trusting that P works cor-
rectly. A self-tester for f estimates the fraction of z for
which P(z) = f(z); and a self-corrector for f takes a pro-
gram that is correct on most inputs and turns it into a
program that is correct on every input with high proba-
bility 1. Both access P only as a black-box and in some
precise way are not allowed to compute the function f.

Self-correcting is usually easy when the function has the
random self-reducibility property. One class of such func-
tions that has this property is the class of multivariate
polynomials over finite fields [4] [12]. We extend this
result in two directions. First, we show that polynomi-
als are random self-reducible over more general domains:
specifically, over the rationals and over noncommutative
rings. Second, we show that one can get self-correctors
even when the program satisfies weaker conditions, i.e.
when the program has more errors, or when the program

*U.C. Berkeley. Supported by NSF Grant No. CCR 88-13632

TPrinceton University. Supported in part by NSF Grant No. DCR-
8420948.

*Princeton University. Supported by DIMACS (Center for Discrete
Mathematics and Theoretical Computer Science), NSF-STC88-09648.

fy.c. Berkeley. Supported in part by NSF Grant No. CCR 88-96202.

Part of this work was done while this author was visiting IBM Almaden.

THebrew University and Princeton University. Partially supported
by the Wolfson Research Awards administered by the Israel Academy of
Sciences and Humanities.

'[12] independently introduces a notion which is essentially equivalent

to self-correcting.

Richard Lipton T

Ronitt Rubinfeld *
Avi Wigderson T

behaves in a more adversarial manner by changing the
function it computes between successive calls.

Self-testing is a much harder task. Previously it was
known how to self-test for a few special examples of func-
tions, such as the class of linear functions. We show that
one can self-test the whole class of polynomial functions
over Z, for prime p.

We initiate the study of self-testing (and self-correcting)
programs which only approximately compute f. This set-
ting captures in particular the digital computation of real
valued functions. We present a rigorous framework and
obtain the first results in this area: namely that the class
of linear functions, the log function and floating point ex-
ponentiation can be self-tested. All of the above functions
also have self-correctors.

1 Introduction

Suppose someone gives us an extremely fast program P
that we can call as a black box to compute a function f.
Rather than trust that P works correctly, a self-testing
program for f ([8]) verifies that program P is correct on
most inputs, and a self-correcting program ([8] [12]) for f
takes a program P that is correct on most inputs and uses
it to compute f correctly on every input (with high proba-
bility). Self-testing/correcting is an extension of program
result checking as defined in [5],[6], and if f has a self-
tester and a self-corrector, then f has a program result
checker.

To make this somewhat more precise, consider a function
P : X — Y that attempts to compute f. We consider
two domains, the “test” domain D; C X and the “safe”
domain D; C X (usually D; = D,). We say that program
P e-computes f on D; if Pryep,[P(z) = f(z)] > 1—€. An
(€1, €2)-self-tester (0 < €1 < €3) for f on D; must fail any
program that does not es-compute f on Dy, and must pass
any program that e;-computes f on D; (note that the be-
havior of the tester is not specified for all programs). The

tester should satisfy these conditions with error probabil-
ity at most (3, where 3 is a confidence parameter input by
the user. An e-self-corrector for f on (Dy, D;) is a pro-
gram C that uses P as a black box, such that for every
z € D;, Pr[CF(z) = f(z)] > 2/3, ? for every P which e-
computes f on D;. Furthermore, all require only a small
multiplicative overhead over the running time of P and
are different, simpler and faster than any correct program
for f in a precise sense defined in [6].

Section 2 is devoted to self-correcting polynomial func-
tions, and Section 3 is devoted to the self-testing
of polynomial functions. Section 4 introduces self-
testing/correcting and checking for programs which only
approximately compute f, including the digital computa-
tion of real valued functions.

2 Self-Correcting Polynomials

In addition to the aforementioned application, self-
correcting is interesting because of its independent ap-
plications to complexity theory: (1) The existence of a
self-corrector for a function implies that the function has
similar average and worst case complexities. (2) [4],[12]
first observed that low degree polynomials over finite fields
have self-correctors. This simple fact turned out to be a
key ingredient in two recent results in complexity theory,

mainly IP=PSPACE [14][18] and MIP=NEXPTIME |[3].

Self-correcting is usually easy when the function has
the random self-reducibility property [8][12]. Informally,
the property of k-random self-reducibility is that f(z)
can be expressed as an easily computable function of
f(z1),..., f(zx), where the z;’s are each uniformly dis-
tributed, and are easy to choose. Several functions have
been shown to have this property: examples of such func-
tions are integer and matrix multiplication, modular expo-
nentiation, the mod function and low degree polynomials
over finite fields.

Our first aim is to study the scope under which this phe-
nomenon occurs. We extend the above results in various
directions, and to this end, we define the following general
setting.

Let R be any ring, and X = {z1,za,...2,} a set of inde-
terminates (we assume nothing about R, in particular the
indeterminates may not commute). Let D, C R be the do-
main of coefficients (often D. = R). Define a R-monomial
over D, to be an arbitrary word w € (D.UX)*, and its de-
gree, deg(w), the number of occurrences of indeterminates.
An R-polynomial f over D, is simply the sum f =" w;
of R-monomials, and its degree, deg(f) = max;deg(w;).

2this can be amplified to 1 — 8 by O(log1/g) independent repetitions

and and a majority vote.

Denote the set of all degree d polynomials (where | X| = n)
R(D.). If D, = R, we omit D, from the above defini-
tions, and in particular, the set of all degree d polynomials
is RZ.

For example, if R is the ring of matrices over some field,
D, =D, = D, =R, and A, B,C,D,E,F € R, then
f(Xl,Xg) =A + Bch + XgDXlEXQ + X12F is a pOly—
nomial of degree 2 in the two variables X, X5.

If for every f € RZ(D.) there is an e-self-corrector on
(D;, D;), we say that RI(D.) is e-resilient on (D, D;).
When R = D, = D; = D;, then we say that Ri is -
resilient. The interesting issues are of course for what
rings and domains this is possible, how small should € be,
and what is the complexity of the corrector program C,
separating its actual computation and the number of calls
to the black box P.

The results of [4] [12] can be compressed to:

Theorem 1 ([4][12]) If F is a finite field, |F| >d+ 1,
then for every n, F2 is — resilient with O(d) calls to
P.

3d+3

The self-corrector used to prove this theorem is very sim-
ple to implement and is based on the existence of the fol-
lowing interpolation identity relating the function values
between points: for all univariate polynomials f of degree
at most d, Vz,t € F, Efiol a;f(z+a;-t) = 0 where the a;’s
are distinct elements of F', g = —1 and «; depends only
on F,d and not on z,t. ® Then the self-correcting algo-
rithm for evaluating f(Z) = f(z1,...,2x) is to randomly
choose T = (t1,...,%,) € F™ with uniform distribution
and output Efill a;P(z +1-t). With probability at least
2/3, all the calls to the program will return correct values,
and the output will be correct.

2.1 New Domains

2.1.1 Non-Commutative Rings

Our first generalization shows, perhaps surprisingly, that
the [4][12] trick works in many non-commutative rings as
well. This may have complexity theoretic consequences,
as many complexity classes are characterized by non-
commutative group theoretic problems. Define C(R), the
center of the ring R, to be all elements in R which com-
mute with every element. Define R* to be all the elements
in R which have inverses.

®In particular, if F = Z,, a; can be chosen to be 3, and then
a; = (—1)7""1 (d’tl). Furthermore Ej:; oif(z +14-t) can be computed
in O(dz) time using only additions and comparisons by the method of

successive differences in [20].

Theorem 2 If a random element of R can be uniformly
generated, and |C(R)NR*| > d+ 1, then for every n, RZ
is 1/(2d)-resilient with O(d) calls to P.

We note that the condition that |[C(R)NR*| > d+1is
satisfied by rich classes of rings, most notably finite group
algebras over finite fields of size > d 4+ 1. A special case
1s the algebra of square matrices of any order over a fi-
nite field (here the center is simply all diagonal matrices).
Note that here uniform generation is trivial. In general,
we know only a few more examples where uniform genera-
tion is possible. For any finite group, given by generators,
almost uniform generation is possible by the recent Monte
Carlo algorithm of [2], but whether this result extends to
the group algebra is open.

The proof is based on the fact that such rings can also be
shown to have interpolation identities:

Lemma 1 For every ring R for which |[C(R)| > d+ 1,
there are weights ay,...,aqy1 such that for any f € RS,
f(0) = Ef"’ll a;f(c;) where e1,...,¢c441 € C(R) and are

distinct.

Proof: We will show that it is possible to select weights
so that the identity is true for all monomials m;(z) =
zaiz . ..za; of degree 5 for 0 < j < d. The lemma follows
by linearity. The constraints on the weights are that for
j=0,...,d, Efill a;mj(z) = é; where o =1 and §; =0
for j > 0. Since ¢; € C(R), we have that for all 1 < k <
d+1,mj(ck) = a1az ...a4c,. Thus this is a linear system
of equations in the weights. Since the matrix of the system
1s a Vandermonde matrix, the system of equations has a
solution. M

If ¢; has an inverse, we have the property that for fixed
z and uniformly distributed ¢, then z + ¢;¢ is uniformly
distributed. The rest of the proof of the theorem is as in
[4][12].

2.1.2 TFixed Point Arithmetic

Our second theorem concerns computation over domains
that are not as nice as finite fields. The only similar re-
sult we know appears in [3]. Motivated by the fact that
every boolean function has a multilinear representation
with small integer coeflicients, they considered R = Z,
D, = Zon, D; = D; = Z104 and showed

Theorem 3 ([3]) Z&(
with O(d) calls to P.

D.) is %-resilient on (D, D;)

We consider rational domains, specifically binary fixed
point arithmetic. Let FIX,, = {Z : integers |y| < r}.
We use the notation that & = (z1,...,2x).

A nice property of finite fields that is used to get self-
correctors for polynomials over finite fields is that any
fixed element of the field, when multiplied by a random
uniformly distributed element of the field, gives a result
that is uniformly distributed over the field. This is not a
property of the fixed point domain (fixed point domains
do not even have the property of “wraparound”). Though
the proof of the self-corrector has the same spirit as the
previous one, it is technically more involved. Here we use
the generalization of the definitions of self-correcting given
in [8],[12] and assume that more than one domain is tested.
In addition, this is an example of a class of functions for
which the test domains are larger than the safe domain: in
order to get resilience on a particular precision, one should
use a program that is known to be usually correct both
on a slightly finer precision and over a larger range.

We have the polynomial interpolation formula f(y) =

Ed+1 a;f(y + a;t) where aq,...,

aq are distinct integers

and a1, ...,a441 depend only on d and not on y or ¢. Let
A= lcm(al,.. aq), and A®) = ai. Let L = 10npdt?,
R= FIX;LL, D = FIX? . Then the d+ 1 test domains
are D, SL} (1 <4< d+1), where

the precision on the inputs is finer than that of the safe
domain.

The self-corrector uses the interpolation formula over the
new domain to compute f(z) by picking a random ¢ €
FIX? . The domains of the d+1 calls to P are dependent
on the input and are D, ={¢8+% sy (1<
i < d+1). We show that for all 1 § t <d+1, D;, and
D,, are very close (considered as uniform distributions on
their respective domains), so the program returns correct
answers on all inputs with probability at least 3/4. When
this happens, f(%#) is computed correctly.

Theorem 4 R%(D.) is m-resilient on
(Dtu .. -aDtd+17 DS)'
DEFINITION 2.1
oz fe=y
8z, y) = { 0 otherwise

DEFINITION 2.2 For random variables X,V over domain

D, §(X,Y) =3, .p6(Pr[X = s],Pr[Y = s]) (note that

0% 8(X,7) < 1)

Lemma 2 If§(X,Y) > 1—€; and Pr[X € §] > 1 — e,

then Pr[Y € §] > 1 — €1 — €2

Proof: Assume Pr[Y € §] < 1—¢;—¢; and Pr[gz €S>

1—62 Then Eses I[X = s]—6(Pr[X = 5], Pr[Y = s]) >
. Since Y ¢ Pr[X = s] — §(Pr[X = s], Pr[Y = s]) > 0,

we have §(X, Y) <1—e.

Lemma 3 For1<i<d, §D;,,Dy,)>1— m

Proof: For all 1 < j < n, we have that:

Pr2 + &% = Y] = Prfz; AC) 4 ui = y;]
- ﬁ if y; € [~L 4 ;A + L 4 2; A®)]
0 otherwise
Pr[a::j =47l = Pr[u§ =y;]

= 2L1-|-1 if y; € [-L,+1]
0 otherwise
Thus Przep,, Z2=9]= (ﬁ)n ify; € [~L+ 2,49, L+
2, A®)] for all i = 1,...,n and Priep, [=] = (ﬁ)
ify, € [-L,L] for all : = 1,...,n. The claim follows by
the choice of L. M

n

2.2 Programs with Weaker Constraints

2.2.1 Resiliency

Note that the resiliency in Theorem 1 degrades with the
degree. We show that using the theory of error correcting
codes [17], constant resiliency can be achieved. This the-
orem was proved independently, using similar techniques
by Don Coppersmith [11].

Theorem 5 If F is a finite field, and for some m, 3d +
1 < m, m divides |F| — 1, then for every n, F3 is 1/9-
resilient with O(m) calls to P.

Proof: (sketch) Let w be a primitive m*® root of unity in

F. The queries that C makes are {P(z +w'r)}7*5", This
sequence differs from {f(z + w’r)}75! in at most m/3
places with probability > 2/3. As the second sequence is
a codeword in the generalized BCH code [17], it can be
recovered from the first efficiently, and then C(z) can be
computed again by interpolation. Note here that there
are m (usually m = O(d)), queries to P, but as the error

correction procedure requires linear algebra, the running
time of C is O(d®). M

We can also generalize this to some non-commutative
rings:

Theorem 6 If R is a finite group algebra over a finite
field F, satisfying the conditions of Theorem &, and we
can uniformly sample from R, then for every n, RZ is
1/9-resilient.

We do not know how to increase the resiliency over fixed
point domains.

2.2.2 Memory Bounded Programs

Until now, we have assumed that the program P is a func-
tion, i.e. a non-adaptive memoryless object. Here we ad-
dress the case where the program is not a function, but

an adversary A. Under the assumption that there are
more than one independent copies of the program (non-
communicating adversaries), [7] show how to get checkers
for any function that has a checker in the original model.
Here we address the case of a single adversary A whose
only limitation is space. The adversary can apply differ-
ent programs depending on his memory state, which can
be affected by previous queries. Formally, a space s ad-
versary A (over R) is an automaton with 2° states where
state ¢ is labeled by P; : R® — R, and the transition al-
phabet is R”. When at state 2, given input z € R*, A
returns P;(z) and moves to a new state j along the unique
transition labeled z. We say that A e-computes f € RZ if
for every i, P; e-computes f. RZ is (s, €)-resilient if there
is a program C such that Pr[C4(z) = f(z)] > 2/3 for all

z € R” and for all space s adversaries A.

There were no previous results of (s, €)-resiliency, even for
1-bit memory s = 1. We give an algorithm C, for the case
of finite fields, that is (8(log |F|), o)-resilient.

Theorem 7 If |F| > d® then for every n, F2 is
(3 log |F|,1/(16d%))-resilient with O(d?) calls to P.

As mentioned above, for the algorithm C' we give, this is
optimal: it fails if s > 4log|F|. The algorithm queries
A on points {z + ir} with r €gp F™ and i €g F. We
use the fact that the pair (#,r) acts on ¢ as a 2-universal
hash function, and the small information 4 has on (z,r)
enables the use of results on the distribution of hash values
by [16][15] to show that the queries are fairly uniformly
distributed in F™.

We observe that this implies that bigger fields are better.
When the choice of a field is ours, we have:

Corollary 4 In polynomial time, we can achieve re-
siliency to any adversary that is polynomial space bounded!

Proof: [of Theorem 7]

Let H = {h : U — Z} be a family of universal hash
functions [9] from a domain U to range Z. This means
that for any u,v’ € U, 2,2/ € Z and random h €r H,
Prlh(u) = 2, h(v') = 2’ = 1/|Z]|2

Let s denote space, and m = 2°. We shall describe a
space s "tree automaton” which is stronger than the above
adversary, and with which it will be convenient to work.
Schematically, it will look like a |U|-ary tree, in which
every path is a width m branching program. Thus every
node (labeled by a word from U*) will have m states, and
will have a separate transition function (with alphabet Z)

to each child.

Formally, for every word w € U* and u € U let 6,4 :
[m] x Z — [m] be an arbitrary (transition) function.

Let P? be an arbitrary partition of H into m parts,
S?,SS,---S&. This partition and the transition func-
tions naturally define partitions P* = {8},Sy,---S%}
for every w € U™ inductively as follows. For any v € U,
hisin S¥* iff h € S} and 6y (2, h(u)) = j. For conve-
nience, we denote by P¥ the nodes of the tree as well as
the partition of H in that node. The parts of this partition
are the states of that node.

Let S¥(h) denote the part (state) containing h in the par-
tition (node) P¥. If h is chosen uniformly at random from
H, then clearly its state S? (h) is chosen proportional to its
cardinality, and within it A is uniformly distributed. It is
easy to prove inductively that for every word w, the state
S¥(h) is reached by h on w with probability proportional
to its cardinality, and within it A is uniformly distributed.

We now show that under this distribution (i.e. knowing
S¥(h)), h(u) remains essentially uniformly distributed for
random u €g U.

Claim: Let P be any partition of H into m parts
S1,955,-Sn. Let By, By, - -+ B, be arbitrary subsets of Z
with |B;|/|Z| < €, and B(h) = B; for the same ¢ satisfying
S(h) = S;. Then, Pr[h(u) € B(h)|S(h)] < €+ 2|U|~ /4.

Proof: We use Lemma 10 of [15] and simple algebra to
get:
Prh(u) € B(h)|S(h)]
= Z |5:|/1U1) Pr[h(u) € B;|S(h) = Si]
< Pr[h(u) € B;
< (m+, mu Prli(u) € B
S
< et 2UTHe
|

We used m = |U|/* and the [15] lemma for a subset of
hash functions of density at least |U/|~/2.

Now we can fit our algorithm and the space s bounded
adversary into this framework. Our domain U is the field
F, and pairs z,r € F™ map field elements u € F to Z =
F™ by (@, 7)(v) = ¢ + ur, which is universal hashing.

We want to evaluate f(z), and let us assume for a mo-
ment that z is random. We pick a random r € F”, and a
random sequence of field elements i, uz,---. We request
from the adversary the value of f(z+u;r) allowing him to
know and remember for free the value of u;. This creates
the tree structure above and guarantees that the states
represent only information about the pair (z,r). We con-
tinue until we ask d 4+ 1 distinct questions (the expected
time until this happens is O(d) as the field is large). Since

it was e-resilient, at every state it can err only on a subset
of density € of the queries h(d). These are exactly the con-
ditions in the claim which guarantee that the probability
of a wrong answer is at most 2¢. Hence € < 1/(4d) guaran-
tees that with high probability all replies are correct and
we can interpolate safely.

For the general case z is fixed and not random. We handle
this by repeating the above procedure for z + ¢, with
t€g F" and 7 = 1,2,---d + 1, from which f values we
can interpolate f(z). We use the same random r in all
procedures. Each (z + ¢,r) is a random pair, so each
single procedure fails with probability at most 1/4d when
€ < 1/16d?. To see that the correlation between different
pairs cannot help the adversary, note that it was allowed to
start with an arbitrary partition P?. Hence, by telling the
adversary when we are done with (z + ¢, 7) and start with
(z+(¢+1)t,7), we let him convert in an arbitrary way his
information (partition) on the old pair into another about
the new pair. The details are left to the reader. M

3 Self-Testing Polynomials

Self-testing is a much harder task than self-correcting. In
[8] it is shown how to get self-testers for the two special
cases of any function that is downward self-reducible in
addition to being random self-reducible, and any function
that is linear. In this section we show that the much richer
class of all polynomial functions can be self-tested.

As in [8], our testers are of a nontraditional form: the
tester is given a short specification of the function in the
form of properties that the function must have, and ver-
ifies that these properties “usually” hold. We show that
these properties are such that if the program “usually”
satisfies these properties, then it is essentially computing
the correct function.

Complementing the results of [4][12], we first show how to
construct a self-tester for any univariate polynomial func-
tion provided that the value of the function is known on at
least one more than the degree number of points. These
results extend to give self-testers for polynomial functions
of degree d with m variables, provided the function value
is known on at least (d 4+ 1)™ well chosen points, by com-
bining the univariate result with the results of [3][13][19].
In the final version we show that the results can also be
generalized to give self-testers and self-correctors for func-
tions in finite dimensional function spaces that are closed
under shifting and scaling.

Theorem 8 If f is a degree d (univariate) polynomial
over Z,, then f has an (2(d+2),4€) -self-tester on Z, with

O(d - min(d?, %)) calls to P.

Corollary 5 If f is a degree d polynomial in m vartables
over Z,, then f has a (0,¢€)-self-tester on Z, with O((d +
1)™ /e + poly(d, m, %)) calls to P.

The self-tester algorithm is almost as simple as the self-
corrector algorithm, though the proof of correctness is
more difficult. We present the proof of Theorem 8 at the
end of this section. The self-testing is done in two phases,
one verifying that the program is essentially computing a
degree d polynomial function, and the other verifying that
the program is computing the correct polynomial function.

When the number of variables is small, the provision that
the value of the function is known on at least (d + 1)™
points is not very restrictive since the degree is assumed to
be small with respect to the size of the field: Suppose one
has a program for the RSA function 22 mod p. Traditional
testing requires that the tester know the value of f(z) for
random values of z. Here one only needs to know the
following simple and easy to generate specification: f is a
degree 3 polynomial in one variable, and f(0) =0, f(1) =
1, f(-1) = =1, f(2) = 8. These function values are the
same over any field of size at least 9.

In [3][13][19], there are tests, which in our setting allows
the self-tester to be convinced that the program is com-
puting a multivariate polynomial function of low degree in
polynomial time. Although the test is in polynomial time,
it is somewhat complicated to perform because it involves
the reconstruction of a univariate polynomial given its val-
ues at a number of points (which in turn requires multi-
plications and matrix inversions), and later the evaluation
of the reconstructed polynomial at random points. If the
number of variables in the original multivariate polyno-
mial is relatively small, this is more difficult than comput-
ing the polynomial function from scratch, and therefore is
not different than the program in the sense defined by [8].

We now present the proof of Theorem 8 for the special
case of univariate polynomials of degree d over Z, and

when e < O(1/d?).

For simplicity, in the description of our self-testing pro-
gram, we assume that whenever the self-tester makes a
call to P, it verifies that the answer returned by P is in
the proper range, and if the answer is not in the proper
range, then the program notes that there is an error.

We use © €gr Z, to denote that z is chosen uniformly at
random in Z.

program Polynomial-Self-Test(P, ¢, 3,
(21, f(z1)), - s (zatr, f(@ar1)))

Membership Test
Repeat O(llog(1/B3)) times
Pick z,7 €gr Z, and test that
S Pz +ixt) =0
Reject P if the test fails more than
an € fraction of the time.

Consistency Test
for j going from 0 to d do
Repeat O(log(d/B)) times
Pick ¢ €r Z, and test that
f(z5) = X527 auP(a; +ixt).
Reject P if the test fails more
than 1/4th of the time.

Let 6 = Prm,t[zfiol a;P(z+ixt) =0]

DEFINITION 3.1 We say program P is e-good 1f 6 < 5 and
Vi €{0,- -, d}, Pri[f(a;) = Li27 aiP(e; +ix1)] > 3/4.
We say P is e-bad if either § > 2¢ or iof 37 such that
Pr.[f(=;) = Efill a;P(z;+1i%t)] < 1/2. (Note that there
are programs which are neither e-good or e-bad).

The following lemma is easy to prove :

Lemma 6 With probability at least 1— a e-good program
1s passed by Polynomaial-Self-Test. With probability at least
1—7 ae-bad program is rejected by Polynomaial-Self-Test.

It is easy to see that if a program P m—computes 1,
then it is e-good. The hard part of the theorem is to show
that if program P does not e-compute f then it is e-bad.
We show the contrapositive, i.e. that if P is not e-bad,
then it 4e-computes f.

If P is not e-bad, then § < 2¢. Under this assumption,
we show that there exists a function ¢ with the following
properties:

1. g(z) = P(z) for most z.

2. Vz,t Efi—ol aig(z +4t) = 0, and thus g is a degree d
polynomial.

3. g(z;) = f(=;) for j € {0,1,---,d}.

Define g(z) to be majtezpzfill a; Pz + 4t).

Lemma 7 ¢ and P agree on more than 1 — 26 fraction of
the inputs from Z,.

Proof: Consider the set of elements z such that
Pr.[P(z) = E;Hll Pz + 1 %1)] < 1/2. If the fraction
of such elements is more than 26 then it contradicts the
condition that Prm,t[zd-l'ol a;P(z+i*t) = 0] = 4. For all
remaining elements, P(z) = g(z). M

In the following lemmas, we show that the function ¢ satis-
fies the interpolation formula for all z, ¢ and is therefore a
degree d polynomial. We do this by first showing that for
all z, g(z) is equal to the interpolation of P at # by most
offsets ¢. We then use this to show that the interpolation
formula is satisfied by ¢ for all z,¢.

Lemma 8 For allz € Z,, Pr; [g(:c) = E;Hll a;P(z+ 1%
t)] > 1—2(d+1)é.

Proof: Observe that ¢,,t; €r Z, implies

t+ixt1 EpZpand x4+ 7%ty Er 7,

d+1

= Pr[P(z+ixt) = Pz +ixty+j*t)] >1-6
1:2 j:l
d+1

= Pr [P(z+jxts) =D aiP(z+ixty+jxty)]>1-8
1z i=1

Combining the two we get

d+1

Pr [ZaiP(:c—l—i*tl)
=1

t1,t2

d+1d+1

= EE:EE:OQajIK
i=1j5=1
d+1

= Y a;iP(z+j*t1)] >1-2(d+1)6
ji=1

T+ ixty+J*ta)

The lemma now follows from the observation that the
probability that the same object is drawn twice from a set
in two independent trials lower bounds the probability of
drawing the most likely object in one trial. (Suppose the
objects are ordered so that p; is the probability of draw-
ing object ¢, and p; > pz > Then the probability of
drawing the same object twice is >°. p? < . pip; = p1.)
|

Lemma 9 For all z,t € Z,, if 6 < W, then
E;H—Ol aig(z +ixt) = 0 (and thus g is a degree d poly-
nomial [20]).

Proof: Observe that, since ¢, 4 ity €r Z,, we have for
all0<:<d+1

d+1

tftrz[glz +ixt) Za] (x+ixt)+7*(ty +it2))]

>1-—2(d+1)6.
Furthermore, we have forall 1 < 7 <d+1

d+1

Za
tl,tz I

(z+j*xt)+ix(t+j*t2))=0]>1-36

Putting these two together we get

Pry, 4, [+01 aig(z +i%t) =

S oy S P (o4 jat) e (47 2t) =
The lemma follows since the statement in the lemma is

independent of ¢;,?5, and therefore if its probability is
positive, it must be 1. W

0] >o.

Lemma 10 g(z;) = f(z;)
Proof: Follows from the definition of ¢ and the fact that
P is not e-bad. |

Theorem 9 The program Polynomial-Self-Test is a
(2(d+2),4€) -self-testing program for any degree d polyno-
mial function over Z, specified by its values at any d + 1
points, if € < W.

Proof: Follows from Lemmas 6,9, and 10. H

4 Approximate and Real-Valued Functions

In the notions of a result checker and
self-testing /correcting pair considered so far, a result of
a program is considered incorrect if it is not ezactly equal
to the function value. Some programs are designed only to
correctly approzimate the value of a function. One impor-
tant setting where this is the case is with functions dealing
with real inputs and outputs: due to the finiteness of the
representation, the program computes a function which is
only an approximation to the desired function. Another
example of this is the quotient function f(:c, R) =z divR,
a commonly used system function, which can be thought
of as an approximation to the integer division function

f(z,R) = (z div R,z mod R).

Below we give a formal framework to study checkers, self-
testers and self-correctors in this setting. We give a gen-
eral technique for self-correcting in the case that the func-
tion is approximately linear, and apply it to the quotient
function, the floating point exponentiation function and
the logarithm function. We assume that there is a well-
defined metric space as the range of f.

We use a = b to denote that |a — b| < (. We say that ¢
é-approzimates f on D, if for all z € Dy, g(z) ~s f(2).
We say that P (e, 6)-approzimately computes f on D, if
there is a ¢ such that P e-computes g on D; and g é-
approximates f on D;.

An approzimate self-tester verifies that that the program
correctly approximates the function on most inputs: An
(€1, €2, 61, 62)-approzimate self-tester (0 < €1 < €2,0 <
61 < 83) must fail any program that does not (ez,é2)-
approximately compute f on D;, and must pass any pro-
gram that (eq, 61)-computes f on D;. The error probabil-
ity of the self-tester should be at most 3.

An approzimate self-corrector for f takes a program P
that approximately computes f on most inputs and uses
it to approximately compute f on all inputs. More for-
mally, an (¢, §,8")-approzimate self-corrector is a program
C that uses P as a black box, such that for every z € D;,
Pr[CF(z) ~s f(z)] > 2/3, for every P which (e, é)-

approximately computes f on D;.

An analogous definition of an approzimate checker can be
made. An approximate result checker checks that the pro-
gram correctly approximates the function on a particular
input.

Intuitively, we say that a function is (k,é1,62)-
approzimate-random self-reducible if the function value at
a particular point can be approximated to within é; given
approximations to within é; of the function at k points,
where the k points are uniformly distributed and easy to
choose. Regarding when we can self-correct, we have the
following theorem:

Theorem 10 If f is (k, 61, 62)-approzimate-random self-
reducible, then f has an (ﬁ,él,ég)-approa:imate self-
corrector.

The proof of this theorem is very similar to the proof that
any random self-reducible function has a self-corrector,
except that instead of taking the majority answer, the
approximate self-corrector must take the “median” answer
(the median is not well-defined over finite groups, but an
appropriate candidate can be chosen).

4.1 Approximate Self-Testers for Linear

Functions

We make the following definition:

DerINITION 4.1 A function f from a group G to a group
H is A-approximately linear if Va,b € G, f(a + b) =a
fla) + f(b) + E(a,b), where E(a,b) is some easily com-
putable function from G x G to H. We call a function
linear if it is 0-approximately linear. Notice that our defi-
nition of a linear function encompasses a much larger class
of functions than the traditional definition.

In this section we assume that we have a linear function f
mapping from Z,, to Z, or Z, given by f(0) = 0, f(1) and
f(a), where a is close to 1/m. (the property required of a
is that any z € Z,,, should be expressible as bxa+ ¢ where

b+c < 34/m). We show that the following self-tester tests
f(z) ma P(z).

Program Approximate-Self-Test(P, A, S, ¢€)

Approximate Linearity Test
Repeat O(%log%) times
Pick random z,y and test that
P(z+y) ~a P(z)+ P(y) + E(z,y)
Reject P if the test fails more than
€/2 fraction of the time.

Neighborhood Tests
Repeat O(log %) times
Pick random z and test that
P(e+1) ~a P(2)+ f(1) + Bz, 1)
P(z+ a) =~a P(z)+ f(a) + E(z,a)
Reject P if test fails more than
1/4th of the time.

DEFINITION 4.2 We say that P is (e,A)-good if:
Proy[P(z +y) ~a P(z) + P(y) + E(z,y)] > 1 —€ and, if
R=Z,, Pr;[P(z+1) ~a P(z)+ f(1)+ E(z,1)] > 2 and
Pry[P(z + a) =a P(z)+ f(a) + E(z,a)] > 2

The following lemma establishes confidence in the self-
tester and can be proved using Chernoff bounds.

Lemma 11 If P is not (¢, A)-good then the probability
that P passes the basic linear test is less than 3. If P is
(5, A)-good then the probability that P passes the self-test
is at least 1 — 5.

It is clear that if a program (3

13, A/3)-approximately com-
putes f then it is (,A)-good. The other direction is
harder to prove. From this point on we assume that the

program P is (e, A)-good.

We define the discrepancy disc(z) = f(z) — P(z). It is
cleaner to work with the discrepancy of z because it allows
us to ignore the effect of E(z,y). We have:

Prldisc(z + y) ~a disc(z) + disc(y)] > 1 —¢
z’y

Pridisc(z + 1) =a disc(z)] >

z

Pr[disc(z + a) =a disc(z)] >

z

Ao i

The rest of this section shows that disc(z) is always ap-
proximately 0. This is achieved by first showing that
changing the value of disc(z) at only a few places gives
a function A which always passes the approximate linear-
ity test (Lemma 12). Lemma 13 shows that & is bounded

well away from n. This is used in lemma 14 to show
that h is actually very close to 0 everywhere, implying
in turn that disc is within 6 A of 0 at most points. Finally
lemma 15 shows that for most points the discrepancy is
actually much smaller than 6A.

Lemma 12 There exrists a function h with the following
properties:

1. V2,y € Zm, h(z + y) ~ea h(z) + h(y)

2. Prgy[h(z) = disc(z)] > 1 — 2+/€

Proof: Let A= {y € Z,,| Pry[disc(z +y) ~a disc(z)+
disc(y)] > +/c} be the set of “good” values of y € Z,,. For
y € A define h(y) = disc(y). For other values of y, pick
z,z € Asuch that 242 = y and define h(y) = h(z)+h(2).
It can be shown, by techniques similar to those in [8], that
h so defined has the property that Yy, Pr[disc(y+2) ~2a
disc(z) + h(y)] > 1 — 2+4/e. This in turn can be used to
show that A has the approximate linearity property, i.e.,
h(z + y) =ea h(z) + h(y). The fact that the cardinality
of A is large completes the proof of this lemma. W

Lemma 13 Vz, h(z) 37, /ma 0

Proof: Since P is (¢, A)-good, h(1) =34 0 and h(a) ~3a
0. Lemma 12 now implies that for allz € Z,,, h(z+1) ~on
h(z) and h(z + a) ~ga h(z). The fact that any z € Z,,
can be expressed as b*a+c, where b+c < 3./m completes
the proof. W

Lemma 14 If 27./mA < n/4 then Vz,h(z) ~ea 0 and
Prp[disc(z) ~en 0] > 1 — /€

Proof: Assume that Jz such that dist(h(z),0) >
6A. Pick z such that dist(h(z),0) is maximum. Since
h(z) ~a7./ma 0 we have dist(h(2z),0) > 2dist(h(z),0) —
6A > dist(h(z),0) which is a contradiction.

The second part of the assertion follows from the fact that

disc(z) equals h(z) with probability 1 — /€.

(Notice that to prove this lemma for the case where the
range of f is Z, lemma 13 is not required. In turn this
implies that the case where range of f is Z does not require
any neighborhood tests.) W

To get even tighter bounds on the discrepancy of most
elements we use the following lemma which illustrates an
important tradeoff between € and A.

Lemma 15 For all k > 0, Prldisc(z) ~y, 54 0] > 1 -

(4k + 1)/

Proof: Let ¢ be the smallest value of k& such that
Pr[(1 + 5)A < disc(z) < 6A] > 2k/e. Let § = {z €
Zm|(1+ 55)A < disc(z) < 6A}. Consider the set §' =
{(z,y)|z,y € S, and disc(z) + disc(y) ~a disc(z + y)}.
The size of this set is at least |S|2 —em?. The size of §” =
{z+y|z,y € §'}is at least (|S]|?—em?)/|S| which is at least
(27 — 1)y/em. At most /em of these elements have disc
greater than 6A (by lemma 14). Thus at least 2(:—1)+/em
elements of S" satisfy (1+ 2(%1))A < disc(z) < 6A. This
violates the minimality of 1.

Similarly we have Pr[(1 + 53)A < n — disc(z) < 6A] >
2k+/e. An application of lemma 14 completes the proof.

Thus we have proved:

Theorem 11 If f is a linear function from Z,, to Z,, and
n > 54y/mA, then [has a (e/12,(4k + 1)\/e, A/3,(1 +
%A))-approa:imate self-tester on G.

It should be noted that, though our proof as presented
here requires that n > 54./mA, this condition can be
easily relaxed by throwing in some more neighborhood
tests. For instance, if n = @(m'/?), and f(a;) is known
fori=1,...,d+ 1 (where a; is close to m*/4+1 then for
each ¢ we test that P(z + a;) =a P(z) + f(a;) + E(z, a;).
These tests suffice to carry out the proof here with little
modifications to lemma 13.

4.2 Extending the approximate-linear self-
tester to other functions

4.2.1 The Quotient Function

The mod function, f(z, R) = z mod R , and the division
function given by f(z, R) = (z div R,z mod R), are both
linear, but the quotient function f'(z, R) = = div R is not.
However the quotient function can be thought of as a 1-
approximately linear function mapping into Z, because
(21 + z2) div R = @1 div R+ 22 div R — E(z1,22) + (,
where (€ {0,1}, and E(z1,22) = —((z1+22) div 2" R)2"
is an easy to compute function. Hence the approximate-
linear self-tester applies to the quotient function and we
get the following corollary. (Note again that since the
range of the quotient function is Z, no neighborhood tests
are needed.)

Corollary 16 The quotient function has a (e/16, +/e,
0,6) self-tester over the domain [0...2"R].

4.2.2 Floating Point Exponentiation

The floating point exponentiation function f computes
f(z) = 2* for inputs from the domain Dy = {2%2e”p|0 <

1 < 2%, Co < exp < C1}, where Co < C are constants.
(The domain here models a typical floating point word
in a computer with [representing the mantissa and ezp
representing the exponent. Typically Cp is negative and
C4 is positive).

We first restrict our attention to the exponentiation func-
tion working on the domain D = {:]0 < I < 2*¥}. Ob-
serve that D forms a group over modular addition de-
fined as z +' y = (¢ + y)modl. Furthermore f(z +' y) =
f(z) = f(y) * E(z,y), making f a linear function, where
E(z,y) =1ifz+y <1 and 1/2 otherwise. Thus f can
be self-tested over D using our approximate linearity self-
tester. (Do on the other hand does not form a group,
hence our methods are not directly applicable to it.)

Next observe that computing f over D and computing f
over Dg are equivalent in an approximate sense. A pro-
gram computing f over Dy also computes f over D. For
the other direction, observe that Ve € Dg, z =5_x+1)
a+ 2% where a € Z. Thus f(z) ~9-» 2“f(2Lk) (Here the
metric used on the range is d(z, y) = |logz —logy|.) Thus
given a program computing f on the domain D we can get
a program computing f in the domain Dy approximately.
The approximate equivalence of the two domains yields
the following corollary to theorem 11.

Corollary 17 The floating point exponentiation function
for numbers with k bits of precision has a (€/16,+/e,
log(1 + z,c%), log(1 + 2%))-approa:imate-self-tester.

4.2.3 Floating Point Logarithm

The floating point log function f takes an input from the
domain Do = {(1 + 5)2°%P|1 < I < 2¥, —Cp < ezp < C1}
where Co, C1 are constants and computes f(z) = logz. In
this section we outline a self-tester for the floating point
log function.

As in the case of floating point exponentiation, the prob-
lem reduces to testing on the smaller domain D = {(1 +
zik)|1 < 1 < 2*} (computing log2°®? is easy). But un-
like the floating point exponentiation case there seems to
be no obvious group structure on this domain. The nat-
ural binary operation over D, given by a ®b = a * b if
a*b < 2 and a * b/2 otherwise, is not associative. But, it
can be shown that it satisfies the following approximate
associativity property.

(@o(od)~g (a0boc)

The tester for the log function performs the approximate
linearity test and the following neighborhood tests for 7 =

10

1,2,3.

J

J
) %

for random z test if Pz ® o

The correctness of this tester can be proved now in a man-
ner similar to the proof of theorem 11 using the approxi-
mate associativity property instead of associativity. The
details are omitted from this version.

Theorem 12 The floating point logarithm function for
numbers with k bits of precision has a (¢/16,+/€, zk%,
33

%) — approzimate — self — tester.

5 Acknowledgments

We wish to thank Gary Miller for pointing out the ex-
tension of our initial results to finite-dimensional func-
tion spaces. We would also like to thank Manuel Blum
for suggesting the logarithm and floating point expo-
nentiation functions as applications of approximate self-
testing/correcting, and Mike Luby for several technical
suggestions. We would like to thank Shafi Goldwasser,
Sampath Kannan and Umesh Vazirani for several inter-
esting and helpful discussions.

References

[1] Babai, L., “Trading Group Theory for Randomness”,
Proc. 17th ACM Sympostum on Theory of Comput-
ing, 1985, pp. 421-429.

Babai, L., “Local expansion of vertex-transitive
graphs and random generation of finite groups”, Uni-

versity of Chicago TR90-31, October 16,1990.

Babai, L., Fortnow, L., Lund, C., “Non-Deterministic
Exponential Time has Two-Prover Interactive Proto-
cols”, Proceedings of the 31st Annual Symposium on
Foundations of Computer Science,, 1990.

Beaver, D., Feigenbaum, J., “Hiding Instance in Mul-

tioracle Queries”, STACS 1990.

Blum, M., “Designing programs to check their work”,

Submitted to CACM.

Blum, M., Kannan, S., “Program correctness check-
ing ... and the design of programs that check their
work”, Proc. 21st ACM Symposium on Theory of
Computing, 1989.

Blum, M., Luby, M., Rubinfeld, R., “Program Result
Checking Against Adaptive Programs and in Crypto-
graphic Settings”, DIMACS Workshop on Distributed
Computing and Cryptography, 1989.

(8]

Blum, M., Luby, M., Rubinfeld, R., “Self-
Testing/Correcting with Applications to Numerical
Problems,” Proc. 22th ACM Symposium on Theory
of Computing, 1990.

Carter, L., Wegman, M., “Universal Hash Function-

s”, Journal of Comp. and Sys. Sci. 18 (1979) 143-154.

Cleve, R., Luby, M.,“A Note on Self-Testing/ Cor-
recting Methods for Trigonometric Functions”, In-
ternational Computer Science Institute Technical Re-

port TR-90-032, July, 1990.
Coppersmith, D., personal communication.

Lipton, R., “New directions in testing”, Proceeding
of DIMACS Workshop on Distributed Computing and
Cryptography, 1989.

Lund, C., “The Power of Interaction”, University of
Chicago Technical Report 91-01, January 14, 1991.

Lund, C., Fortnow, L., Karloff, H., Nisan, N., “Alge-
braic Methods for Interactive Proof Systems”, Pro-
ceedings of the 31st Annual Symposium on Founda-
tions of Computer Science,, 1990.

Mansour, Y., Nisan, N., Tiwari, P., “The Computa-
tional Complexity of Universal Hashing”, Proceedings
of the 22nd Annual ACM Symposium on Theory of
Computing, 1990.

Nisan, N., “Psuedorandom Generators for Space-
Bounded Computation”, Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing,
1990.

Peterson, W.W., Weldon, E.J., Error Correcting
Codes, MIT Press, Cambridge, Mass.

Shamir, Adi, “IP=PSPACE”, Proceedings of the 31st
Annual Symposium on Foundations of Computer Sci-

ence, 1990.
Szegedy, Mario, manuscript, January 1991.

Van Der Waerden, B.L., Algebra, Vol. 1, Frederick
Ungar Publishing Co., Inc., pp. 86-91, 1970.

11

