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Abstract

The class PCP(f(n), g(n)) consists of all languages
L for which there exists a polynomial-time probabilistic
oracle machine that uses O(f(n)) random bits, queries
O(g(n)) bits of its oracle and behaves as follows: If
x ∈ L then there exists an oracle y such that the ma-
chine accepts for all random choices but if x 6∈ L then
for every oracle y the machine rejects with high proba-
bility. Arora and Safra very recently characterized NP
as PCP(log n, (log log n)O(1)). We improve on their
result by showing that NP = PCP(log n, 1). Our re-
sult has the following consequences:

1. MAXSNP-hard problems (e.g., metric TSP,
MAX-SAT, MAX-CUT) do not have polynomial
time approximation schemes unless P=NP.

2. For some ε > 0 the size of the maximal clique in
a graph cannot be approximated within a factor of
nε unless P=NP.

1 Introduction

The notion of NP-completeness [Coo71, Kar72,
Lev73] has been used since the early seventies to show
the hardness of finding optimum solutions for a large
variety of combinatorial optimization problems. The
apparent intractability of these problems motivated
the search for approximate solutions to these hard op-
timization problems. For some problems this effort
gave good approximation algorithms, but for others it
seemed hard even to find near optimal solutions.

The task of proving hardness of the approxima-
tion versions of such problems met with limited suc-
cess. For the traveling salesman problem without tri-
angle inequality Sahni and Gonzalez [SG76] showed
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that finding a solution within any constant factor
of optimal is also NP-hard. Garey and Johnson
[GJ76] studied MAX-CLIQUE: the problem of find-
ing the largest clique in a graph. They showed
that if a polynomial time algorithm computes MAX-
CLIQUE within a constant multiplicative factor then
MAX-CLIQUE has a polynomial-time approximation
scheme (PTAS) [GJ78], i.e., for any c > 1 there ex-
ists a polynomial-time algorithm that approximates
MAX-CLIQUE within a factor of c. They used graph
products to construct “gap increasing reductions” that
mapped an instance of the clique problem into an-
other instance in order to enlarge the relative gap of
the clique sizes. Berman and Schnitger [BS92] used
the ideas of increasing gaps to show that if the clique
size of graphs with bounded co-degree (degree of the
complement) does not have a randomized PTAS then
there is an ε > 0 such that MAX-CLIQUE cannot
be approximated within a factor of nε in randomized
polynomial-time.

Yet for the most part, not much could be said for
a wide variety of problems until very recently. A con-
nection between two seemingly unrelated areas within
theoretical computer science, established by Feige et
al. [FGLSS91], led to surprisingly strong hardness re-
sults for approximating optimization problems. Feige
et al. exploited a recent characterization of multi-
prover interactive proof systems by Babai, Fortnow
and Lund [BFL91] to obtain intractability results for
approximating MAX-CLIQUE under the assumption
that NP 6⊆ DTIME(nO(log logn)).

Recently Arora and Safra [AS92] improved on this
by showing that it is NP-hard to approximate MAX-
CLIQUE within any constant factor (and even within
a factor of 2logn/(log logn)O(1)

). Their solution builds
on and further develops the techniques of Feige et al.
and yields an elegant new characterization of the class
NP in terms of probabilistically checkable proofs.

Relying on their work we further develop these tech-
niques and show that there is no PTAS for a large
number of combinatorial optimization problems un-
less P=NP. These problems, like traveling salesman
problem with triangle inequality, minimal steiner tree,
maximum directed cut, shortest superstring, etc. be-



long to the class of MAXSNP-hard problems, defined
by Papadimitriou and Yannakakis [PY91] in terms of
logic and reductions that preserves approximability.

Our result also improves the parameters for the
MAX-CLIQUE result of Arora and Safra. We show,
that there is an ε > 0 such that approximating MAX-
CLIQUE within a factor of nε in NP-hard.

In the next section we elaborate on the definition
of the class MAXSNP and then move on to give back-
ground on probabilistically checkable proofs and for-
mulate our main lemma, which is a characterization of
NP that improves on the one in [AS92]. Then we re-
late this characterization to the non-approximability
of MAXSNP. The rest of the paper will be devoted to
the proof of the main lemma.

1.1 The class MAXSNP

Given a maximization problem, formulated as
optF (x) = maxy F (x, y), an approximation algorithm
A is said to achieve worst-case performance ratio α(n)
if for every input x : F (x,A(x)) ≥ α(n)−1optF (x),
where n is the size of x.

In 1988 Papadimitriou and Yannakakis [PY91] us-
ing Fagin’s definition of NP [Fag74] observed that
there is an approximation algorithm which has con-
stant performance ratio for any maximization problem
that is defined by a quantifier free first order formula
ϕ as

optϕ(X) = max
S

: |{z|ϕ(S,X, z)}| , (1)

where z is a vector of constant number of first order
variables.
Definition 1.1 (Papadimitriou-Yannakakis) An
optimization problem opt(x) belongs to MAXSNP if
there is a polynomial-time algorithm that encodes in-
put x into X in 1 such that opt(x) becomes optϕ(X).
They further considered the following type of “con-
stant gap preserving” reductions:
Definition 1.2 (Papadimitriou-Yannakakis) Let
opt and opt′ be two optimization problems defined by
functions F and F ′. We say that opt L-reduces to opt′

if there exist two polynomial time algorithms f and g
and constants α, β > 0 such that for each instance x
of opt:

1. Algorithm f produces an instance x′ of opt′ such
that opt′(x′) ≤ αopt(x).

2. For any y′ algorithm g outputs a y with the prop-
erty:

|F (x, y)− opt(x)| ≤ β|F ′(x′, y′)− opt(x′)|.

A problem opt is MAXSNP-hard (complete) if ev-
ery problem in MAXSNP L-reduces to it (and opt ∈
MAXSNP ). Papadimitriou and Yannakakis showed
that if any of the MAXSNP-hard problems have a
PTAS then every problem in MAXSNP has a PTAS.

MAX-3SAT is a typical MAXSNP-complete prob-
lem: Given a conjunction ϕ of clauses, each a disjunc-
tion of 3 variables or their negation, maximize the the
number of satisfied clauses over all possible assign-
ments to the variables of ϕ.

The following problems are also MAXSNP-
complete or hard: MAX-SAT; MAX-2SAT; INDE-
PENDENT SET-B; NODE COVER-B; MAX-CUT;
MAX-DIRECTED CUT; METRIC TSP; STEINER
TREE; SHORTEST SUPERSTRING; MULTIWAY
CUTS; THREE DIMENSIONAL MATCHING. The
exact definitions can be found in [PY91, PY92, BP89,
BJLTY91, DJPSY92, Kan91].

1.2 Probabilistically checkable proofs

The notion of probabilistically checkable proofs
(PCP) was introduced by Arora and Safra [AS92],
as a slight variation of the notions of randomized or-
acle machines due to Fortnow, Rompel and Sipser
[FRS88] and transparent proofs due to Babai, Fort-
now, Levin and Szegedy [BFLS91]. All these mod-
els are in turn variations of interactive proof systems
[Bab85, GMR89] and multiprover interactive proof
systems [BGKW88].
Definition 1.3 (Arora-Safra [AS92]) A language
L is in PCP(f(n), g(n)) if there is polynomial-time
randomized oracle machine My(r, x) which works as
follows:

1. It takes input x and a (random) string r of length
O(f(n)), where n = |x|.

2. Generates a query set Q(r, x) = {q1, . . . , qm} of
size m = O(g(n)).

3. Reads the bits yq1 , . . . , yqm
.

4. Makes a polynomial-time computation using the
data r, x and yq1 , . . . , yqm

and outputs My(r, x) ∈
{0, 1}.

Moreover the following acceptance conditions hold for
some δ > 0 and for all x:

1. If x ∈ L then there exists a y such that for every
r we have My(r, x) = 1.

2. If x 6∈ L then for every y we have
Probr(My(r, x)) = 0) ≥ δ.



Observe that the definition does not say anything
about the length of y, but it is easy to see that
we can assume without loss of generality that |y| =
2O(f(n))g(n). This definition is a generalization of NP
since it is clear that NP = PCP(0, nO(1)).
Theorem 1 (Arora-Safra [AS92])
NP = PCP(log n, (log log n)O(1)).

We improve on the second parameter:
Theorem 2 NP = PCP(log n, 1).

Much of the paper will be devoted to the proof
of this theorem. The connection to clique approx-
imations, of Feige et al., shows that if NP =
PCP(log n, g(n)), then the clique size cannot be ap-
proximated within a factor of 2Ω(logn/g(n)) unless
P=NP. Thus Theorem 2 has the corollary:
Corollary 3 There is an ε > 0 such that to approxi-
mate MAX-CLIQUE within a factor of nε is NP-hard.

1.3 Related Areas

The results in this paper borrow significantly from
results in the area of self-testing/self-correcting of pro-
grams (see [BLR90], [Rub90]). The areas of self-
testing/correcting are closely connected to the areas
of error-detection/correction in coding theory. In par-
ticular, we observe that results from the former area
can be interpreted as yielding very efficient random-
ized error-detecting and error-correcting schemes for
some well known codes. In Section 4 we use the “lin-
earity tester” of Blum, Luby and Rubinfeld [BLR90] as
an efficient error-detection scheme for the Hadamard
Codes and this plays a crucial role in our proof. Later
in Section 7 we use the “low-degree test” of Rubin-
feld and Sudan [RS92], with its improved efficiency
due to a technical lemma from [AS92], as an efficient
mechanism to test Reed Solomon Codes.

Other ingredients in our proof borrow from work
done in “parallelizing” the MIP=NEXPTIME proto-
col [LS91],[FL92]. The result described in Section 7
uses ideas from their work.

2 PCP and MAXSNP

The methods of [FGLSS91] and [AS92] have been
applied so far only to the clique approximation prob-
lem. Here we show that the whole class of optimiza-
tion problems can be handled in the same vein. The
results of this section are due to independent observa-
tions of Mario Szegedy and Madhu Sudan and appear
in [AMSS92].

Proof checking itself is a maximization problem
from the point of view of the prover: the task is
to maximize the chance of acceptance of the verifier.
More formally, let My(x, r) be a probabilistic oracle
machine and let R be the set of all possible values of
r for a given parameter n. The prover’s intention is
to solve the following optimization problem:

opt(x) = maxy|{r ∈ R|My(x, r) = 1}|. (2)

In this paper we prefer to use the following reformu-
lation of this problem:

opt(x) = max
y

ProbrM
y(x, r). (3)

For fixed values of r and x the value of My(x, r) can
be computed by a circuit, which takes as many input
bits from y as the size of the query set. Let us denote
this circuit by Cx,r. Equation 3 can now be rewritten
as

opt(x) = max
y

Probr(Cx,r(y) = 1) (4)

If M is a PCP (f(n), g(n)) machine for a language L
then there exists a δ such that opt(x) is 1 if x ∈ L and
opt(x) ≤ 1− δ if x 6∈ L.

Conversely, if Cx,r(y) is a family of circuits such
that

1. |r| = O(f(n));

2. given x and r, the circuit Cx,r can be built in
polynomial size;

3. Cx,r(y) feeds from at most g(n) bits of y;

4. for every x the maximization problem correspond-
ing to Equation 4 either has solution 1 or it has
solution less than 1− δ for some fixed δ,

then a probabilistic oracle machine can be built that
recognizes the language x : opt(x) = 1.
Definition 2.1 We say that an optimization problem
opt is well behaved if there is a δ such that for every
x either opt(x) = 1 or opt(x) ≤ 1− δ.

Our observation above can be stated so that there
is a one to one correspondence between well behaved
optimization problems, where the underlying family
of circuits (parameterized by x and r; |r| = f(|x|))
is polynomially constructible and the problems in the
class PCP(f(n), g(n)), where g(n) is determined by
the upper bound imposed upon the input size of cir-
cuits Cx,r where |x| = n.

Let My(x, r) be a machine PCP machine with con-
stant size query sets that recognizes a language L.
Then the size of the members of the the corresponding



family of circuits {Cx,r|x, r} is bounded, since their
input size is bounded. To maximize the number of
satisfiable constant size circuits each feeding from the
same input is in MAX SNP. This can be seen or by
reducing the problem to MAX-3SAT or directly (due
to Yannakakis):

The input structure consists of a (k + 1)-ary re-
lation A and 2k unary relations Bv indexed by the
bit-vectors v of length k. A tuple (r, i1, ..., ik) is in A
if and only if Cx,r inputs bits i1, ..., ik on this choice
(thus, A contains one tuple for each choice). A rela-
tion Bv contains a random choice r if and only if the
bit vector v satisfies Cx,r.

The problem is to maximize over all unary relations
(sets) S (these are the sets of 1 bits in y) the number
of tuples (r, y1, ..., yk) that make the following formula
true:

A(r, y1, ..., yk) ∧ {[B11..1(r) ∧ S(y1) . . . ∧ S(yk)] ∨ . . .

∨ [B0..0(r) ∧ ¬S(y1)... ∧ ¬S(yk)]}

When |r| = f(n), the size of the instance {Cx,r|r}
is 2|r| = 2O(f(n). Taking the advantage of the gap δ
between the optimal value opt(x) for those instances
x that are in L versus those that are not in L, an
algorithm could solve the membership problem for
L, which approximates the opt(x) close enough to 1.
Thus we conclude:
Theorem 4 If MAX SNP complete problems have
PTAS, then PCP (f(n), 1) is in DTIME(2O(f(n))).

3 Outline of the Proof of the Main
Theorem

Feige et al [FGLSS91] elaborated on the techniques
of Babai, Fortnow and Lund [BFL91] to show NP ⊂
PCP(log n loglog n, log n loglog n). The log n loglog n
barrier stood in the way of a full characterization of
NP by PCP. Arora and Safra [AS92] introduced a new
technique – recursive proof checking – that enabled
them to characterize NP as PCP (log n, log log n)
[AS92]. In this section we translate this technique into
our optimization problem scenario. Among the tech-
nicalities we build on data encoding stands out, and
it is also a major motif in [BFL91, BFLS91, AS92].

Our proof of Theorem 2 is arrived at by the follow-
ing basic steps. We observe that the recursion idea of
[AS92] can be generalized to apply to any arbitrary
proof system provided it satisfies certain restrictions.
We shall consider a restricted type of the optimization
problems discussed in Section 2.

Definition 3.1 A well behaved optimization problem
opt(x) = maxy Probr∈U{0,1}f(n)(Cx,r(y) = 1) is re-
stricted with parameters (f(n), g(n)) if

1. We can partition y into a disjoint union of seg-
ments yi, where each segment has size O(g(n))
and that each circuit Cx,r depends only on a con-
stant number of such segments.

2. Each circuit Cx,r has size (g(n))O(1).

The class of languages recognized by such optimization
problems we call OPT (f(n), g(n)).

We remark that PCP (f(n), g(n)) ⊇ OPT (f(n),
g(n)) is straightforward, but the other direction is true
but not so straightforward.

In Sections 4 and 7, we work towards the devel-
opment of such restricted proof systems. The results
of these sections show that NP ⊂ OPT (poly(n), 1)
(Theorem 5) and NP ⊂ OPT (log n, polylog n) (Theo-
rem 8). Theorems 9 and 10 show that the recursion
idea applies to these proof systems, and in particular
shows the following:

1. OPT (f(n), g(n)) ⊂ OPT (f(n) + O(log g(n))
, (log g(n))O(1)) and

2. OPT (f(n), g(n)) ⊂ OPT (f(n) + (g(n))O(1), 1).

This allows us to conclude
that NP ⊂ OPT (log n, polyloglog n) (by composing
two OPT (log n, polylog n) proof systems) and then
by composing this system with the OPT (poly(n), 1)
proof system we obtain OPT (log n, 1) proof system
for NP.

4 A PCP machine for NP with con-
stant number of queries

In this section we prove:
Theorem 5 NP ⊆ PCP(poly(n), 1).

When contrasted with PCP(log n, 1) = NP the
lemma may appear weak, nevertheless a slight vari-
ation of the construction is an essential ingredient of
our proof of Theorem 2.

We construct for 3SAT a My(r, x) as in Definition
1.3. For every x let us turn the 3-CNF formula repre-
sented by x into an arithmetic circuit Cx over GF (2)
with l = O(|x|) gates. Look at x as a Boolean formula
and use DeMorgan’s laws to eliminate the OR gates
and add gates such that the fanin for every gate is at
most 2. Thereafter replace every AND gate by a mul-
tiplication gate and every negation gate with a gate
that computes the function x 7→ 1− x.



If Cx is satisfiable, the successful setting of the in-
put as well as the values of the gates for this input set-
ting will be encoded by the prover into an exponential
size table. The table will also facilitate the lookup of
any quadratic expression of these values. If the table
errs in more than 1% of the cases, the checking will
reveal it with fixed positive probability. Lookups will
be error corrected by random reduction. Looking at
an appropriate random quadratic expression will re-
veal if the circuit makes a computational error. The
checks are performed simultaneously. Only constantly
many bits of the table will be checked.

Introduce variables g1, . . . , gl corresponding to the
gates of Cx. We assume that gl corresponds to the
output gate. We define:

P1 = {
l∑
i=1

cigi | ci ∈ GF (2) for 1 ≤ i ≤ l};

P2 = {c0 +
l∑
i=1

cigi+
l∑

1≤i<j≤l

cijgigj | ci, cij ∈ GF (2)}.

We identify the index set of y with P2 i.e., y will
have lenght l2 + l and for any P ∈ P2 we have a bit
yP in y.

We construct a probability distribution D over P2

that depends on Cx (thus on x). For every 1 ≤ i ≤ l
let Pi be the polynomial that is 0 if and only if the
gate gi functions properly. That is, if gi is supposed to
compute the product of gj and gk, then Pi = gi−gjgk.
Similarly, for gates that compute addition, Pi = gi −
(gj + gk), and for negation gates Pi = gi − gj + 1.
If gi is one of the input gates then Pi = 0. We also
introduce a polynomial Pl+1, which is 0 if and only if
the output gate is 1: Pl+1 = gl − 1.

Define

Pλ =
l+1∑
i=1

λiPi,

where λi are independent uniformly distributed ran-
dom variables over GF (2); λ = (λ1, . . . , λl). Clearly
Pλ ∈ P2. Distribution D is defined by the way a ran-
dom instance is generated: we take a random seed λ
and compute Pλ.
My(x, r) is the value of the predicate I1∧I2∧I3∧I4,

where
I1 : yP + yQ = yP+Q

I2 : yZ + yZ+1 − 1 = 0
I3 : (yR + yR+L1)(yS + yS+L2) = (yT + yT+L1L2)
I4 : yU + yU+V = 0
P,Q,R, S, T, U, Z ∈U P2; L1, L2 ∈U P1; V ∈D P2,

where ∈U means “chosen according to the uniform dis-
tribution” and ∈D means “chosen according to the

distribution D.” P,Q,R,S,T,U,Z,L1,L2 are generated
in an obvious manner; V is generated from a random
seed λ. Altogether 6(1 + l +

(
l
2

)
) + 2l + (l + 1) ran-

dom bits are used. All the computations can be done
in polynomial time. The number of query bits is 13:
q1 = P ; . . . ; q13 = U + V . We are yet to prove that
the acceptance conditions hold.

If x ∈ L then there is an assignment A to the
variables of x that x(A) = 1. Evaluate Cx on A.
We define γi as the value of the gate gi under this
evaluation. Clearly Pi(γ) = 0 for 1 ≤ i ≤ l, and
Pl+1(γ) = 0, where γ = (γ1, γ2, . . . , γl). The latter
because Cx(A) = x(A) = 1.

Define y by yP = P (γ) for P ∈ P2.
I4 holds for every r, since

yU + yU+V = U(γ) + (U + V )(γ) =

V (γ) =
l+1∑
i=1

λiPi(γ).

The latter sum evaluates to 0 since γ was defined
so that each Pi(γ) is 0. To show that I1, I2 and I3
hold is even more obvious.

We prove now that if x 6∈ L then the test fails with
probability at least 0.01 for every y. Assume the oppo-
site, that is that I1∧I2∧I3∧I4 holds with probability
at least 0.99 for some y.

First we show that there is a linear function L from
P2 to GF (2) such that

ProbP∈UP2(yP = L(P )) ≥ 0.98. (5)

Since I1 holds with probability at least 0.99 we have
that Prob(yP + yQ = yP+Q) ≥ 0.99.

The existence of L now follows directly from the
following lemma, due to Blum, Luby and Rubinfeld
[BLR90]. The bound we state here appears in Rubin-
feld [Rub90] and Gemmel et al. [GLRSW91].
Lemma 6 Let g be a function such that

Probx,y(g(x) + g(y) 6= g(x+ y)) ≤ δ/2

then there exists a linear function L such that
Prob(g(x) 6= L(x)) ≤ δ.

Whereas yP is not always L(P ), Equation 5 gives
that for every P ∈ P2:

ProbR∈P2(L(R) = yR+P + yP ) ≥ 0.96. (6)

This fact is referred to as “random reduction.” Three
instances of random reduction occur in the predicate
I3 and one instance in predicates I2 and I4. Our indi-
rect assumption and Inequality 6 allow us to write:

ProbL1,L2∈UP1(L(L1)L(L2) = L(L1L2)) ≥ 0.87, (7)



L(1) = 1, (8)

ProbV ∈DP2(L(V ) = 0) ≥ 0.95. (9)

We claim that L(gi)L(gj) = L(gigj) for all 1 ≤
i, j ≤ l. Consider the matrices Y and Z defined by
Y (i, j) = L(gi)L(gj) and Z(i, j) = L(gigj). Let the
vector v = v(L1) be the vector of the coefficients of
the linear function L1. Similarly w = w(L2) is the
vector of the coefficients of L2. L(L1)L(L2) = vTY w
and L(L1L2) = vTZw. If the linear forms L1 and
L2 are drawn randomly and independently from P1

then the vectors v and w are drawn randomly and
independently from GF (2)l.

We now use the argument of Freivald [Fre79] to
show that Y = Z. It is easily verified that if Y 6=
Z then with probability at least 0.5, vTY 6= vTZ.
Moreover, for vectors α, β ∈ Zn2 and w∈RZn2 , if α 6=
β then with probability at least 0.5, αTw 6= βTw.
It follows that for random v and w, if Y 6= Z then
with probability at least 0.25, vTY w 6= vTZw. Thus
from Inequality 7 we get that Y = Z. This in turn
vindicates our claim.

The values L(gi) for i = 1, . . . , l and L(gigj) =
L(gi)L(gj) determine the value of L(P ) for any P ∈
P2 by linearity. Let us denote L(gi) by γi. Then
L(P ) is expressed as P (γ) (note that we here use that
L(1) = 1).

Now, since x is not satisfiable, L(Pi) = Pi(γ) 6= 0
for at least one of 1 ≤ i ≤ l + 1. But then

ProbV ∈DP2(L(V ) = 0) =

ProbV ∈DP2(V (γ) = 0) =

Probλ∈UGF (2)l(
l+1∑
i=1

λiPi(γ) = 0) = 0.5,

which contradicts Inequality 9. 2

Later we need the following interpretation of the
theorem:
Theorem 7 Let C(y) be a circuit, where |y| = n. We
can construct a family Fc = {Cr(y′)|r ∈ R} of circuits
each of size at most O(1) where y′ is identified with
P2 such that

1. |R| = 2O(2n);

2. If C(y) = 1 then there is a setting of y′ such that

(a) Probr(Cr(y′) = 1) = 1
(b) ProbQ∈P2(yQ + yQ+gi

= gi(yi)) = 1, where
g(y) is the value of gate g for input y.

3. If Probr(Cr(y′) = 1) ≥ 1 − δ then there is a y
such that C(y) = 1 and for every gate gi of C
ProbQ∈P2(yQ + yQ+gi

= gi(yi)) ≥ 1− 4δ.

5 Reducing the number of query bits

In this section we reduce the size of the circuits that
define well behaved optimalization problem. We will
heavily use ideas in [BFLS91, AS92].

5.1 Encoding schemes

An encoding scheme E = {En} is a polynomial
time computable sequence of functions En : {0, 1}n →
{0, 1}p(n), where p(n) is a function that is polynomial
in n. Moreover there is a δ > 0 such that for every n if
x and x′ are two different strings of length n then the
hamming distance dist(x, x′) between E(x) and E(x′)
is at least δn. An encoding scheme can be constructed
using the Reed-Solomon codes [MS81]. For an encod-
ing scheme we define the decoding E−1(z) as the x
that minimizes dist(E(x), z).

5.2 Circuit verification

The theorem of proof verification in [BFLS91] we
turn into circuit verification.
Theorem 8 Let C(y) be an arbitrary circuit. Then
a polynomial size family of circuits Cr(y′, y′′) can be
computed in polynomial-time from C and r with the
properties:

1. Each circuit has size (log n)O(1) and each of them
depends only on a constant number of input bits
from y′.

2. If Cx(y) = 1, then there exists a y′′ such that
Probr(Cr(E(y), y′′) = 1) = 1.

3. If Probr(Cr(y′, y′′) = 1) ≥ 1 − δ then
C(E−1(y′)) = 1.

The theorem can be generalized to circuits with
constant number of inputs y1, y2, . . . , yc:
Theorem 9 Let C(y1, y2, . . . , yc) be an arbitrary cir-
cuit. Then a polynomial size family of circuits
Cr(y′1, . . . , y

′
c, y
′′) can be computed in polynomial-time

from C and r with the properties:

1. Each circuit has size (log n)O(1) and each of them
depends only on a constant number of input bits
from y′i for all i = 1, 2, . . . , c.

2. If Cx(y) = 1, then there exists a y′′ such that
Probr(Cr(E(y1), . . . , E(yc), y′′) = 1) = 1.

3. If Probr(Cr(y′, y′′) = 1) ≥ 1 − δ then
C(E−1(y′1), . . . , E−1(yc)) = 1.



Theorem 10 In Theorem 9 we can also assume that
y′′ in segmented in such a way that the corresponding
family of circuits meets the the segmentation require-
ment in Definition 3.1.

The proof of this theorem is the topic of Section 7.

5.3 The reduction step

We show that we can take a well behaved optimiza-
tion problem and use the circuit verification results
from the previous section and obtain another well be-
haved optimization problem that recognizes the same
language but where the circuits are much smaller. The
basic idea is to use the circuit verification to verify
that the circuits describing the optimization problem
is satisfied.
Theorem 11 OPT (f(n), g(n)) ⊂ OPT (f(n) +
O(log g(n)), (log g(n))O(1)).
Proof: Let opt(x) = maxy Probr(Cx,r(y) = 1) be a
well behaved and restricted optimization problem that
recognizes a language in OPT (f(n), g(n)). We con-
struct another opt′ as follows. Fix x and r. Without
loss of generality for notational simplicity we assume
that the circuit Cx,r(y′, y′′) relies only on segments
y1, . . . , yc. Consider the family of circuits Fx,r =
{Cx,r,r′(y′1, . . . , y′c, y′′r )|r′)} given by Theorem 10.

The set of circuits
⋃
r Fx,r is such that

1. each circuit can be computed from x, r and r′ in
polynomial time;

2. each circuit has size logO(1) g(n);

3. the new input set y′ =
⋃
i y
′
i ∪
⋃
r yr can be seg-

mented in the following way: each yr is segmented
as required in Theorem 10 and the segment size
is logO(1) g(n). Let us decompose the first union
(each y′i) into segments of size 1. As it is required
in Theorem 10, each Cx,r,r′ takes only a constant
number of bits from

⋃
i y
′
i and a constant number

of segments from
⋃
r yr.

We have to argue now that the optimization prob-
lem

opt′(x) = max
y

Probr,r′(Cx,r,r′(y′) = 1) (10)

is well behaved and the underlying language is the
same as for opt.

Assume opt(x) = 1. then if we set each y′i to E(yi)
for (1 ≤ i ≤ l), where yi (1 ≤ i ≤ l) is a solution of
opt(x), then by Theorem 7 for every r there exists a
y′′r such that under this setting α of y′ all the circuits
Cx,r,r′ output 1. Thus Probr(Cx,r,r′(α) = 1) = 1.

Assume now that opt(x) ≤ 1 − δ. Let us denote
the set of all possible random strings r by R. Let
y′ be arbitrary. Let yi = E−1(y′i) (1 ≤ i ≤ l).
Let us denote by B the set of those r’s for which
Cr,x(y1, y2, . . . , yc) = 0. By our assumption |B|/|R| ≤
1− δ′. We have

Probr,r′(Cx,r,r′(y′) = 1) =

∑
r∈R

Probr′(Cx,r,r′(y′) = 1)
|R|

≤

|B|(1− δ) + (|R| − |B|)
|R|

≤ 1− δδ′. 2

6 The final verification

Theorem 12 Let E be an arbitrary encoding scheme
with parameter p(n). Let C(y1, y2, . . . , yc) be an ar-
bitrary circuit of size n. Then there is a family
F = {Cr|r ∈ R} of circuits on inputs y′1, . . . , y

′
c, y
′′,

δ > 0 such that:

1. |R| = 2n
O(1)

.

2. Each circuit has size O(1) and can be constructed
in polynomial time given x and r.

3. If C(y) = 1, then there exists a y′′ such that
Probr(Cr(E(y1), . . . , E(yc), y′′) = 1) = 1.

4. If Probr(Cr(y′1, . . . , y
′
c, y
′′) = 1) ≥ 1 − δ then

C(E−1(y′1), . . . , E−1(yc)) = 1, where δ > 0 is
some constant depending only on c.

Proof Let C ′(y1, y2, . . . , yc) be such a circuit that we
obtain from C by adding extra gates to it to compute
all the bits of each E(yi) for i = 1 . . . c. We denote by
gi,j the gate that computes the jth bit of E(i) (E(i, j)).
Build a circuit verification scheme for C ′ as in Theo-
rem 7. We identify y′′ with the bits of this verification
scheme. Let each y′i have length p(|yi|). Now flip a
coin.

1. If tail, then by further coin flips choose a circuit
from the verification scheme for C ′.

2. If head, then pick randomly a number between 1
and c, and compare a randomly chosen bit y′i[j]
of y′i with the value that the scheme y′′ gives for
E(i, j). To compute this bit we have to look at yQ
and ygi,j+Q, where Q is a random element of P2.
The check yQ + ygi,j+Q = y′i[j] can be computed
by a constant size circuit Ci,j,Q.



Family F is a union of {Ci,j,Q|1 ≤ i ≤ c; 1 ≤ j ≤
p(|y′i|);Q ∈ P2} and the circuits of the circuit verifi-
cation scheme for C ′. The multiplicity of each circuit
in the family is proportional to the probability with
which it occurs in the above checking procedure. We
leave the easy proof to the reader that the scheme
satisfies the conditions of the theorem. 2

Using the recursion idea (Theorem 11) and the
above circuit verification procedure we obtain:
Theorem 13 OPT (f(n), g(n)) ⊂ OPT (f(n) +
(g(n))O(1), 1).

7 Segmentation

The major obstacle is that the proof y can not be
segmented in such a way that the verifier only accesses
a constant number of segments. We overcome this by
showing that we can transform an unsegmented proof
into a segmented proof where the verifier only accesses
a constant number of segments.
Lemma 14 For any polynomial-time computable col-
lection (the old query set)

{Qr ⊂ {1, 2, . . . , n}|r ∈ {0, 1}t}

then there exist a polynomial-time computable family
of circuits Dr,r′ and a δ > 0 such that for every string
y such that |y| = n there exists a string ỹ such that:

1. We can partition ỹ into segments ỹ1, ỹ2, . . . , ỹm̃
all of length l = O(k log2 n), where k =
maxr |Qr|.

2. Each circuit has size lO(1) and has inputs from
only a constant number of segments. The cir-
cuit Dr,r′ outputs either reject or a string of
length |Qr|. Furthermore r′ has length O(log n+
log k logn
log logn ).

3. For all r, r′ we have that Dr,r′(ỹ) = y[Qr], where
y[Qr] is the substring of y indexed by Qr.

4. For all z ∈ {0, 1}m̃ if there exists an r0 such that

Probr′(Dr0,r′(z) = reject) ≤ δ

then there exists a y such that for all r:

Probr′(Dr,r′(z) 6∈ {reject, y[Qr]}) ≤ 3δ

Proof: The proof relies on the low degree code E
[BFL91, BFLS91] and a technical lemma about check-
ing E [RS92].

E(y) is a function E(y) : GF (p)d → GF (p),
where d = dlog n/ log log ne and p is a prime in
[(k log n)c, 2(k log n)c] for some constant c. Let I =
{1, 2, . . . dlog ne} ⊂ GF (p). Since |Id| ≥ n we can
use Id as indexes of the bits of y. Thus we can look
at y as a function from Id to {0, 1}. Given a func-
tion y : Id → {0, 1} there exists a unique multivariate
polynomial E(y) over GF (p) that for all α ∈ Id agrees
with y and the degree of any variable is bounded by
|I|−1. Note that the “total” degree of E(y) is at most
d|I|.

The new string ỹ contains three tables:

• A table Y indexed by GF (p)d, where segment α
contains E(y)(α).

• A table Ylines that is indexed by (GF (p)l)2,
where segment (α, β) contains the polynomial
E(y)(tα+ (1− t)β).

• A table T that is indexed by {0, 1}t × GF (p)d.
Let Qr = {q1, q2, . . . , qk}. The segment (r, α)
contains a polynomial pr,α of degree at most
k(|I|−1)d such that pr,α(0) = E(y)(α), pr,α(1) =
E(y)(q1), . . . , pr,α(k) = E(y)(qk).

The pr,α exists, since it is possible to construct,
by interpolation, a parameterized curve Cr,α :
Fp → F lp such that Cr,α(0) = r, Cr,α(1) =
q1, . . . , Cr,α(k) = qk and such that each coordi-
nate function of Cr,α is a polynomial of degree k.
Now pr,α(t) = E(Y )(Cr,α(t)).

Let r′ = (α, β, t, t′) where α, β,∈ GF (p)d and t, t′ ∈
{k+1, . . . , p−1}. The circuit Dr,r′ checks that Y [tα+
(1 − t)β] = Ylines[α, β](t), T [(r, α)](t′) = Y [Cr,α(t′)].
If any of the checks fail then Dr,r′ rejects otherwise it’s
ith output for i = 1, . . . , k will be the least significant
bit of T [(r, α)](i).

Note that given these definition it follows that

∀r, r′ : Dr,r′(ỹ) = y[Qr].

Thus we only need to prove the 4th claim, hence
assume z = (Y, Ylines, T ) is a string and for some r0

we have that

Probr′(Dr0,r′(z) 6= reject) ≥ 1− δ.

This implies that

Prob(α,β,t)(Y [tα+ (1− t)β] 6= Ylines[α, β](t)) < δ.

As in Section 4 we need a code checking lemma.
This one is due to Rubinfeld and Sudan [RS92].



Lemma 15 (Rubinfeld-Sudan [RS92]) Let g :
GF (p)d 7→ GF (p) be a function and let glines be
a function that given α, β ∈ GF (p)d determines a
polynomial pα,β of degree at most k such that p =
O((kd)c), where c is some universal constant, and

Probα,β,t(g(tα+ (1− t)β) 6= glines(α, β)(t)) ≤ δ

then there exists a multivariate polynomial f of degree
at most k such that Probα(g(α) 6= f(α)) ≤ 2δ.

Thus we can conclude that there exists a polyno-
mial g such that

Probα(Y [α] 6= g(α)) < 2δ. (11)

Let yi be the least significant bit of g(i), where i ∈ Id
(remember that we index the bits in a n bit string by
Id).

Let r be an arbitrary random string. If T [(r, α)] 6=
g(Cr,α) then for at most k(|I| − 1)d values of t we
have that T [(r, α)](t) = g(Cr,α(t)). Note that Cr,α(t)
is uniformly distributed over GF (p)d when α, t ∈U
GF (p)× {k + 1, . . . , p− 1}. Thus

Probr′(Dr,r′(z) 6∈ {reject, y[Qr]})
= Probr′(T [(r, α)] 6= g(Cr,α) and

T [(r, α)](t) = Y [Cr,α(t)])
≤ Probr′(T [(r, α)] 6= g(Cr,α) and

T [(r, α)](t) = g[Cr,α(t)]) + 2δ

≤ k(|I| − 1)d
p− k − 1

+ 2δ < 3δ 2

8 Further Work

Several questions remain open. There is a big gap
between the (negligible) constants in the hardness re-
sults and the approximation ratio currently achievable
for the MAXSNP problems. For example, MAX SAT
can only be approximated to a ratio of 4/3 [Yan92],
while MAX CUT and vertex cover can only be ap-
proximated to a ratio of 2 [GJ79, Mot92].

The recent results of Lund and Yannakakis [LY92]
showed that the chromatic number is as hard to ap-
proximate as the clique and thus solce a long-standing
open problem. They also show that the logarithmic
ratio achievable for the set cover problem is essentially
the best possible. Can the former result be extended
to the case of 3-colorable graphs?

Another open problem is that of approximating the
longest path in a graph. Based on our results, Karger,
Motwani and Ramkumar and Azar [KMR92, Azar92]

show that unless P = NP there is no constant ratio
approximation algorithm for longest paths. It is con-
jectured that this problem is as hard to approximate
as clique or chromatic number.
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