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Abstract

We consider the problem of correcting programs that compute multivariate polynomials
over large finite fields and give an efficient procedure to transform any program that computes a
multivariate polynomial f correctly on a 1/2 + δ fraction of its inputs (δ > 0) into a randomized
program that computes f correctly on every input with high probability. This shows that
programs computing polynomials are “resilient” to a high fraction of errors. The resilience
shown in this paper is better than that of the previously known correction procedures [2, 7] and
is close to the information theoretic optimum. The running time of the correction procedure
is polynomial in the degree of f , the number of variables, and 1

δ , where calls to the incorrect
program are assessed a unit cost per call. An important consequence of this result is that the
n× n permanent is resilient to errors of up to 1/2− p(n) for any polynomial p(n).
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1 Introduction

The study of self-correcting programs was independently started by [4] and [8] as a mechanism to
transform programs that are usually correct into randomized programs that are always correct, with
high probability. In this paper, we consider the problem of self-correcting programs that compute
multivariate polynomials. Formally, the problem we consider here is the following:

Problem 1
Given:

1. A program P that computes, on all but an ε fraction of inputs from the domain Fn, some
multivariate polynomial f of degree at most d on its input (where F is some finite field).

2. b1, b2, · · · , bn ∈ F
Question: What is f(b1, · · · , bn)?

The main question investigated in this paper is how large ε can be so that the problem can still
be solved efficiently (for large enough finite fields F ). In the terminology of Gemmell et al. [7]
this is the resilience of the class of multivariate polynomials of degree d. Gemmell et al. show that
multivariate polynomials are resilient to an error close to 1/4. The running time of their algorithm
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appears sensitive to the structure of the finite field; in particular, the time bound that they prove
depends on the order of certain primitive roots of unity in the field. This paper improves upon
their result in two ways: our self-corrector can tolerate an error arbitrarily close to 1/2 and its
running time does not depend in any way upon the structure of the finite field over which the
computation is performed. We do require though that the finite field be large enough i.e., its size
must be Ω((1

δ + d)2), where δ = 1/2− ε. It may be noted that this resilience is almost optimal, in
the sense that if the parameter ε becomes equal to half then there might be two polynomials that
agree with the program at half the inputs and hence the answer is not uniquely specified.

The resilience is achieved by first reducing the problem of correcting multivariate polynomials to
that of correcting univariate polynomials. This reduction is similar to the reduction of Beaver and
Feigenbaum [2] in that both restrict their attention to the program’s computation over a smaller
subdomain, where the function can be expressed as a univariate polynomial in some input. The
main improvement in our result is achieved by ensuring that on the smaller domain the program is
erroneous on approximately the same fraction of the inputs as on the entire input space. Section 3
describes the details of the reduction. The second part of the correction procedure, correcting
univariate polynomials when the error of the program computing the polynomial is close to half, uses
an elegant technique of Berlekamp and Welch [5], which they present as part of a new mechanism
for correcting Reed-Solomon codes. The main advantage of the Berlekamp-Welch mechanism is
that it removes, from the running time analysis, any dependence on the structure of the finite field.
We include a description of this procedure in the Appendix.

2 Definitions

Notation : We use x ∈R D to denote that x is chosen uniformly at random from D.

Definition 2.1 A Program P ε-computes f on the domain D if

Pr
x∈RD

[P (x) 6= f(x)] < ε

Definition 2.2 An ε-self-corrector for f on a domain D is a randomized algorithm C that uses
P as a black box, such that if P ε-computes f on D, then

∀x ∈ D Pr
[
CP (x) = f(x)

]
≥ 2/3

(Here the probability is computed over the random coin flips of C.)

Definition 2.3 A function f is ε-resilient, over a domain D, if there exists an ε-self-corrector
for f on domain D.

3 Self-Correcting Multivariate Polynomials

For δ > 0 and d a positive integer, let F be a finite field of size Ω((1
δ + d)2). Let f : Fn 7→ F be

a multivariate polynomial of degree at most d. We restate the problem to be solved here:
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Problem 2
Given : P that (1/2− δ)-computes f and b1, b2, · · · , bn ∈ F .

Output : f(b1, b2, · · · , bn).

In this section we describe a randomized reduction from Problem 2 to a problem of univariate
self-correction.

We construct (by careful sampling from Fn) a domain D ⊂ Fn parametrized by a single variable
x (i.e., the points in the domain D are given by {D(x)|x ∈ F}), such that D satisfies the following
properties:

1. The function f ′(x) ≡ f(D(x)), is a polynomial of degree at most 2d in x.

2. b̂ ≡< b1, · · · , b2 >∈ D; In fact we will ensure b̂ = D(0).

3. With high probability, P computes f on approximately the same fraction of inputs from the
domain D as from the domain Fn.

The three properties listed above help us as follows: The first property ensures that we are looking
at univariate polynomials over the domain D, while the second property makes sure that this helps
us find f(b1, · · · , bn). The last property ensures that we do not lose too much information about f
during the process of the reduction.

The properties 1 and 3 are contrasting in nature. Property 1 requires the domain D to be nicely
structured while Property 3 is what would be expected if D were a random sample of Fn. In order
to get both properties we pick D to be a pairwise independent sample of Fn. In particular the
following sampling scheme works nicely.

Pick α̂ and β̂ uniformly and randomly from Fn

Dα̂,β̂(x) ≡ α̂ ∗ x2 + β̂ ∗ x+ b̂

Dα̂,β̂ ≡ {Dα̂,β̂(x)|x ∈ F}

Each coordinate of Dα̂,β̂(x) is a polynomial of degree 2 in x. Hence f ′ is a polynomial of degree

at most 2d in x. Also Dα̂,β̂(0) = b̂. Thus we see that Dα̂,β̂ as picked above satisfies properties
1 and 2. 1 (The following example may help clear the description above: Let F be GF (17) and
f(x1, x2) = x2

1 + x1x2. Say we are interested in f(3, 4). Let α̂ =< 1, 2 > and β̂ =< 3, 0 >. Then
Dα̂,β̂(x) =< x2 + 3x+ 3, 2x2 + 4 >. f ′(x) = f(x2 + 3x+ 3, 2x2 + 4) = 3x4 + 12x3 + 9x2 + 11x+ 4
is a degree 4 polynomial in x. Moreover f ′(0) = f(3, 4). Thus f ′, Dα̂,β̂ satisfy the properties 1 and
2 listed above.)

The following claim establishes that Dα̂,β̂ forms a pairwise independent sample of Fn.

1The idea of substituting low-degree polynomials in a single variable for the different variables, is not a new one.
In particular, this has been used by Beaver et al. [3], to reduce the number of oracles used in instance hiding schemes.
The underlying property that they extract is similar. They use the fact that substitution by degree t-polynomials
yields t-wise independent spaces.
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Claim 1 For a finite field F , â1, â2 ∈ Fn, and for distinct x1, x2 ∈ F \ {0},

Pr
α̂,β̂

[Dα̂,β̂(x1) = â1 and Dα̂,β̂(x2) = â2] =
1
|F |2n

Proof: For each coordinate i ∈ [n], there exists exactly one degree 2 polynomial pi in x, such
that pi(0) = bi, pi(x1) = (â1)i and pi(x2) = (â2)i. Thus when we pick a random polynomial pi
such that pi(0) = bi for the ith coordinate, the probability that pi(x1) = (â1)i and pi(x2) = (â2)i,
is 1
|F |2 . Since the events are independent for each coordinate, we have

Pr
α̂,β̂

[Dα̂,β̂(x1) = â1 and Dα̂,β̂(x2) = â2] =
1
|F |2n

2

The above claim establishes that any set S of the form S ⊂ {Dα̂,β̂(x)|x ∈ F \ {0}} is a pairwise
independent sample of Fn. The following lemma gives a well-known property of pairwise inde-
pendent spaces. The result follows from the fact that Chebychev’s inequality holds for pairwise
independent random variables (cf. Luby [9]).

Lemma 2 (cf. [9]) If S is a pairwise independent sample of elements from some domain D and
I maps elements of D to the range {0, 1}. Then for positive c

Pr
[
|Ex∈RS [I(x)]− Ex∈RD[I(x)]| ≥ c/

√
|S|
]
≤ 1/c2

Corollary 3 If S ⊂ Fn is a pairwise independent sample of t elements from Fn, and P (1/2− δ)-
computes f over the domain Fn, then the probability that P computes f on at least t(1/2+δ)−c

√
t

points from S is at least 1− 1
c2

.

Proof: Follows from Lemma 2 by setting I as follows

I(x) =

{
1 if P (x) = f(x)
0 otherwise

2

Let k denote the number of points from S where P does not compute f . Then, if t > ( cδ +d)2, with
probability at least (1−1/c2), we have that k < (t+d)/2. Thus with high probability, we can reduce
the problem of self-correcting f at b̂ to the problem of finding f ′ (recall that f ′(x) = f(D(x))) and
evaluating f ′ at 0. Formally, we wish to solve the following problem:

Problem 3
Input: t pairs (xi, yi) such that for all but k < (t+d)/2 values of i, yi = f ′(xi), for some univariate
polynomial f ′ of degree at most 2d.

Output: f ′

This problem arises in various ways in coding theory and can be solved efficiently. If the xi are
of the form ωi, such that ωt = 1, then the problem becomes one of correcting generalized BCH
codes. If the xi’s are all the elements of F , then the above is the error correction problem for
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Reed-Solomon codes. In the general form as it is stated above (with no constraints on the forms
of the xi’s), the problem can still be solved efficiently and directly due to an elegant method of
Berlekamp and Welch, a description of which is included in the appendix. Combining the solution
of Berlekamp and Welch with the reduction given above, we get the following theorem.

Theorem 4 For δ > 0, if F is finite field of size Ω((1
δ +d)2), and if f is a multivariate polynomial

in n variables over F , then f is (1/2−δ)-resilient. The time taken by the self-corrector that achieves
this resilience is polynomial in n, 1

δ and the degree f .

By using Lipton’s [8] observation that the permanent of an n×n matrix is a multivariate polynomial
in n2 variables of degree n, we get the following corollary :

Corollary 5 The n×n permanent is resilient (in time polynomial in n) to errors of 1/2− 1/p(n)
for any polynomially growing function p(n).

4 Open Problems

We provide randomized correction procedures for multivariate polynomials which can tolerate error
close to 1/2. The correction works only for large finite fields. An interesting open question would
be to solve this problem for much smaller finite fields (say, of constant size).

Another question of interest is the following univariate polynomial reconstruction problem. ”Given
a black box whose output agrees with some polynomial a constant fraction (say 10%) of the time,
is it possible to reconstruct a polynomial which agrees with the black box on 10% of its output?”
Ar et al. [1] have shown a wide variety of applications to this problem. They also give a solution
to this problem under the assumption that the error of the black box (on the remaining 90% of the
input) is not arbitrary but in some sense structured.

A solution to the univariate reconstruction problem would also be able to improve on the following
result of Feige and Lund [6]. They show that unless the polynomial heirarchy collapses, the per-
manent cannot be computed correctly on even an exponentially small fraction of the inputs (over
large finite fields). A solution to the univariate reconstruction problem would show that unless #P
= BPP (a weaker assumption than that used by Feige and Lund), no program can compute the
permanent correctly on 10 % of the inputs (over sufficiently large finite fields).
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A The Berlekamp-Welch Decoder

This section presents the solution to the following problem first introduced by Berlekamp and Welch
as part of a novel method for decoding Reed-Solomon codes.

Problem 4
Given : m pairs of points (xi, si) ∈ F ×F such that there exists a polynomial K of degree at most
d such that for all but k values of i, si = K(xi), where 2k + d < m.

Question : Find K

Consider the following set of equations:

∃W,K deg(W ) ≤ k,deg(K) ≤ d,W 6= 0, and ∀i W (xi) ∗ si = W (xi) ∗K(xi) (1)

Any solution W,K to the above system gives a solution to Problem 4. (Notice that we can cancel
W from both sides of the equation to get si = f(xi), except when W (xi) = 0, but this can happen
at most k times.) Conversely, any solution K to Problem 4 also gives a solution to the system of
equations1. ( Let B = {xi|si 6= f(xi)}. Let W (z) be the polynomial

∏
x∈B(z − x). W,K form a

solution to the system 1.) Thus the problem can be reduced to the problem of finding polynomials
K and W that satisfy (1). Now consider the following related set of constraints

∃W,N deg(W ) ≤ k, deg(N) ≤ k + d,W 6= 0, and ∀i W (xi) ∗ si = N(xi) (2)

If a solution pair N,W to (2) can be found that has the additional property that W divides N ,
then this would yield K and W that satisfy (1). Berlekamp and Welch show that all solutions to
the system (2) have the same N/W ratio (as rational functions) and hence if equation (2) has a
solution where W divides N , then any solution to the system (2) would yield a solution to the
system (1). The following lemma establishes this invariant.

Lemma 6 Let N,W and L,U be two sets of solutions to (2). Then N/W = L/U .

Proof: For i, 1 ≤ i ≤ m, we have

L(xi) = si ∗ U(xi) and N(xi) = si ∗W (xi)

⇒ L(xi) ∗W (xi) ∗ si = N(xi) ∗ U(xi) ∗ si
⇒ L(xi) ∗W (xi) = N(xi) ∗ U(xi) (by cancellation)

(Cancellation applies even when si = 0 since that implies N(xi) = L(xi) = 0.) But both L ∗W
and N ∗ U are polynomials of degree at most 2k + d and hence if they agree on m > 2k + d points
they must be identical. Thus L ∗W = N ∗ U ⇒ L/U = N/W 2

All that remains to be shown is how one obtains a pair of polynomials W and N that satisfy (2).
To obtain this, we substitute unknowns for the coefficients of the polynomials i.e., let W (z) =∑k
j=0Wjz

j and let N(z) =
∑k+d
j=0 Njz

j . To incorporate the constraint W 6= 0 we set Wk = 1. Each
constraint of the form N(xi) = si ∗W (xi), i = 1 · · · ,m becomes a linear constraint in the 2k+d+1
unknowns and a solution to this system can now be found by matrix inversion.

It may be noted that the algorithm presented here for finding W and N is not the most efficient
known. Berlekamp and Welch [5] present an O(m2) algorithm for finding N and W , but proving
the correctness of the algorithm is harder. The interested reader is referred to [5] for a description
of the more efficient algorithm.
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B Pairwise Independent Sampling

For a real valued random variable Z, let E[Z] denote its expected value
and let V [Z] ≡ E[(Z − E[Z])2] denote its variance.

Lemma 7 If S is a pairwise independent sample of elements from some domain D and I maps
elements of D to the range {0, 1}. Then for positive c

Pr
[
|
∑
x∈S I(x)
|S|

− E[I(x)]| ≥ c/
√
|S|
]
≤ 1/c2

Proof: Since S is a pairwise independent collection of elements from D we have

E

[∑
x∈S I(x)
|S|

]
= E [I(x)] and V

[∑
x∈S I(x)
|S|

]
=
V [I(x)]
|S|

By Chebychev’s inequality, we have for any random variable Y

Pr
[
|Y − E(Y )| > c

√
V (Y )

]
≤ 1/c2

Applying this inequality to the variable
∑

x∈S
I(x)

|S| , we get

Pr
[
|
∑
x∈S I(x)
|S|

− E[I(x)]| ≥ c/
√
|S|
]
≤ 1/c2

2
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