Chapter 1
Self-Testing Polynomial Functions Efficiently and overiRaal Domains

Ronitt Rubinfeld®™Madhu Sudari

Abstract

In this paper we give the first self-testers and checkers éyrnomials over rational and integer
domains. We also show significantly stronger bounds on thaefcy of a simple modification of the
algorithm for self-testing polynomials over finite fieldvgn in [8].

1 Introduction

Suppose someone gives us an extremely fast prodPatimat we can call as a black box to compute a
function f. Rather than trust thd® works correctly, self-testing progranfor f ([5]) verifies that program

P is correct on most inputsvjthoutassuming the correctness of another program that is asuttiffis one
that computes the function), andaelf-correcting prograng[5] [9]) for f takes a progran®, that is correct
on most inputs, and uses it to comptfteorrectly on every input (with high probability). Both assé” only

as a black-box and in some precise way are not allowed to ctentpe functionf. Self-testing/correcting

is an extension of program result checking as defined in4B]Jf f has a self-tester and a self-corrector,
then f has a program result checker.

Our first result concerns checking and self-testing oveomat and integer domains. To date, most self-
testing/correcting pairs and checkers that have been feamgumerical functions (cf. [5][2][9][8]) have
been for functions over finite fields (for example polynonfiaictions over finite fields [2][9] [8]) or for
domains for which a group structure has been imposed on a §infiset of the domain (for example integer
multiplication and division functions [5], and floating mbilogarithm and exponentiation functions [8]). In
[7] there is a checker that can also be made into a self-témtenatrix multiplication over any field, but
self-correctors for matrix multiplication are only knowwes finite fields [5].

Many of the self-testers, for example those for linear angimmnial functions [5][8], have been based on
showing that a program which satisfies certain easy to vedhgditions on randomly chosen inputs must be
computing the correct function on most inputs.

*Hebrew University. This work was done while the author waP@ceton University. Supported by DIMACS (Center for
Discrete Mathematics and Theoretical Computer Scienc®f;-NTC88-09648. Part of this research was also done wiilauthor
was visiting Bellcore.

fU.C. Berkeley. Research supported by NSF PY| Grant CCR 88262



Finite fields are much easier to work with to this end becaleg &re conducive to clean simple arguments
about distributions, i.e. ify is chosen uniformly at random from finite field, then for fixeda,b € F,
a+y, by, a + by are all uniformly distributed i (shifting and scaling the distribution gives back the same
distribution). This is not at all the case for nontrivial tilsutions over fields of characteristic In fact, if D

is a finite subset of’, andy is chosen uniformly at random fro, then for most,, b € D, a+vy, by, a+ by

are not even likely to be i. However, functions over such fields, for example ratiorahdins, are of
great importance for application programming. A first stefhie direction of finding self-testing/correcting
pairs for polynomial functions is given in [8], where a setfrrector for polynomial functions over fixed
point rational domains of the form, , = {%| integers |y| < r},r € Z,s5 € 2\ {0} is given (note that
this includes integer domains and fixed point arithmetic dims). The self-corrector needs a program that
is known to be correct for a large fraction of inputs over géarand finer precision domain than the one for
which the self-corrector will be able to compute the functamrrectly.

We show that there is a very simple way to actually verify thatprogram is good enough for the polynomial
function self-corrector over fixed point rational and irgeglomains, without assuming the correctness of
another program that computes the polynomial: we give atsstér for any (multivariate) polynomial
function over fixed point rational and integer domains. Twesalso give the first checkers for polynomials
over rational and integer domains.

A first approach to testing the program might be to attemptteerpolate the polynomial being computed by
the program and to verify that the program’s output at rangoints is equal to the value of the interpolated
polynomial. This approach is not desirable because botithepolation procedure and the evaluation of
the polynomial at random points make the tester at leastffamuitias the program, and not different in the
sense defined by [3] [4]. However, similar approaches haea biseful in the area of interactive proofs [1]
[6] [10], which only requires that the procedure be in polyrial time.

The self-tester for polynomials over finite fields in [8] isneposed of two parts: One isdegree test a

test which verifies that a prograi is computing a function which is usually equal to some (Jadeigree

d polynomial g. The other is arequality test a test which verifies that polynomialis identically equal

to polynomial f. The equality test uses the fact thhatan be computed easily usitg (this follows from

the fact thatP is usually equal tg and because there is a self-corrector for polynomial fonetiover finite
fields [2][9]) and verifies thay = f on at leas{d + 1)" points (wheren is the number of variables). Then
since two different degre polynomials can agree on fewer th@h+ 1)" points, if the program passes the
test, it must be computing the correct degdgmlynomial. The second part can be easily extended to work
on rational domains since there is a self-corrector oven slatains.

We concentrate on showing that there is a degree test whiidftesdhat the total degree of the polynomial is
at mostd over the rationals. The ideas used to get such testers aokieth@ver the new domains seem quite
general and it is hoped that they will be applicable to mahgioproblems, for example matrix determinant,
matrix rank and polynomial multiplication over the ratitmand reals.

Our second result concerns the self-tester for polynononas finite fields in [8], which has been shown to
work for multivariate polynomials as well by Shen [11]. Inrpeular, we are interested in the efficiency of
the degree test, since often testing is done online (i.eneeuser decides to use the program) [5]. Efficient



degree tests are interesting for another reason in additiprogram testing: they have been used as a tool in
order to get multi-prover interactive proofs for non-deteristic exponential time complete functions in [1].
[6] have in turn used the interactive proof in [1] in order tdain results about the difficulty of approximating
the size of the clique, in which the strength of the resultetiels on the efficiency of the interactive proof.
Although their results are not improved by our test, our teshore efficient in situations where the total
degree is smaller than maximum degree of any variable ntielfipy the number of variables.

The degree test given in [8][11] makéX d?) tests, for a total o) (d?) calls, to the program in order to
verify that the total degree of the polynomial is at m@sOn the other hand, it is easy to see that at Idast
calls to the program are needed. We narrow this gap by shavata slight modification of the self-tester
needs onlyO(d) tests and)(d?) total calls. We conjecture that our algorithm (or a slightdification of

it) requires onlyO(1) tests andD(d) calls. The degree tests given in [1],[6] both require a nunabealls
depending on the number of variables: the test in [1] requitén®d,,..) calls to the program where

is the number of variables, anf},., is the maximum degree of any variable, and the test in [6]iregu
O(ndmq.) calls to the program.

All of the tests given in this paper are very simple to compat®l require only a small number of additions,
subtractions and comparisons.

2 Definitions

Consider a function? : X — Y that attempts to computg. We consider three domains, the “query”
domainD, C X, the “test” domainD; C X and the “safe” domaidD, C X. We say that progran® e-
computesf on Dy if Pryep,[P(z) = f(x)] > 1 —€. An (e, e2)-self-tester(0 < €; < ez) for f on(Dy, D)
must fail any program that does ngtcomputef on D;, and must pass any program thatcomputesf on
D, (note that the behavior of the tester is not specified formgmms). IfD, = D; = D, then we say
we have ar(ey, €5) self-tester forf on D. The tester should satisfy these conditions with error gidty

at mostg, whereg is a confidence parameter input by the user.eAself-correctorfor f on (D¢, D) is a
programC that usesP as a black box, such that for everye D, Pr[CF (z) = f(x)] > 2/3, ! for everyP
which e-computesf on D;. Furthermore, all require only a small multiplicative dvead over the running
time of P and are different, simpler and faster than any correct aragor f in a precise sense defined in
[4].

We user €r D to mean that: is chosen uniformly at random iR. We us€k] to denote the set of integers
{1727"' 7k}

The self-testers and self-correctors for polynomials aseld on the existence of the following interpolation
identity relating the function values between points: ftbmaultivariate polynomialsf of total degree at
mostd, Vz,t € F", 2;@01 a;f(z + a; - t) = 0 where theu;’s are distinct elements df, oy = —1 and;
depends only o, d and not onz, t or evenf. In particular, if £ = Z, a; can be chosen to hgand then
a; = (1)1 (“T1) . Itis also known that if a function satisfies the interpaatidentities at a set af + 1

!this can be amplified to — 3 by O(log 1/) independent repetitions and and a majority vote.



points, then its values at thodet 1 points lie on a degreé polynomial. Furthermoer;-i;’O1 aif(x+1-1t)
can be computed i)(d?) time using only additions and comparisons by the method @€fitifferences
described in the appendix [12].

3 Testers for Polynomials over Integer and Rational Domains

In this section we present a tester for polynomial functiover rational domains. In [8] a self-corrector for
such functions is presented which can compute the corréet o a functionf, from a “safe” domainD;,
provided the function has been tested over a finite numbetest*domainsD;. Typically the test domains
were much larger and of finer precision than the safe domainybre all rational domains. In this section
we complement this result by presenting a tester for angmatidomain.

Notation : We useD,, ; to denote the se{t§|z' € Z, il <n}.
Note that all rational domains are of the fof, , wheren, s € Z.

The tester we construct in this section explicitly testg twatain properties hold over various domains in
order to infer that the desired property holds for the dontlz@ we are interested in. We define the domains
that our test considers.

3.1 Domains and their properties.

Throughout this sectiom andt will denoten dimensional vectors chosen from an appropriate domain.

Let the domain we wish to certify the program over be
XO = Dg',s.
We will use the following domains :

® XlEDn

(d+2)p,s - This will ensure that for alk, t € Xy, and fori € [d+ 1],z +i*t € A].

o T =D}, 1, whereL, = p(d + 2)(n(d + 1)!)* andL; = s((d + 1)!)* : T containsX; and is a
considerably larger and finer domain th&n

o Forallj e [d+1],T; = {jz|z € T}.

e Foralli,j € [d+1], X} = {iz|z € T;} : The fineness of allows us to conclude that all the domains
T, and X;; containX’, a fact which will be useful later.

Frequently, in our proof, we will need to establish that aaiarproperty holds over a new domain which is
not quite the same as any of the domains above but is “closefieécof them. We first define the notion of
“closeness” that we use in this paper and then we establigle selations among domainsthe definition
as well as its properties are initially given in [3].



if p1 =
DEFINITION 3.1 ([8]) d(p1,p2) = { 1(;1 otﬁtarwi?e

DEFINITION 3.2 ([8]) For domainsA and BB, both subsets of a univergeg,

AB) = 3 8 Ple =1, Prly =)

(Note thatd < (A4, B) <1.)
DEFINITION 3.3 ([8]) Domains.A and B are e-close if§(A, B) > 1 — .

Lemma 1 ([8]) If domainsA and B are e-close and is the probability ofz lying in a bad setS, whenz is
picked uniformly fromA, then the probability of; belonging toS wheny is picked uniformly fronB is at
moste + 9.

Lemma 2 For a fixedz € &7, the domaing; and{x + t|t € 7;} aree;-close, where; = O(n—lz).

Proof: Let 77 and7}“ denote the domains from which th#h coordinate of the elementsandz + ¢
come from. We have

T} ={jzlz € Dr, 1.}
whereL,, = p(d + 2)(n(d + 1)!)3
andL, = s((d + 1)!)?

and’7}“r’“”Z ={jz +zilz €Dp,1,}
wherez; is theith coordinate of:

Let g represent the probability that a randomly picked elemeﬂgidmelongs tcﬂfZ We have

oy s 1
L,/Ls n3

Since the size of the domaiffs and{x + t|t € 7;} are equal, the quantiy(7;, {z + t|t € T;}) is really

equal tow. We have (for an appropriately chosen constant
J

Tz +tte T} > " > 1—% —1-¢
Lemma 3 For a fixedz, the domaingz + t|t € X;;} and X;; are es-close, where, = O(1/n?).
Proof: Similar to proof of Lemma 2. O

3.2 Tests.

We perform the following tests :



Test o:
Repeat Of(jlog(3)) tines
Pick kerld+1], ze€r Xy, terTi
Verify YW aiP(z+ixt) =0
Reject if the test fails nore than §/2
fraction of the tine

Test j:
(done separately for each je[d+1])
Repeat Of(;log(3)) tines
Pi ck leR[d+ ], .’L‘ERij, ter T,
Verify S5 a;P(z+ixt) =0
Reject if the test fails nore than §/2
fraction of the tine

TeSti,j:
(done for all pairs i,j€[d+1])
Repeat Of(;log()) tines
Pi ck kER[d+ ] a;ERXij, ter Tk
Verify S oyP(z+1xt) =0
Reject if the test fails nore than §/2
fraction of the tinme

Next we list a set of properties, such that if a progrBndoes not have these properties, it is very unlikely
to pass the corresponding tests.

PropertyF:

d+1

ZO‘Z (x+ixt)=0>1-4¢
ke g[d+1], xERXo,tERTk =0

PropertyP;, j € [d + 1]

d+1

aqiP(z+ixt)=01>1—-4
k,leg[d+1], JJERXk]:tERT Z ' ]_

PropertyP;;, i, j € [d + 1]

d+1

Pr aP(x+1+t >1—-9¢
keR[d—'_l]yxeRXz] ;tER7—k % : ) ]

From hereon we assume that the progrBrhas all the above mentioned properties and show that such a
program is essentially computing a degigolynomial.



3.3 Proof of Correctness.

We define the functiog to be

d+1
g(z) = majorityke[dﬂ],ten{ Z a;P(z+ixt)}
i=1
Lemma 4
Vi,j  Pr [P(z)= >1-20
by Pr 1P(z) =g(@)] 2
Proof: Fix+andj and consider alt € &;; such that

d+1

P(*T) = majorityke[d+1]7t€7’k{ Z aiP(:r + 7 % t)}
i=1

For suchz’s we haveg(x) = P(x). But by propertyP;; and a straightforward counting argument the

fraction of suche’s is at leasd. O
Lemma 4
Pr [P(e) = g(e) 21 -2
Proof: Similar to proof of Lemma 4 above (using propefy instead of property?;;). O
Lemma 5
d+1
Vx € A, keR[dfliteRTk [g(z) = ]Z::l Plz+jxt)]>1—-0;

whered; = 2(d + 1)(0 + €2)

Proof: Considerk,! € [d+ 1] andt; €g T andty € 7;. For afixedj € [d + 1], by propertyP; and
the fact that the domainge + j « ¢1]t; € 7} and X, areep-close we get that

d+1
Pr(P(z+jxt) = ZP(:r+j*t1+i*t2)] >1—06—eo.
i=1
Similarly we get
d+1
PriP(z+ixty) =Y Ple+jxti+ixty)]>1-5— e
j=1
Summing up overf € [d + 1] andj € [d + 1] we get
d+1 d+1
Pr[Z ajP(x+j*t) = Z a;P(xz + 1 x t9)]
j=1 i=1

>1-2(d+1)(0+e)=1-06.



(The probabilities in all the expressions above arekfdrer [d + 1], ¢, €r T andty €r 7;.) We have
shown that with highX — d, ) probability, we get the same answer if we evalu@jéﬂ ajP(z+j«t)fora
randomly choset, ¢ two times. It is well known that this is a lower bound on thebability of the answer
that is most likely to appear. Thus we have

d+1

d =) Pla+jxt)]>1-4.
kER[dHiteRTk l9(=) Z (z+jx1)] = 1

7=1
|
Lemma 6
d+1
Ve € Ay, Vi, Pr lg(x Za] (x+jxt)] >1—0b9
wheredy = (d + 1)0;.
Proof: Lemma5 guarantees that
d+1
keR[dH]]r,teRTk ]z:l (x J )] B !
Thus the probability that this happens for a fiXed: < must be at least — (d + 1)0d;. O
Lemma 7
d+1
; - . ; >1—
Vo € Xy, Vi, teligr’n- [g9(z) Jz::la]g(x +jixt)]>1— 03
whereds = 6 + (d + 1)(20 + €2).
Proof: Lemma 6 says
d+1
Ve € Ay, Vi, Pr lg(x Za] (x+jxt)] >1—0b9
Lemma 4 and the fact that the distributiofs + t|t € &;;} andX;; arees-close implies that
Pr [gx+j*t)=Plz+jxt)] >1—-20 — e
terTi
Putting them together we get
Vx € Xy, Vi,
d+1
v lg(e) = ; ajg(z + 7+ )]
> 1—62—(d+1)(2(5+€2)
|



Lemma 8
d+1

Vz,t € Ap, Zaig(x+i*t) =0
i=0

Proof: ¢, €g 7T impliesit; € 7;. Lemma 7 implies

Vz,t € Xy, Vi,
d+1

P L * 1) = j Lk 1+ g (it

P lg(e v jZ%a]g(xﬂ* + (i)

>1-103

Also Lemma 7 and the fact that the distribution{of+ j¢,|t; €r T } and7; aree;-close implies
Vz,t € Xy, Vi,
d+1
P lg(e) = ; aig(e +i(t + 7 % t1))]
>1-03—€

Summing up we get

d+1
P ; i xt) =0
tleéT[;alg(x—{_l* ) ]

>1—(d+1)(203 + €1)
d

Theorem 1 For § = o(d—lg), there exists aff0, 0) self-tester fom-variate polynomials of total degregover
(Dg = D}, 1., Dy = Dy,) (wherep,s € 2% and L, = p(d + 2)(n(d + 1)!)*> and L; = s((d + 1)!)*)
which makes)(d?(§ log(3))) calls to the program.

Proof: The tester performs the tests given above. With probalalitiastl — 5 a programP which
does not have any of the properties listed above will not fasdest. On the other hand if a progrdtm
passes the tests above, then there exists a fungtimhich is a polynomial on the domaiki, (Lemma 8),
which agrees with? on the domaint; (Lemma 4). ThusP is a “good” program. O

4 Efficient Testers for Polynomials

We present an improved total degree test for polynomialtiggection. The algorithm is a simple mod-
ification of the algorithm given in [8]. The algorithm given [8] picks a random point and a random
offsett, and verifies that the values of the program atdhe 2 pointsz + it, i € [0, ...,d + 1] satisfy the
interpolation equations, or equivalently, lie on the samlkgqomial. The modification in this algorithm is to
look at10d points to make sure that they all lie on the same polynomiais Tan be done almost exactly as
before using the interpolation equations, and with only @stant factor more running time.

9



progr am Improved-Total-Degree-Test P, ¢, 3)

Membership Test
[+ 10d
Repeat O(llog(1/B)) tines
Pick z,t€r Z, and test that
3 a poly h, deg h <d such that
Vi e{0,---,1}, h(z + jt) = P(x + jt)
Reject P if the test fails nore than
an ¢ fraction of the tine.

Using the method of finite differences described in the agligeit is very easy to determine whether or not
there exists a polynomial that agrees with the function atdberied places. This can be done using only
O(d?) subtractions and no multiplications.

Theorem 2 If e < 300(4T1)’ and P does nok-compute some polynomiglof total degree at mosi on 27,

then Programimproved Total Degree TestjectsP with probability 1 — 5.

If a programP passes the test in [8] far < 1/0(d?) then one can infer that the program is essentially
computing a degreé polynomial. We show that i’ passes the above test fok 4/(300d + 1) then one

can infer that the program is essentially computing a degimynomial. The rest of this section is devoted
to the presentation of the proof far= 1. Some minor modifications are needed to prove the theorem for

n > 1, which we omit in this version.

Before we prove the theorem, we first mention a technical larnomcerning a property of polynomials that
will play a central role in our proof. This is a slight genéation of the techniques used in [8]. Essentially
what the lemma shows is that suppose we haite-a2) x (d + 2) matrix M, of points(z, y), such thaty

is a function ofz and:

1. For all columns and all but one row a degtegolynomial can be associated with the column or row
such that the function values of the points in that colunm/lie on the associated polynomial. The
associated polynomials are not assumed to be the same.

2. Matrix M is a submatrix (obtained by deleting rows and columns) ofgelamatrix A where A has
the property that the coordinates of the points from any of its rows (or any of itkioms) are in an
arithmetic progression.

Then the function values of the points on the remaining rae &€ on some degregpolynomial.

Lemma 9 (Matrix Transposition Lemma) Leta =< ay, ..., aq11 >andb =< by, ..., bgs1 >. LetM,; =
{mgjli,j € {0,---,d+1}} be amatrix such that;; € Z, is of the formmn,;; = x+a;.t1 +b;.t2 +a;.bj.t3,
and let¢ be a function fron¥Z, to Z,, such that

10



1. Vie {1,---,d + 1}, 3a polynomialr; of degree at most such thatvj € {0,---,d + 1}, ¢(m;;) =
ri(mi;). (i.e. all of the function values of the points in raware on the same degreégolynomial
for rows 1 throughi + 1.)

2. V5 €{0,---,d+ 1}, 3 a polynomialc; of degree at most such thatvi € {0,---,d + 1}, ¢(m;;) =
cj(mgj). (i.e. all of the function values of the points in columyare on the same degrégolynomial
for columns0 throughd + 1.)

Then there also exists a polynomigl such thatv;j € {0,---,d + 1}, ro(moj) = ¢(mo;). (i.e. all of the
points in row0 arealsoon the same degreepolynomia).

The proof of this lemma is in the appendix.
We now turn our attention to showing that the algorithm $assthe claims of the theorem:

Pr oof :
DEFINITION 4.1 We define to be

0= Pg [ A polynomialh of degree at most s.t.
Vj € {0,---,10d} P(z + jt) = h(z + jt)]

It is easy to see that if is at leas®¢, then the program is unlikely to pass the test. From here oasseme

that we have a progra®? with § < W.

The proof follows the same basic outline as the one in [8],ithairder to achieve the better efficiency, we
use ideas that can be thought of in terms of error-correclitnus many of the steps that were quite simple
in [8] require more work here. We define a self-correctorffevhich uses” as an oracle. We show that this
self-corrector has the nice property that for evenself-correction using two different random strings
andh. yields the same result (with high probability). We define @action g in terms of the self-corrector
function, and we show thagthas the following properties:

1. g(z) = P(x) with probability at leasl — 24 if « is picked randomly froni,,.

2. For allz, g(z) lies on the same polynomial (of degree at m@sas at least two-thirds of the points
gx+1),9(z +2),---,g9(xr +3d+3).

We then show that any function that has the second propemyioned above is a polynomial of degrée

In [8], the functiong was defined to be the value that occurs most often (for josthen one looks at
the evaluation at of the unique polynomial which agrees with the valuesPodit « + ¢, ...,z + (d + 1)¢.
Here we view the values of a polynomialatz + t, ..., z + 10dt as a code word. Intuitively, the values of
P atz +t, ...,z + 10dt will often have enough good information in it to allow us ta dpack to a correct
codeword. The functiog defined below can be thought of as the value that occurs miest (fbr most)
when one looks at the polynomial defined by #reor correctionof the values ofP atz + ¢, ...,z + 10dt
evaluated at.

We introduce notation which we will be using in the rest oftbéction.

11



DEFINITION 4.2 Given a set of point§' C Z,, and a functionp from Z, to Z,,, themost likely polynomial
fitting ¢ at these points is a polynomial of degree at most, with the property that it maximizd$z <
Slh(z) = ¢(x)}|. In case there is more than one candidate for the most likdijnpmial, one of them is
chosen arbitrarily.

We now define a self-corrector for the functigrusing P as an oracle.

DEFINITION 4.3 Leth be the most likely polynomial fitting on the sef{z + jt|j € {1,---,10d}. Then
SC¥(z,t) is defined to bei(z), if h(z + jt) = P(x + jt) for all but 10§ fraction of the values of.
SC¥(z,t) is defined to ber r or otherwise.

We defineg as follows

DEFINITION 4.4
g(x) = majority,. , {SC" (1)}

In case there is more than one candidateyfar), one of them can be chosen arbitrarily. However, it will be
shown that this is never the case.

Our first lemma shows thdt andg agree at most places.
Lemma 10 Pryc,z, [9(z) = P(z)] > 1 — 26

The proof of Lemma 10 is the similar to the proof of Lemma 7 ictia 3 of [8] and is omitted here.

The next two lemmas show that the self-corrector functiomtha property that for alt € Z,, it is well-
defined - most’s in Z, give the same answer when used to eval$&ié’(z, t):

Lemma 11 Forall z € Z,,

P P
= >
tl,tgrggzp [SC’ (x,t1) = SC* (x,t2) # error] >4/5

Proof: In[8], itis shown that if one computes the value of a polynainfiinction atz by interpolating
from the values of the function along offsigtwhich in turn are computed by interpolating from the values
of the function along offset;, then one would get the same answer as if one had computedltreof the
function atz by interpolating from the values of the function along affsewhich in turn are computed
by interpolating from the values of the function along offse This is not hard to see because it turns out
that an interpolation can be thought of as a weighted sum,sarnitlamounts to changing the order of a
double summation. Here the self-correction function isialty an interpolation of therror-correction of

the values of the function, which is no longer a simple alg&bfunction of the observed values. We avoid
analyzing this function by reducing the problem to the noerecorrecting version.

Consider the matrid = {a;;|i,j € {0,---,10d}}, wherea;; = = + ity + jto. (These are all the values
that would affectSC* (z, ;) if instead of usingP(x + it;), wherever its value is needed, we used the
value SCF (z + ity,t2).) Letr; denote the most likely polynomial fitting on the elements in rowof A
and letc; denote the most likely polynomial fitting® on the elements in colump Call a rows, 7 > 1,

12



(columny, 7 > 1) goodif all entries in theth row (jth column) have the property th&t(a;;) = ri(a;;)
(P(aij) = cj(aij)). Otherwise, call ibad By our definition ofé and since foi € {1,...,d + 1}, « + ity
andz + ity are uniformly distributed ir¥Z,,, we get that

Pr [rowiisgood] >1—¢
t1,t2€RZp

By applying Markov’s inequality we get that

Pr [Atmost106 fraction of the rows arbad] > 9/10

t1,t2€RZp

Similarly we get

Pr  [Atmost10¢ fraction of the columns aread] > 9/10

t1,t2€RZp

Now, consider dd + 2) x (d + 2) submatrix consisting of the rowand thed + 1 goodrowse;, ..., €441,

and anyd + 2 goodcolumnsfy, ..., f4+1. The Matrix Transposition Lemma with < P; (a1, ...,aq41) <

(e1y.meyqr1); (b1 ey bgin), < (f1, -y far1);t3 < 0 guarantees that thé+ 2 points on the row) lie on

some polynomiat,. Repeated application by choosing otlgenod columns show that all points in ttgh

row from good columns lie on the same polynomia). ThusSC¥ (x,t1) = ro(x). A similar argument
based orgoodrows shows that there exists a polynomiglsuch that all points from colum@é andgood

rows lie on this polynomial, implyinggC*’(z, t5) = co(z). Showing that(z) = co(x) will conclude the
proof.

Consider al + 2 x d + 2 submatrix ofA containing the rovd, d + 1 goodrows and the columfi andd + 1
goodcolumns. Apply the Matrix Transposition Lemma with= P everywhere except when the argument
is z where¢(z) = ro(x). The Matrix Transposition Lemma guarantees that all pdnots theOth column
lie on ¢y, implying thatcy(z) = ro(z). O

The following lemma follows immediately and we state it waith proof.
Lemma 12 Vz, Pricy, [g(z) = SCT(x,t)| > 4/5.

Lemma 13 Vz, g(z) = h(z), whereh is the unique most likely polynomial fittiggat the points{z + 1, z +
2,---,x+ 3d + 3}.

Proof: As in the proof of Lemma 11 we construct a matix = {a;;|i € {0,...,3d + 3},j €
{0, ...,10d}}, wherea;; = (z +4) + j(t1 + it2) = (z + jt1) + i(1 + jt2). The rows of this matrix
are the elements that affeC” (x + i,t; + it2). The columns are a subset of the elements that affect
SCFY (x + jty, 1+ jtz). Call arowi, of A goodif g(x +14) = SC¥ (z +1i,it; +t2). By Lemma 11 we know
that

Pr [rowiisgood > 4/5

t1,t20€ERZp

Using Markov’s inequality we get

Pr [at least two-thirds of the rows agpod > 2/5
t1,t2€RZp

13



Thus we find that with probability at least 1/5, two-thirdsloé rows are good and roivs good. From now
on we will work with a submatrix ofA containing thedth row and2d + 2 othergoodrows. Letr; be the
most likely polynomial fitting” on points from theth row. Call an elementu;; badif P(mn;;) # ri(m;;).
Delete all columns off which containbadelements. Since we are working with only theodrows of 4,
any row can have at mo$6d - 105 bad elements. Thus we delete at nii¥l(d? + d)§ columns. Hence we
will still be left with at least2d columns (since < %). Letc; be the most likely polynomial fitting
P on elements from columj Delete all columns containing elements such thét;;) # P(m;;). By the
definition of § and application of Markov’s inequality we find that with peddility at leastl /10, no more
thand — 1 columns have such elements, anddse 1 of the columns remain (this assumes ttiat 4, if

d < 4 then the algorithm in [8] is better). Applying the Matrix Tigposition Lemma to alld + 2) x (d+ 2)
submatrices shows that all the elemefits + 7), 7 is a good row, lie on the same polynomial. Thus we get
that at least 2/3rds of the poinggz + ) and the poiny(x) lie on the same polynomial. In other words,
g(z) = h(z) whereh(z) is the most likely polynomial fitting on the point§ z+i|i € {1,---,3d+3}. Also
sinceh agrees with at least two-thirds of the points of the set, ishine the unique most likely polynomial
fitting these points. O

Our next lemma shows that the condition guaranteed abofieesifo show thay is a degreel polynomial.

Lemma 14 If ¢ is a function fromZ, to Z, such that for allz, ¢(z) = h(z) whereh is the unique most
likely polynomial, of degree at madtfitting ¢ on the pointgz +i|i € {1,---,3d+3}}. Theng is a degree
d polynomial.

Proof: We prove this by claiming that the unique most likely polynahfitting ¢ on any set of the
form {z + it € {1,---,3d + 3}} is the same. Assume otherwise. Then there must existsurch that
the majority polynomial fittingp on the set§x +i|i € {1,---,3d + 3}} and{x +i|i € {0,---,3d + 2}}
are different. But this cannot be sing¢x) = h(z) whereh is the most likely polynomial fittings on
the set{z + i|i € {1,---,3d + 3}}. Hence the most likely polynomial fitting in any set of the form
{z +ili € {1,---,3d + 3}} is the same, sal and hence for alt € Z,, ¢(z) = h(x) O

a

5 Open Questions

We have shown that programs for polynomial functions candbetssted over rational domains. A very

important question along these lines is to determine whelieze is an approximate self-tester [8] for pro-
grams which approximate polynomial functions over ratiawmains, as would occur in floating point and

fixed precision computation (an approximate self-testeifige that a program gives a good approximation
to the function on a large fraction of the inputs).

Secondly, we have shown stronger bounds on the efficiencysohple modification of the algorithm for
self-testing polynomials in [8]. This algorithm makéXd) tests, for a total of)(d?) calls to the program.
It would be interesting to show whether or @t1) tests of this algorithm or a slight modification of it are
sufficient.

14



6 Acknowledgements

We are very grateful to Avi Wigderson for suggesting that @aklfor more efficient testers for polynomials,
as well as his technical help in proving the theorems in 8ecti We thank Mike Luby, Oded Goldreich
and Joan Feigenbaum for their comments on the writeup opHper.

References

[1]

2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Babai, L., Fortnow, L., Lund, C., “Non-Deterministic pgnential Time has Two-Prover Interactive
Protocols”,Proceedings of the 31st Annual Symposium on FoundationsmopGter Science1990.

Beaver, D., Feigenbaum, J., “Hiding Instance in Mullide Queries”Proceedings of Symposium on
Theoretical Aspects of Computer Science 1990

Blum, M., “Designing programs to check their work”, Sultted to CACM

Blum, M., Kannan, S., “Program correctness checkingnd the design of programs that check their
work”, Proc. 21st ACM Symposium on Theory of Computir@9.

Blum, M., Luby, M., Rubinfeld, R.,
“Self-Testing/Correcting with Applications to Numeridatoblems,”Proc. 22th ACM Symposium on
Theory of Computingl990.

Feige, U., Goldwasser, S., Lovasz, L., Safra, M., Szggkl, “Approximating Clique is Almost NP-
Complete”,Proceedings of the 32nd Annual Symposium on FoundationsropGter Science1991.

Freivalds, R., “Fast Probabilistic Algorithms”, Spger Verlag Lecture Notes in CS No. 74, Mathe-
matical Foundations of CS, 57-69 (1979).

Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigsken, A., “Self-Testing/Correcting for Poly-
nomials and for Approximate Functiong?yoc. 23th ACM Symposium on Theory of Compytirgp1.

Lipton, R.J., “New directions in Testing,” in Distribeitl Computing and Cryptography, DIMACS Se-
ries on Discrete Mathematics and Theoretical Computem8eievol. 2, 1991, pp. 191-202.

Lund, C., “The Power of Interaction”, University of Glaigo Technical Report 91-01, January 14,
1991.

Shen, Sasha, personal communication, May 1991.

Van Der Waerden, B.LAlgebra Vol. 1, Frederick Ungar Publishing Co., Inc., pp. 86-91709

15



A Appendix

I. Proof of Lemma 9
We give the proof of Lemma 9.

Lemma 9 (Matrix Transposition Lemma) Leta =< ay, ..., agy1 > andb =< by, ..., bgr1 >. LetM;; =
{mgjli,j € {0,---,d+1}} be amatrix such thak,;; € Z, is of the formm,; = x+a;.t1 +bj.t2 +a;.bj.t3,
and let¢ be a function fronZ, to Z, such that

1. Vie{l,---,d+ 1}, 3 apolynomialr; of degree at most such that/j € {0,---,d + 1}, p(m;;) =
ri(mi;). (i.e. all of the function values of the points in reyare on the same degrekpolynomial
for rows 1 throughd + 1.)

2. Vj€{0,---,d+ 1}, Ja polynomialc; of degree at most such that'i € {0,---,d + 1}, ¢(m;;) =
cj(m;). (i.e. all of the function values of the points in columrare on the same degregpolynomial
for columns) throughd + 1.)

Then there also exists a polynomial such thatvj € {0,---,d + 1}, ro(mo;) = ¢(mo;). (i.e. all of the
points in row0 are alsoon the same degreépolynomia).

Proof: By standard arguments (cf. [9]), the existence of polyntsnig, - - -, 744 implies there exist

constantseg, e1,---,eq41 such thatvi € {1,---,d + 1}, Z?ié e;ri(mi;) = 0. The constants depend
only onb andd. Similarly there exist constantf, - - -, 411, depending only om andd, such thaty;j €
{0,--,d + 1}, ¢;(mgj) = SH! fici(myj). Thus we find that
d+1 d+1
D eip(moy) = Y ejei(moy)
d+1 d+1
= Y e > ficj(mij)
j=0 i=1
d+1 d+1
= Y fiy_ ejci(mij)
i=1 j=0
d+1 d+1
= Z fi Z ejri(mij)
i=1 j=0
=0

Since the function values at these points satisfy the intatipn identities, we know that there must exist a
polynomialry such thatvy € {0,---,d + 1}, ro(mo;) = ¢(moj). O

II. Method of Finite Differences.
Here we consider the following problem:

Givenk evenly-spaced points, zo, - - -, 2 € Z), ;41 —; = 2; —x;—1 = h, and values of some function
f at these points:

16



Does there exist a polynomial of degree at most, such thati € k], h(x;) = f(x;)?

We describe how to use the method of finite differences tofteghis property. The test perforn@(kd)
subtractions and no multiplications.

Define the functiory! (z) = f(z) — f(z —t). In general, defing’ by f*(z) = f~(z) — f~'(x —t). The
method of finite differences implies the following:

Lemma 15 ([12]) f agrees with some degr@golynomial on the pointsy, - - - , z;, if and only if thed 4 15
differencef¢(z;) = 0forj € {d+2,---,k}.

Using this Lemma we find that we only have to evaluate ths, for i € [d + 1], to check if the above
property holds, and this can be done using:d) subtractions.

17



