
Chapter 1

Self-Testing Polynomial Functions Efficiently and over Rational Domains

Ronitt Rubinfeld�Madhu Sudany
Abstract

In this paper we give the first self-testers and checkers for polynomials over rational and integer
domains. We also show significantly stronger bounds on the efficiency of a simple modification of the
algorithm for self-testing polynomials over finite fields given in [8].

1 Introduction

Suppose someone gives us an extremely fast programP that we can call as a black box to compute a
functionf . Rather than trust thatP works correctly, aself-testing programfor f ([5]) verifies that programP is correct on most inputs (withoutassuming the correctness of another program that is as difficult as one
that computes the function), and aself-correcting program([5] [9]) for f takes a programP , that is correct
on most inputs, and uses it to computef correctly on every input (with high probability). Both accessP only
as a black-box and in some precise way are not allowed to compute the functionf . Self-testing/correcting
is an extension of program result checking as defined in [3],[4]. If f has a self-tester and a self-corrector,
thenf has a program result checker.

Our first result concerns checking and self-testing over rational and integer domains. To date, most self-
testing/correcting pairs and checkers that have been foundfor numerical functions (cf. [5][2][9][8]) have
been for functions over finite fields (for example polynomialfunctions over finite fields [2][9] [8]) or for
domains for which a group structure has been imposed on a finite subset of the domain (for example integer
multiplication and division functions [5], and floating point logarithm and exponentiation functions [8]). In
[7] there is a checker that can also be made into a self-testerfor matrix multiplication over any field, but
self-correctors for matrix multiplication are only known over finite fields [5].

Many of the self-testers, for example those for linear and polynomial functions [5][8], have been based on
showing that a program which satisfies certain easy to verifyconditions on randomly chosen inputs must be
computing the correct function on most inputs.�Hebrew University. This work was done while the author was atPrinceton University. Supported by DIMACS (Center for
Discrete Mathematics and Theoretical Computer Science), NSF-STC88-09648. Part of this research was also done while the author
was visiting Bellcore.yU.C. Berkeley. Research supported by NSF PYI Grant CCR 8896202.

1

Finite fields are much easier to work with to this end because they are conducive to clean simple arguments
about distributions, i.e. ify is chosen uniformly at random from finite fieldF , then for fixeda; b 2 F ,a+ y; by; a+ by are all uniformly distributed inF (shifting and scaling the distribution gives back the same
distribution). This is not at all the case for nontrivial distributions over fields of characteristic0. In fact, ifD
is a finite subset ofF , andy is chosen uniformly at random fromD, then for mosta; b 2 D, a+y; by; a+by
are not even likely to be inD. However, functions over such fields, for example rational domains, are of
great importance for application programming. A first step in the direction of finding self-testing/correcting
pairs for polynomial functions is given in [8], where a self-corrector for polynomial functions over fixed
point rational domains of the formDs;r = fys j integers jyj � rg; r 2 Z; s 2 Z\f0g is given (note that
this includes integer domains and fixed point arithmetic domains). The self-corrector needs a program that
is known to be correct for a large fraction of inputs over a larger and finer precision domain than the one for
which the self-corrector will be able to compute the function correctly.

We show that there is a very simple way to actually verify thatthe program is good enough for the polynomial
function self-corrector over fixed point rational and integer domains, without assuming the correctness of
another program that computes the polynomial: we give a self-tester for any (multivariate) polynomial
function over fixed point rational and integer domains. Thuswe also give the first checkers for polynomials
over rational and integer domains.

A first approach to testing the program might be to attempt to interpolate the polynomial being computed by
the program and to verify that the program’s output at randompoints is equal to the value of the interpolated
polynomial. This approach is not desirable because both theinterpolation procedure and the evaluation of
the polynomial at random points make the tester at least as difficult as the program, and not different in the
sense defined by [3] [4]. However, similar approaches have been useful in the area of interactive proofs [1]
[6] [10], which only requires that the procedure be in polynomial time.

The self-tester for polynomials over finite fields in [8] is composed of two parts: One is adegree test- a
test which verifies that a programP is computing a function which is usually equal to some (total) degreed polynomialg. The other is anequality test- a test which verifies that polynomialg is identically equal
to polynomialf . The equality test uses the fact thatg can be computed easily usingP (this follows from
the fact thatP is usually equal tog and because there is a self-corrector for polynomial functions over finite
fields [2][9]) and verifies thatg = f on at least(d+ 1)n points (wheren is the number of variables). Then
since two different degreed polynomials can agree on fewer than(d+1)n points, if the program passes the
test, it must be computing the correct degreed polynomial. The second part can be easily extended to work
on rational domains since there is a self-corrector over such domains.

We concentrate on showing that there is a degree test which verifies that the total degree of the polynomial is
at mostd over the rationals. The ideas used to get such testers and checkers over the new domains seem quite
general and it is hoped that they will be applicable to many other problems, for example matrix determinant,
matrix rank and polynomial multiplication over the rationals and reals.

Our second result concerns the self-tester for polynomialsover finite fields in [8], which has been shown to
work for multivariate polynomials as well by Shen [11]. In particular, we are interested in the efficiency of
the degree test, since often testing is done online (i.e. when the user decides to use the program) [5]. Efficient

2

degree tests are interesting for another reason in additionto program testing: they have been used as a tool in
order to get multi-prover interactive proofs for non-deterministic exponential time complete functions in [1].
[6] have in turn used the interactive proof in [1] in order to obtain results about the difficulty of approximating
the size of the clique, in which the strength of the result depends on the efficiency of the interactive proof.
Although their results are not improved by our test, our testis more efficient in situations where the total
degree is smaller than maximum degree of any variable multiplied by the number of variables.

The degree test given in [8][11] makesO(d2) tests, for a total ofO(d3) calls, to the program in order to
verify that the total degree of the polynomial is at mostd. On the other hand, it is easy to see that at leastd
calls to the program are needed. We narrow this gap by showingthat a slight modification of the self-tester
needs onlyO(d) tests andO(d2) total calls. We conjecture that our algorithm (or a slight modification of
it) requires onlyO(1) tests andO(d) calls. The degree tests given in [1],[6] both require a number of calls
depending on the number of variables: the test in [1] requires O(n6dmax) calls to the program wheren
is the number of variables, anddmax is the maximum degree of any variable, and the test in [6] requiresO(ndmax) calls to the program.

All of the tests given in this paper are very simple to compute, and require only a small number of additions,
subtractions and comparisons.

2 Definitions

Consider a functionP : X ! Y that attempts to computef . We consider three domains, the “query”
domainDq � X, the “test” domainDt � X and the “safe” domainDs � X. We say that programP �-
computesf onDt if Prx2Dt [P (x) = f(x)℄ > 1��. An (�1; �2)-self-tester(0 � �1 < �2) for f on(Dq;Dt)
must fail any program that does not�2-computef onDt, and must pass any program that�1-computesf onDq (note that the behavior of the tester is not specified for all programs). IfDq = Dt = D, then we say
we have an(�1; �2) self-tester forf onD. The tester should satisfy these conditions with error probability
at most�, where� is a confidence parameter input by the user. An�-self-correctorfor f on (Dt;Ds) is a
programC that usesP as a black box, such that for everyx 2 Ds, Pr[CP (x) = f(x)℄ � 2=3, 1 for everyP
which �-computesf onDt. Furthermore, all require only a small multiplicative overhead over the running
time ofP and are different, simpler and faster than any correct program forf in a precise sense defined in
[4].

We usex 2R D to mean thatx is chosen uniformly at random inD. We use[k℄ to denote the set of integersf1; 2; � � � ; kg.
The self-testers and self-correctors for polynomials are based on the existence of the following interpolation
identity relating the function values between points: for all multivariate polynomialsf of total degree at
mostd, 8x; t 2 F n,

Pd+1i=0 �if(x + ai � t) = 0 where theai’s are distinct elements ofF , �0 = �1 and�i
depends only onF; d and not onx; t or evenf . In particular, ifF = Znp , ai can be chosen to bei, and then�i = (�1)i+1�d+1i �. It is also known that if a function satisfies the interpolation identities at a set ofd + 11this can be amplified to1� � byO(log 1=�) independent repetitions and and a majority vote.

3

points, then its values at thosed+ 1 points lie on a degreed polynomial. Furthermore
Pd+1i=0 �if(x+ i � t)

can be computed inO(d2) time using only additions and comparisons by the method of finite differences
described in the appendix [12].

3 Testers for Polynomials over Integer and Rational Domains

In this section we present a tester for polynomial functionsover rational domains. In [8] a self-corrector for
such functions is presented which can compute the correct value of a functionf , from a “safe” domainDs,
provided the function has been tested over a finite number of “test” domainsDit. Typically the test domains
were much larger and of finer precision than the safe domain, but were all rational domains. In this section
we complement this result by presenting a tester for any rational domain.

Notation : We useDn;s to denote the setf is ji 2 Z; jij � ng.
Note that all rational domains are of the formDn;s, wheren; s 2 Z.

The tester we construct in this section explicitly tests that certain properties hold over various domains in
order to infer that the desired property holds for the domainthat we are interested in. We define the domains
that our test considers.

3.1 Domains and their properties.

Throughout this sectionx andt will denoten dimensional vectors chosen from an appropriate domain.

Let the domain we wish to certify the program over beX0 � Dnp;s:
We will use the following domains :� X1 � Dn(d+2)p;s : This will ensure that for allx; t 2 X0, and fori 2 [d+ 1℄, x+ i � t 2 X1.� T � DnLp;Ls , whereLp = p(d + 2)(n(d + 1)!)3 andLs = s((d + 1)!)3 : T containsX1 and is a

considerably larger and finer domain thanX1.� For all j 2 [d+ 1℄, Tj � fjxjx 2 T g.� For all i; j 2 [d+1℄,Xij � fixjx 2 Tjg : The fineness ofT allows us to conclude that all the domainsTj andXij containX1, a fact which will be useful later.

Frequently, in our proof, we will need to establish that a certain property holds over a new domain which is
not quite the same as any of the domains above but is “close” toone of them. We first define the notion of
“closeness” that we use in this paper and then we establish some relations among domains. (The definition
as well as its properties are initially given in [8].)

4

DEFINITION 3.1 ([8]) Æ(p1; p2) = (p1 if p1 = p20 otherwise

DEFINITION 3.2 ([8]) For domainsA andB, both subsets of a universeX ,Æ(A;B) = Xs2X Æ(Prx2A[x = s℄; Pry2B[y = s℄)
(Note that0 � Æ(A;B) � 1.)

DEFINITION 3.3 ([8]) DomainsA andB are �-close ifÆ(A;B) � 1� �.
Lemma 1 ([8]) If domainsA andB are �-close andÆ is the probability ofx lying in a bad set,S, whenx is
picked uniformly fromA, then the probability ofy belonging toS wheny is picked uniformly fromB is at
most�+ Æ.
Lemma 2 For a fixedx 2 X1, the domainsTj andfx+ tjt 2 Tjg are �1-close, where�1 = O(1n2).
Proof: Let T ij andT x;ij denote the domains from which theith coordinate of the elementst andx + t
come from. We haveT ij = fjzjz 2 DLp;Lsg

whereLp = p(d+ 2)(n(d + 1)!)3
andLs = s((d+ 1)!)3

andT x;ij = fjz + xijz 2 DLp;Lsg
wherexi is theith coordinate ofx

Let q represent the probability that a randomly picked element ofT ij belongs toT x;ij . We haveq � 1� (d+ 2)p=sLp=Ls � 1� 1n3
Since the size of the domainsTj andfx + tjt 2 Tjg are equal, the quantityÆ(Tj ; fx + tjt 2 Tjg) is really
equal tojTj\fx+tjt2TjgjjTj j . We have (for an appropriately chosen constant
)Æ(Tj ; fx+ tjt 2 Tjg) � qn � 1�
n2 = 1� �1 2
Lemma 3 For a fixedx, the domainsfx+ tjt 2 Xijg andXij are �2-close, where�2 = O(1=n2).
Proof: Similar to proof of Lemma 2. 2
3.2 Tests.

We perform the following tests :

5

Test0:
Repeat O(1Æ log(1�)) times

Pick k 2R [d+ 1℄, x 2R X0, t 2R Tk
Verify

Pd+1i=0 �iP (x+ i � t) = 0
Reject if the test fails more than Æ=2

fraction of the time

Testj:
(done separately for each j 2 [d+ 1℄)
Repeat O(1Æ log(1�)) times

Pick k; l 2R [d+ 1℄, x 2R Xkj, t 2R Tl
Verify

Pd+1i=0 �iP (x+ i � t) = 0
Reject if the test fails more than Æ=2

fraction of the time

Testi;j:
(done for all pairs i; j 2 [d+ 1℄)
Repeat O(1Æ log(1�)) times

Pick k 2R [d+ 1℄, x 2R Xij, t 2R Tk
Verify

Pd+1l=0 �lP (x+ l � t) = 0
Reject if the test fails more than Æ=2

fraction of the time

Next we list a set of properties, such that if a programP does not have these properties, it is very unlikely
to pass the corresponding tests.

PropertyP0: Prk2R[d+1℄;x2RX0;t2RTk [d+1Xi=0 �iP (x+ i � t) = 0℄ � 1� Æ
PropertyPj , j 2 [d+ 1℄: Prk;l2R[d+1℄;x2RXkj ;t2RTl [d+1Xi=0 �iP (x+ i � t) = 0℄ � 1� Æ
PropertyPij , i; j 2 [d+ 1℄: Prk2R[d+1℄;x2RXij ;t2RTk [d+1Xl=0 �lP (x+ l � t) = 0℄ � 1� Æ

From hereon we assume that the programP has all the above mentioned properties and show that such a
program is essentially computing a degreed polynomial.

6

3.3 Proof of Correctness.

We define the functiong to beg(x) � majorityk2[d+1℄;t2Tkf d+1Xi=1 �iP (x+ i � t)g
Lemma 4 8i; j Prx2Xij [P (x) = g(x)℄ � 1� 2Æ
Proof: Fix i andj and consider allx 2 Xij such thatP (x) = majorityk2[d+1℄;t2Tkf d+1Xi=1 �iP (x+ i � t)g
For suchx’s we haveg(x) = P (x). But by propertyPij and a straightforward counting argument the
fraction of suchx’s is at least2Æ. 2
Lemma 40 Prx2X0 [P (x) = g(x)℄ � 1� 2Æ
Proof: Similar to proof of Lemma 4 above (using propertyP0 instead of propertyPij). 2
Lemma 5 8x 2 X1; Prk2R[d+1℄;t2RTk [g(x) = d+1Xj=1P (x+ j � t)℄ � 1� Æ1
whereÆ1 = 2(d+ 1)(Æ + �2)
Proof: Considerk; l 2R [d+1℄ andt1 2R Tk andt2 2R Tl. For a fixedj 2 [d+1℄, by propertyPj and
the fact that the domainsfx+ j � t1jt1 2 Tkg andXjk are�2-close we get thatPr [P (x+ j � t1) = d+1Xi=1 P (x+ j � t1 + i � t2)℄ � 1� Æ � �2:
Similarly we get Pr [P (x+ i � t2) = d+1Xj=1P (x+ j � t1 + i � t2)℄ � 1� Æ � �2:
Summing up overi 2 [d+ 1℄ andj 2 [d+ 1℄ we getPr [d+1Xj=1�jP (x+ j � t1) = d+1Xi=1 �iP (x+ i � t2)℄� 1� 2(d+ 1)(Æ + �2) = 1� Æ1:

7

(The probabilities in all the expressions above are fork; l 2R [d + 1℄; t1 2R Tk andt2 2R Tl.) We have
shown that with high (1� Æ1) probability, we get the same answer if we evaluate

Pd+1j=1 �jP (x+ j � t) for a
randomly chosenk; t two times. It is well known that this is a lower bound on the probability of the answer
that is most likely to appear. Thus we havePrk2R[d+1℄;t2RTk [g(x) = d+1Xj=1P (x+ j � t)℄ � 1� Æ1: 2
Lemma 6 8x 2 X1; 8i; Prt2RTi [g(x) = d+1Xj=1�jP (x+ j � t)℄ � 1� Æ2
whereÆ2 = (d+ 1)Æ1.

Proof: Lemma 5 guarantees thatPrk2R[d+1℄;t2RTk [g(x) = d+1Xj=1P (x+ j � t)℄ � 1� Æ1
Thus the probability that this happens for a fixedk = i must be at least1� (d+ 1)Æ1. 2
Lemma 7 8x 2 X1; 8i; Prt2RTi [g(x) = d+1Xj=1�jg(x+ j � t)℄ � 1� Æ3
whereÆ3 = Æ2 + (d+ 1)(2Æ + �2).
Proof: Lemma 6 says8x 2 X1; 8i; Prt2RTi [g(x) = d+1Xj=1�jP (x+ j � t)℄ � 1� Æ2
Lemma 4 and the fact that the distributionsfx+ tjt 2 Xijg andXij are�2-close implies thatPrt2RTi [g(x+ j � t) = P (x+ j � t)℄ � 1� 2Æ � �2
Putting them together we get8x 2 X1; 8i;Prt2RTi [g(x) = d+1Xj=1�jg(x+ j � t)℄� 1� Æ2 � (d+ 1)(2Æ + �2) 2

8

Lemma 8 8x; t 2 X0; d+1Xi=0 �ig(x+ i � t) = 0
Proof: t1 2R T implies it1 2R Ti. Lemma 7 implies8x; t 2 X0; 8i;Prt12RT [g(x+ i � t) = d+1Xj=0�jg(x+ i � t+ j(it1))℄� 1� Æ3
Also Lemma 7 and the fact that the distribution offt+ jt1jt1 2R T g andTj are�1-close implies8x; t 2 X0; 8j;Prt12RT [g(x) = d+1Xi=0 �ig(x+ i(t+ j � t1))℄� 1� Æ3 � �1
Summing up we getPrt12RT [d+1Xi=0 �ig(x+ i � t) = 0℄� 1� (d+ 1)(2Æ3 + �1) 2
Theorem 1 For Æ = o(1d3), there exists an(0; Æ) self-tester forn-variate polynomials of total degreed over(Dq = DnLp;Ls ;Dt = Dnp;s) (wherep; s 2 Z+ andLp = p(d + 2)(n(d + 1)!)3 andLs = s((d + 1)!)3)
which makesO(d3(1Æ log(1�))) calls to the program.

Proof: The tester performs the tests given above. With probabilityat least1 � � a programP which
does not have any of the properties listed above will not passthe test. On the other hand if a programP
passes the tests above, then there exists a functiong, which is a polynomial on the domainX0 (Lemma 8),
which agrees withP on the domainX0 (Lemma 40). ThusP is a “good” program. 2
4 Efficient Testers for Polynomials

We present an improved total degree test for polynomials in this section. The algorithm is a simple mod-
ification of the algorithm given in [8]. The algorithm given in [8] picks a random pointx and a random
offset t, and verifies that the values of the program at thed+ 2 pointsx+ it; i 2 [0; :::; d + 1℄ satisfy the
interpolation equations, or equivalently, lie on the same polynomial. The modification in this algorithm is to
look at10d points to make sure that they all lie on the same polynomial. This can be done almost exactly as
before using the interpolation equations, and with only a constant factor more running time.

9

program Improved-Total-Degree-Test(P; �; �)
Membership Testl 10d

Repeat O(1� log (1=�)) times

Pick x; t 2R Znp and test that9 a poly h, deg h � d such that8j 2 f0; � � � ; lg; h(x+ jt) = P (x+ jt)
Reject P if the test fails more than

an � fraction of the time.

Using the method of finite differences described in the appendix, it is very easy to determine whether or not
there exists a polynomial that agrees with the function at the queried places. This can be done using onlyO(d2) subtractions and no multiplications.

Theorem 2 If � < 4300(d+1) , andP does not�-compute some polynomialg of total degree at mostd onZnp ,
then ProgramImproved Total Degree TestrejectsP with probability1� �.

If a programP passes the test in [8] for� < 1=O(d2) then one can infer that the program is essentially
computing a degreed polynomial. We show that ifP passes the above test for� < 4=(300d + 1) then one
can infer that the program is essentially computing a degreed polynomial. The rest of this section is devoted
to the presentation of the proof forn = 1. Some minor modifications are needed to prove the theorem forn > 1, which we omit in this version.

Before we prove the theorem, we first mention a technical lemma concerning a property of polynomials that
will play a central role in our proof. This is a slight generalization of the techniques used in [8]. Essentially
what the lemma shows is that suppose we have a(d + 2)� (d + 2) matrixM , of points(x; y), such thaty
is a function ofx and:

1. For all columns and all but one row a degreed polynomial can be associated with the column or row
such that the function values of the points in that column/row lie on the associated polynomial. The
associated polynomials are not assumed to be the same.

2. MatrixM is a submatrix (obtained by deleting rows and columns) of a larger matrixA whereA has
the property that thex coordinates of the points from any of its rows (or any of its columns) are in an
arithmetic progression.

Then the function values of the points on the remaining row also lie on some degreed polynomial.

Lemma 9 (Matrix Transposition Lemma) Let�a =< a0; :::; ad+1 > and�b =< b0; :::; bd+1 >. LetM�a;�b =fmij ji; j 2 f0; � � � ; d+1gg be a matrix such thatmij 2 Zp is of the formmij = x+ai:t1+bj :t2+ai:bj :t3,
and let� be a function fromZp toZp such that

10

1. 8i 2 f1; � � � ; d+ 1g, 9 a polynomialri of degree at mostd such that8j 2 f0; � � � ; d+ 1g, �(mij) =ri(mij). (i.e. all of the function values of the points in rowri are on the same degreed polynomial
for rows 1 throughd+ 1.)

2. 8j 2 f0; � � � ; d+ 1g, 9 a polynomial
j of degree at mostd such that8i 2 f0; � � � ; d+ 1g, �(mij) =
j(mij). (i.e. all of the function values of the points in column
j are on the same degreed polynomial
for columns0 throughd+ 1.)

Then there also exists a polynomialr0 such that8j 2 f0; � � � ; d + 1g, r0(m0j) = �(m0j). (i.e. all of the
points in row0 arealsoon the same degreed polynomial).

The proof of this lemma is in the appendix.

We now turn our attention to showing that the algorithm satisfies the claims of the theorem:

Proof:

DEFINITION 4.1 We defineÆ to beÆ � Prx;t [6 9 polynomialh of degree at mostd s.t.8j 2 f0; � � � ; 10dg P (x+ jt) = h(x+ jt)℄
It is easy to see that ifÆ is at least2�, then the program is unlikely to pass the test. From here on weassume
that we have a programP with Æ � 8300(d+1) .
The proof follows the same basic outline as the one in [8], butin order to achieve the better efficiency, we
use ideas that can be thought of in terms of error-correction. Thus many of the steps that were quite simple
in [8] require more work here. We define a self-corrector forf which usesP as an oracle. We show that this
self-corrector has the nice property that for everyx, self-correction using two different random stringsh1
andh2 yields the same result (with high probability). We define a function g in terms of the self-corrector
function, and we show thatg has the following properties:

1. g(x) = P (x) with probability at least1� 2Æ if x is picked randomly fromZp.
2. For allx, g(x) lies on the same polynomial (of degree at mostd) as at least two-thirds of the pointsg(x+ 1); g(x + 2); � � � ; g(x + 3d+ 3).

We then show that any function that has the second property mentioned above is a polynomial of degreed.

In [8], the functiong was defined to be the value that occurs most often (for mostt) when one looks at
the evaluation atx of the unique polynomial which agrees with the values ofP at x + t; :::; x + (d + 1)t.
Here we view the values of a polynomialf atx + t; :::; x + 10dt as a code word. Intuitively, the values ofP at x + t; :::; x + 10dt will often have enough good information in it to allow us to get back to a correct
codeword. The functiong defined below can be thought of as the value that occurs most often (for mostt)
when one looks at the polynomial defined by theerror correctionof the values ofP atx + t; :::; x + 10dt
evaluated atx.

We introduce notation which we will be using in the rest of this section.

11

DEFINITION 4.2 Given a set of pointsS � Zp and a function� fromZp toZp, themost likely polynomial
fitting � at these points is a polynomialh of degree at mostd, with the property that it maximizesjfx 2Sjh(x) = �(x)gj. In case there is more than one candidate for the most likely polynomial, one of them is
chosen arbitrarily.

We now define a self-corrector for the functionf usingP as an oracle.

DEFINITION 4.3 Let h be the most likely polynomial fittingP on the setfx + jtjj 2 f1; � � � ; 10dg. ThenSCP (x; t) is defined to beh(x), if h(x + jt) = P (x + jt) for all but 10Æ fraction of the values ofj.SCP (x; t) is defined to beerror otherwise.

We defineg as follows

DEFINITION 4.4 g(x) � majorityt2ZpfSCP (x; t)g
In case there is more than one candidate forg(x), one of them can be chosen arbitrarily. However, it will be
shown that this is never the case.

Our first lemma shows thatP andg agree at most places.

Lemma 10 Prx2RZp [g(x) = P (x)℄ � 1� 2Æ
The proof of Lemma 10 is the similar to the proof of Lemma 7 in Section 3 of [8] and is omitted here.

The next two lemmas show that the self-corrector function has the property that for allx 2 Zp, it is well-
defined - mostt’s in Zp give the same answer when used to evaluateSCP (x; t):
Lemma 11 For all x 2 Zp, Prt1;t22RZp hSCP (x; t1) = SCP (x; t2) 6= errori � 4=5
Proof: In [8], it is shown that if one computes the value of a polynomial function atx by interpolating
from the values of the function along offsett1 which in turn are computed by interpolating from the values
of the function along offsett2, then one would get the same answer as if one had computed the value of the
function atx by interpolating from the values of the function along offset t2 which in turn are computed
by interpolating from the values of the function along offset t1. This is not hard to see because it turns out
that an interpolation can be thought of as a weighted sum, andso it amounts to changing the order of a
double summation. Here the self-correction function is actually an interpolation of theerror-correctionof
the values of the function, which is no longer a simple algebraic function of the observed values. We avoid
analyzing this function by reducing the problem to the non-error-correcting version.

Consider the matrixA = faij ji; j 2 f0; � � � ; 10dgg, whereaij = x + it1 + jt2. (These are all the values
that would affectSCP (x; t1) if instead of usingP (x + it1), wherever its value is needed, we used the
valueSCP (x + it1; t2).) Let ri denote the most likely polynomial fittingP on the elements in rowi of A
and let
j denote the most likely polynomial fittingP on the elements in columnj. Call a rowi, i � 1,

12

(columnj, j � 1) good if all entries in theith row (jth column) have the property thatP (aij) = ri(aij)
(P (aij) =
j(aij)). Otherwise, call itbad. By our definition ofÆ and since fori 2 f1; :::; d + 1g, x + it1
andx+ it2 are uniformly distributed inZp, we get thatPrt1;t22RZp [row i is good℄ � 1� Æ
By applying Markov’s inequality we get thatPrt1;t22RZp [At most10Æ fraction of the rows arebad ℄ � 9=10
Similarly we get Prt1;t22RZp [At most10Æ fraction of the columns arebad ℄ � 9=10
Now, consider a(d+ 2)� (d + 2) submatrix consisting of the row0 and thed+ 1 goodrowse1; :::; ed+1,
and anyd+ 2 goodcolumnsf1; :::; fd+1. The Matrix Transposition Lemma with� P ; (a1; :::; ad+1) (e1; :::; ed+1); (b1; :::; bd+1); (f1; :::; fd+1); t3 0 guarantees that thed + 2 points on the row0 lie on
some polynomialr0. Repeated application by choosing othergoodcolumns show that all points in the0th
row from goodcolumns lie on the same polynomialr0. ThusSCP (x; t1) = r0(x). A similar argument
based ongood rows shows that there exists a polynomial
0 such that all points from column0 andgood
rows lie on this polynomial, implyingSCP (x; t2) =
0(x). Showing thatr0(x) =
0(x) will conclude the
proof.

Consider ad+2� d+2 submatrix ofA containing the row0, d+1 goodrows and the column0 andd+1
goodcolumns. Apply the Matrix Transposition Lemma with� = P everywhere except when the argument
is x where�(x) = r0(x). The Matrix Transposition Lemma guarantees that all pointsfrom the0th column
lie on
0, implying that
0(x) = r0(x). 2
The following lemma follows immediately and we state it without proof.

Lemma 12 8x, Prt2Zp hg(x) = SCP (x; t)i � 4=5.

Lemma 13 8x, g(x) = h(x), whereh is the unique most likely polynomial fittingg at the pointsfx+1; x+2; � � � ; x+ 3d+ 3g.
Proof: As in the proof of Lemma 11 we construct a matrixA = faij ji 2 f0; :::; 3d + 3g; j 2f0; :::; 10dgg, whereaij = (x + i) + j(t1 + it2) = (x + jt1) + i(1 + jt2). The rows of this matrix
are the elements that affectSCP (x + i; t1 + it2). The columns are a subset of the elements that affectSCP (x+ jt1; 1+ jt2). Call a rowi, of A goodif g(x+ i) = SCP (x+ i; it1+ t2). By Lemma 11 we know
that Prt1;t22RZp [row i is good℄ � 4=5
Using Markov’s inequality we getPrt1;t22RZp [at least two-thirds of the rows aregood℄ � 2=5

13

Thus we find that with probability at least 1/5, two-thirds ofthe rows are good and row0 is good. From now
on we will work with a submatrix ofA containing the0th row and2d + 2 othergoodrows. Letri be the
most likely polynomial fittingP on points from theith row. Call an elementmij bad if P (mij) 6= ri(mij).
Delete all columns ofM which containbadelements. Since we are working with only thegoodrows ofA,
any row can have at most10d � 10Æ bad elements. Thus we delete at most300(d2 + d)Æ columns. Hence we
will still be left with at least2d columns (sinceÆ � 8300(d+1)). Let
j be the most likely polynomial fittingP on elements from columnj. Delete all columns containing elements such that
j(mij) 6= P (mij). By the
definition ofÆ and application of Markov’s inequality we find that with probability at least1=10, no more
thand � 1 columns have such elements, and sod + 1 of the columns remain (this assumes thatd � 4, ifd < 4 then the algorithm in [8] is better). Applying the Matrix Transposition Lemma to all(d+2)� (d+2)
submatrices shows that all the elementsg(x + i), i is a good row, lie on the same polynomial. Thus we get
that at least 2/3rds of the pointsg(x + i) and the pointg(x) lie on the same polynomial. In other words,g(x) = h(x) whereh(x) is the most likely polynomial fittingg on the pointsfx+iji 2 f1; � � � ; 3d+3g. Also
sinceh agrees with at least two-thirds of the points of the set, it must be the unique most likely polynomial
fitting these points. 2
Our next lemma shows that the condition guaranteed above suffices to show thatg is a degreed polynomial.

Lemma 14 If � is a function fromZp to Zp such that for allx, �(x) = h(x) whereh is the unique most
likely polynomial, of degree at mostd, fitting� on the pointsfx+ iji 2 f1; � � � ; 3d+3gg. Then� is a degreed polynomial.

Proof: We prove this by claiming that the unique most likely polynomial fitting � on any set of the
form fx + iji 2 f1; � � � ; 3d + 3gg is the same. Assume otherwise. Then there must exist anx such that
the majority polynomial fitting� on the setsfx+ iji 2 f1; � � � ; 3d+ 3gg andfx + iji 2 f0; � � � ; 3d + 2gg
are different. But this cannot be since�(x) = h(x) whereh is the most likely polynomial fitting� on
the setfx + iji 2 f1; � � � ; 3d + 3gg. Hence the most likely polynomial fitting� in any set of the formfx+ iji 2 f1; � � � ; 3d+ 3gg is the same, sayh and hence for allx 2 Zp; �(x) = h(x) 22
5 Open Questions

We have shown that programs for polynomial functions can be self-tested over rational domains. A very
important question along these lines is to determine whether there is an approximate self-tester [8] for pro-
grams which approximate polynomial functions over rational domains, as would occur in floating point and
fixed precision computation (an approximate self-tester verifies that a program gives a good approximation
to the function on a large fraction of the inputs).

Secondly, we have shown stronger bounds on the efficiency of asimple modification of the algorithm for
self-testing polynomials in [8]. This algorithm makesO(d) tests, for a total ofO(d2) calls to the program.
It would be interesting to show whether or notO(1) tests of this algorithm or a slight modification of it are
sufficient.

14

6 Acknowledgements

We are very grateful to Avi Wigderson for suggesting that we look for more efficient testers for polynomials,
as well as his technical help in proving the theorems in Section 4. We thank Mike Luby, Oded Goldreich
and Joan Feigenbaum for their comments on the writeup of thispaper.

References

[1] Babai, L., Fortnow, L., Lund, C., “Non-Deterministic Exponential Time has Two-Prover Interactive
Protocols”,Proceedings of the 31st Annual Symposium on Foundations of Computer Science,, 1990.

[2] Beaver, D., Feigenbaum, J., “Hiding Instance in Multioracle Queries”,Proceedings of Symposium on
Theoretical Aspects of Computer Science 1990.

[3] Blum, M., “Designing programs to check their work”, Submitted toCACM.

[4] Blum, M., Kannan, S., “Program correctness checking ...and the design of programs that check their
work”, Proc. 21st ACM Symposium on Theory of Computing, 1989.

[5] Blum, M., Luby, M., Rubinfeld, R.,
“Self-Testing/Correcting with Applications to NumericalProblems,”Proc. 22th ACM Symposium on
Theory of Computing, 1990.

[6] Feige, U., Goldwasser, S., Lovasz, L., Safra, M., Szegedy, M., “Approximating Clique is Almost NP-
Complete”,Proceedings of the 32nd Annual Symposium on Foundations of Computer Science,, 1991.

[7] Freivalds, R., “Fast Probabilistic Algorithms”, Springer Verlag Lecture Notes in CS No. 74, Mathe-
matical Foundations of CS, 57-69 (1979).

[8] Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A., “Self-Testing/Correcting for Poly-
nomials and for Approximate Functions”,Proc. 23th ACM Symposium on Theory of Computing, 1991.

[9] Lipton, R.J., “New directions in Testing,” in Distributed Computing and Cryptography, DIMACS Se-
ries on Discrete Mathematics and Theoretical Computer Science, vol. 2, 1991, pp. 191–202.

[10] Lund, C., “The Power of Interaction”, University of Chicago Technical Report 91-01, January 14,
1991.

[11] Shen, Sasha, personal communication, May 1991.

[12] Van Der Waerden, B.L.,Algebra, Vol. 1, Frederick Ungar Publishing Co., Inc., pp. 86-91, 1970.

15

A Appendix

I. Proof of Lemma 9

We give the proof of Lemma 9.

Lemma 9 (Matrix Transposition Lemma) Let �a =< a0; :::; ad+1 > and�b =< b0; :::; bd+1 >. LetM�a;�b =fmij ji; j 2 f0; � � � ; d+1gg be a matrix such thatmij 2 Zp is of the formmij = x+ai:t1+bj:t2+ai:bj :t3,
and let� be a function fromZp toZp such that

1. 8i 2 f1; � � � ; d + 1g, 9 a polynomialri of degree at mostd such that8j 2 f0; � � � ; d+ 1g, �(mij) =ri(mij). (i.e. all of the function values of the points in rowri are on the same degreed polynomial
for rows 1 throughd+ 1.)

2. 8j 2 f0; � � � ; d+ 1g, 9 a polynomial
j of degree at mostd such that8i 2 f0; � � � ; d+ 1g, �(mij) =
j(mij). (i.e. all of the function values of the points in column
j are on the same degreed polynomial
for columns0 throughd+ 1.)

Then there also exists a polynomialr0 such that8j 2 f0; � � � ; d + 1g, r0(m0j) = �(m0j). (i.e. all of the
points in row0 arealsoon the same degreed polynomial).

Proof: By standard arguments (cf. [9]), the existence of polynomials r1; � � � ; rd+1 implies there exist
constantse0; e1; � � � ; ed+1 such that8i 2 f1; � � � ; d + 1g, Pd+1j=0 ejri(mij) = 0. The constants depend
only on�b and d. Similarly there exist constantsf1; � � � ; fd+1, depending only on�a andd, such that8j 2f0; � � � ; d+ 1g,
j(m0j) =Pd+1i=1 fi
j(mij). Thus we find thatd+1Xj=0 ej�(m0j) = d+1Xj=0 ej
j(m0j)= d+1Xj=0 ej d+1Xi=1 fi
j(mij)= d+1Xi=1 fi d+1Xj=0 ej
j(mij)= d+1Xi=1 fi d+1Xj=0 ejri(mij)= 0
Since the function values at these points satisfy the interpolation identities, we know that there must exist a
polynomialr0 such that8j 2 f0; � � � ; d+ 1g, r0(m0j) = �(m0j). 2
II. Method of Finite Differences.

Here we consider the following problem:

Givenk evenly-spaced pointsx1; x2; � � � ; xk 2 Znp , xi+1�xi = xi�xi�1 = h, and values of some functionf at these points:

16

Does there exist a polynomialh, of degree at mostd, such that8i 2 [k℄; h(xi) = f(xi)?
We describe how to use the method of finite differences to testfor this property. The test performsO(kd)
subtractions and no multiplications.

Define the functionf1(x) = f(x)� f(x� t). In general, definef i by f i(x) = f i�1(x)� f i�1(x� t). The
method of finite differences implies the following:

Lemma 15 ([12]) f agrees with some degreed polynomial on the pointsx1; � � � ; xk if and only if thed+1st
differencefd+1(xj) = 0 for j 2 fd+ 2; � � � ; kg.
Using this Lemma we find that we only have to evaluate thef i’s, for i 2 [d + 1℄, to check if the above
property holds, and this can be done usingO(kd) subtractions.

17

