
Madhu SudanE�cient checking of polynomialsand proofs and the hardness ofapproximation problemsNovember 13, 1995
Springer-VerlagBerlin Heidelberg NewYorkLondon Paris TokyoHongKong BarcelonaBudapest

To my dear Amma and Appa.

PrefaceThe de�nition of the class NP (Cook [41], Levin [86]) highlights the problemof veri�cation of proofs as one of central interest to theoretical computerscience. Recent e�orts have shown that the e�ciency of the veri�cation can begreatly improved by allowing the veri�er access to random bits and acceptingprobabilistic guarantees from the veri�er [20, 19, 50, 6]. We improve uponthe e�ciency of the proof systems developed above and obtain proofs whichcan be veri�ed probabilistically by examining only a constant number of(randomly chosen) bits of the proof.The e�ciently veri�able proofs constructed here rely on the structuralproperties of low-degree polynomials.We explore the properties of these func-tions by examining some simple and basic questions about them. We considerquestions of the form:(testing) Given an oracle for a function f , is f close to a low-degree poly-nomial?(correcting) Given an oracle for a function f that is close to a low-degreepolynomial g, is it possible to e�ciently reconstruct the value of g on anygiven input using an oracle for f?These questions have been raised before in the context of coding theory asthe problems of error-detecting and error-correcting of codes. More recently,interest in such questions has revived due to their connection with the area ofprogram result checking. We use results from coding theory as a starting pointand combine these with several algorithmic techniques including pairwiseindependent sampling to give e�cient randomized algorithms for these tasks.As a consequence we obtain fast randomized algorithms for error-detectionand error-correction for some well-known codes.The expressive nature of low-degree polynomials su�ces to capture thecomplexity of the class NP, and we translate our results on the e�ciencyof the testing and correcting procedures into two di�erent e�ciently veri�-able proof systems for deciding membership questions for NP languages. Oneproof system generates small and somewhat e�ciently veri�able proofs, andthe other generates very large but very e�ciently veri�able proofs. We thenemploy new techniques from the work of Arora and Safra [6] to compose theseproof systems to obtain small proofs that can be veri�ed by probing them injust a constant number of (randomly chosen) bits.

VI An important consequence of this result is that for a large variety ofNP-complete optimization problems, it can be shown that �nding even ap-proximate solutions is an NP-hard problem. The particular class of optimiza-tion problems we consider is MAX SNP, introduced by Papadimitriou andYannakakis [93]. For every MAX SNP-hard problem we show that there is aconstant �, such that approximating the optimum to within a relative errorof � is NP-hard.This version. This version of the dissertation is essentially the same as theone �led at the University of California at Berkeley in 1992. A few proofshave been �xed to address the comments of several readers who pointed outerrors in the earlier version. In addition this version has an addendum atthe end of every chapter to bring the reader up to date with the variousdevelopments in the subjects covered in this thesis during the period frommid-1992 to mid-1995.

AcknowledgmentsI am greatly indebted to Umesh Vazirani, my advisor, for the �ve years ofcareful nurturing that he has given me. His highly intuitive and creativeapproach to technical issues has left a deep impact on me. His ability tothrow new light onto existing ideas have been a big factor in aiding mythinking. I owe a lot to Umesh, most importantly his taste and appreciationof mathematics, some of which has hopefully rubbed o� on me. Umesh wasmore than just a technical adviser, and many are the times I have sought hiscounsel on non-technical matters, and I am thankful to him for his patiencewith me.I enjoyed the numerous meetings I have had with Dick Karp, during whichhe monitored my progress, bolstered my con�dence and at the same timeprovided me with his candid opinion on my work. Every meeting with Dickwas a highly ful�lling experience. I'd also like to thank him for the wonderfulcourses he taught us, which were a great part of my learning experience atBerkeley.A large portion of the work done here has been motivated by the work ofManuel Blum, and meetings with him over the last summer provided a turn-ing point in my research. His enthusiasm for our work proved to be a muchneeded catalyst, and his pointers, which led us to the wonderful world ofcoding theory, were crucial to some of the results described here. Mike Lubyhas been a constant source of inspiration to me. He has been very generouswith his time, during which I gleaned immense technical knowledge from him.His study groups at ICSI have been among my best sources of informationand are largely responsible for providing me with a sound technical footing. Iwould like to thank Dorit Hochbaum for the many hours she spent with me inmy last few months here and for sharing her wealth of knowledge on approxi-mation algorithms with me. I would also like to thank Sachin Maheshwari atthe Indian Institute of Technology at New Delhi, whose enthusiasm for thearea of theoretical computer science is perhaps the single largest factor formy working in this area today.I have been very fortunate to have found a large set of great people towork with. Ronitt Rubinfeld introduced me to the area of program checking,and much of my initial as well as current work has been done jointly withher. I am grateful to her for having shared her ideas with me, for the respect

VIIIshe showed me, and for encouraging me to work in this area. The resultsof Chapters 2 and 3 were obtained jointly with Ronitt and Peter Gemmell.I'd like to thank Rajeev Motwani for playing the role of my mentor andfor passing on his keen quest for knowledge, which provided the motivationbehind much of the work of Chapters 4 and 5. The work described in thesechapters was done jointly with Rajeev, Sanjeev Arora, Carsten Lund andMario Szegedy. Sanjeev deserves a special thanks for having provided mewith wonderful explanations of the work he was involved in and for bringingme up to date in his area.The academic environment at Berkeley has on the one hand been a verystimulating one and on the other it has provided me with a wonderful set offriends. Milena Mihail has been a true friend, whose advice I could alwayscount on. I learnt much from her in my early years here. Abhijit Sahay hasalways provided me with a great sounding board for my ideas, as I hope Ihave for him. His company extended well beyond the o�ce we shared, and,along with Savita and Usha, he has been the closest I had to a family of myown in Berkeley. I was also fortunate to have found such patient o�cematesin Jim Ruppert and Yiannis Emiris, who never seemed to tire of me. Thanksespecially to Diane Hernek, whose company was always a pleasure. Studyingat Berkeley has been a fun-�lled experience and I'd like to thank Will Evans,Sridhar Rajagopalan, Sigal Ar, Dana Randall, and Z Sweedyk for this.I was fortunate to have a company at home as stimulating as at theo�ce: Sushil Verma, my housemate for over three years, was a great friendwho always provided a willing ear to the problems I was working on. PratapKhedkar was an in�nite source of information to be tapped, and many arethe times when his information helped me in my work by either setting meon the right track or stopping me from spending time on dead ends. I'dlike to thank K.J. Singh, Narendra Shenoy, Audumbar Padgaonkar, AnantJhingran, Sharad Malik, Savita Sahay, Diane Bailey, Sampath Vedant, HuzurSaran, and Rajiv Murgai for all the wonderful times.This thesis had the (mis)fortune of being read by a lot more readers thanoriginally planned for { and consequently many mistakes were brought outfrom the earlier version. I thank Mihir Bellare, Michael Goldman, Oded Gol-dreich, Sha� Goldwasser, Jaikumar Radhakrishnan, and Karl-Heinz Schmidtfor their comments on this thesis and related issues.Last, I would like to thank my familymembers { my parents and my sisterSatya who have been most loving and understanding to me especially duringmy long absence from home; and Madhulika for entering my life. Amma andAppa, this thesis is dedicated to you.

Table of Contents
1. Introduction : 11.1 Some problems related to polynomials : 21.1.1 Proof veri�cation : 41.2 Program result checking : 61.3 Connections with coding theory : 91.4 Probabilistic checking of proofs : 121.5 Hardness results for approximation problems : : : : : : : : : : : : : : : 132. On the resilience of polynomials : 152.1 Preliminaries : 152.2 Achieving some resilience: random self-reducibility : : : : : : : : : : 162.3 Achieving nearly optimal resilience : 172.3.1 Univariate polynomials: error correcting codes : : : : : : : 172.3.2 Multivariate polynomials: \nice" univariate curves : : : : 182.3.3 Simultaneous self-correction for many points : : : : : : : : : 212.4 Discussion : 213. Low-degree tests : 233.1 Univariate polynomials : 243.1.1 A simple test : 243.1.2 A test based on evenly spaced points : : : : : : : : : : : : : : : : 263.2 Multivariate polynomials : 293.2.1 Extending the evenly spaced tester : : : : : : : : : : : : : : : : : 293.2.2 E�cient testing of bivariate polynomials : : : : : : : : : : : : 313.2.3 E�cient reduction from multivariate polynomials tobivariate polynomials : 343.3 Testing speci�c polynomials : 403.3.1 Polynomials speci�ed by value : 403.3.2 Polynomials speci�ed by construction : : : : : : : : : : : : : : : 403.4 E�cient testing of polynomials in the presence of help : : : : : : 423.5 Discussion : 45

X Table of Contents4. Transparent proofs and the class PCP : 474.1 De�nitions : 484.2 A transparent proof for languages in NP : : : : : : : : : : : : : : : : : : 504.3 Recursive proof checking : 504.4 Restricted PCP's for languages in NP : 524.5 A long and robust proof system : 534.5.1 Preliminaries: linear functions : 534.5.2 Long proofs of satis�ability : 544.6 Small proofs with constant query complexity: recursion : : : : : : 574.7 Discussion : 585. Hardness of approximations : 615.1 Optimization problems and approximation algorithms : : : : : : : 625.2 MAX SNP: constraint satisfaction problems : : : : : : : : : : : : : : : 645.3 Non-existence of PTAS for MAX SNP hard problems : : : : : : : 665.4 Discussion : 676. Conclusions : 69Bibliography : 73A. The Berlekamp Welch decoder : 79A.1 Preliminaries: rational functions : 79A.2 The decoder : 80B. Composing proof systems : 81C. A characterization of NP via polynomial sequences : : : : : : : 83Index : 86

1. IntroductionThe concept of a proof whose correctness can be veri�ed in polynomial timeis central to theoretical computer science. This is the de�ning property of thefundamental complexity class NP. Recently this notion has been extendedby allowing the polynomial time veri�er access to random bits and extendingthe notion of a proof to allow the veri�er a tiny probability of accepting afallacious proof [13, 70, 29, 53, 19, 6]. Such probabilistically checkable proofsare unexpectedly powerful and their power has been explored in several recentpapers [20, 19, 50, 6]. These papers show that even veri�ers with severelyconstrained access to the proof can check proofs of very general statements{ namely proofs of membership for any NP language.In this dissertation we carry this process to completion by showing thatveri�ers that access only constant number of bits in the proof can still verifymembership proofs for NP languages. To do this, we have to develop sometools which reveal some new characteristics of low-degree polynomials over �-nite �elds. Our motivation for studying these problems came from the theoryof self-testing/correcting programs, due to Blum, Luby and Rubinfeld [36]and Rubinfeld [100]. It turns out that there is a fundamental connectionbetween the testing and correcting of polynomials and the existence of e�-cient probabilistically checkable proofs. Here we have tried to highlight thisconnection be deriving previously known results as well as some of the newresults in a uniform manner from our results on the testing of polynomials. 1The early papers on NP-completeness (Cook [41], Levin [86] and Karp [80])linked the notion of proof veri�cation to a variety of optimization problems.This link was used to establish the hardness of �nding exact solutions to avariety of optimization problems, by showing them to be NP-complete. Thenew notions of proofs are very robust, in that even an approximately goodproof would be su�cient to convince veri�er of the truth of a statement.Thus, one would hope that the new proof systems should lead to hardnessresults for �nding even approximate solutions to some optimization problem.Feige, Goldwasser, Lovasz Safra and Szegedy [50] were the �rst to bring outsuch a connection that shows that approximating the clique size in graphs1 The development of the proofs as described here is quite di�erent from the wayin which these results evolved. Therefore the ideas from these past developmentscannot be fully localized within our exposition. An e�ort has been made thoughto provide references to the past work whose ideas are used in every step.

2 1. Introductionis hard. Inspired by this result, we bring out a di�erent connection whichenables us to show a variety of problems are hard to approximate. The prob-lems we consider are based on the class MAX SNP, de�ned by Papadimitriouand Yannakakis [93]. Our result shows that for every MAX SNP-hard prob-lem there exists a constant � such that estimating the optimum value to theproblem to within relative error � is NP-hard.1.1 Some problems related to polynomialsMany of the techniques used in the area of interactive proofs (probabilisticallycheckable proofs) are based on the properties of low-degree polynomials. Thestructural properties of low-degree polynomials has found wide applicationsin the area of coding theory. These applications are essentially based on thefollowing observation: \The value of a univariate degree d polynomial at anypoint can be reconstructed from the value of the polynomial at any d + 1places." This in turn implies that two distinct polynomials disagree witheach other on most inputs, and such a statement holds even for multivariatepolynomials. Next we introduce a norm for the distance between functions,which captures this fact tersely (For the sake of uniformity in our discussionwe only talk of polynomials over �nite �elds):De�nition 1.1.1. Let F be a �nite �eld and let f and g be functions fromthe space Fm to F (i.e., f and g are functions on m-variables). The distancebetween f and g, denoted d(f; g), is the fraction of inputs from Fm on whichf and g disagree. f and g are said to be �-close if d(f; g) � �.Using the above notation, we can express the distance property of poly-nomials as follows:Lemma 1.1.1 (Polynomial Distance Lemma (cf. [104])). Let f and gbe polynomials over F in m variables with total degree at most d. Thend(f; g) � 1� djF j .Thus for su�ciently large �nite �elds (jF j � d), the distance betweentwo polynomials is nearly 1. Now suppose we are given a function f which isknown to be very close to a degree d polynomial. The Polynomial DistanceLemma guarantees that the nearest polynomial is unique and thus can berecovered. We examine the e�ciency of a reconstruction procedure by posingthe following question:Problem 1.1.1 (correcting polynomials). Let f : Fm ! F be �-close tosome polynomial g of total degree at most d. Given an oracle for f and asetting b1; : : : ; bm 2 F to the m variables, �nd g(b1; : : : ; bm).It turns out that the univariate version of this problem is well-studiedin coding theory. In Chapter 2 we describe how these methods imply an

1.1 Some problems related to polynomials 3e�cient randomized algorithm to solve the univariate version of this problemfor any � < 1=2 (provided F is large enough). The running time of thisalgorithm is polynomial in d and 1(1=2��) . With respect to the multivariatecorrection problem we show how to reduce this to the univariate case bystructured random sampling from the multivariate input space. The solutionso obtained for the multivariate problem solves the correction problem forany � < 1=2 (provided F is su�ciently large). The running time in thiscase is poly(d;m; 1(1=2��)). The solution provided here can be applied backto problems in coding theory to get codes with very interesting randomizederror-correcting schemes. The error-correcting scheme can �nd the value ofany bit of the codeword using very few probes into a corrupted received word.The next problem we consider is closely related to the problem of correct-ing polynomials. This problem considers the task of testing if an arbitraryfunction is close to some polynomial. Formally:Problem 1.1.2 (low-degree testing). Let f : Fm ! F be given by anoracle. Determine if there exists a polynomial g of degree at most d which is�-close to f .While the statements of Problems 1.1.1 and 1.1.2 are syntactically closeto each other, the techniques used to solve the testing question are muchmore complex. The di�erence in the two questions may be summarized asfollows: The correcting question deals only with polynomials and functionsthat are close to polynomials and hence uses properties satis�ed by polynomi-als. By contrast, the testing problem could be handed any arbitrary functionand therefore to construct testers one needs to isolate properties which aresatis�ed exclusively by polynomials (and functions close to polynomials). InChapter 3 we provide e�cient randomized solutions for this task. The �nalresult constructs a tester that probes f in O(d) places and accepts f if it isa degree d polynomial and rejects f , with high probability, if f is not closeto any degree d polynomial. The running time of this tester is poly(m; d).(Note: It can be shown that both the randomization and the approximatenature of the answer are needed to solve this problem with this e�ciency.)The basic paradigm used in the tests described in Chapter 3 is the fol-lowing: We describe small neighborhoods { sets of size O(d) from the inputspace { on which the value of any degree d polynomial is forced to satisfysome simple constraints. For any speci�c neighborhood one can test e�-ciently that the constraints do indeed hold on that neighborhood. Our choiceof the neighborhoods guarantees, using standard results from algebra, that\f satis�es all the neighborhood constraints" if and only if \f is a degree dpolynomial". But checking that all the neighborhoods all satis�ed would taketoo long, and the best that can be hoped for is an estimate on the fractionof neighborhoods where the constraints are violated. (Such an estimate canbe easily obtained by random sampling.) We are able to establish that forcertain neighborhood structures the fraction of neighborhoods with violated

4 1. Introductionconstraints is closely related to the distance of f from low-degree polynomials.Therefore an e�cient low-degree tester need only approximate the number ofviolated constraints. Our proof uses a blend of probabilistic techniques andalgebra and reveal new ways of characterizing polynomials which may be ofindependent interest.The results on testing also contribute to coding theory by providing newrandomized error-detecting mechanisms for some well-known codes. This con-nection is described in Section 1.3. The mechanisms also �nd application tothe area of program checking. Such connections are described in Section 1.2.1.1.1 Proof veri�cationThe testing problem posed above could be interpreted in the following way.Suppose an entity, called the veri�er, wishes to verify that a given functionf is close to some low-degree polynomial, then it can do so by probing fin O(d) places. Suppose we introduce another entity, called the prover, whowishes to persuade the veri�er that f is close to a degree d polynomial andis willing to provide additional information about f to aid the process. Thenhow \easy" is it to persuade the veri�er of such a fact. (The terminology usedhere comes from the area of interactive proofs { see Babai [13], Babai andMoran [18] and Goldwasser, Micali and Racko� [70].)We make this setting more precise now: We will expect the prover toprovide the additional information about f in the form of an oracle O. Theproperties required of the veri�er should be:{ If f is a low-degree polynomial then there must exist an oracle whichpersuades the veri�er all the time.{ If f is not close to any polynomial then for every oracle O0 the veri�ershould reject f with high probability.The parameters of the veri�cation procedure that we will examine are:{ At how many points does the veri�er probe the value of f?{ How many questions does the veri�er need to ask of the oracle O?{ How large is the answer given by O to any one question?{ How large is this oracle O, i.e., how many di�erent questions could havebeen potentially asked of this oracle?Problem 1.1.3 (low-degree test with help). Let f : Fm ! F be givenby an oracle. Provide some auxiliary information about f in the form of anoracle O, so that a veri�er can test if f is �-close to a degree d polynomial byprobing f and O at only a constant number of places?The solution to the low-degree test gets easily transformed in this settingto give a solution, with the feature that O is a function from F 2m to FO(d),i.e., O is polynomially large in the representation of f and provides onlysmall pieces of information about f on any question (much smaller than,

1.1 Some problems related to polynomials 5say, specifying all the coe�cients of f). This solution is also described inChapter 3.Thus we �nd that statements of a very restricted nature { \f has low-degree" { can be proved in very e�cient manner by the results from low-degree testing. In order, to translate this result into results about more gen-eral statements we �rst de�ne an arti�cial problem about polynomials: \sat-is�ability of polynomial construction rules". It turns out that for a certainchoice of parameters this problem is NP-hard. Therefore obtaining an e�-ciently veri�able proof for this problem results in e�ciently veri�able proofsfor the membership problem for all languages in NP.De�nition 1.1.2 (polynomial construction rule). Given an initial poly-nomial g(0), a construction rule for a sequence of degree d polynomialsg(1); : : : ; g(l) is a set of rules r1; : : : ; rl, where ri describes how to evaluate thepolynomial g(i) at any point x 2 Fm using oracles for the previously de�nedpolynomials g(0); : : : ; g(i�1). A rule ri is speci�ed by a uniformly generatedalgebraic circuit over F , of size polynomially bounded in the input space (i.e.,O(poly(jF jm))). l is referred to as the length of such a rule. The maximumnumber of oracle calls made by any rule to evaluate any input is called thewidth of the rule and is denoted w.De�nition 1.1.3. A polynomial construction rule r1; : : : ; rk is satis�ableif there exists an initial polynomial g(0) such that the �nal polynomial g(l) asconstructed by the rule is identically zero.The next problem we de�ne looks at proofs of satis�ability of polynomialconstruction rules.Problem 1.1.4 (satis�ability of polynomial construction rules).Given a construction rule r1; : : : ; rl of length l and width w, for degree d poly-nomials of width w, provide an oracle O such that a probabilistic guaranteeon the satis�ability of the construction rule can be obtained by probing O ata constant number of places.Once again we expect that if the rule is not satis�able then the veri�cationmechanism should reject every oracle (proof) with high probability. On theother hand for a satis�able construction rule there must exist an oracle whichis always accepted by the veri�cation mechanism.The result on testing speci�c polynomials can be used to solve the aboveproblem using oracles of the form O : FO(m) ! F poly(m;d;l;w). This solutionis described also described in Chapter 3. This problem becomes interestingbecause for certain carefully chosen values of the parameters involved (i.e.,jF j; d; l;w and m) the polynomial construction rule satis�ability problem isan NP-complete problem and this is shown in Appendix C. In particular, thefollowing can be shown:

6 1. Introduction{ Given a 3-CNF formula � on n-variables, a polynomial construction ruler1; : : : ; rk can be computed in time poly(n) such that the constructionrules are satis�able if and only if � is satis�able. Moreover, jF j; d; l; w areO(polylogn) and m = �(lognloglogn).For such values of jF j; d; l;w and m the solution described above impliesthat there exists an oracle O of size poly(n) whose answers to questions areO(polylogn) bits long such that by asking this oracle a constant numberof questions su�ce to get a probabilistic guarantee on the satis�ability ofa 3-CNF formula. In particular this gives proofs that the veri�er needs toexamine only O(polylogn) bits to verify membership in NP languages, andthis resembles the result of Babai, Fortnow, Levin and Szegedy [19] in itse�ciency. But the locality of the way the proof is probed (i.e., in a constantnumber of entries which are O(polylogn) bits long) allows for the proofsto be checked recursively, using the techniques in the work of Arora andSafra [6]. Repeated employment of this idea yields proofs which can be veri�edby making O(log(c) n) probes into the proof (here log(c) the log functioncomposed c times). We also provide in Chapter 4 a new proof system thatprovides exponentially large proofs of satis�ability, but which can be veri�edby probing a constant number of bits of the proof. This proof system also usesresults of low degree testing and in particular the testing of linear (degree 1)functions from the work of Blum, Luby and Rubinfeld [36]. Composing theearlier developed proof systems with the new one gives us the �nal result:Polynomial sized proofs of membership in NP which are veri�able by probingthem in a constant number of bits.In the rest of this chapter we introduce in greater detail the areas to whichthe problems described above relate and describe the e�ect of the solutionsobtained here to these areas.1.2 Program result checkingThe notion of program result checking was initiated by Blum and Kannan[34, 35, 78] as a new approach for ensuring software reliability. The approachadvocates the use of fast checks performed at runtime to obtain guaranteeson the correctness of the solution obtained on speci�c runs of the program.Formally, a Checker is de�ned as follows:De�nition 1.2.1. A Checker for a function g is a (randomized) algorithmthat takes as input a program P supposedly computing g and an input x andbehaves as follows:{ If the program does not compute g correctly on the given input, then thechecker must fail (P; x) with high probability.{ If the program computes g correctly everywhere, then the checker must pass(P; x) with high probability.

1.2 Program result checking 7By not checking for the correctness of the program on every input, thetask of checking is a potentially more tractable problem than that of formallyverifying its correctness. On the other hand, such guarantees still su�ce toestablish that the program does not produce a wrong answer any time thatit is actually used. These features make program checking an attractive al-ternative to some of the traditional methods for guaranteeing reliability ofprograms. For a more detailed study of checking and a comparison of itsadvantages versus other techniques for ensuring software reliability, see Kan-nan [78] and Rubinfeld [100].A signi�cant amount of success has been achieved in the task of construct-ing checkers and checkers are available for a wide variety of problems includingsorting, linear programming and number theoretic applications [2, 35, 78]. Aparticular approach to the task of obtaining checkers that has met with con-siderable success was introduced by Blum, Luby and Rubinfeld [36]. Theydecompose the task of checking a program into two phases: a preprocessingphase and a runtime phase. In the preprocessing phase they test the correct-ness of the program on \randomly" chosen inputs from a carefully chosendistribution. In the runtime phase they compute the value of the functioncorrectly on arbitrary inputs using the knowledge that the program has beentested for this distribution. The former phase is the self-testing phase andthe latter phase is referred to as the self-correcting phase. The notion of self-correction was also independently introduced by Lipton [87]. We state theformal de�nitions next. In the following de�nitions we consider a function gdescribed over a �nite domain and the notation d(P; g) reects the fractionof inputs on which the program P does not compute g. (The original de�-nitions of Blum, Luby and Rubinfeld [36] allow for more general norms thatcould used to estimate the distance between P and g. Here we only de�ne theconcepts for the special case of the uniform norm, since all our results workwith such a norm.)De�nition 1.2.2 ([36]). For � > 0, a �-self-tester T for a function g, is arandomized algorithm which uses a program P as a black box and performsas follows:{ If d(P; g) = 0 then T outputs PASS, with high probability.{ If d(P; g) � � then T outputs FAIL, with high probability.De�nition 1.2.3 ([36],[87]). For � > 0, a �-self-corrector C for functiong, is a randomized algorithm for computing g which uses a program P as ablack box and on input x, computes g(x) correctly, with high probability (overinternal coin ips) if d(P; g) � �.Sometimes, we might not be interested in actually testing a speci�c func-tion g, but rather just that P has a speci�c property. To formalize this notion,we introduce the notion of testers for function families.

8 1. IntroductionDe�nition 1.2.4. The distance between a function f and a family of func-tions F , denoted �(f;F), is de�ned to beming2F fd(f; g)gDe�nition 1.2.5. For � > 0, a �-self-tester T for a function family F , is a(randomized) algorithm which uses a program P as a black box and performsas follows:{ If �(P;F) = 0, then T outputs PASS(with high probability).{ If �(P;F) � � then T outputs FAIL, (with high probability).It is a straightforward observation that if a function g has a self--testing/correcting pair then it has a checker. Conversely, if a function hasa checker, then it has a self-tester.The existence of self-correctors for functions is a very special structuralproperty. The existence of a self-corrector for a function g implies that g isas hard to compute on the average as in the worst case. Such an equivalencein the worst case and average case behavior is not known for many functionsand might not be true of NP-hard functions. Blum, Luby and Rubinfeld usethe notion of \random self-reducibility" (introduced by Abadi, Feigenbaumand Kilian [1], see also Feigenbaum [51]) to exhibit self-correctors for a largecollection of functions. This property can be observed in a number of alge-braic functions. For instance, say that a function g mapping from a �nitegroup G to a group H linear if for all x; y 2 G, g(x) + g(y) = g(x + y) (inother words g is a homomorphism from group G to group H). Then it can beshown that all linear functions have the random self-reducibility property (see[36]). Blum, Luby and Rubinfeld [36] cite many examples of linear functions:The Mod function, Integer Multiplication, Modular Multiplication, IntegerDivision, Matrix Multiplication etc. all of which have self-correctors due tothis observation. Lipton [87] based on the techniques of Beaver and Feigen-baum [21] has similarly shown the random self-reducibility of multivariatepolynomials and thus all multivariate polynomials have self-correctors.While the existence of self-correctors of functions may be a rare occur-rence, in the cases where they have been found, proofs of correctness havebeen straightforward. The construction of self-testers for functions on theother hand has been invariably a much harder task. The �rst class of func-tions for which self-testers were shown was the class of linear functions. Blum,Luby and Rubinfeld [36] show that there exists a function family tester forthe family of linear functions. Moreover, if a linear function g is given by itsvalues on a subset S of points from the domain, then g has a tester, pro-vided g is uniquely determined by its values on the set S. The results ofBabai, Fortnow and Lund [20] also give function family testers for the familyof multilinear functions and this plays an important role in their work onshowing MIP=NEXPTIME.

1.3 Connections with coding theory 9In the language of program checking, the basic issue explored in Chapter 2is the largest value of � for which an � self-corrector exists for multivariatepolynomials. The main issue considered in Chapter 3 is the construction ofself-testers for the family of low-degree polynomials and the self-testing ofpolynomials.A number of interesting algebraic computation tasks can be expressed ascomputations of low-degree polynomials, e.g., the determinant of a matrix,the permanent, the product of two matrices, inverse of a matrix etc. Theresults of Chapters 2 and 3 can be used to construct program checkers forsuch problems.1.3 Connections with coding theoryThe notions of testing and correcting relate to notions of error-detection anderror-correction in coding theory in a very strong sense. In this section,we briey describe the basic tasks of coding theory and compare them withthe task of testing and correcting functions. The special case of testing andcorrecting polynomials turns out to be particularly relevant since some well-known codes inherit their nice properties from the properties of polynomials.Examples of such codes are also given in this section, along with a descrip-tion of how this connection helps in designing algorithms for both programcorrecting and error-correction in codes.De�nitions. A generalized2 code over the alphabet � is a function E from�k ! �n, where elements of the domain of E are the message words andthe elements in the image of E form the codewords. For any two n-alphabetwords A and B over �, the absolute distance between A and B, is thenumber of places where A and B di�er, and the relative distance (or simplydistance) is the fraction of indices on which A and B di�er. The minimumabsolute distance of a code E is the minimum,over all possible pairs of distinctcodewords in E, of the absolute distance between the two words. Similarlythe minimum relative distance (or simplyminimum distance) is the minimumover all possible pairs of distinct codewords in E, of the relative distancebetween the two words.The computation of E(a) given a message a is the task of encoding. Givena word A 2 �n, determining if it is a valid codeword of E (i.e., if there existsan a such that A = E(a)) is referred to as error-detection. Given a wordA 2 �k, computing the codeword E(a) with minimum distance from A isthe task of error-correction. Typically this task is equivalent to the task of2 The word generalized is used to represent the fact that the codewords are notnecessarily over a binary alphabet. Codes over the binary alphabet are of greaterdirect interest since most communication lines do transmit binary information.Nevertheless, even for the task of constructing good binary codes, constructionsof good generalized codes are very useful.

10 1. Introductioncomputing the message a which minimizes the distance between E(a) and A.The latter task is referred to as decoding.Connection with testing and correcting of functions. The equivalence betweentesting/correcting and coding theory maybe viewed as follows. Let F be afunction family where each function in F maps from a �nite domain D toa range R. The functions in F represent the messages. The encoding of amessage f is the string fromRjDj obtained by writing the value of f explicitlyon all its inputs. The task of testing membership in the function family F ,becomes the task of error-detection. The task of self-correcting a functionf 0 : D ! R, becomes the task of error-correction.The above equivalence shows that if the task of testing/correcting forsome familyF is easy, then a good code can be found for the related messageclass. Conversely, the existence of good codes would imply testing/correctingfor a related function family. In the speci�c case of low-degree polynomials,the Polynomial Distance Lemma guarantees large distance between any twomessage words.Next we give examples of codes which may be obtained from polynomials.Reed Solomon Codes. Let F be a �nite �eld of size n. The Generalized ReedSolomon codes (see [99]) encode messages from the space F k into codewordsin the range Fn as follows. Let < c0; : : : ; ck�1 >2 F k be a message. Themessage represents the polynomial C : F ! F given by C(x) = Pki=1 cixi.The encoding of the message is the sequence fC(x)gx2F . Thus the codeword isa word from Fn. Since two degree k�1 polynomials can agree at a maximumof k � 1 points, the absolute distance between two codewords C and D isn� k + 1.Hadamard Codes. The Hadamard codes are binary codes which map fromf0; 1gk to f0; 1g2k�1. The construction of such codes is usually de�ned recur-sively, but here we describe it in terms of polynomials over the �eld GF(2). Amessage < c0; : : : ; ck�1 > represents the linear function C in k � 1 variablesx1; : : : ; xk�1 as follows:C(x1; : : : ; xk�1) = c0 + k�1Xi=1 ci � xiThe encoding of the message is the sequencefC(x1; : : : ; xk�1)g<x1;:::;xk�1>2f0;1gk�1 :Since the codeword is a polynomial of degree 1 over a �eld of size 2, we observethat by the Polynomial Distance Lemma, two distinct codewords di�er on atleast half the places, implying that the minimum absolute distance of theHadamard codes is 2k�2.

1.3 Connections with coding theory 11Polynomial Evaluation Codes. Both the codes given above can be uni�edas follows: Let N (m; d) be the number of terms (monomials) in m variablesof total degree at most d. 3 Then for a �nite �eld F of size at least d, the(m; d) polynomial code has FN(m;d) as the message space and F jF jm as therange space. A message represents the coe�cients of the N (m; d) monomials,and thus a polynomial of total degree at most d. The encoding of a messageconsists of representing the polynomial explicitly by its value on the jF jmpossible inputs. The Polynomial Distance Lemma implies that the minimumabsolute distance of such codes is jF jm(1� djF j). Notice that the Reed Solomoncodes are obtained by setting m = 1 and d = k�1, and the Hadamard codesby setting m = k � 1 and d = 1.Polynomial Extension Codes. Based on how the message is as the represen-tation of a polynomial, we get two di�erent kinds of coding schemes. Thepolynomial evaluation codes were obtained by interpreting the message as aset of coe�cients. If instead, we let the message specify a polynomial by itsvalue on a selected set of places, then we obtain the polynomial extensioncodes. For a subset H � F , where the cardinality of H is h, the (m;h) ex-tension code has a message space F hm and codewords are from F jF jm . Themessage represents the value of a polynomial g of degree h in each of the mvariables (and hence of total degree at most mh) at the hm points in Hm.Such a polynomial does exist and is unique. The encoding is obtained by eval-uating this polynomial at all the points in Fm. Once again the PolynomialDistance Lemma guarantees that the minimumabsolute distance of this codeis jF jm(1 � mhjF j). The advantage of specifying a code in this way is that themessage is embedded in the codeword. This property turns out to be usefulin many applications.Algorithmic implications. The algorithmic implication of this connectionworks in both directions. In Chapter 2, it is shown how to use the tech-niques developed from error-correction of Reed Solomon Codes to get self-correctors for programs that compute univariate polynomials. In the otherdirection, the testers and correctors developed for multivariate polynomials(in Chapters 2 and 3) show that the Polynomial Evaluation Codes have ex-tremely fast randomized error-detection and error-correction schemes. Sucha randomized error-detector would guarantee that a word A is very \close"to a valid codeword, with high probability, after looking at A in very fewplaces. Similarly, a randomized error-corrector would compute the symbol ofthe nearest codeword at any one location correctly, with high probability,by examining a corrupted codeword at only a few locations. Such e�cienterror-detecting and correcting schemes were not known prior to the work onprogram checking. Babai, Fortnow, Levin and Szegedy [19] were the �rst touse this connection to build such fast error-correcting and detecting schemes3 It is a simple combinatorial exercise to show N(m;d) = �m+dd �.

12 1. Introductionfor some codes. Our results improve on the e�ciency of such schemes andextend it to include all the codes here.1.4 Probabilistic checking of proofsThe notion of interactive proofs was introduced by Goldwasser, Micali andRacko� [70] and Babai and Moran [13, 18]. They study languages which per-mit interactive proofs of membership Which are veri�able by a probabilisticveri�er in polynomial time and call the collection of such languages IP4. Gold-wasser, Micali and Wigderson [68] provided evidence to show that the classIP strictly contains NP, by showing that graph non-isomorphism, a problemnot known to be in NP, can be proved e�ciently interactively and thus liesin the class IP. Recent breakthroughs completely characterize the power ofIP and the results of Lund, Fortnow, Karlo� and Nisan [91] and Shamir [105]shows IP = PSPACE.A related model of interactive proofs which is of more interest to us isthe model where the veri�er gets to ask questions from more than one non-interacting provers Ben-Or, Goldwasser, Kilian and Wigderson [29] or equiv-alently when the prover is assumed to be a non-adaptive entity i.e., an oracle(see the work of Fortnow, Rompel and Sipser [53]). Languages which admite�cient proofs of membership under the multiple prover proof system are saidto be in the class MIP and the recent result of Babai, Fortnow and Lund [20]provides an exact characterization of this class i.e., MIP = NEXPTIME.One way to view an oracle-based interactive proof is as follows: If we ex-plicitly write down the answer of the oracle on every question then we get aexponential sized table which is a proof of membership in NEXPTIME lan-guages which can be veri�ed very e�ciently (in polynomial time) by a proba-bilistic veri�er with random access to this table. This interpretation inspiredBabai, Fortnow, Levin and Szegedy [19] to de�ne the notion of transparentproofs: Informally, a transparent proof of a statement of the form x 2 Leither proves a correct statement or mistakes will appear in the proof al-most everywhere, thus enabling a probabilistic veri�er to spot it by a cursoryexamination. To formalize this concept, Babai et al. placed bounds on therunning time of the probabilistic veri�er and considered the kind of languageswhich have transparent proofs that could be veri�ed in time t(n). They scaledown the result in the work of Babai, Fortnow and Lund [20] to show thatall languages in NP have polynomial sized transparent proofs that can beveri�ed in O(polylogn) time, under the assumption that the input was pre-sented in some error-correcting code. Such an assumption is necessary since4 The notion introduced by Babai and Moran [13, 18] is slightly di�erent fromthat of Goldwasser, Micali and Racko� [70] and goes under the name of Arthur-Merlin games. We shall not go into the distinctions here { the interested reader isreferred to one of several surveys that have appeared on this subject [15, 65, 66].

1.5 Hardness results for approximation problems 13the in O(polylogn) time the veri�er cannot even read the whole input. Noticethat even under the assumption that the input is presented in an convenientform,
(logn) is a lower bound on the running time of the veri�er, since theveri�er needs to have the power to access the entire proof.Inspired by the work of Feige, Goldwasser, Lovasz, Safra and Szegedy[50], Arora and Safra [6] consider a model of proof system which they termprobabilistically checkable proofs. This model, like the model of transparentproofs, is also based on the notion of a probabilistic veri�er accessing anoracle (as in Fortnow, Rompel and Sipser [53]). However, instead of con-centrating on the running time of the probabilistic veri�er that veri�es theproof, the new notion concentrates on the sensitivity of the veri�er to theproof. They consider the number of bits of the proof that are actually readby the probabilistic veri�er on any choice of random bits, and call this thequery complexity of the probabilistically checkable proof. This parameter hasno inherent logarithmic lower bounds in contrast to the running time of theveri�er. Moreover, by not placing a polylogarithmic restriction on the runningtime of the veri�er, the new notion does not require inputs to be encodedin any form. Feige, Goldwasser, Lovasz, Safra and Szegedy [50] show thatevery language in NP has probabilistically checkable proofs with query com-plexity at most O(logn loglogn). Arora and Safra [6] improve this to showthat all languages in NP have probabilistically checkable proofs with querycomplexity O(polyloglogn) (for inputs of size n).Based on this notion of a proof system Arora and Safra [6] de�ne a classof languages PCP, with two parameters studied by Feige, Goldwasser, Lo-vasz, Safra and Szegedy [50]: the number of random bits used by the ver-i�er and the query complexity. For functions r; q : Z+ ! Z+, the classPCP(r(n); q(n)) consists of all languages which have probabilistically check-able proofs where the veri�er uses r(n) bits of randomness and reads q(n)bits of the proof to verify proofs of membership in the language. In thenew terminology of Arora and Safra, the previous results may be statedas NEXPTIME = PCP(poly(n); poly(n)) (Babai, Fortnow and Lund [20]),NP � PCP(polylogn; polylogn) (Babai, Fortnow, Levin and Szegedy [19]),NP � PCP(logn loglogn; logn loglogn) (Feige, Goldwasser, Lovasz, Safraand Szegedy [50]) and NP � PCP(logn; polyloglogn) (Arora and Safra [6]).The last of these provides an exact characterization of NP (since containmentin the other direction follows in a straightforward manner).In Chapter 4 we build on and improve upon the results described aboveto obtain a tighter characterization of NP as PCP(logn;O(1)).1.5 Hardness results for approximation problemsThe areas of \proof checking" and combinatorial optimization seem quite un-related at a �rst glance. Yet, in a surprising twist, Feige, Goldwasser, Lovasz,Safra and Szegedy [50] used the new results on probabilistically checkable

14 1. Introductionproofs to show hardness results for approximating the clique-size. They showthat unless NP � DTIME(nloglogn), the size of the largest clique in a graphcannot be estimated to within super-constant factors. Subsequently, by im-proving the performance of the probabilistically checkable proofs, Arora andSafra [6] and Arora, Lund, Motwani, Sudan and Szegedy [8] have been ableto improve this to show that approximating the clique size to within n� (forsome positive �) is NP-hard.Intuitively, the connection between the probabilistically checkable proofsand the approximation hardness results are due to the following reason. Theexistence of \robust" (probabilistically checkable) proofs for all languagesin NP implies that the membership question for any such language can beconverted to a problem which has a \gap" associated with it - namely, the gapin the probability of accepting a good proof vs. the probability of acceptinga bad proof. (Here a \bad" proof represents the proof of a wrong statement,rather than, say, the proof of a correct statement with a few errors in it.) Thisgap can be translated via approximation preserving reductions to constructgraphs with a large gap in the clique size. Approximating the clique size insuch graphs su�ces to decide membership for languages in NP.In Chapter 5 we show a similar connection between approximation prob-lems and probabilistically checkable proofs. In fact, we create an optimizationproblem which tries to estimate the probability of acceptance of any proof fora given statement. Almost by de�nition this problem turns out to be NP-hardto approximate. The structure of the problem turns out be very simple andhence can be reduced to many other optimization problems. In particular,we show that the class MAX SNP, de�ned by Papadimitriou and Yannakakis[93], contains this problem. A large variety of approximation problems areknown to be MAX SNP-hard [93, 94, 32, 33, 43, 77] and thus the result fromChapter 5 translates into non-approximability result for all these problemsunless NP = P.

2. On the resilience of polynomialsIn this chapter we consider the task of correcting multivariate polynomials.We restrict our attention to this problem over large �nite �elds. We recallthe basic notation and the problem statement next:For functions f and g mapping from Fm to F , the distance between fand g, d(f; g), is de�ned to be the fraction of inputs from Fm where f andg disagree. g and f are said to be �-close if d(f; g) � �. For a function familyF , the notation, �(f;F), represents the distance from f to the member ofF that is closest to f .Correcting PolynomialsGiven: An oracle to compute f : Fm ! F , where f is �-close to somepolynomial g of total degree at most d and a setting b1; : : : ; bm 2 F to the mvariables.Output: g(b1; : : : ; bm).The particular parameter we will be interested in is the \resilience" ofmultivariate polynomials, i.e., the largest value of � for which the aboveproblem can be solved e�ciently. In particular, we will be interested in so-lutions whose running time is poly(m; d) for �xed �. It is straightforwardto see that when � = 1=2, then the above problem does not have a well-de�ned solution, since there might exist two polynomials g1 and g2 suchthat d(f; g1) = d(f; g2) = 1=2. Thus � = 1=2 � � (� > 0) is the best re-silience that can be attained. In this chapter we show how to attain such aresilience: In particular, we give a randomized algorithm, which runs in timepoly(d;m; 1�), to solve the polynomial correction problem over �nite �elds,provided jF j �
((1� + d)2).2.1 PreliminariesWe consider polynomials over a �nite �eld F . The family of all polynomials ofdegree at most d on the variables x1; : : : ; xm will be denoted F (d)[x1; : : : ; xm].A polynomial g is thus a mapping from the vector space Fm to F . We willuse the vector notation x to represent an element of the domain. For s; t 2 F ,we will use the notation s� t to represent their product in the �eld. For t 2 Fand h 2 Fm the notation t � h will represent the vector in Fm with eachcoordinate of h multiplied by t.

16 2. On the resilience of polynomialsDe�nition 2.1.1. A curve through the vector space Fm is a function C :F ! Fm, i.e., C takes a parameter t and returns a point C(t) 2 Fm. A curveis thus a collection of m functions c1; : : : ; cm where each ci maps elementsfrom F to F .De�nition 2.1.2. If the functions c1 to cm can be expressed as polynomials,then the largest of the degrees of ci, is de�ned to be the degree of the curveC. We will use the following fact about low-degree curves through vectorspaces.Fact 2.1.1. Let C be a curve of degree d1 and g a polynomial on m variablesof total degree d2. Let us de�ne g restricted to C to be the function gjC :F ! F where gjC(t) = g(C(t)). Then g restricted to C is a polynomial ofdegree d1d2.Fact 2.1.2. Given d+1 points x1; : : : ; xd+1, from the space Fm, there existsa curve of degree d which passes through the d+ 1 points.Proof: This follows from the fact that one can construct degree d functionsc1; : : : ; cm such that ci(tj) = (xj)i for distinct t1; : : : ; td+1 2 F . �A special case of curves that will be of particular interest to us is linesthrough Fm, i.e., curves of the form C(t) = x + t � h. Notice that a degreed multivariate polynomial restricted to a line becomes a univariate degree dpolynomial.2.2 Achieving some resilience: random self-reducibilityThe notion of random self-reducibility was introduced as a tool to implementinstance-hiding schemes. The �rst formal de�nition occurs in Abadi, Feigen-baum and Kilian [1] (see also Feigenbaum [51] for a survey). Here we presenta restricted de�nition which su�ces for our purposes.De�nition 2.2.1 (random self-reducibility). A function g mapping froma �nite domain D to a range R is said to be random self-reducible, if the valueof g at any input x 2 D can be computed e�ciently from the value of g atpoints x1; : : : ; xk where each xi is a random variable distributed uniformlyover the domain D and the joint distribution on < x1; : : : ; xk > is e�cientlysampleable.The following is due to Blum, Luby and Rubinfeld [36].Proposition 2.2.1 ([36]). Every random self-reducible function has a self-corrector.

2.3 Achieving nearly optimal resilience 17Lipton [87] based on the work of Beaver and Feigenbaum [21] shows thatthe family of multivariate polynomials over large �nite �elds are randomself-reducible.Lemma 2.2.1 ([21],[87]). Let g : Fm ! F be a degree d polynomial, whereF is a �nite �eld such that jF j � d+ 2. Then g is random self-reducible.Proof: Let x be any arbitrary point in Fm. Pick a point h 2R Fm andconsider the \line" through the points x and x + h, i.e., the set of pointsfx+ t � hjt 2 Fg. g restricted to this line is a univariate polynomial in t ofdegree at most d. Thus, for any set S � F of size d+1, we �nd that the valueg(x) can be computed (e�ciently) from the values of g at fx+t�hjt 2 Sg (byinterpolating for the value of the univariate polynomial in t which describesg on the line fx+ t � hjt 2 Fg and evaluating this polynomial at t = 0).Notice further, that for t 6= 0, x+ t � h is distributed uniformly over Fm.Thus if we pick S to be any subset of F n f0g of size d + 1, then the valueof g at any �xed point x can be computed e�ciently from the value of g atthe d+ 1 randomly chosen points fx+ t � hjt 2 Sg. Such a set S exists sincejF j � d+ 2. �Using the above random self-reduction, the following can be shown easily.Corollary 2.2.1. If g is a degree d polynomial in m variables from a �nite�eld F , then g is 13(d+1) -resilient.2.3 Achieving nearly optimal resilienceIn this section we consider the task of recovering from large amounts of error.For achieving this task we look at the random self-reduction of Lemma 2.2.1more carefully. Observe, that the random self-reduction really performs asfollows: It picks a univariate subdomain of Fm i.e., a line in Fm, that containsthe point we are interested in, and then uses univariate interpolation on thisline to �nd the correct value of the function at every point on the line.Here we improve upon the above self-reduction in phases. First, we con-sider the restricted problem of correcting univariate polynomials and try toachieve a resilient interpolation mechanism: one that can �nd the value ofthe correct polynomial even in the presence of a signi�cant amount of error.Next, we show how to solve the problem of multivariate self-correction, bygiving a technique for picking especially \nice" univariate subdomains. Theresults of this section appear in [63] and [62].2.3.1 Univariate polynomials: error correcting codesHere, we wish to solve the following problem:

18 2. On the resilience of polynomialsProblem 2.3.1. Given: A function f : F ! F such that �(f; F (d)[x]) �1=2� � and a point a 2 F .Output: g(a), where g 2 F (d)[x] and d(f; g) � 1=2� �.Note that the problem is well-posed only if g is unique with respect to thegiven conditions, i.e., when jF j > d(2�) .Let n be a su�ciently large number (for the purposes required here, n =poly(d; 1�) su�ces). Pick points xi 2 F randomly, for i = 1 to n, and letyi = f(xi). Applying Cherno� bounds, we may conclude that with highprobability, the fraction of points such that f(xi) 6= g(xi) is approximatelythe same from the set fx1; : : : ; xng as from the entire �eld F . Choosing nlarge enough, the number of indices i such that yi 6= g(xi) can be madesmaller than (n� d� 1)=2. Thus our problem reduces to the following one:Problem 2.3.2. Input: n pairs (xi; yi) such that for all but k (s.t. 2k+d <n) values of i, yi = g(xi), for some univariate polynomial g of degree at most2d.Output: gSuch a problem arises in various ways in coding theory. If the set of xi'sexhausts all the elements of the �eld F , then this is the problem of decodingthe Reed-Solomon codes. If the xi are of the form !i, such that !t = 1,then the problem becomes one of correcting generalized BCH codes. In thegeneral form as it is stated above (with no constraints on the forms of thexi's), the problem can still be solved e�ciently and directly due to an elegantmethod of Berlekamp and Welch [30]. We state their result here; their proofis included in the appendix.Lemma 2.3.1 (univariate self-corrector: [30]). Given n points (xi; yi) 2F 2, there exists an algorithm which �nds a degree d polynomial g such thatg(xi) = yi for all but k values of i, where 2k+ d < n, if such a g exists. Therunning time of the algorithm is polynomial in k; d and n.As a corollary we obtain the following:Corollary 2.3.1. The family of univariate polynomials of degree at most d,is 1=2� �-resilient, for all � > 0.2.3.2 Multivariate polynomials: \nice" univariate curvesWe now return to the main task of self-correcting multivariate polynomialsfrom functions that are wrong almost half the time. The problem we solvehere is the following: For parameters � > 0 and a positive integer d, let Fbe a �nite �eld of size
((1� + d)2). Let g : Fm ! F be a multivariatepolynomial of degree at most d:

2.3 Achieving nearly optimal resilience 19Problem 2.3.3. Given : f such that d(f; g) � 1=2� � and a1; a2; � � � ; am 2F .Output : g(a1; a2; � � � ; am).In this section we describe a randomized reduction from Problem 2.3.3 tothe univariate self-correction problem.We construct a subdomain D � Fm parameterized by a single variable x(i.e., the points in the domain D are given by fD(x)jx 2 Fg), such that Dsatis�es the following properties:1. The function g0(x) � g(D(x)), is a polynomial whose degree is O(d) inx.2. The point a �< a1; : : : ; am > is contained in D; In fact we will ensurethat D(0) = a.3. With high probability, f agrees with g on approximately the same frac-tion of inputs from the domain D as from the domain Fm.The three properties listed above help us as follows: The �rst propertyensures that we are looking at univariate polynomials over the domain D,while the second property makes sure that this helps us �nd g(a1; : : : ; am).The last property ensures that we do not lose too much information aboutg during the process of the reduction. Properties 1 and 3 are contrasting innature. Property 1 requires the domainD to be nicely structured and expectsD to be a univariate curve of constant degree in Fm. indexcurve On the otherhand, Property 3 is what would be expected if D were a random sample ofFm.Before going on to the construction of such a domainD, we �rst reexaminethe reduction of Beaver and Feigenbaum (see Lemma 2.2.1). Notice that theirreduction does indeed construct a univariate subdomain by picking D to bea line through the space Fm. But this construction only achieves a very weakform of property 3. This is pointed out by Gemmell, Lipton, Rubinfeld, Sudanand Wigderson [63], where it is shown, using Markov's Inequality, that if fand g agree on all but � fraction of the inputs from Fm, then with probability1� 1k , f and g agree on all but k� fraction of the inputs from the domain D.This also allows Gemmell et al. [63] to show that the family of multivariatepolynomials is (1=4��)-resilient. This construction is not of much use thoughif � is more than 1=4, since then the probability with which f agrees with gon at least half the points from D, is less than a half.In order to achieve the higher degree of randomness as required by prop-erty 3, we modify the construction of Lemma 2.2.1 as follows.Pick � and � uniformly and randomly from FmLet D�;�(x) � � � x2 + � � x+ aD�;� � fD�;�(x)jx 2 Fg

20 2. On the resilience of polynomialsEach coordinate of D�;�(x) is a polynomial of degree 2 in x. Hence g0 isa polynomial of degree at most 2d in x. Also D�;�(0) = b. Thus we see thatD�;� as picked above satis�es properties 1 and 2. 1The following claim establishes that D�;� also forms a pairwise indepen-dent sample of Fm.Claim. For a �nite �eld F , b1; b2 2 Fm, and for distinct x1; x2 2 F n f0g,Pr�;�[D�;�(x1) = b1 and D�;�(x2) = b2] = 1jF j2nProof: For each coordinate i 2 [n], there exists exactly one degree 2 poly-nomial pi in x, such that pi(0) = ai, pi(x1) = (b1)i and pi(x2) = (b2)i. Thuswhen we pick a random polynomial pi such that pi(0) = bi for the ith coor-dinate, the probability that pi(x1) = (b1)i and pi(x2) = (b2)i, is 1jF j2 . Sincethe events are independent for each coordinate, we havePr�;�[D�;�(x1) = b1 and D�;�(x2) = b2] = 1jF j2n �The above claim establishes that any set S of the form S � fD�;�(x)jx 2F n f0gg is a pairwise independent sample of Fn. When combined with thefollowing lemma, the above claim shows that the domain D also satis�esProperty 3.Lemma 2.3.2. If S � Fm is a pairwise independent sample of n elementsfrom Fm, and if d(f; g) � 1=2� � then the probability that f agrees with gon at least n(1=2 + �) � cpn points from S is at least 1� 1c2 .Proof [Sketch]: Let I be the indicator variable for the condition f = g i.e.,I(x) = � 1 if f(x) = g(x)0 otherwiseThen by the fact that Chebyshev's Inequality holds for pairwise independentvariables (see, for instance, [88]) one can conclude that the expected value ofI over the domain S is very close to the expected value of I over the domainFm. More precisely, for positive cPr hjEx2RS [I(x)]�Ex2RFm [I(x)]j � c=pjSji � 1=c2Thus we �nd that g and f agree on at least n(1=2+ �)� cpn points of S. �1 The idea of substituting low-degree polynomials in a single variable for the dif-ferent variables, is not a new one. In particular, this has been used by Beaver,Feigenbaum, Kilian and Rogaway [22], to reduce the number of oracles usedin instance hiding schemes. The underlying property that they extract is sim-ilar. They use the fact that substitution by degree t-polynomials yields t-wiseindependent spaces.

2.4 Discussion 21Thus the domain D has all the three properties required of it. Thus theproblem of multivariate self-correction on the domain Fm has been reducedto the task of univariate self-correction (of g0(0)) on the domain D�;� . ByLemma 2.3.1 this can be done in time polynomial in n and d for error atmost 1=2� �. Thus we have the following theorem:Theorem 2.3.1 (multivariate self-corrector [62]). For a positive inte-ger d and � > 0, the family of degree d polynomials in m variables oversu�ciently large �nite �elds F (jF j �
((1� +d)2)) is (1=2��)-resilient. Therunning time of the self-corrector is polynomial in m; d and 1� .2.3.3 Simultaneous self-correction for many pointsHere we consider a slight twist on the problem of self-correction and show thatthe techniques of the previous sections adapt easily to handle this problem.The new problem we consider is the following: Suppose we are interestedin the value of a polynomial g : Fm ! F at l places { a1; a2; : : : ; al { andthe only information we have about g is given by a function f such thatd(f; g) � 1=2 � �. The problem can obviously be solved by using the self-corrector of the previous section l times. But here we give a more directprocedure which can retrieve all the l values simultaneously in one step.To achieve the reduction we construct (with some randomization) a do-main D such that the following properties hold:1. D is a univariate curve of degree O(ld).2. D passes through the points a1; : : : ; al.3. D forms a pairwise independent sample of Fm (except at the pointsD(1); : : : ; D(l)).Such a domain can be constructed by picking r1 and r2 randomly fromFm and then letting D be the univariate curve which contains the pointsa1; a2; : : : ; al; r1; r2.We now use the univariate self-corrector of Lemma 2.3.1 to �nd the poly-nomial g0 which describes g on the curve D. g0(1); : : : ; g(l) gives us the desiredl values.Thus we have the following lemma:Lemma 2.3.3. For a positive integer d and � > 0, given a function f suchthat 9g 2 F d[x1; : : : ; xm] such that d(f; g) � 1=2��, the value of g at l pointscan be simultaneously reconstructed from f by a reduction to one univariatereconstruction problem for a polynomial of degree O(ld).2.4 DiscussionHigher fraction of error: The reconstruction problem. If the distance �(f;F (d)[x1; : : : ; xm]) is larger than 1=2 (say :9) then the self-correction problem

22 2. On the resilience of polynomialsis ill de�ned (since there can be two polynomials which can agree with theoracle f at :1 fraction of the inputs) and hence cannot be solved in the form itis stated. But we could rede�ne the problem and instead ask for any functiong 2 F (d)[x1; : : : ; xm] which satis�es d(f; g) < :9. This corresponds to themaximum likelihood decoding problem in coding theory. Motivated by someapplications in cryptography Goldreich and Levin [67], study this problemfor the case d = 1 and F = GF (2) and give a solution to this problem withrunning time bounded by a polynomial in m, the number of variables. Ar,Lipton, Rubinfeld and Sudan [3] also studied this problem where they givea number of applications for this problem. They solve this problem in timepolynomial in d and m, over large �nite �elds, under a restricted model oferror that su�ces for their applications. They also show that an extension ofthe methods from here can reduce the multivariate version of this problem tothe univariate case, for large �nite �elds. A polynomial time (in d) solutionfor the univariate case for general error still remains open.Implications for the permanent. Lipton [87] observed that the permanent ofan n�n matrix is a polynomial of degree n and is hence random self-reducible(over su�ciently large �nite �elds). The implication of this was that unless#P = BPP, even the task of computing the permanent on a large fractionof the matrices would not be tractable (i.e., not computable in randomizedpolynomial time). The improvements shown here now imply that computingthe permanent on even 1=2+� fraction of all n�n matrices from a large �nite�eld is hard unless #P = BPP. Improving on this work further, Feige andLund [49], have shown that unless #P = �P2 (which in particular implies acollapse of the polynomial hierarchy), the permanent of n�nmatrices cannotbe computed on even exponentially small fraction of all matrices (over large�nite �elds).Random self-reduction over small �elds. Another important issue is the ran-dom self-reducibility of computations over small �nite �elds. Of course, for ageneral polynomial, this would not be achievable since in general polynomialsneed not di�er at very many places over small �elds. But for special polyno-mials other properties of the function can be used to achieve some resilienceand this is indeed the case for the permanent over GF(3) (see Feigenbaumand Fortnow [52] and Babai and Fortnow [16]). The resilience shown by themis inverse polynomial in the dimension of the matrix and it is over a distri-bution which is not uniform. It would be interesting to improve either of thetwo aspects.Addendum. In a recent work Goldreich, Rubinfeld and Sudan [69] extendthe result of Goldreich and Levin [67] giving an algorithm to reconstructpolynomials which agree with an oracle on some � =
(pd=jF j) fraction ofthe points. Their running time is exponential in the degree d but polynomialin the number of variables m and 1� .

3. Low-degree testsIn this chapter we discuss issues on testing polynomials. The �rst problemwe consider here is:Low-degree testingGiven: A function f : Fm ! F as an oracle, a positive integer d and realnumber � > 0.Output: PASS if f 2 F (d)[x1; : : : ; xm] and FAIL if�(f; F (d)[x1; : : : ; xm]) > �.A closely related problem to this is the following approximation problem:\Given a function f , estimate the distance�(f; F (d)[x1; � � � ; xm]) to within anadditive factor of �=2". In the following sections we describe such estimators,�rst for the univariate case and then for the multivariate case. (The resultsare expressed in terms of low-degree testing but can be converted to theapproximation setting.) The main parameter of interest will be the numberof probes made into f by such a tester. The tester presented in Section 3.2.3probes the oracle for f in only O(d) places. Notice that d+2 is a lower boundon the number of queries on f , since for any d+ 1 points from Fm and anyd + 1 values from F , there exists a polynomial which takes on those valuesat those places, and hence no function can be rejected by the tester.The basic outline that all the testers described in this chapter is thefollowing: We isolate \neighborhoods" in the input space (Fm), i.e., sets ofvery small size from Fm, where any degree d polynomial must show someredundancy. More speci�cally, we isolate neighborhoods of size O(d), wherethe value of the polynomial on d+ 1 points forces its value at the remainingpoints in the neighborhood. Thus each neighborhood expresses a constraintthat f must satisfy if it were a degree d polynomial. We now estimate thenumber of neighborhoods on which the constraints are violated. This is aneasy task since for any one neighborhood, testing whether the constraint issatis�ed takes poly(d) steps. Transforming this estimate on the number ofunsatis�ed neighborhoods into an estimate on the distance of f from thefamily F (d)[:::] will hence occupy most of our attention from here onwards.The second problem we consider is the following:Testing speci�c polynomials:Given: A function f : Fm ! F as an oracle; and an \implicit description"of a polynomial g.

24 3. Low-degree testsOutput: An estimate for d(f; g) (or alternatively PASS if f � g and FAIL ifd(f; g) � �).The solution to the problem will depend on what form the \implicit"description of g takes. We elaborate on two presentations of g under whichtesting is possible:{ g is described by its value on enough points so as to specify it uniquely:In particular, if we are given an oracle which can provide the value of gon some space Im, where I � F and jIj � 2d, then we can test for g verye�ciently.{ g is described by a construction. Making this notion precise requires somee�ort and Section 3.3.2 describes the notion along with a solution on howto test g in such circumstances.It is worth pointing out that most of the e�ort involved in solving the problemof testing speci�c polynomials is directed towards making the notions precise.Once this is done, the solutions follow in a straightforward manner using thelow-degree tests.Finally, in this chapter, we consider the two problems described above ina slightly di�erent setting which is related to the area of interactive proofs(probabilistically checkable proofs). More speci�cally, we consider the di�-culty of \persuading" a veri�er that a function f presented by an oracle isclose to the family of multivariate polynomials of degree at most d. We showthat for any function f that is a multivariate polynomial, there is a smallamount of additional information O, such that the tester, on probing f andO at only a constant number of values, will be convinced that f is close to alow-degree polynomial. On the other hand if f is not close to any low-degreepolynomial, then for any augmenting informationO0 tester would detect thatf is not a low-degree polynomial. Similarly we also consider the task of per-suading a veri�er that a function f is close to a polynomial g where g ispresented by a rule for its construction.3.1 Univariate polynomials3.1.1 A simple testWe start by describing a very simple tester for univariate polynomials. Thetester runs in time polynomial in d, and can be used to test over any �nitesubset of a (potentially in�nite) �eld. The tester is described in terms oftesting over a �nite �eld F .The test is obtained by de�ning all subsets of d+ 2 points from F to be\neighborhoods". A \neighborhood constraint" enforces the fact that on theneighborhood, the function f looks like a polynomial. Lemma 3.1.1 showsthat the distance we are interested in estimating, �(f; F (d)[x]), is bounded

3.1 Univariate polynomials 25from above by the fraction of violated constraints. The Basic UnivariateTest estimates the latter quantity by basic sampling.program Basic Univariate TestRepeat O(1) timesPick d+ 2 distinct points x0; : : : ; xd; xd+1 2R FVerify that f on x0; : : : ; xd+1 is a degree d polynomialThe correctness of the tester follows from the following lemma.Lemma 3.1.1. Given a positive integer d, a �nite �eld F of size at leastd+ 2 and a function f : F ! F , if f satis�esPr h9g 2 F (d)[x] s.t. g(xi) = f(xi)) 8i 2 f0; : : : ; d+ 1gi � 1� �;where the probability is taken over the uniform distribution over all d + 2-tuples < x0; : : : ; xd+1 > of distinct elements from F , then �(f; F (d)[x]) � �.Proof: Let g be the degree d polynomial which minimizes d(f; g) and letthe distance between f and g be �0. Now �x z0; : : : ; zd and let h be theunique degree d polynomial such that h(zi) = f(zi), for i 2 f0; : : : ; dg. Bythe de�nition of �0, we have thatPrxd+12RF [h(xd+1) = f(xd+1)] � 1� �0Thus Prx0;:::;xd+1 h9p 2 F (d)[x] s.t. 8i 2 f0; : : : ; d+ 1g; p(xi) = f(xi)i� maxz0;:::;zd Prxd+1 [poly through z0; : : : ; zd also passes through xd+1]� 1� �0 �The tester above establishes that univariate testing is an easy task and canbe done in polynomial time (in the degree of the polynomial). Furthermore,the tester probes f in only O(d) places. Yet, the tester given above does notreveal any new or interesting properties of polynomials, and it cannot begeneralized to multivariate polynomials. Moreover from the point of viewingof testing \programs that compute polynomials" it is not very useful, sinceit is not \di�erent" from a program that computes the polynomial. Next wedescribe a di�erent tester for univariate polynomials which is more usefulto construct program checkers. It also reveals new properties of polynomialswhich enable us to extend it to test multivariate polynomials.

26 3. Low-degree tests3.1.2 A test based on evenly spaced pointsThe tester of this section works only for �elds of the form Zp for a prime p.In particular, this fact is used in Lemma 3.1.2.De�nition 3.1.1. We say that a set of points fx0; : : : ; xng is evenly spacedif 9h such that xi = x0 + i � h.The tester on this section uses evenly spaced points as neighborhoods, i.e.,neighborhoods are of the form fx + i � hgd+1i=0 . The constraints specify thatf on the neighborhoods should agree with some polynomial. Lemma 3.1.3shows that if all neighborhood constraints are met by a function g, theng is a polynomial of degree d. Theorem 3.1.1 shows that the distance off from the family of degree d polynomials is at most twice the fraction ofviolated constraints, thus showing that is su�ces to test on evenly spacedneighborhoods.The following lemma shows that interpolation (testing if a neighborhoodconstraint is violated) is a much easier task for evenly spaced points. In fact,the interpolation can be performed without using any multiplication and thismakes the tester \di�erent" from any function evaluating the polynomial.Lemma 3.1.2 (cf. [110] pages 86{91). Given a positive integer d and aprime p � d+ 2 The points f(xi; yi)ji 2 f0; : : : ; d+ 1g;xi = x+ i � h;xi; yi 2Zpg lie on a degree d polynomial if and only if Pd+1i=0 �iyi = 0, where �i =(�1)(i+1)�d+1i �.Proof [Sketch]: De�ne the functions f (j), j = 0 to d+ 1 as follows:f (0)(xi) = yi and f (j)(xi) = f (j�1)(xi) � f (j�1)(xi+1)The function f (j) agrees with a degree d� j polynomial if and only if f (j�1)agrees with a degree d � j + 1 polynomial. In particular this implies thatf (d) is a constant and thus f (d+1)(x0) = 0, if and only if f (0) is a degree dpolynomial. But f (d+1)(x0) =Pd+1i=0 �iyi. �Note: The proof also shows that the constants �i never need to be evalu-ated. Instead the summation can be calculated by evaluating all the functionsf (j). In all, this takes O(d2) additions and subtractions, but no multiplica-tions.Furthermore, evenly spaced points su�ce to characterize functions thatare polynomials.Lemma 3.1.3 (cf. [110] pages 86{91). For a positive integer d and aprime p � d + 2, the function f : Zp ! Zp is a polynomial of degree atmost d if and only if 8x; h 2 Zp, Pd+1i=0 �if(x+ i � h) = 0.

3.1 Univariate polynomials 27Proof [Sketch]: Lemma 3.1.2 immediately gives the implication in one di-rection. The other direction, i.e., 8x; h 2 Zp, Pd+1i=0 �if(x + i � h) = 0) fis a degree d polynomial follows from looking at the special case of h = 1.In this case the function is speci�ed at all points in Zp by its values at theset f0; : : : ; dg. Moreover if g is the unique polynomial which equals f on thepoints f0; : : : ; dg, then g equals f everywhere. �The following theorem shows that it su�ces to test that the interpolationidentities hold for evenly spaced points, in order to verify that a given functionhas low-degree.Theorem 3.1.1. Given a positive integer d, a prime p � d+2 and a functionf : Zp ! Zp such thatPrx;h2RZp "d+1Xi=0 �if(x+ i � h) = 0# � 1� � where � � 12(d+ 2)2 ;then there exists a function g such that 8x; h 2 Zp;Pd+1i=0 �ig(x + i � h) = 0and d(f; g) � 2�.In particular, the bounds above imply that the tester resulting from thistheorem would need to probe f in O(d3) places (since to verify that the testabove holds with probability 1�O(1=d2) the test would need to be repeatedO(d2) times, and each repetition involves probing f at O(d) places). Theproof of this theorem follows Lemmas 3.1.4, 3.1.5 and 3.1.6.De�ne g(x) to be majh2ZpPd+1i=1 �iP (x+ i � h).Lemma 3.1.4. g and f agree on more than 1 � 2� fraction of the inputsfrom Zp.Proof: Consider the set of elements x such that Prh[f(x) =Pd+1i=1 �if(x+ i�h)] < 1=2. If the fraction of such elements is more than 2� then it contradictsthe condition that Prx;h[Pd+1i=0 �if(x + i � h) = 0] = �. For all remainingelements, f(x) = g(x). �In the following lemmas, we show that the function g satis�es the inter-polation formula for all x; h. We do this by �rst showing that for all x, g(x)is equal to the interpolation of f at x by most o�sets h. We then use this toshow that the interpolation formula is satis�ed by g for all x; h.Lemma 3.1.5. For all x 2 Zp, Prh �g(x) =Pd+1i=1 �if(x+ i�h)� � 1�2(d+1)�.Proof: Observe thath1; h2 2R Zp) x+ i � h1 2R Zp and x+ j � h2 2R Zp

28 3. Low-degree tests) Prh1 ;h2[f(x + i � h1) = d+1Xj=1�jf(x+ i � h1 + j � h2)] � 1� �and Prh1 ;h2[f(x + j � h2) = d+1Xi=1 �if(x + i � h1 + j � h2)] � 1� �Combining the two we getPrh1 ;h2 264 Pd+1i=1 �if(x + i � h1)=Pd+1i=1 Pd+1j=1 �i�jf(x + i � h1 + j � h2)=Pd+1j=1 �if(x + j � h1) 375 � 1� 2(d+ 1)�:The lemma now follows from the observation that the probability that thesame object is drawn twice from a set in two independent trials lower boundsthe probability of drawing the most likely object in one trial. (Suppose theobjects are ordered so that pi is the probability of drawing object i, andp1 � p2 � : : :. Then the probability of drawing the same object twice isPi p2i �Pi p1pi = p1.) �Lemma 3.1.6. For all x; h 2 Zp, if � � 12(d+2)2 , thenPd+1i=0 �ig(x+i�h) = 0(and thus g is a degree d polynomial).Proof: Let h1; h2 2R Zp. Then h1 + i � h2 2R Zp implying that for all0 � i � d+ 1Prh1;h2 �g(x + i � h) = d+1Xj=1�jf((x + i � h) + j � (h1 + i � h2))� � 1� 2(d+ 1)�Furthermore, we have for all 1 � j � d+ 1Prh1 ;h2 � d+1Xi=0 �jf((x + j � h1) + i � (h+ j � h2)) = 0� � 1� �Putting these two together we getPrh1;h2 24 Pd+1i=0 �ig(x+ i � h)=Pd+1j=1Pd+1i=0 �j�if((x+j*h1) + i*(h+j*h2))= 0 35 � 1�2�(d+1)2 > 0:The lemma follows since the statement in the lemma is independent ofh1; h2, and therefore if its probability is positive, it must be 1.By Lemma 3.1.3 g must be a polynomial of degree at most d. �Proof ([): of Theorem 3.1.1] Follows from Lemmas 3.1.4 and 3.1.6. �This theorem can now be used to construct a tester for univariate polyno-mials as follows. This tester �rst appeared in the works of Gemmell, Lipton,Rubinfeld, Sudan and Wigderson [63] and Rubinfeld [100].

3.2 Multivariate polynomials 29program Evenly-Spaced-TestRepeat O(d2 log(1=�)) timesPick x; t 2R Zp and verify that Pd+1i=0 �if(x + i � t) = 0Reject if any of the test failsTheorem 3.1.2. If the computation of a program can be expressed by a low-degree polynomial correctly on all its inputs from Zp, then it is passed byEvenly-Spaced-Test. If the output of the program is not O(1d2)-close to aunivariate polynomial, then with probability 1� �, it is rejected by Evenly-Spaced-Test.Proof: With con�dence 1��, the program Evenly-Spaced-Test will �nd abad neighborhood if the fraction of bad neighborhoods is greater than O(1d2).If the fraction is smaller then by Theorem 3.1.1 the program's computationis O(1d2)-close to a degree d polynomial. �The tester given above forms a very practical program checker for pro-grams that compute polynomials. Though the proof given here works onlyfor Zp, it can easily be extended to work for functions from Zm to Zm. Witha bit more work, the same ideas can even be used to test polynomials overthe reals and the integers. Such a test is not described here. Details of thistester appear in Rubinfeld and Sudan [101].The interesting element of the tester is that it reveals that testinglow-degreeness over strongly correlated samples su�ces to establish low-degreeness over the whole domain. The fact that strongly correlated samplescan give a lot of structure is exploited in the next section to give very simplelow-degree tests for multivariate polynomials.3.2 Multivariate polynomialsIn this section we �rst describe a simple extension of the \Evenly SpacedTest" of the previous section which works for multivariate polynomials. Thenwe work on improving the e�ciency of the tester (so that the number oftests that it performs becomes smaller). The e�ciency is improved by �rstconsidering the special case of bivariate polynomials and then showing howto reduce the testing of general multivariate polynomial testing to testing ofbivariate polynomials.3.2.1 Extending the evenly spaced testerIt turns out that the evenly spaced tester of the previous section easily extendsto multivariate polynomials in the following way. We pick vectors x andh uniformly at random from Zmp , and test that the interpolation identity

30 3. Low-degree testsholds for neighborhoods of the form fx; x+ h; x+ 2 � h; : : : ; x+ (d+ 1) � hg.Theorem 3.1.1 can now be extended to apply to the functions on vector spacesto give the following extension:Theorem 3.2.1. Given positive integers m; d and a prime p satisfying p �d+ 2, if f : Zmp ! Zp is a function such thatPrx;h2RZmp "d+1Xi=0 �if(x + i � h) = 0# � 1� �for some � � 12(d+2)2 , then there exists a function g : Zmp ! Zp, such thatd(g; f) � 2� and 8x; h 2 Zmp d+1Xi=0 �ig(x + i � h) = 0The proof of the above fact follows from syntactic modi�cations to theproof of Theorem 3.1.1 and is hence omitted here. Moreover, we later stateand prove a theorem (Theorem 3.2.5) which subsumes this theorem.It still remains to be shown that the function obtained fromTheorem 3.2.1is a polynomial of degree d and we include of a proof of this statement next.The proof here only works for �elds of prime order p > md. An improvedversion appears in the full paper of Rubinfeld and Sudan [102] which yieldsa proof for the case p � 2d+2. In more recent work this characterization hasbeen tightened to its best possible form by Friedl and Sudan [55] who showsuch a theorem for p � d+2. Their result also describes tight characterizationsfor �elds of non-prime order.Lemma 3.2.1. Given positive integers m; d and a prime p > md, if g :Zmp ! Zp is a function such that8x; h 2 Zmp d+1Xi=0 �ig(x + i � h) = 0then g is a polynomial in the m variables of total degree at most d, providedp � md.Proof [Sketch]: We break the proof into two parts. First we show that thefunction g is a polynomial of individual degree at most d in each variable.We then show that the total degree of this low-degree polynomial is at mostd. We �rst observe that by restricting our attention to h's of the form�j (the vector whose coordinates are zero in all but the jth coordinate,where it is one), we can establish that for every restriction of the valuesof v1; : : : ; vj�1; vj+1; : : : ; vm, the function g is a degree d polynomial in vj

3.2 Multivariate polynomials 31(by Lemma 3.1.2). Since this holds for all j 2 f1; : : : ;mg, g must be a mul-tivariate polynomial in the variables v1; : : : ; vm of individual degree at mostd in each variable.At this point we already have a loose bound on the total degree of g. It isat most md, since there are m variables and the degree in each variable is atmost d. Now observe that a random instantiation of the type vj = xj+ i�hj,would leave g as a function of i and for 1� mdp random choices of x and h, thiswould be a degree k polynomial in i where k is the total degree of g. But weknow from the interpolation identity satis�ed by g that every instantiationleaves it to be a degree d polynomial in i. Thus k, the total degree of g, mustbe d. �Thus Theorem 3.2.1 allows us to use the following program as a tester formultivariate polynomials.program Evenly-Spaced Multivariate TestRepeat O(d2 log(1=�)) timesPick x and h uniformly and randomly from ZmpVerify that Pd+1i=0 f(x + i � h) = 0Reject if the test failsTheorem 3.2.2. If the computation of a program can be expressed by a low-degree polynomial correctly on all its inputs from Zmp , then it is passed byEvenly-Spaced Multivariate Test. If the output of the program is notO(1d2)-close to a polynomial, then with probability 1 � �, it is rejected byEvenly-Spaced Multivariate Test.3.2.2 E�cient testing of bivariate polynomialsIn this subsection we consider the task of testing a bivariate polynomial inthe variables x and y. To be more precise we consider the task of testing thefamily of functions whose individual degree in x and y is at most d each. (Notethat this is in contrast to the rest of this chapter (thesis?) where we usuallyconsider only the total degree. The reason for this deviation becomes clearin Section 3.2.3.) We will also be considering functions over some arbitrary�nite �eld F (not necessarily of the form Zp) whose size will need to besu�ciently large (and will be established later).We attempt to solve this problem by extending the Basic UnivariateTester of Section 3.1.1. We de�ne some notation �rst:The set of points f(x0; y)jy 2 Fg will be called the row through x0. Theset of points f(x; y0)jx 2 Fg will be called the column through y0.De�nition 3.2.1. For a function f : F 2 ! F and a row through x0 (columnthrough y0) the row (column) polynomial, is the univariate polynomial

32 3. Low-degree testsr(f;d)x0 (c(f;d)y0) of degree d which agrees with f on the most points on the row(column). Ties may be broken arbitrarily.The neighborhoods for this test consists of all sets of d+ 2 points from asingle row or from a single column. Theorem 3.2.3 shows that the distance off from a bivariate polynomial of degree d is within a constant multiplicativefactor of the number of violated constraints.program Basic Bivariate TestRepeat k timesPick x0; : : : ; xd+1 ; y 2R FVerify that 9p 2 F (d)[x] s.t.for all i 2 f0; : : : ; d+ 1g, p(xi) = f(xi; y).Pick y0; : : : ; yd+1 x 2R FVerify that 9p 2 F (d)[y] s.t.for all i 2 f0; : : : ; d+ 1g, p(yi) = f(x; yi).Reject if the test failsThe following theorem is the central element in the proof of correctnessof the tester and appears as the Matrix Transposition Lemma in Rubinfeldand Sudan [101]. Notice that in the above test, the number of iterations hasnot been speci�ed yet. This will depend on how strong our theorem is. Wewill establish here that k = O(d) su�ces. A tighter theorem on this wasproved more recently by Arora and Safra [6]. They make very elegant useof the Berlekamp-Welch technique to show that k = O(1) su�ces! Since thee�ciency of this result becomes important in the next section, we include astatement of their result in this section.Theorem 3.2.3. Given a positive integer d, a real number � < 1=12d and a�nite �eld F with jF j � maxf3d(11�12�d); 50dg, if f : F 2 ! F is a functionsuch that1. For at least 1� � fraction of the x's, d(f(x; �); rf;dx) � :49.2. For at least 1� � fraction of the y's, d(f(�; y); cf;dy) � :49.then there exists a polynomial g of degree at most d in x and y such thatd(f; g) � 4�.Proof [Sketch]: Call a row good, if the function fx0(y) � f(x0; y) satis�es�(fx0 ; F d[y]) � :49. Since jF j � 50d, we have that for every good row (col-umn) there exists a unique polynomial of degree at most d which agrees withthe row in :51 fraction of the row. Good columns are de�ned similarly. Calla point good if it lies on a polynomial describing 0:51 fraction of the pointson its row and on a polynomial describing 0:51 fraction of the points on itscolumn. (In particular, note that all points on bad rows and all point on badcolumns are bad.)

3.2 Multivariate polynomials 33We �rst show that most points are good. We then �nd a 3d�3d submatrixof points that are all good and �t a bivariate polynomial g which agrees withf on all these points. Observe that if a row (column) has d + 1 good pointswhere f agrees with g, then f agrees with g on all the good points in its row(column). Repeated application of this observation allows us to show that fagrees with g on all good points.The following can be shown by simple counting arguments to the condi-tions guaranteed by the theorem:Prx;y2RF [(x; y) is bad] � 4� (3.1)A 3d�3d submatrix, (i.e. X�Y where X;Y � F , jXj; jY j = 3d) is calledgood if all the points in X � Y are good.Claim: A good submatrix exists.Proof: Consider a random set X = fx1; : : : ; x3dg of the rows. The expectednumber of bad points on these rows is at most 12d�jF j. Thus, if 12d� < 1 andjF j � 3d(112�d), then with positive probability, at least 3d columns containno bad points in the rows indexed by X. Call these 2d columns the set Y .X � Y is a good submatrix.Since a good submatrix has the property that all points on the submatrixlie on degree polynomials of its rows and columns, it follows that there existsa polynomial g of degree d in x and y which agrees with the entire submatrix.We now show that g agrees with all good points.Claim: If a bivariate polynomial g of degree at most d agrees with f on agood 3d� 3d submatrix, then it agrees with f on all good points.Proof: The basic idea behind each of the following steps is that if d + 1good points from a row (column) agree with g then all good points on thatrow (column) agree with g. First, observe that all good points from the rowsindexed by X agree with g. Next, observe that at least 51% of the goodcolumns will have more than d + 1 good points in the rows indexed by X,and for these columns, all the good points agree with g. Now consider all thegood rows: At least 2% of the points from any good row are both good andlie on one of the 51% columns selected by the previous step, and hence thebest polynomial for these rows must agree with g. Thus we have that f atall good points agrees with g.Thus Prx;y2F [f(x; y) = g(x; y)] � 1� 4�. �Theorem 3.2.4 ([6]). There exists constants �0 > 0, c such that for everypositive integer d, if � < �0, and F is a �nite �eld of order at least cd3 andf : F 2 ! F is a function which satis�es:1. The function R : F 2 ! F given by R(x; y) = r(f;d)x (y) satis�es d(f;R) ��.2. The function C : F 2 ! F given by C(x; y) = c(f;d)y (x) satis�es d(f; C) ��.

34 3. Low-degree teststhen there exists a polynomial g of degree at most d in x and y such d(f; g) �4�.3.2.3 E�cient reduction from multivariate polynomials tobivariate polynomialsIn this section we relate the work of the previous section to the proof ofTheorem 3.2.1. The connection yields improved testers for multivariate poly-nomials and can be used to construct testers for the family of degree d poly-nomials which look at the value of a function at only O(d) points to test it.The proof of this section is essentially from Rubinfeld and Sudan [102]. Thee�ciency shown here is better than that shown in [102], due to the use ofTheorem 3.2.4 which is from [6].De�nition 3.2.2. For x; h 2 Fm, the set of points fx+ t�hjt 2 Fg, denotedlx;h, is called the line through x with o�set h.An alternate way of stating Theorem 3.2.1 is the following: \If the fractionof lines for which f restricted to the line is not close to a univariate polynomialis small (o(1d2)), then f is close to some multivariate polynomial g." Bydoing a more careful analysis of the proof of Theorem 3.2.1 this result canbe improved, and this will be the focus of this section. We �rst need a fewde�nitions.Given an integer d > 0, and a function f : Fm ! F we describe a testwhich uses a help function B, which maps a pair of points x; h to a polynomialp supposedly describing the best polynomial �tting the function f on the linelx;h. The test considers a random line lx;h and picks a random point x+th onthis line and veri�es that B(x; h)[t] = f(x+ th). We shall not be particularlyconcerned with how one can evaluate the best polynomial B(x; h) for anyline lx;h { we leave it to the reader to �gure out such a test using the methoddescribed in Section 3.1.1. In what follows we shall simply assume that anoracle provides the function B as well as f and show how to use B to test f .We now resume our de�nitions.Let �(B)f;d (x) � Prh2Fm ;t2F [f(x + th) 6= B(x; h)[t]] :For functions f : Fm ! F and B : F 2m ! F (d)[t], let�(B)f;d � Ex2Fm h�(B)f;d (x)i :Lastly we de�ne �f;d = minB:F2m!F (d) [t]n�(B)f;d o :We now state the main theorem for this section.

3.2 Multivariate polynomials 35Theorem 3.2.5. There exists a positive real �0 and a constant c such thatthe following holds. Given positive integers m and d, a �nite �eld F of orderat least maxfcd3;md+1g, and functions f : Fm ! F and B : F 2m ! F (d)[t]such that �(B)f;d � �0, then there exists a degree d polynomial g : Fm ! F suchthat d(f; g) � 2�(B)f;d .The following de�nition outlines the function B which minimizes �(B)f;d forany function f .De�nition 3.2.3. For a function f : Fm ! F , and points x; h 2 Fm, wede�ne the line polynomial for the line lx;h to be the degree d polynomialP (f;d)x;h which maximizes the number of points t 2 F for which P (f;d)x;h [t] equalsf(x + th).Remark: In the above de�nition we allow ties to be broken arbitrarily, butconsistently. I.e., if for the two pairs (x; h) and (x0; h0), lx;h is the same setas lx0 ;h0 , then for a point y = x + th = x0 + t0h0, the line polynomials mustagree at y (i.e., P (f;d)x;h [t] = P (f;d)x0;h0 [t0]).Proposition 3.2.1. For a function f : Fm ! F let B(f;d) : F 2m ! F (d)[t]be given by B(f;d)(x; h) = P (f;d)x;h . Then�(B(f;d))f;d = minB:F2m!F (d) [t]n�(B)f;d o :Proof: The proposition follows from the observation that, for any x; h 2 Fm,the quantity minp2F (d) [t]fPrt2F [f(x+ th) 6= p(t)]g;is minimized by the polynomial p = P (f;d)x;h . �Proposition 3.2.1 shows that it su�ces to prove that if �(B(f;d))f;d � �0 thenf is 2�(B(f;d))f;d -close to some degree d polynomial.In what follows we will show that the following \self-corrected" version off is close to f . For any function f : Fm ! F , de�ne corrf;d : Fm ! F to becorrf;d(x) = majh2Fm nP (f;d)x;h (0)o :It is easy to show that f is always close to corrf;d and we do so next.Lemma 3.2.2. For any function f : Fm ! F and any integer d,d(f; corrf;d) � 2�f;d:

36 3. Low-degree testsProof: Let B be the set given byB = �x 2 Fmj Prh2Fm[f(x) 6= P (f;d)x;h (0)] > 1=2� :Then the probability that for a randomly chosen pair x; h that f(x) 6=P (f;d)x;h (0) is at least (1=2) � Prx[x 2 B]. But by the de�nition of �f;d andProposition 3.2.1, we know that the quantity Prx;h[f(x) 6= P (f;d)x;h (0)] = �f;d.Thus the probability that x lies in B is at most 2�f;d. The lemma followsfrom the observation that for x 62 B, corrf;d(x) = f(x): �The bulk of the work in proving the correctness of Theorem 3.2.5 is inshowing that corrf;d is a degree d polynomial if �f;d is su�ciently small. Inorder to prove this theorem for general multivariate polynomials, we use The-orem 3.2.4. Recall the de�nition of a row and column, and the row polynomialand column polynomial from Section 3.2.2.We use Theorem 3.2.4 as follows:Lemma 3.2.3. Let c and �0 be as in Theorem 3.2.4. Given reals �; �0, aninteger d, a �eld F , a function f : F 2 ! F and elements x0; y0 2 F whichsatisfy the following properties:1. � � �0, jF j � cd3 and 5�+ �0 + (d+1)jF j < 1=2.2. The function R : F 2 ! F given by R(x; y) = r(f;d)x (y) satis�es d(f;R) ��.3. The function C : F 2 ! F given by C(x; y) = c(f;d)y (x) satis�es d(f; C) ��.4. The quantities Prx[f(x; y0) 6= r(f;d)x (y0)] and Pry[f(x0; y) 6= c(f;d)y (x0)]are at most �0Then r(f;d)x0 (y0) = c(f;d)y0 (x0).Proof: By applying Theorem 3.2.4 we �nd that there exists a polynomial gof degree d each in x and y such that d(f; g) � �. By conditions (2) and (3),we conclude that d(g; C); d(g;R) � 5�. This allows us to say that:Prx [g(x; �) 6= R(x; �)] � 5�+ djF j (3.2)(since for values of x where R(x; �) 6= g(x; �) contribute at least jF j(1� djF j)points y such that g(x; y) 6= R(x; y)). Condition (4) of the lemma statementguarantees that Prx[f(x; y0) 6= r(f;d)x (y0)] � �0. Combining this with (3.2) we�nd Prx [f(x; y0) 6= g(x; y0)] � 5�+ �0 + djF j:Now based on the condition 5�+�0+ djF j < 1=2� djF j , we conclude that g(�; y0)is the unique degree d polynomial which describes the y0th column and hencec(f;d)y0 = g(�; y0). This implies c(f;d)y0 (x0) = g(x0; y0). A similar argument yieldsr(f;d))x0 (y0) = g(x0; y0) which yields the assertion of the lemma. �

3.2 Multivariate polynomials 37Lemma 3.2.4. Let �0 and c be as in Theorem 3.2.4. Given a �nite �eld Fof cardinality at least maxf3(d + 1); cd3g, a function f : Fm ! F , and aconstant � < minf 136 ; �0g, we have:8x 2 Fm; t0 2 F; Prh1;h2 hP (f;d)x;h1 (t0) 6= P (f;d)x+t0h1;h2 (0)i � 4�f;d� + 4jF j:Proof: We use the shorthand � for �(f;d). Pick h1; h2 2R Fm and letm : F 2 !F be the function given bym(y; z) = f(x+yh1+zh2). We will show that withprobability at least 1� 4(�=�+ 1=jF j) (taken over h1 and h2) m satis�es theconditions required for the application of Lemma 3.2.3 for y0 = t0 and z0 = 0and �0 = �. This will su�ce to prove the lemma since P (f;d)x;h1 = c(m;d)z0 andP (f;d)x+t0h1 ;h2 = r(m;d)y0 and the lemma guarantees that c(m;d)z0 (y0) = r(m;d)y0 (z0).We start by observing that for the chosen values of � and �0, 5� + �0 +(d+ 1)=jF j < 1=2. We now go on to showing that the remaining conditionsrequired for applying Lemma 3.2.3.Since x+ yh1 and h2 are random and independent of each other, we have8y 6= 0; z; Prh1 ;h2 hP (f;d)x+yh1;h2 (z) 6= f(x + yh1 + zh2)i � �: (3.3)Notice that the event above P (f;d)x+yh1;h2 (z) 6= f(x+yh1+zh2) maybe rephrasedas r(m;d)y (z) 6= m(y; z). Applying Markov's inequality to (3.3), we �nd thatPrh1;h2 � Pry 6=0;z[m(y; z) 6= r(m;d)y (z)] � �� � �� :By accounting for the probability of the event y = 0, we can conclude:Prh1 ;h2 �Pry;z[m(y; z) 6= r(m;d)y (z)] � �� � �� + 1jF j: (3.4)Applying Markov's Inequality again to (3.3), but this time �xing z = z0,we getPrh1 ;h2 �Pry [m(y; z0) 6= r(m;d)y (z0)] � �� � �� + 1jF j : (3.5)A similar argument to the above yieldsPrh1 ;h2 �Pry;z[m(y; z) 6= c(m;d)z (y)] � �� � �� + 1jF j: (3.6)and Prh1 ;h2 hPrz [m(y0; z) 6= c(m;d)z (y0)] � �i � �� + 1jF j : (3.7)Thus with probability at least 1�4(�=�+1=jF j) none of the events (3.4)-(3.7) happen and the conditions required for Lemma 3.2.3 are satis�ed. �An application of Markov's inequality yields the following corollary:

38 3. Low-degree testsCorollary 3.2.1. Let �0, c be as in Theorem 3.2.4. For any constant � <minf 136 ; �0g, if F is a �nite �eld of size at least maxf3(d + 1); cd3g and f :Fm ! F , then8x 2 Fm; t 2 F; Prh2Fm hcorrf;d(x+ th) 6= P (f;d)x;h (t)i � 8�� + 8jF j:Proof: Let Bx;t be the set de�ned asBx;t = nh 2 FmjP (f;d)x;h (t) 6= majh0fP (f;d)x+th0(0)go :For h 2 Bx;t, the probability that for a randomly chosen h1 that P (f;d)x+th;h1(0) 6=Px;h(t) is at least 1=2. Thus with probability at least jBx;tj2jF jm , we �nd that arandomly chosen pair h; h1, violates the condition P (f;d)x+th;h1(0) = Px;h(t). Ap-plying Lemma 3.2.4 we get that jBjjF jm is at most 2 � (4�=� + 4=jF j). On theother hand, we have that for all h 62 B, corrf;d(x+ th) = P (f;d)x;h (t). �Even the specialization of the lemma above to the case t = 0 is particu-larly interesting since it says that the \majority" in the de�nition of corrf;dis actually well-de�ned and an overwhelming majority, provided �f;d is suf-�ciently small. The next lemma essentially shows that corrf;d is a degree dpolynomial.Lemma 3.2.5. Let �0 and c be as in Theorem 3.2.4. Let F be a �nite �eldof size at least maxf3(d+ 1); cd3g. For � = min1=36; �0 let f : Fm ! F besuch that � = �f;d satis�es256��2 + 256�jF j + 56�� + 40jF j < 1:Then 8x; h 2 Fm corrf;d(x) = P (corrf;d;d)x;h (0)Proof: Pick h1; h2 2R Fm and de�ne M : F 2 ! F to beM (y; 0) = corrf;d(x+ yh) and M (y; z) = f(x + yh + zh1 + yh2)) for z 6= 0.We will show, by an invocation of Lemma 3.2.3, that the event c(M;d)0 (0) =r(M;d)0 (0) happens with probability strictly greater than 8�=� + 8=jF j overthe random choices of h1 and h2. But by Corollary 3.2.1, we have M (0; 0) =corrf;d(x) = P (f;d)x;h1 (0) = c(M;d)0 (0) with probability at least 1 � 8�=�� 8=jF j.(Of the three equalities in the chain here | the �rst and the third are byde�nition and the middle one uses Corollary 3.2.1.) This would su�ce to provethe lemma since we will have established that with positive probability (overthe choice of h1 and h2), corrf;d(x) = r(M;d)0 (0) = P (g;d)x;h (0). But the eventstated is invariant with h1 and h2 and hence its probability, if positive, must

3.2 Multivariate polynomials 39be 1. Thus it remains to show that the conditions required for Lemma 3.2.3are true for the function M , with �0 = � and y0 = z0 = 0.For z = 0 and all y, we have M (y; z) = corrf;d(x+ yh + z(h1 + yh2)), byde�nition. For any z 6= 0 and y, the quantity Prh1 ;h2 [M (y; z) 6= corrf;d(x +yh+ z(h1 + yh2))] is at most 2� (by Lemma 3.2.2). Also, for all y; z 2 F , theprobability that corrf;d(x+yh+ z(h1 +yh2)) does not equal P f;dx+yh;h1+yh2 (z)is at most 8�=�+ 8=jF j (by Corollary 3.2.1). Thus we �ndPrh1 ;h2 hM (y; z) 6= c(M;d)z (y)i � 8�=�+ 8=jF j+ 2� = �1:As in the proof of Lemma 3.2.4 we can now conclude thatPrh1 ;h2 �Pry;z[M (y; z) 6= c(M;d)z (y)] � �� � �1� + 1jF j : (3.8)and Prh1 ;h2 hPrz [M (0; z) 6= c(M;d)z (0)] � �i � �1� + 1jF j: (3.9)For the rows the conditions required are shown even more easily. We �rstobserve that the line lx+zh1 ;h+zh2 is a random line through Fm for any z 6= 0.Thus we can use the de�nition of � to claim that8y 2 F; Prh1;h2 2664 M (y; z)= f(x + zh1 + y(h + zh2))= P (f;d)x+zh1 ;h+zh2 (y)= r(M;d)z (y) 3775 = 1� �:As in the proof of Lemma 3.2.4 we can argue thatPrh1 ;h2 �Pry;z[M (y; z) 6= r(M;d)y (z)] � �� � �� + 1jF j: (3.10)and Prh1 ;h2 hPrz [M (0; z) 6= r(M;d)y (0)] � �i � �� + 1jF j: (3.11)Thus with probability at least 1�16(�1=�+�=�+2=jF j) none of the events(3.8)-(3.11) happen and we can apply Lemma 3.2.3.To conclude we need to show that 1�16(�1=�+�=�+2=jF j) > 8�=�+8=jF jand this follows from the conditions given is the statement of the lemma. �Proof ([): of Theorem 3.2.5] Let � = min1=36; �0, where �0 is as in Theo-rem 3.2.4. Now pick � to be maxfc; 600=�g, where c is as given by Theo-rem 3.2.4. Now let �0 = �2624 . Notice that �0 is positive.For any function f : Fm ! F , over a �eld of size at least �(d + 1)3, if�f < �0, then the conditions required for the application of Lemma 3.2.5 aretrue and we can conclude that corrf;d satis�es8x; h corrf;d(x) = P (corrf;d;d)x;h :By Lemma 3.2.1 this condition is equivalent to saying corrf;d is a degree dpolynomial, provided jF j � md. By Lemma 3.2.2 d(f; corrf;d) � 2�f;d. Thusf is 2�f;d-close to a degree d polynomial. �

40 3. Low-degree tests3.3 Testing speci�c polynomialsIn this section we consider the task of testing if a function f is almost equalto a speci�c polynomial g. There are various possibilities of how g might bespeci�ed. For instance, we might know the value of g at su�ciently manyplaces to determine it uniquely. Alternatively, g might be a well known poly-nomial, like the determinant or the permanent and hence we might knowenough properties about g to determine it uniquely. Here we consider twocases by which the polynomial might be speci�ed, and how to test in thosecases.3.3.1 Polynomials speci�ed by valueHere we consider a polynomial g : Fm ! F whose value on some subset ofthe form Im, where I � F , is provided by an oracle.Lemma 3.3.1. Given an arbitrary function f and a speci�cation of a de-gree d polynomial g by its values at some subset Im of points, testing thatPrx2Fm [f(x) = g(x)] � 1� � takes O(d jIjjIj�d) probes.Proof: Using the tester given by Theorem 3.2.5 we �rst verify that thereexists a multivariate polynomial g0 of degree at most d such that d(f; g0) � �.Next we make sure that g0 equals g for most points in Im. In order to do thiswe should be able to compute g0 for any one point in Im (notice that f mightnot equal g0 on any point in Im!). To do this we use the Multivariate SelfCorrector given by Theorem 2.3.1, to compute g0(x) for x 2 Im. Now wecan estimate the quantity Prx2Fm [g(x) = g0(x)]. By the PolynomialDistanceLemma [104] we know that if this quantity is greater than jIj�djIj then g � g0.Thus using O(jIjjIj�d) evaluations of g0 we can test whether g0 = g or not.Thus using O(d jIjjIj�d) probes into f we can test if g is close to f or not. �3.3.2 Polynomials speci�ed by constructionHere we consider the case where the polynomial is speci�ed by a construction.We de�ne the notion of a construction rule for polynomials and then showthat polynomials speci�ed by construction rules are testable. We illustratethe power of such construction rules by demonstrating a simple example ofsuch a rule for the permanent.De�nition 3.3.1 (polynomial construction rule). Given an initial poly-nomial g(0), a construction rule for a sequence of degree d polynomialsg(1); : : : ; g(l) is a set of rules r1; : : : ; rl, where ri describes how to evaluatethe polynomial g(i) at any point x 2 Fm using oracles for the previouslyde�ned polynomials g(0); : : : ; g(i�1). A rule ri is a uniformly constructed al-gebraic circuit over F whose size is polynomially bounded in the input space

3.3 Testing speci�c polynomials 41size (i.e., O(poly(jF jm))). l is referred to as the length of such a rule. Themaximum number of oracle calls made by any rule to evaluate any input iscalled the width of the rule and is denoted w.The tester for such functions can be obtained from the downward-self-reducibility theorem of Blum, Luby and Rubinfeld [36]. We include a versionof their theorem here that is weaker than the original theorem they prove.The tester also resembles the Sum-Check protocols of Lund, Fortnow, Karlo�and Nisan [91], Shamir [105] and Babai, Fortnow and Lund [20].Let � > 0 be a constant smaller than the constant of Theorem 3.2.5.Theorem 3.3.1 ([36]). Given oracles for a sequence of functions f (1); : : : ;f (l), an oracle for an initial polynomial g(0), and a construction rule r1; : : : ; rlof width w for degree d polynomials g(1); : : : ; g(l) (g(i) : Fm ! F) there existsa tester which veri�es that the f (i) is �-close to g(i) for all i 2 f1; : : : ; lg.Moreover the test probes the sequence f in poly(l; w; d) points.Proof: The tester for this sequence steps through the sequence establishinginductively that f (i) is �-close to g(i). Assume inductively that the tester hasestablished that f (i) and g(i) are close, for i < k. To establish that f (k) andg(k) are close, we �rst establish that f (k) is close to a degree d polynomialand then test if f (k)(x) = g(k)(x) for randomly chosen points x 2 Fm. Toevaluate g(k)(x), the tester can use rule rk, provided it has access to oraclesfor g(i), i < k. To obtain an oracle for g(i), i > 0, the oracle uses the factthat f (i) is close to g(i), and thus the Multivariate Self Corrector givenby Theorem 2.3.1 can be used to simulate an oracle for g(i). Thus g(k)(x) canbe computed in time poly(w; d) using oracle calls to f (i), i < k. The testercan thus test the entire sequence using poly(l; w; d) calls to the oracles forthe sequence f and g(0). �Notice that the above proof does not really use the fact that we are workingwith polynomials. It only uses the random-self-reducibility of the functionsg(i). Yet we have shown here only the weaker form of this theorem. In thenext section we will improve upon the e�ciency of this theorem in a relatedmodel. This improvement will be used in later chapters to obtain transparentproofs of NP-hard statements.Note on the running time of the above tester: The running time of theabove tester is e�ectively bounded (within factors of poly(l; w; d)) by the rep-resentation of the rule r1; : : : ; rk and the time taken to evaluate such any ofthe ri's.The following example illustrates the power of such testers.Example 3.3.1. The Permanent: Let g(n)(x11; � � � ; xij; � � � ; xnn) be the per-manent of the n�n matrix whose ijth entry is xij. Then g(n) is a polynomialof degree at most n. Furthermore g(n) can be constructed from g(n�1) as fol-lows:

42 3. Low-degree testsg(n)(x11; : : : ; xnn) = nXi=1 xi1 � f (n�1)(X(i)(x11; : : : ; xnn))where the function X(i) projects the n� n vector so as to obtain the (1; i)thminor of the matrix given by fxijg.Thus the permanent can be represented by a constructible sequence ofpolynomials, and hence by Theorem 3.3.1 can be tested.Lastly we also make the following observation on the amount of random-ness needed by the tests given here.Corollary 3.3.1 (to Theorem 3.3.1). A sequence of functions g(0); : : : ;g(l), g(i) : Fm ! F , given by a construction sequence can be tested usingO(m log jF j+ l) random bits.Proof: Notice that any one phase (i.e., testing is f (i) is close to g(i)) takesO(m log jF j) random bits. A naive implementation of the tester would thustake O(km log jF j) random bits. But we can save on this randomness byrecycling the random bits via the technique of Cohen and Wigderson [38] orImpagliazzo and Zuckerman [74]. This would allow each additional phase toreuse most of the old random bits, and would need only a constant number offresh random bits per phase. Thus the whole algorithm can be implementedusing O(m log jF j+ k) random bits. �3.4 E�cient testing of polynomials in the presence ofhelpThe previous sections concentrated on the task of verifying that a functionf is close to a polynomial. This could be viewed in the setting of interactiveproofs where the veri�er (tester) is being persuaded of this fact without anyhelp from the prover. We now consider the situation where the prover is al-lowed to help the veri�er (tester) by providing additional information aboutthe function f . We expect the additional information to be presented in theform of an oracle O which is queried by the veri�er. (In this section we willuse the words\veri�er" and \tester" interchangeably.) Formally:Proofs of Low-degreeGiven an oracle for a function f : Fm ! F , is it possible to specify someadditional information O about f so that a tester can verify that f is closeto a degree d polynomial. In particular, the tester should reject f with highprobability if f is not close to a low-degree polynomial. On the other hand, iff is a degree d polynomial there should exist an O such that the tester alwaysaccepts f .The following parameters will be of interest to us:

3.4 E�cient testing of polynomials in the presence of help 43{ The running time of the tester.{ The size of the oracle O.{ The length of O's response on any single question.{ The number of questions asked of O by the veri�er.{ The number of probes made by the veri�er into f .Theorem 3.4.1. There exists a tester T which accesses two oracles f andO such that given a function f : Fm ! F{ f is a polynomial of degree at most d) 9 an oracle O such that T (f;O)outputs PASS.{ �(f; F (d)[x1; : : : ; xm]) � �) 8 oracles O, T (f;O0) outputs FAIL with highprobability.O can be expressed as a function from F 2m to F d+1, i.e., the size of O isquadratic in the size of the oracle for f and the length of the responses ofO are poly(d; log jF j) bits. Moreover, T probes f and O in only a constantnumber of places.Proof: The tester that yields this theorem is given below.program T(f,O);Repeat O(1�2) timesPick x; h 2R Fm and t 2R FLet p = O(x; h)Verify that p(t) = f(x + t � h)Reject if the test failsThe proof of correctness follows from Theorem 3.2.5. �Lastly we consider a problem in the spirit of the problem consideredin Theorem 3.3.1, which we state slightly di�erently to make the problemstatement simpler. The motivation for this problem will become clear in thenext chapter.Recall the de�nition of a polynomial construction rule (De�nition 3.3.1).De�nition 3.4.1. A polynomial construction rule r1; : : : ; rl is satis�able ifthere exists a polynomial g(0) such that the sequence of polynomials g(1); : : : ;g(l), computed from g(0) according to the construction rule, terminates withg(l) � 0.The next problem we consider deals with proofs of satis�ability of con-struction rules.Satis�ability of polynomial construction rulesGiven a construction rule r1; : : : ; rl of width w for degree d polynomials, pro-vide an oracle O which proves the satis�ability of the rule. In particular, if

44 3. Low-degree teststhe rule is satis�able, then there must exist an oracle which is always acceptedby the tester. On the other hand, if the rule is not satis�able, then any oracleO0 must be rejected by the tester with high probability.The starting point for our solution to this problem is the result of Theo-rem 3.3.1, i.e., the oracle can provide tables for the polynomials g(0); : : : ; g(l) �0 and then the tester of Theorem`3.3.1 can be used to verify that the con-struction rules have been obeyed. In order to cut down on the number ofquestions asked of such an oracle we use some of the work done on paralleliz-ing the MIP = NEXPTIME protocol by Lapidot and Shamir [85], and someimprovements on it by Feige and Lovasz [48].Theorem 3.4.2. Given polynomial construction rule r1; : : : ; rl of width w,for degree d polynomials from Fm to F for a su�ciently large �nite �eld(jF j > poly(l; w; d;m) su�ces), there exists a tester T such that:{ If r1; : : : ; rl is satis�able, then there exists an oracle O such that T alwaysoutputs PASS.{ If r1; : : : ; rl is not satis�able, then for all oracles O0, the tester T outputsFAIL with high probability.Moreover the size of the oracle is poly(jF jm; 2l) and the response of the oracleto any question is poly(l; w; d; log jF j;m) bits long and the tester probes O inonly a constant number of points.Proof: The tester here will be constructed so as to simulate the tester ofTheorem 3.3.1 and the oracle will be created so as to aid this tester. The oraclewill thus be expected to provide the oracles for the functions g(0); : : : ; g(l). Anobvious simulation of the tester of Theorem 3.3.1 would involve performinglow-degree tests on each of the l + 1 functions and hence too many probesinto the oracle. Instead we will work with a single polynomial G, de�ned onm+ 1 variables, which represents all of the functions g(i).G(z; x) � g(i)(x) if z is the ith element of F for 0 � i � lSuch a polynomial G exists with degree l in z and total degree in at mostd+ l.Suppose the oracle O provides us with a function f supposedly represent-ing G. We will expect the oracle to augment it with flines , which takes twopoints x and h as argument and returns the value of the best polynomial �t-ting f on the line through x with o�set h. Using flines we can test accordingto Theorem 3.4.1 to see if there exists a low-degree polynomial ~f which is�-close to f .Furthermore, we can compute ~f at any point x by picking a random pointh and using flines to �nd the polynomial describing h on the line throughx and x+ h. Evaluating this polynomial at 0 gives us ~f (x). Evaluating thispolynomial at t 2R F and cross checking with h(x + t � h) ensures us that

3.5 Discussion 45the wrong polynomial is not returned by flines . Thus e�ectively we have anoracle for ~f .The polynomial ~f gives us a sequence of polynomials f (i) : Fm ! Fand we need to ensure that f (i) = g(i) (i.e., the construction rules have beenobeyed). The tester of Theorem 3.3.1 shows how to do this by looking atthe value of the functions f (i) at O(lw) points. In order to �nd the value ofthe functions f (i) on these points, which is equivalent to �nding the valueof ~f at some lw points x1; : : : ; xlw, we use the idea of \simultaneous self-correction" (see Lemma 2.3.3). We construct a curve C of degree lw whichpasses through the points x1; : : : ; xlw. Observe that ~f restricted to this curvemust be some polynomial p of degree at most (d + l)lw. Now we expect theoracle to provide the value of ~f restricted to the curve C (explicitly). Supposethe oracle returns a polynomial p0. If p = p0 then we are done, since the wecan now simulate the tester of Theorem 3.3.1. But the oracle may describe apolynomialp0 6= p. In order to detect this we pick a random value of t 2 F andcheck that p0(t) = ~f (C(t)) and these two will be di�erent with probability1� (d+l)lwjF j .In summary, we have:Oracle. The oracle consists of the functions f , flines and a function fcurveswhich describes ~f on some curves of degree lw. The number of di�erent curvesthat T may query about is bounded by the number of di�erent random stringsused by the tester which is 2O(m log jF j+d+l) . Thus fcurves can be expressedas function from 2O(m log jF j+d+l) ! F (d+l)lw and this dominates the size ofthe oracle.Tester. Tests that f is close to a low-degree polynomial ~f . Then it simulatesthe action of the tester of Theorem 3.3.1 by generating all the points where thevalue of ~f is required. It constructs a low-degree curve which passes throughall these points and queries fcurves for the polynomial describing ~f on thiscurve. It then queries flines and f at once each to reconstruct the value of~f at one point. Finally it makes sure that f (l) is identically zero. In all thistakes a constant number of probes into O (some constant for the low-degreetest, 3 for the questions needed to simulate the tester of Theorem 3.3.1 anda constant to ensure f (l) � 0). �3.5 DiscussionHistory. A tester for multivariate polynomials was �rst constructed by Babai,Fortnow and Lund [20]. This was followed up by more e�cient versions inBabai, Fortnow, Levin and Szegedy [19] Feige, Goldwasser, Lovasz, Safra andSzegedy [50] and Arora and Safra [6]. All these testers have one common in-gredient: They test for the degree of each variable individually and thus havean inherent
(m) lower bound on the number of probes required. The tester

46 3. Low-degree testsdeveloped in this chapter was developed in a concurrent stream of researchby Gemmell, Lipton, Rubinfeld, Sudan and Wigderson [63], Shen [106] andRubinfeld and Sudan [101, 102]. By not testing for the degree of each variableexplicitly, the tester showed potential to perform better than the testers of[20, 19, 50, 6]. Yet a key element was missing in the analysis of the tester,which was �nally remedied by the work of Arora and Safra [6]. The obser-vation that a combination of the analysis of Rubinfeld and Sudan [101] andArora and Safra [6] yields a test which requires only a constant number ofprobes is made by Arora, Lund, Motwani, Sudan and Szegedy [8]. One in-teresting open question is: \How large must the �eld size be as a function ofthe degree d, so that the low-degree test of Theorem 3.2.5 works". This inturn reduces to the question of seeing how small the �eld size may be whilethe Arora-Safra tester still works. The analysis given in [6] shows that the�eld size could be O(d3), and this can be improved to show O(d2) su�ces. Itseems possible that this number could be reduced to being O(d).Testing approximate polynomials. A large number of analytic functions canbe closely approximated by polynomials.Moreover when computing functionsover the reals one might be willing to tolerate a small amount of error in theanswers. In order to make testers which apply to such situations, one requirestesters which will test if a function is closely approximated by a (multivariate)polynomial. As a starting point for this one would need testers which don'tdepend on the nice properties of �nite �elds. Such a test does exist and isdescribed by Rubinfeld and Sudan [101]. But even for univariate functionsthat are closely approximated by polynomials, no tester seems to be known.We feel that simple extensions of the tests given in this chapter should yielda test for approximate polynomials.Addendum. The main open question raised above { i.e., does the low-degreetest of Section 3.2.3 work over �elds whose size is only linear in d { has beenanswered recently in the a�rmative by Polishchuk and Spielman [97]. Friedland Sudan [55] also consider the low-degree testing problem and improve theresults there in two ways: They show that the characterization of polynomialsover prime �elds given in Lemma 3.2.1 works for every prime p � d+2. Theyalso give an explicit bound on the constant �0 in Theorem 3.2.5, showingthat it works for any �0 < 1=8, provided the �eld F is su�ciently large. Boththe above mentioned results translate into e�cient constructions of \proofsystems" which are the focus of the next chapter.

4. Transparent proofs and the class PCPThe problems considered towards the end of the previous chapter were raisedin the context of an interactive proof setting. We were considering the task ofproving certain statements about polynomials to a veri�er by writing down(or providing an oracle) some information for the veri�er. The proofs so ob-tained were checkable very e�ciently by a probabilistic veri�er. In this chapterwe set up this notion more formally, outlining the parameters of interest, andby exploring such probabilistically checkable proofs for more general state-ments. A particular feature of interest will be the number of bits of the proofthat are examined by the probabilistic veri�er. A second parameter of interestis the number of random bits used by the veri�er to verify the proof.We show how the results of the previous chapter can be translated toget probabilistically checkable proofs of fairly general statements { namely,statements of the form x 2 L where L is a language in NP. The translationuses the work of Babai, Fortnow and Lund [20] and Babai, Fortnow, Levinand Szegedy [19] which shows that the problem of testing satis�ability ofconstruction rules in NP-complete for a certain choice of parameters. Theprobabilistically checkable proofs that result can be veri�ed by a probabilisticveri�er who tosses O(logn) coins and probes the proof in O(polylogn) bits.Next we outline the idea of \recursive" proof checking of Arora and Safra[6]. The idea shows that if the proof systems are restricted to obey a certainformat, then they can be composed as follows: If a proof system examinesq1(n) bits of a proof, and another one examines q2(n) bits of a proof, thenthey can be composed to get a proof system which examines q2(q1(n)) bitsof the proof. Furthermore the amount of randomness used by the composedsystem grows as r1(n) + r2(q1(n)) where r1(n) and r2(n) are the number ofrandom bits used by the two proof systems.The proof system obtained from the results of the previous chapter canbe shown to conform to the restrictions and this gives us one place to startfrom.We also develop a second proof system which examines only a constantnumber of bits in the proof but uses many random bits. The compositionidea shows how to compose these proof systems with each other, eventuallygiving proof systems where the veri�er tosses O(logn) coins and looks at onlyconstantly many bits in the proof to verify it. The results of this chapter aredue to Arora, Lund, Motwani, Sudan and Szegedy [8].

48 4. Transparent proofs and the class PCP4.1 De�nitionsThe basic task of this chapter is the construction of proof systems which\magnify errors". Such proof systems should have the feature that if a state-ment is true then the proof system should admit error-free proofs of thestatement. On the other hand, any \proof" of an incorrect statement shouldbe riddled with errors. Formalizing this notion takes some e�ort and here wepresent two e�orts which make this notion precise.The �rst notion we study is that of \transparent proofs" due to Babai,Fortnow, Levin and Szegedy [19]. Babai et al., [19], achieve this formalism byrestricting the running time of probabilistic veri�er. Such a restriction impliesthat evidence of the fallacy of a statement must be scattered densely in anyproof of an incorrect statement (since in very little time, the veri�er is able to�nd evidence of the mistake in the proof). Yet, when we consider statementsof the type x 2 L, a veri�er that attempts to verify this statement needsto be given at least enough time to read x. Thus it seems that the runningtime of the veri�er would need to be at least linear in the input size. Babaiet al. get around this by expecting the \theorem" to be also presented ina \transparent" form i.e., they expect the input x to be presented in anerror-correcting encoding. The following de�nition is presented somewhatinformally.De�nition 4.1.1 (transparent proof: [19]). A pair of strings (X;�) withX being a \theorem-candidate" and � a \proof-candidate" is said to be intransparent form if X is encoded in an error-correcting code and the pair(X;�) can be veri�ed by a probabilistic veri�er in time polylogarithmic in thesize of the theorem plus proof and the veri�er is given random access to thestrings X and �. In particular, if X is the encoding of a correct theorem,there must exist a proof � which will be accepted by the veri�er for all itsrandom choices and if X is close to the encoding of a false theorem, or notclose to the encoding of any valid statement, then it must be rejected by theprobabilistic veri�er with high probability.Babai, Fortnow, Levin and Szegedy [19], based on the work of Babai,Fortnow and Lund [20], show that all theorems and proofs can be placed ina transparent form by increasing their size by a slightly superlinear factor.One interesting aspect of this formalism is the rather \blind" nature of theveri�cation process. The veri�er at the end of its veri�cation, has little ideaof what the statement being proved is, and what the proof looks like. Theonly guarantee it is able to give is that the two are consistent with each other.This rather surprising nature of these proof systems will turn out to be usefulin Section 4.3.The next notion we study is that of probabilistically checkable proofs dueto Arora and Safra [6]. Instead of characterizing the \transparency" of aproof system using the running time of a veri�er, they characterize it using

4.1 De�nitions 49the number of bits of a proof that are examined by the veri�er to verify theproof, or its query complexity. This parameter was �rst highlighted by thework of Feige, Goldwasser, Lovasz, Safra and Szegedy [50]. By examiningthis parameter, and allowing the running time of the veri�er to be fairlylarge, they do not need inputs to be presented in an error-correcting code.Moreover, any veri�er for NP statements would need to have the ability toaddress the entire proof and this places an inherent logarithmic lower boundon the running time of the veri�er. The number of bits of the proof examinedby a veri�er has no such inherent lower bounds and thus allows for a muchmore sensitive characterization of the quality of proof systems. A secondparameter, also highlighted by Feige et al, [50], examined by Arora and Safrais the number of random bits used by the veri�er. This gives an implicit boundon the size of the proof and is also motivated by some of the applications ofsuch proofs systems (see the work of Feige, Goldwasser, Lovasz, Safra andSzegedy [50] (see also Chapter 5). We de�ne the notion in terms of languageswhich have e�cient probabilistically checkable proofs.De�nition 4.1.2 (PCP: [6]). A language L is in the class PCP(r(n); q(n))if there exists a tester T such that 8x 2 f0; 1gn, we have:{ If x 2 L, then there exists a proof � such that T (r; x; �) outputs PASS, forall r 2 f0; 1gO(r(n)).{ If x 62 L then for all proofs �0, T (r; x; �0) outputs FAIL for at least half thestrings r 2 f0; 1gO(r(n)).Furthermore, for any �xed value of r, T (r; x; �) depends on only O(q(n)) bitsof �, and its running time is bounded by poly(n; r(n); q(n)).The result of Babai et al. [19], improving on [20], can be viewed in thissetting as showing NP � PCP(polylogn; polylogn). (The implicit guaranteeon the proof size obtained from this characterization is weaker than thatshown by Babai et al. The proof sizes as obtained by Babai et al. are nearlylinear in the size of any witness of x 2 L.) Feige et al. [50], improved on [20]di�erently to show that NP � PCP(logn loglogn; logn loglogn), but theirproofs are superpolynomial in size. Arora and Safra were the �rst to bringboth parameters below the \logarithmic" level, thus allowing for an exactcharacterization: they show NP = PCP(logn; polyloglogn). In this chapterwe work towards showing NP = PCP(logn;O(1)).From here onwards we will use the words \transparent proofs" and \prob-abilistically checkable proofs" interchangeably. The notion we will use will bethat of Arora and Safra [6] and precise statements will always be made interms of PCP.

50 4. Transparent proofs and the class PCP4.2 A transparent proof for languages in NPThe �rst probabilistically checkable proof we will describe follows in a verysimple manner from the following characterization of NP in terms of poly-nomial construction sequences of very short width and length (both are log-arithmic in the length of the input). The characterization is implicit in thework of [20, 19].Lemma 4.2.1 ([20, 19]). Given a language L 2 NP and an instance x 2f0; 1gn, a construction rule of length logn and width logn for degree log2 npolynomials in �(lognloglogn) variables from a �nite �eld F of size O(log2 n),can be computed in polynomial time, with the property that the constructionrule is satis�able if and only if � is satis�able.The proof of this lemma is included in the appendix. This gives us the�rst transparent proof of NP as follows:Lemma 4.2.2. NP � PCP(logn; polylogn)Proof: By Lemma 4.2.1 we know that given a language L 2 NP and an inputx of length n, we can compute in polynomial time a construction rule r1; : : : ; rlof width O(logn) which is satis�able if and only if x 2 L. By Theorem 3.4.2,we can construct proofs of satis�ability of r1; : : : ; rl which has size poly(n),where the tester uses O(logn) bits of randomness, and probes the proof inO(polylogn) bits. �4.3 Recursive proof checkingThe proof system developed in Lemma 4.2.2 has nicer properties than justveri�ability using O(polylogn) bits. One particular feature of the proof sys-tem is its ability to perform almost \blind checks" i.e., the proof system couldhave been modi�ed so that it is presented with a pair of inputs (X;�) andby making very few probes into X and � the veri�er could have establishedthe consistency of � as proof x 2 L where X encodes x in an error-correctingcode. A second feature that comes out of the work put into Theorem 3.4.2 isthe following: If proof is written as an array indexed by the questions askedby the tester and whose contents reect the answers of the oracle to thequestions, then the proof can be veri�ed by looking at a constant number ofentries of the array, where each entry is O(polylogn) bits long. We call thisthe property of having \segmented" proofs.The latter property implies that the veri�er, in order to verify x 2 L tossesO(logn) coins and then its task reduces to verifying that a constant numberof entries that it reads y1; : : : ; yc from the proof table satisfy some simplecomputation performed by it (i.e., T (y1; : : : ; yc) outputs PASS). The key ideabehind the notion of recursive proof checking is to use the \blind checkability"

4.3 Recursive proof checking 51of such proof systems to obtain a proof that T (y1; : : : ; yc) outputs PASS with-out reading y1; : : : ; yc. Since the strings yi are of length O(polylogn), a proofof such a fact would (hopefully) be a table of size poly(polylogn) whose en-tries are O(polyloglogn) bits long. The recursive testing of this fact wouldthus hopefully probe a constant number of entries in these small tables, givingproofs veri�able with O(polyloglogn) probes.One problem with the immediate implementation of this idea is that theguarantee on blind checkability assumes that the input x for a statement ofthe type x 2 L is presented in an error-correcting encoding. But the recursioninvolves statements of the type y1 � y2 � � �yc 2 L, where the prover can onlyprovide individual encodings of the yi's. It turns out though that the proofveri�cation system of Babai, Fortnow, Levin and Szegedy [19] can be modi�edto get the \blind checkability" even when the input is given in the form of aconstant number of encoded entries and this was �rst observed by Arora andSafra [6].Thus we restrict our attention to proof systems which have both theproperties considered above, namely, segmented proofs and blind checkabilitywhen the input is presented by a constant number of encoded pieces and showhow to compose such proofs systems to achieve proof systems with improvedquery complexity.We formalize the notion of tables and encodings next. Some care must betaken to de�ne the behavior of the proof systems in the context of workingwith encoded inputs. In particular, one would need to handle the case wherethe supposed encoding of the input is not really close to any valid encoding.One would like the proof system to reject such a proof and this notion ismade precise via the notion of the inverse mapping of an encoding scheme.De�nition 4.3.1 (segmented tables). An s(n)�q(n)-table � is a functionfrom [s(n)] to f0; 1gq(n). The values � (i), 1 � i � s(n) will be referred to asthe segments of � .De�nition 4.3.2 (Encoding/Decoding). An s(n)�q(n)-encoding schemeE encodes n bit strings into an s(n) � q(n)-table. A decoder E�1 for E is afunction which takes tables of size s(n)�q(n) and produces n bit strings, suchthat E�1(E(x)) = x. Notice that in general most elements of the domain ofE�1 are not constructed from applying E to any string, yet E�1 maps themto strings from the domain of E. This is supposed to resemble the task ofperforming error-correction and then decoding.De�nition 4.3.3 (restricted PCP). For functions r; q : Z+ ! Z+, a lan-guage L is in the class rPCP(r(n); q(n)) if there exists a constant cL suchthat 8 integers c, 9s : Z+ ! Z+ satisfying s(n) � 2r(n), and an s(n)� q(n)-encoding scheme E with a decoder E�1 and a tester T , such that given c n-bitstrings x1; : : : ; xc, the following are true:

52 4. Transparent proofs and the class PCP{ If x1 �x2 � � �xc (the concatenation of x1 through xc) is contained in L, thenthere exists a s(n)� q(n)-proof table � such that for all random choices ofr 2 f0; 1gr(n), the tester Tr accepts E(x1); : : : ; E(xc) and �.{ If x1 � x2 � � �xc 62 L, then for all proofs �0 and for all tables �1; : : : ; �c suchthat E�1(�i) = xi, Tr rejects �1; : : : ; �c; �0 for at least half the choices ofr 2 f0; 1gr(n).Moreover, the output of the tester T for a �xed choice of r depends on onlyc � cL segments of the input tables and the proof table, and can be computedby a circuit whose size is poly(q(n)). Lastly, E should be polynomial timecomputable. (Notice that E�1 need not be computable e�ciently.)The following lemma is based directly on the work of Arora and Safra [6]and shows that two rPCP proof systems can be composed to get potentiallymore e�cient rPCP proof systems.Lemma 4.3.1. If NP � rPCP(r1(n); q1(n)) and NP � rPCP(r2(n); q2(n))then NP � rPCP(r(n); q(n)) where r(n) = r1(n) + r2(q1(n)O(1)) and q(n) =q2(q1(n)O(1)).The proof of this lemma is straightforward given the de�nition of rPCP.This proof is deferred to the appendix.4.4 Restricted PCP's for languages in NPThe characterization of NP in terms of polynomial sequences can be strength-ened so as to be able to use encoded inputs. The encoding we will choose forthe inputs will be the (m;h)-polynomial extension encoding. Recall that forany choice of hm values fvzgz2Hm , there exists a polynomial g : Fm ! F ofdegree at most mh such that g(z) = vz for z 2 Hm.De�nition 4.4.1. For an n bit string x where n = hm, the encoding Em;h;Fencodes x according to the (m;h) polynomial extension encoding (i.e., �ndsa polynomial g which agrees with x on the space Hm and writes out its valueover all the points in Fm). The inversion scheme E�1m;h;F we will pick for Ewill map every function from Fm to F , to the closest degree mh polynomial(ties may be broken arbitrarily) and use its values over the domain Hm asthe value of the inverse.Theorem 4.4.1. Given a language L 2 NP, a constant c and an input lengthn, a polynomial construction rule for degree log2 n polynomials g(0); : : : ; g(l)(g(i) : Fm+1 ! F) of length O(lognloglogn) and width O(logn) can be constructedin polynomial time such that: 9g(0)s:t:g(l) � 0 if and only if x1 � � �xc 2 Lwhere xi = E�1m;h;F (g(0)jz1=i) (where the notation g(0)jz1=i represents thepolynomial on m variables obtained by setting the value of the �rst variablez1 to a value i 2 F). Lastly m = �(lognloglogn), jF j = polylogn and h = logn.

4.5 A long and robust proof system 53The proof of this statement is included in the appendix. This allows usto construct our �rst restricted PCP proof system.Lemma 4.4.1. NP � rPCP(logn; polylogn).Proof: The rPCP proof � will consist of g(0), g(l) and an oracle O accord-ing to Theorem 3.4.2 which allows us to verify using a constant number ofprobes into O, g(l) and g(0) that the construction rules have been obeyed.The length of the longest segments in this proof are the entries of O whichare of length O(polylogn) bits long. The tester T is essentially the same asthe tester of Theorem 3.4.2 who veri�es that g(l) has been obtained from g(0)by following the construction rules. In addition the tester will ensure thatg(l) � 0. The number of random bits is essentially the same as in the testerof Theorem 3.4.2, which is O(m log jF j+ l) = O(logn). �Notice that by composing this system with itself, using Lemma 4.3.1, wecan obtain NP � rPCP(logn; polyloglogn) and by continuing the process,we can get NP � log(c) n, for any constant c (where log(c) denotes the cthiterated logarithm function). Yet this does not seem to su�ce to show a resultof the form NP � rPCP(logn;O(1)). In order to show such a result we needsome protocol where the number of bits read is independent of the lengthof the statement being proved. In the next section we describe such a proofsystem.4.5 A long and robust proof systemIn this section, we construct long but highly transparent proofs of member-ship for languages in NP. The essential idea behind reducing the size of thetable entries is the use of very low degree polynomials. In fact, all the resultsof this section are derived from polynomials of degree one. This results inthe need to use many variables in the polynomials, so as to encode su�cientamounts of information. This in turn, is what causes the explosion in theamount of randomness by exponential factors.4.5.1 Preliminaries: linear functionsWe �rst review some of the key facts about linear functions. Some of the factsmentioned here might follow from the work done on higher degree polynomialsin Chapters 3 and 2, but we mention them here anyway to reemphasize thebasic properties that will be used in the rest of this section.De�nition 4.5.1 (linearity). A function A : Fm ! F is called linear ifthere exist a1; : : : ; am 2 F such that A(x1; : : : ; xm) =Pmi=1 ai � xi.The following is a well-known fact.

54 4. Transparent proofs and the class PCPFact 4.5.1. A function A : Fm ! F is linear if and only if for all x; y 2 Fm,A(x+ y) = A(x) + A(y).The fact above was strengthened very signi�cantly by Blum, Luby andRubinfeld [36] who show that the property used above is a very \robust" one,and can hence be used to construct testers for the family of linear functions.Lemma 4.5.1 (linearity tester: [36]). If ~(A) : Fm ! F satis�esPrx;y2UFm h ~A(x+ y) = ~A(x) + ~A(y)i � 1� �=2then 9 a linear function A such that d(A; ~A) � �, provided � � 1=3.Blum, Luby and Rubinfeld [36] also show that the family of linear func-tions is self-correctable. In fact, they show that the value of a linear functioncan be computed correctly anywhere, using two calls to a function that isclose to it.Lemma 4.5.2 (linear self-corrector: [36]). If ~A is �-close to a linearfunction A, then for all x 2 FmPry2UFm hA(x) = ~A(y + x)� ~A(y)i � 1� 2�The important point about the lemmas above is that both hold for all �-nite �elds and in particularGF (2). This immediately allows us to create error-correcting codes with very interesting error detection and correction proper-ties. The encoding of n-bits a1; : : : ; an is the 2n bit string fA(x)gx2Zn2 . Thelinearity tester becomes a randomized error detector and the self-correctorbecomes a randomized error correcting scheme. These properties will now beused in the next section to construct proofs of satis�ability.4.5.2 Long proofs of satis�abilityIn this section we consider a 3-CNF formula � on n variables v1; : : : ; vn andm clauses C1; : : : ; Cm. The prover is expected to prove the satis�ability of �by providing a satisfying assignment a1; : : : ; an, encoded in a suitable error-correcting code.The coding scheme we choose here is based on the scheme of codingvia linear functions, that we touched upon in the previous section. We �rstdevelop some notation. The assignment a1; : : : ; an will be denoted by thevector a 2 Zn2 .De�nition 4.5.2. For vectors x 2 Zl2 and y 2 Zm2 , let x�y denote the outerproduct z 2 Z lm2 , given by zij = xi � yj . Note that although z is an l � mmatrix, we will sometimes view it as an lm-dimensional vector. The exactview should be clear from the context.

4.5 A long and robust proof system 55Let b = a � a and let c = a � b. Further let A : Zn2 ! Z2, B : Zn22 ! Z2and C : Zn32 ! Z2 be the linear functions whose coe�cients are given by a,b and c. A(x) = nXi=1 ai � xiB(y) = nXi=1 nXj=1 bij � yijC(z) = nXi=1 nXj=1 nXk=1 cijk � zijkThe encoding scheme for a that we choose is the following: The proverwrites down the values of the functions A, B and C explicitly for each input.The intuition for choosing this encoding is the following:1. By using the results on linearity testing it should be possible to verifythe authenticity of such codewords.2. Given the information speci�ed above correctly, one can compute thevalue of any degree 3 polynomial in n variables at the point a.3. A 3-CNF formula should be closely related to degree 3 polynomials.We now provide precise statements of the claims above and prove them.Lemma 4.5.3. Given functions ~A, ~B and ~C, and a constant � > 0 thereexists a tester T , and a constant c such that:{ If there exists a vector a such that ~A, ~B and ~C give the encoding of a,then T (r; ~A; ~B; ~C) outputs PASS for all r 2 f0; 1gO(n3).{ If for all vectors a, at least one of the distances d(A; ~A), d(B; ~B) andd(C; ~C) is not bounded by �, then T (r; ~A; ~B; ~C) outputs FAIL, for at leasthalf the random strings r 2 f0; 1gO(n3).Furthermore, for any �xed choice of r, T 's output depends on at most c valuesof ~A, ~B and ~C.Proof: The tester T �rst tests that the functions ~A, ~B, ~C are linear functions,using the tester from Lemma 4.5.1. This yields strings a, b and c such that:if A,B and C are the linear function with coe�cients a, b and c respectively,then d(A < ~A)i, d(B; ~B) and d(C; ~C) are all bounded by �. This tester needsto probe ~A; ~B and ~C in O((1�)2) places. Further note that at this point wecould use the self-corrector of Lemma 4.5.2 we can compute the functions A,B and C at any point correctly with high probability.At this point the only aspect left to be tested is that b = a � a and thatc = a � b. We now test that these properties hold. These tests will be basedon the randomized algorithm for verifying matrix products, due to Freivalds[56]. Consider the n � n matrix X such Xij = bij and let Y be the n � n

56 4. Transparent proofs and the class PCPmatrix obtained by viewing a�a as an n�n matrix. The property we wish toverify is that X = Y . The idea of Freivalds' matrix multiplication checker isto consider a random vector x 2 Zn2 and verifying that xTX = xTY . It canbe shown that if X 6= Y then this products di�er with probability at leasthalf.Further, consider a randomly chosen vector y 2 Zn2 and the productsxTXy and xTY y. If xTX 6= xTY then these products di�er with probabilityhalf. Thus with probability at least a quarter, we have that xTXy 6= xTY y,if X 6= Y . But now consider the product xTXy: this is equal to B(x� y), andthe product xT (a � a)y equals A(x) � A(y). Thus the identity can be testedby evaluating the functions A and B at three points in all. The process canbe repeated constantly many times to get high enough con�dence. A similartest checking that C(x � y) = A(x) �B(y) concludes the test. �Next consider the task of evaluating any degree 3 polynomial f at thepoint a1; : : : ; an. f can be written asf(a1; : : : ; an) = �+ Xi2S1 ai + X(i;j)2S2 ai � aj + X(i;j;k)2S3 ai � aj � ak= �+ Xi2S1 ai + X(i;j)2S2 bij + X(i;j;k)2S3 cijk= �+ A(�(S1)) +B(�(S2)) +C(�(S3))(where S1, S2 and S3 are sets that depend only of f and �(S1), �(S2) and�(S3) are the characteristic vectors of these sets). Thus any degree 3 polyno-mial can be evaluated at a by computing A. B and C at one point each. Nextwe show that 3-CNF formulae are closely related to degree 3 polynomials.Lemma 4.5.4. Given a 3-CNF formula �, and an assignment a1; : : : ; an, adegree 3 polynomial ~� : Zn2 ! zt can be constructed (without knowledge ofthe assignment) such that{ If a1; : : : ; an satis�es �, then ~�(a1; : : : ; an) = 0.{ If a1; : : : ; an does not satisfy � then ~�(a1; : : : ; an) = 1 with probability 1=2.Proof: We �rst arithmetize every clause Cj into an arithmetic expression~Cj over Z2 (over the same set of variables), so that Cj is satis�ed by a ifand only if ~Cj evaluates to zero. This is done as follows: If Cj is the clausev1 _ v2 _ :v3 then ~Cj will be the expression (1 � v1) � (1 � v2) � v3. Noticethat each clause gets converted in this fashion to a degree 3 polynomial andthe whole formula � is satis�ed only if each expression ~Cj evaluates to zeroat vi = ai.Now consider taking the inner product of the vector < ~C1; : : : ; ~Cm >with a randomly chosen m-bit vector r. If the vector < ~C1; : : : ; ~Cm > is notidentically zero then the inner product will be non-zero with probability half.Thus if we let ~� be the inner product i.e., Pmj=1 rj � ~Cj then ~� is a degree

4.6 Small proofs with constant query complexity: recursion 57three polynomial in the n variables which satis�es the conditions required bythe Lemma. �Thus we are in a position to prove the following lemma.Lemma 4.5.5. NP � PCP(poly(n); 1).Proof: For any language L and �xed input length n, we create a 3-CNF for-mula � such that8w 2 f0; 1gn9y such that �(w; y) is true , w 2 LWe then expect the prover to encode the string a = w � y using the encodingmechanism (i.e., the functions A, B and C) as constructed in this section. Thetester T �rst veri�es that the encoding describes a valid assignment, usingLemma 4.5.3 and then veri�es that it corresponds to a satisfying assignmentof � by creating ~� as described in Lemma 4.5.4. Notice further that the paritya = w � y on any subset of the bits can be expressed as the value of A ata certain point. The tester T uses this fact to verify that the initial portionof a is the same as w. The tester picks a random subset of the bits of wand compares its parity with the parity of a on the same subset of bits.If the initial portion of a is di�erent from w then this test will detect thiswith probability half. This test is repeat enough times to get large enoughprobabilities of detecting cheating.Thus tester T rejects the proof (i.e., the functions A, B and C), withprobability half if w 62 L and accepts with probability one if w 2 L. �Lemma 4.5.6. NP � rPCP(poly(n); O(1))Proof: To convert the proof system of Lemma 4.5.5 to a rPCP(poly(n); O(1))proof system we observe that if the input w = w1 �w2 � � �wc are each encodedby the parities of all their subsets, then the last phase of the tester's veri�-cation process, just compares entries from the encodings of w1 etc. with thevalue of A at some point. Thus there exists an encoding scheme E and a proof� such that the tester looks at O(1) bits from the encodings of w1; � � � ; wcand O(1) bits of the proof � and veri�es that w1 �w2 � � �wc 2 L. �4.6 Small proofs with constant query complexity:recursionThe results of the previous two sections can be combined using the recursionlemma, Lemma 4.3.1 to get proofs which combine the best of both the proofsystems.Theorem 4.6.1. NP � rPCP(logn;O(1))

58 4. Transparent proofs and the class PCPProof: Using Lemmas 4.3.1 and 4.4.1, we get thatNP � rPCP(logn; polyloglogn):Now using this result and Lemma 4.5.6, we see that NP � rPCP(logn;O(1)).� The result can be extended to get the following theorem for generalNTIME classes.Theorem 4.6.2. If L 2 NTIME(t(n)), then L 2 PCP(log(t(n) + n); O(1)).Thus the following corollaries become immediate.Corollary 4.6.1. NE = PCP(n;O(1))Corollary 4.6.2. NEXPTIME = PCP(poly(n); O(1))4.7 DiscussionMost of the work prior to 1992 [20, 19, 50] were essentially focussed on de-riving PCP containments for nondeterministic time bounded classes. Whilethese results lie at the core of the constructions described in this chapter,none of them translate directly into any rPCP results. The only work priorto 1992, which can be described in terms of rPCP systems are the results on\constant-prover proof systems" (i.e., multiple prover proof systems whichallow only one round of interaction with upto a constant number of provers)[29, 53, 37, 85, 48]. In particular the results of Lapidot and Shamir [85] andFeige and Lovasz [48] can be scaled down to get rPCP(polylogn; polylogn)protocols for NP. The rPCP(logn; polylogn) protocol given here is somewhatinspired by the works of Lapidot and Shamir [85] and Feige and Lovasz [48]on parallelizing the MIP = NEXPTIME protocol, and in particular sharessimilar goals, but the protocol and proof are new to Arora, Lund, Motwani,Sudan and Szegedy [8]. In particular, the amount of randomness used in theprotocols of [85, 48] seems to be superlogarithmic and [8] are able to reducethis to O(logn). Moreover, their �nal protocols does not seem to be able tohandle the situation where the input comes in a constant number of error-corrected pieces. The rPCP(poly(n); O(1)) protocol discussed in this chapteris new to Arora, Lund, Motwani, Sudan and Szegedy [8]. The recursive proofconstruction technique described here is almost entirely due to the work ofArora and Safra [6], modulo the formalism which may be di�erent here.Open Questions. The most important question that does remain open is whatis the smallest number of bits that need to be read from a transparent proofto achieve a �xed probability of detecting a false proof. In the next chaptera connection is pointed out between the PCP proof systems and 3SAT. Thisconnection shows that if the probability of detecting cheating is allowed to

4.7 Discussion 59be an arbitrarily small constant, then reading 3 bits of the proof su�ces.Moreover, if the error of the veri�er is expected to be one sided, then 3 bitsare necessary (the computation of a veri�er when it reads only 2 bits canbe equated to the satis�ability of a 2-SAT formula). Lastly, in this regard, itmay be pointed out that if the error of the veri�er is allowed to be two-sidedthen even reading two bits su�ces.Our result shows that any proof can be converted into a transparent proofwhich is within a polynomial factor of the size of the original proof. In contrastto this, the transparent proofs of Babai, Fortnow, Levin and Szegedy [19] arenearly linear in the size of the original proof. This raises the question ofwhether the proofs of this section can be compressed into a nearly linear size.This question seems to get mapped down to the question of the e�ciencyof the low-degree test and the question about the �eld sizes required for theArora-Safra Tester that is raised at the end of Chapter 3.Addendum. In the last few years the PCP technology has seen enormousamounts of progress { we attempt to summarize this briey here. Bellare,Goldwasser, Lund and Russell [28] initiated the attempt to reducing the con-stants in the proof systems described here. They show that the query com-plexity of a proof system can be made as small as 30 bits while guaranteeingthat incorrect proofs will be rejected with probability half. This number wasfurther reduced by Feige and Kilian [47] and by Bellare, Goldreich and Sudan[27] who report that 16 bits su�ce. Much of this improvement comes aboutdue to an improvement in the parameters associated with a constant proverproof system for NP [28, 47, 108, 98]. A second factor in the improvementshas been improvements in analysis of the \linearity test" { which also hassome fairly tight analysis now due to [28, 26]. A di�erent objective has beenthe blowup in the size of a transparent proof as compared with the originalproof. This was the original objective of Babai, Fortnow, Levin and Szegedy[19] who set the goal of getting a transparent proof with a blowup of onlyO(n1+�). This goal was met by Polishchuk and Spielman [97] who give a proofsystem with constant query complexity and O(n1+�) size proofs. A third di-rection of research combines the two objectives above trying to combine thegoal of small proof sizes with small (explicit) query complexity. Friedl andSudan [55] report proofs with such explicit parameters, giving proofs withO(n2+�) size with a query complexity of 165 bits.

60 4. Transparent proofs and the class PCP

5. Hardness of approximationsThe notion of NP-completeness (Cook [41], Levin [86] and Karp [80]) wasdeveloped primarily as an attempt to explain the apparent intractability of alarge family of combinatorial optimization problems. The resulting theoret-ical framework (cf. [60]) was de�ned mainly in terms of decision problemsobtained by imposing bounds on the value of the objective function. Thispermitted the development of an elegant body of results and the formal-ism su�ced for the purposes of classifying the complexity of �nding optimalsolutions to a wide variety of optimization problems.Attempts to extend this analysis to the task of �nding approximate so-lutions to the same set of problems, was not very successful. Problem whichseemed equivalent when the goal was to �nd exact solutions, seems to breakapart into problems of widely varying complexity when the goal was relaxedto that of �nding approximate solutions. Some problems like the knapsackproblem have extremely good approximation algorithms [59]. Other problemshave algorithms where the error of approximation can be made arbitrarilysmall, but the penalties paid for improved solutions are heavy. An example ofsuch a problem is the task of minimizing the makespan on a parallel machine -a scheduling problem studied by Hochbaum and Shmoys [73]. Yet other prob-lems like the Euclidean TSP and vertex cover seemed approximable to someconstant factor but not arbitrarily small ones; and �nally we have problemswhich seem no easier to approximate than to solve exactly e.g. Chromaticnumber.Some initial success was obtained in showing the hardness of even ap-proximating certain problems: For the traveling salesman problem withouttriangle inequality Sahni and Gonzalez [103] showed that �nding a solutionwithin any constant factor of optimal is also NP-hard. Garey and Johnson[58] showed that the chromatic number a graph could not be approximatedto within a factor of 2��. They also show that if the clique number of a graphcannot be approximated to within some constant factor, then it cannot beapproximated to within any constant factor. Hochbaum and Shmoys [71, 72]study some min-max problems where they show tight bounds on the factorto which these problems may be approximated unless NP = P.The lack of approximation preserving reductions among optimizationproblems seemed to isolate these e�orts and the search for such reductions

62 5. Hardness of approximationsbecame the goal of a wide body of research [10, 11, 12, 95]. The most success-ful of these e�orts seems to be the work of Papadimitriou and Yannakakis[93] where they used a syntactic characterization of NP due to Fagin [45] tode�ne a class called MAX SNP. They also de�ned a particular approximationpreserving reduction called the L-reduction (for linear reductions) used thesereductions to �nd complete problems for this class. All problems in this classwere approximable to some degree, and the complete problems for the classseemed hard to approximate to arbitrarily small factors. The class MAX SNPseemed to provide a much need framework to deal with approximation prob-lems and this was evidenced by the large number of problems which weresubsequently shown to be hard for this class [93, 94, 32, 33, 43, 77, 31, 79].Yet, the hardness of MAX SNP seemed like a weaker condition than hard-ness for NP, and except for the chromatic number no unweighted combina-torial problem could be shown to being hard to approximate to some degree.It hence came as a big surprise when Feige, Goldwasser, Lovasz Safra andSzegedy [50], were able to show hardness (under a slightly weaker assump-tion than P 6= NP) of approximating the clique number of graphs to withinconstant factors. The hardness result used recent results in the area of inter-active proofs in a very clever but simple manner, thus serving to illustratethe power of the machinery that had been built in the area of interactiveproofs. Here, by showing an equally simple connection between such resultsand MAX SNP, we are able to show hardness results for all MAX SNP hardproblems.In the following sections we will �rst de�ne the notions of approximationproblems and lay out the various goals that could be set for an approxima-tion problem. In the following section we delve into the class MAX SNP andoutline some of its features. We then go on to relate the notion of probabilis-tically checkable proofs with MAX SNP. We do so by formulating the taskof �nding a PCP as an optimization problem in MAX SNP. The gap in thede�nition of PCP creates a gap in the optimization problem, which yields ahardness result even for the approximate version to this problem.5.1 Optimization problems and approximationalgorithmsThe following is the de�nition of a NP optimization problem.De�nition 5.1.1 (optimization problem). An instance I of a NP opti-mization problem � consists of the pair (S; value) where S represents thesolution space and value : S ! < is a polynomial time computable functionreferred to as the objective function. The goal of the problem maybe any oneof the following:1. Given a real number k, determine if there exists a solution s such thatvalue(s) � k (or value(s) � k for minimization problems).

5.1 Optimization problems and approximation algorithms 632. Find the maximum (minimum) achievable value of value over S. Thisquantity is denoted OPT(I).3. Find the solution s 2 S which maximizes (minimizes) value(s). Typi-cally, the solution space S is of the form f0; 1gn and the function valuehas a description length which is polynomial in n.It turns out that for many interesting problems (and in particular, theNP-complete ones), the above three goals are equivalent under polynomialtime reductions. For approximation versions of the above questions, though,the problems may not remain equivalent any more. In this chapter we will usethe following notion of an approximate solution for an optimization problem.De�nition 5.1.2 (approximation algorithm). An �-approximation algo-rithm for an NP optimization problem �, takes an instance I as input andoutputs an estimate E which satis�esE1 + � � OPT � (1 + �)ENotice that the above de�nition corresponds to the second of the threepossible de�nitions of exact optimization problems. Note that in many appli-cations, it would be more useful to produce an algorithm actually outputs asolution which comes close to the maximum value. But, since we are tryingto prove negative results about the existence of such algorithms, proving itfor the weaker notion is a stronger result.De�nition 5.1.3 (polynomial time approximation scheme: PTAS).For an optimization problem �, a polynomial time approximation scheme,takes a parameter � and produces an �-approximation algorithm A� for theproblem �. The running time of A� on inputs of length n is bounded by apolynomial in n. (The input here is a description of the solution space S andthe function f .)The research e�orts of the past two decades [10, 11, 12, 60, 59, 95] havebroadly aimed at classifying approximation versions of optimization problemsinto one of the following classes:1. Fully polynomial time approximable problems: These are problems �,for which there exists an algorithm A, such that A takes as input aninstance I of � and an approximation factor � and produces as outputan �-approximate estimate. The running time of A is polynomial in jIjand 1� .2. Problems with polynomial time approximation schemes.3. Approximable problems: These are problems for which some constant �exists, such that an �-approximate estimate can be found in polynomialtime.4. Hard problems: These are problems for which no constant factor approx-imation is known.

64 5. Hardness of approximations5.2 MAX SNP: constraint satisfaction problemsThe class MAX SNP was de�ned by Papadimitriouand Yannakakis [93] basedon the syntactic de�nition of NP of Fagin [45] and on subsequent de�nition ofstrict-NP due to Kolaitis and Vardi [84]. The formal de�nitions are presentedbelow.De�nition 5.2.1 (NP: [45]). A predicate � on structures I, is in NP if itcan be expressed in the form 9S�(I; S), where S is a structure and � is a�rst order predicate.(In the above de�nition � is equivalent to the problem and I the instanceof the problem.)De�nition 5.2.2 (SNP: [84]). A predicate � on structures I, is in SNP ifit can be expressed in the form 9S8x�(x; I; S), where S is a structure and �is a quanti�er free predicate.De�nition 5.2.3 (MAX SNP: [93]). An optimization problem � on str-uctures I is in MAX SNP if its objective function can be expressed asmaxS jfx : �(x; I; S)gjThe following problem provides an alternate view of MAX SNP. It de�nesa combinatorial problem which turns out to be the \universal" MAX SNPproblem. The combinatorial nature of the problem statement might make itan easier de�nition to use.De�nition 5.2.4. A constraint of arity c is function from c boolean vari-ables to the range f0; 1g. The constraint is said to be satis�ed by an instan-tiation of its inputs if the boolean function evaluates to 1 at the instantiation.De�nition 5.2.5 (constraint satisfaction problem). For a constant c,an instance I of c-CSP consists of a set of constraints C1; � � � ; Cm of arity con variables x1; : : : ; xn where the objective function ismaxassignments to x1; : : : ; xn j fCijCi is satis�ed by the assignment g jThe c-CSP is a universal MAX SNP problem in the sense that a problemlies in MAX SNP if and only if there exists a c such that it can be expressedas a c-CSP. The proof of this claim is straightforward and omitted.Papadimitriou and Yannakakis also introduced the notion of a linear re-duction (L-reduction) which is an approximation preserving reduction. Thenotion of L-reductions allows them to �nd complete problems for the classMAX SNP.De�nition 5.2.6 (linear reduction: [93]). An optimization problem � issaid to L-reduce to a problem � 0 if there exist polynomial time computablefunctions f; g and constant �; � � 0 such that

5.2 MAX SNP: constraint satisfaction problems 651. f reduces an instance I of � to an instance I 0 of �0 with the propertythat OPT(I) � �OPT(I 0).2. g maps solutions s0 of I 0 to solutions s of I such that jvalue0(s0) �OPT(I 0)j � �jvalue(s) �OPT(I)j.It is clear from the above de�nition that if there is a polynomial timealgorithm for � 0 with worst-case error �, then there is a polynomial timealgorithm for � with worst-case error ���. Using the above de�nition of L-reductions, Papadimitriou and Yannakakis showed that the following prob-lems were complete for MAX SNP. This means, in particular, that if any ofthe following problems has a PTAS then all problems in MAX SNP have aPTAS.MAX 3SAT: Given a 3-CNF formula, �nd an assignment which maximizesthe number of satis�ed clauses.MAX 2SAT: Given a 2-CNF formula, �nd an assignment which maximizesthe number of satis�ed clauses.INDEPENDENT SET-B: Given a graph G with maximumdegree of anyvertex being bounded by a constant B, �nd the largest independent set inthe graph.VERTEX COVER-B: Given a graph G with maximumdegree of any ver-tex being bounded by a constant B, �nd the smallest set of vertices whichcovers all the edges in the graph. The version of this problem with no boundson the degree of a vertex, VERTEX COVER, is hence also hard for MAXSNP.MAXCUT: Given a graph G �nd a partition of the vertices which maximizesthe number of edges crossing the cut.Further, they show that every problem in MAX SNP is approximable tosome constant factor.Lemma 5.2.1 ([93]). For every problem � in MAX SNP, there exists aconstant � such that there exists an �-approximation algorithm for � whichruns in polynomial time.Proof: We use the universality of the c-CSP. Consider a constraint optimiza-tion problem with constraints C1 to Cm where any constraint is a functionof at most c variables. Let m0 be the number of constraints which are in-dividually satis�able i.e., constraints for which there exists an instantiationwhich will satisfy them. Then m02c � OPT(I) � m0. Thus an algorithm thatcomputes m0 and outputs it is a 2c-approximation algorithm. �Even more interesting than problems in MAX SNP are the wide varietyof problems that are known to be hard for this class. We compile here a listof few of them.TSP(1; 2): ([94]) Given a complete graph on n vertices with lengths on itsedges, such that all edge lengths are either one or two, �nd the length of theshortest tour which visits all vertices at least once.

66 5. Hardness of approximationsSTEINER TREE(1; 2): ([32]) Given a complete graph on n vertices withweights on its edges, such that all edge weights are either 1 or 2, and a subsetS of the vertices, �nd the minimum weight subgraph which connects thevertices of S.SHORTEST SUPERSTRING: ([33]) Given a set of strings S1; : : : ; Sk,over the alphabet f0; 1g, �nd the length of the shortest string S which con-tains all the given strings as substrings.MAX CLIQUE: ([31, 50]) 1 Given a graph G �nd the largest clique in thegraph. (This problem was shown to be very hard for MAX SNP, in that ifthe clique size could be approximated to within n� for any � > 0, then thereexists a PTAS for MAX 3SAT.)LONGEST PATH: ([94, 79]) Given a graph G, approximate the lengthof the longest path in the graph to within any constant factor.5.3 Non-existence of PTAS for MAX SNP hardproblemsWe now establish the hardness of approximatingMAX SNP hard problems towithin arbitrarily small factors of approximation. The results of this sectionare from the paper by Arora, Lund, Motwani, Sudan and Szegedy [8].Consider a language L 2 NP and a transparent proof of membership ofan input instance x in the language L. The question of deciding whether sucha proof exists can be converted into an optimization problem as follows:{ The space of solutions will be all possible s(n) bit strings, each one rep-resenting a potential proof. Each bit of the proof will be treated as anindependent variable. This creates s(n) variables denoted �i.{ For each possible random string r tossed by the tester of the transparentproof, we set up a constraint Tr;x to simulate the tester's action on thechosen random string. The constraint Tr;x is a speci�cation on some O(1)variables from the set f�1; : : : ; �s(n)g.{ The optimization problem which questions the existence of a valid proofis:MAX PCP:Given x 2 f0; 1gn �nd max�2f0;1gs(n) f jfrj constraint Tr;x is satis�ed by �gjgClaim. MAX PCP 2MAX SNP.1 Berman and Schnitger [31] showed the hardness result mentioned here under theassumption that MAX 3SAT did not have randomized PTAS. The assumptioncould be made weaker using some of the known derandomization techniques(say, using the idea of recycling random bits [38, 74]). The result could also beobserved from the reduction of Feige, Goldwasser, Lovasz, Safra and Szegedy [50]as a special case.

5.4 Discussion 67Proof: By Theorem 4.6.1 we have NP = PCP(logn;O(1)). Thus the numberof di�erent random strings is polynomial in the input size. Hence the numberof constraints is polynomial in jxj. Further, since each Tr;x is a constraint ona constant number of the variables �i, this �ts the de�nition of a constraintsatisfaction problem and thus is a MAX SNP problem. �Claim. Approximating MAX PCP to within 10% is NP-hard.Proof: Consider an arbitrary language L 2 NP and an instance x 2 f0; 1gn.The MAX PCP problem deciding whether x has a transparent proof of mem-bership will have an optimum value of either 2r(n) if x 2 L or at most 2r(n)�1if x 62 L. Thus a 10% approximation to the optimumvalue will give an answerof at least :9 � 2r(n) or at most :55 � 2r(n). Thus even a 10% approximateanswer su�ces to distinguish between the cases x 2 L and x 62 L. Thus ap-proximating MAX PCP to within 10% su�ces to decide membership for anylanguage in NP. �Theorem 5.3.1. For every MAX SNP-hard problem �, there exists a con-stant � such that �nding �-approximate solutions to � is NP-hard.Proof: The proof follows from the fact that there exists an approximationpreserving reduction from MAX PCP to any MAX SNP-hard problem. Inparticular, given any MAX SNP-hard �, there exists an � such that an�-approximate solution to � would yield a 10% approximate solution toMAX PCP. Thus �nding �-approximate solutions to � is NP-hard. �5.4 DiscussionAddendum. The improvement in PCP technology has resulted in new hard-ness results for several optimization problems, as well as stronger hardnessresults for the ones discussed in this chapter. Most notable of these are thehardness of approximation results for Chromatic Number and Set Cover, dueto Lund and Yannakakis [89], the hardness of approximating many maximalsubgraph problems, also due to Lund and Yannakakis [90], the hardness of4-coloring and 3-colorable graph, due to Khanna, Linial and Safra [82] andthe hardness of the nearest vector and nearest lattice point problems, due toArora, Babai, Stern and Sweedyk [7]. In almost all of these cases, hardness ofapproximation to within constant factors was known or could be inferred fromthe prior results [58, 8] { but the quality of the non-approximability resultswere far from the right answers. A more complete list of such hardness resultsmay be found in the survey of Crescenzi and Kann [42]. These new resultsresult in a much better understanding of the hardness results, at least quali-tatively. For problems such as MAX 3SAT, MAX 2SAT, VERTEX COVER,MAXCUT, MAX CLIQUE, the qualitative level of approximability was re-solved in [50, 6, 8]. However the actual constant upto which any of these

68 5. Hardness of approximationsproblems can be approximated, or shown hard to approximate, is still a sub-ject of active research. Starting with the work of Bellare, Goldwasser, Lundand Russell [28] and continuing through the works of Feige and Kilian [47],Bellare and Sudan [25] and Bellare, Goldreich and Sudan [27], the hardnessresults for all these problems have improved steadily and the best knownhardness results at the time of this writeup are:MAX 3SAT 1=38-approximation is NP-hard [28, 47, 25, 27].MAX 2SAT 1=97-approximation is NP-hard. [27].VERTEX COVER 1=26 approximation is NP-hard. [27].MAXCUT 1=82 approximation is NP-hard. [27].SET COVER (1��) lnn-approximation is hard, for every � > 0, unless NP �RTIME(nloglogn) [89, 28, 46].MAX CLIQUE n1=3�� approximation is hard, for every � > 0, unless NP=RP[28, 47, 25, 27].CHROMATIC NUMBER n1=5�epsilon approximation is hard, for every � >0, unless NP=RP [89, 82, 28, 47, 25, 57, 27].

6. ConclusionsWe have proved that any NP language admits an e�cient probabilisticallycheckable proof of membership. This proof need only be examined in a con-stant number of randomly chosen places by a polynomial time veri�er. Cur-rently, the transformation from the standard proof to the transparent proofrequires a slightly super-quadratic blowup in size. Can this be substantiallyimproved? We should point out that since mathematicians rarely write upproofs in enough detail to be machine checkable, our results should not beregarded as having practical consequences to mathematical proof checking.Nevertheless, it is possible that these techniques might be useful in ensuringsoftware reliability { by making it possible to build redundancy into compu-tations so that they can be e�ciently checked. The blowup in the size of theabove transformation is quite crucial for this application.One interesting consequence of our results on testing and correcting ofpolynomials is that we obtain e�cient randomized algorithms for error-detection and error-correction of some classical codes, like the Hadamardcodes and the Reed-Solomon codes. The error-detection algorithm can verye�ciently and by making very few probes into a received word, approximateits distance from a valid codeword. The error-correction algorithm can re-trieve any bit of the nearest codeword to the received word by making veryfew probes into the received word. These error-detection and error-correctionschemes have already been put to theoretical use in this work. It remains tobe seen if they be put to practical use. The e�cient randomized algorithmscan be converted into fast deterministic parallel algorithms, and such errordetecting and correcting schemes might be of some interest.The surprising connection between e�cient probabilistically checkableproofs and the hardness of approximating clique sizes in graphs, due to Feige,Goldwasser, Lovasz, Safra and Szegedy [50], is now much better understood.Here we showed that for every MAX SNP-hard problem, there exists a con-stant � such that approximating the optimum value to within a relative errorof � is NP-hard. More recently, Lund and Yannakakis [89] have shown stronghardness results for approximating the chromatic number of graphs and ap-proximating the minimum set cover size for a family of sets. In the light of allthese developments, it appears that this connection between probabilisticallycheckable proofs and approximation problems is a fundamental one. Several

70 6. Conclusionsquestions still need to be resolved including the complexity of approximatingthe traveling salesman problem on the plane, approximating the longest pathin a graph, �nding the magni�cation of a graph, the length of shortest vectorin a lattice etc. The last of these problems is particularly interesting since theapproximate version of this problem is not very sensitive to the exact normbeing used, and thus a hardness under any one norm would yield a hard-ness result under all norms. This is an example of one situation where thehardness of approximation might end up providing the �rst NP-completenessfor even the exact problem, since the \shortest vector in a lattice" problemis not known to be NP-hard under arbitrary norms. A concrete example ofsuch a result may be found in Lund and Yannakakis [89], where they show thehardness of approximating a certain problem thus providing the �rst proofshowing hardness of exact computation for that problem.The exact constant for the number of bits examined by probabilistic proofsystems for NP is also very important, since this is directly related to theconstants for which the di�erent approximation problems become NP-hard.Of course, the number of bits examined can be traded o� against the proba-bility of discovering a fallacious proof. In fact, if one is willing to accept onlya tiny probability of detecting a false proof, then for a certain proof systemexamining 3 bits of a proof is su�cient. Thus the precise version of the ques-tion would ask: How many bits of a proof need to be examined if the veri�eris expected to reject false claims with probability half? At present, the bestknown bound on the number of bits probed in polynomial sized proofs seemsto be less than a 100 bits Phillips and Safra [96]. Such a result would translateto showing that MAX 3SAT cannot be approximated to within 1300 . This, ofcourse, is far from being tight (the best known upper bound for the constantis 1=8).One way of interpreting the hardness result for approximatingMAX 3SATis the following: we need to perturb the input in a large number of placesto go from \yes" instances of a problem (one that is largely satis�able) to\no" instances of a problem (one in which a signi�cant fraction of the clausesare not satis�ed under any assignment). Thus the hardness of this problemis not attributable to the sensitivity to the input. An extreme form of thisinterpretation leads us to consider the question of whether we can draw theinput from the uniform distribution (or any polynomial time sampleable dis-tribution) and still get problems that are very hard? Interestingly enoughone of the key techniques relying on the power of polynomials { random self-reducibility { has already been used to show instances of average case hardproblems for #P by Lipton [87]. It would be interesting to see if any of thesetechniques can be used to show average case hardness for problems in NP.Addendum. The enormous amount of research that has one on in the areas ofnon-approximability and proof veri�cation, has led to many of the questionsraised above being already resolved. Polishchuk and Spielman [97] have con-structed \nearly-linear\ sized transparent proofs which are veri�able with

6. Conclusions 71constant probes. Arora, Babai, Stern and Sweedyk [7] have also broughtmuch better understanding to the problem of approximating the shortestvector problem, though the complexity of the problem still remains openunder most norms. The value of � for which �-approximating MAX 3SAT(or MAX 2SAT) is hard is getting closer to the value of � for which �-approximating MAX 3SAT (MAX 2SAT resp.) is achievable in polynomialtime. This tightening of the thresholds is a result of both improved hardnessresults (see discussion at end of Chapter 5) as well as the discovery of newtechniques for �nding approximate solutions to optimization problems andin particular the use of semide�nite programming towards this end (see thework of Goemans and Williamson [64]). Currently these threshold are withina factor of 10 from each other and the gap may well narrow further in thenear future.

72 6. Conclusions

Bibliography1. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle.Journal of Computer and System Sciences, 39:21{50, 1989.2. L. Adleman, M. Huang, and K. Kompella. E�cient checkers for number-theoretic computations. Information and Computation, 121:1, 93{102, 1995.3. S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing algebraic func-tions from mixed data. Proceedings of the Thirty Third Annual Symposiumon the Foundations of Computer Science, IEEE, 1992.4. S. Arora. Probabilistic Checking of Proofs and Hardness of ApproximationProblems. PhD thesis, U.C. Berkeley, 1994.5. S. Arora. Reductions, Codes, PCPs and Inapproximability. Proceedings of theThirty Sixth Annual Symposium on the Foundations of Computer Science,IEEE, 1995.6. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterizationof NP. Proceedings of the Thirty Third Annual Symposium on the Foundationsof Computer Science, IEEE, 1992.7. S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximat-ing problems de�ned by linear constraints. Proceedings of the Thirty FourthAnnual Symposium on the Foundations of Computer Science, IEEE, 1993.8. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cationand the intractability of approximation problems. Proceedings of the ThirtyThird Annual Symposium on the Foundations of Computer Science, IEEE,1992.9. S. Arora, R. Motwani, S. Safra, M. Sudan, and M. Szegedy. PCP and approx-imation problems. Unpublished note, 1992.10. G. Ausiello, A. D'Atri, and M. Protasi. On the structure of combinatorialproblems and structure preserving reductions. In Proceedings of the 4th Inter-national Colloquium on Automata, Languages and Programming, pages 45{57,1977.11. G. Ausiello, A. D'Atri, and M. Protasi. Structure preserving reductions amongconvex optimization problems. Journal of Computer and Systems Sciences,21:136{153, 1980.12. G. Ausiello, A. Marchetti-Spaccamela, and M. Protasi. Towards a uni�ed ap-proach for the classi�cation of np-complete optimization problems. TheoreticalComputer Science, 12:83{96, 1980.13. L. Babai. Trading group theory for randomness. Proceedings of the SeventeenthAnnual Symposium on the Theory of Computing, ACM, 1985.14. L. Babai. Transparent (holographic) proofs. Proceedings of the Tenth AnnualSymposium on Theoretical Aspects of Computer Science, Lecture Notes inComputer Science Vol. 665, Springer Verlag, 1993.

74 Bibliography15. L. Babai. Transparent proofs and limits to approximation. Proceedings of theFirst European Congress of Mathematics (1992), Vol. I, Birkh�auser Verlag,1994, pp. 31{91.16. L. Babai and L. Fortnow. Arithmetization: A new method in structural com-plexity theory. Computational Complexity, 1:41{66, 1991.17. L. Babai and K. Friedl. On slightly superlinear transparent proofs. Univ.Chicago Tech. Report, CS-93-13, 1993.18. L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system anda hierarchy of complexity classes. Journal of Computer and System Sciences,36:254{276, 1988.19. L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations inpolylogarithmic time. Proceedings of the Twenty Third Annual Symposium onthe Theory of Computing, ACM, 1991.20. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time hastwo-prover interactive protocols. Computational Complexity, 1:3{40, 1991.21. D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. Proceed-ings of the Seventh Annual Symposium on Theoretical Aspects of ComputerScience, Lecture Notes in Computer Science Vol. 415, Springer Verlag, 1990.22. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low com-munication overhead. In Proceedings of Crypto '90, Springer Verlag LNCS537, pages 62{76, 1991.23. M. Bellare. Interactive proofs and approximation: reductions from two proversin one round. Proceedings of the Second Israel Symposium on Theory andComputing Systems, 1993.24. M. Bellare and P. Rogaway. The complexity of approximating a nonlinearprogram. Complexity of Numerical Optimization, Ed. P.M. Pardalos, WorldScienti�c (1993).25. M. Bellare and M. Sudan. Improved non-approximability results. Proceedingsof the Twenty Sixth Annual Symposium on the Theory of Computing, ACM,1994.26. M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi and M. Sudan. Linearity test-ing in characteristic two. Proceedings of the Thirty Sixth Annual Symposiumon the Foundations of Computer Science, IEEE, 1995.27. M. Bellare, O. Goldreich and M. Sudan. Free bits, PCP and Inapproxima-bility: Towards tight results. Proceedings of the Thirty Sixth Annual Sym-posium on the Foundations of Computer Science, IEEE, 1995. Full ver-sion avaliable from the Electronic Colloquium on Computational Complexity,http://www.eccc.uni-trier.de/eccc/.28. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilisticallycheckable proofs. Proceedings of the Twenty Fifth Annual Symposium on theTheory of Computing, ACM, 1993. (See also Errata sheet in Proceedings of theTwenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994).29. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover inter-active proofs: How to remove intractability assumptions. Proceedings of theTwentieth Annual Symposium on the Theory of Computing, ACM, 1988.30. E. Berlekamp and L. Welch. Error correction of algebraic block codes. USPatent Number 4,633,470, 1986.31. P. Berman and G. Schnitger. On the complexity of approximating the inde-pendent set problem. Information and Computation, 96:77{94, 1992.32. M. Bern and P. Plassman. The steiner problem with edge lengths 1 and 2.Information Processing Letters, 32:171{176, 1989.

Bibliography 7533. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximationof shortest superstrings. Proceedings of the Twenty Third Annual Symposiumon the Theory of Computing, ACM, 1991.34. M. Blum. Designing programs to check their work. Technical Report TR{88{009, International Computer Science Institute, 1988.35. M. Blum and S. Kannan. Program correctness checking : : : and the designof programs that check their work. Proceedings of the Twenty First AnnualSymposium on the Theory of Computing, ACM, 1989.36. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applicationsto numerical problems. Journal of Computer and System Sciences, 47:3, 1993.37. J.Y. Cai, A. Condon, and R. Lipton. PSPACE is Provable by Two Proversin One Round. Proceedings of the Sixth Annual Conference on Structure inComplexity Theory, IEEE, 1991.38. A. Cohen and A. Wigderson. Dispersers, deterministic ampli�cation, and weakrandom sources. Proceedings of the Thirtieth Annual Symposium on the Foun-dations of Computer Science, IEEE, 1989.39. A. Condon. The complexity of the max word problem, or the power of one-wayinteractive proof systems. Proceedings of the Eighth Annual Symposium onTheoretical Aspects of Computer Science, Lecture Notes in Computer ScienceVol. 480, Springer Verlag, 1991.40. A. Condon, J. Feigenbaum, C. Lund and P. Shor. Probabilistically CheckableDebate Systems and Approximation Algorithms for PSPACE-Hard Functions.Proceedings of the Twenty Fifth Annual Symposium on the Theory of Com-puting, ACM, 1993.41. S.A. Cook. The complexity of theorem proving procedures. Proceedings of theThird Annual Symposium on the Theory of Computing, ACM, 1971.42. P. Crescenzi and V. Kann. A compendium of NP optimization prob-lems. Manuscript avalible from the authors, piluc@dsi.uniroma1.it orviggo@nada.kth.se.43. E. Dalhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yan-nakakis. The complexity of multiway cuts. SIAM Journal on Computing, 23:4,pp. 864{894, 1994.44. W.F. De la Vega and G.S. Lueker. Bin Packing can be solved within 1 + � inLinear Time. Combinatorica, vol. 1, pages 349{355, 1981.45. R. Fagin. Generalized �rst-order spectra and polynomial-time recognizablesets. In R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceed-ings, Vol. 7, pages 43{73, 1974.46. U. Feige. A threshold of ln n for approximating set cover. Manuscript, 1995.47. U. Feige and J. Kilian. Two prover protocols { Low error at a�ordable rates.Proceedings of the Twenty Sixth Annual Symposium on the Theory of Com-puting, ACM, 1994.48. U. Feige and L. Lovasz. Two-prover one-round proof systems: Their power andtheir problems. Proceedings of the Twenty Fourth Annual Symposium on theTheory of Computing, ACM, 1992.49. U. Feige and C. Lund. On the hardness of computing the permanent of randommatrices. Proceedings of the Twenty Fourth Annual Symposium on the Theoryof Computing, ACM, 1992.50. U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximat-ing clique is almost NP-complete. Proceedings of the Thirty Second AnnualSymposium on the Foundations of Computer Science, IEEE, 1991.51. J. Feigenbaum. Locally random reductions in interactive complexity theory. InJ. y. Cai, editor, Complexity Theory, DIMACS Series on Discrete Mathematicsand Theoretical Computer Science, 1993.

76 Bibliography52. J. Feigenbaum and L. Fortnow. On the random self-reducibility of completesets. Proceedings of the Sixth Annual Conference on Structure in ComplexityTheory, IEEE, 1991.53. L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover inter-active protocols. Proceedings of the Third Annual Conference on Structure inComplexity Theory, IEEE, 1988.54. K. Friedl, Zs. H�ats�agi and A. Shen. Low-degree testing. Proceedings of theFifth Symposium on Discrete Algorithms, ACM, 1994.55. K. Friedl and M. Sudan. Some improvements to low-degree tests. Proceedingsof the Third Israel Symposium on Theory and Computing Systems, 1995.56. R. Freivalds. Fast probabilistic algorithms. In Lecture Notes in ComputerScience, pages 57{69. Springer-Verlag, 1979.57. M. Furer. Improved hardness results for approximating the chromatic number.Proceedings of the Thirty Sixth Annual Symposium on the Foundations ofComputer Science, IEEE, 1995.58. M.R. Garey and D.S. Johnson. The complexity of near-optimal graph coloring.Journal of the ACM, 23:43{49, 1976.59. M.R. Garey and D.S. Johnson. \strong" NP-completeness: Motivation, exam-ples and implications. Journal of the ACM, 25:499{508, 1978.60. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W. H. Freeman, 1979.61. M. Garey, D. Johnson and L. Stockmeyer. Some simpli�ed NP-complete graphproblems. Theoretical Computer Science 1, pp. 237{267, 1976.62. P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Infor-mation Processing Letters 43 (1992), 169{174.63. P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting for polynomials and for approximate functions. Proceedingsof the Twenty Third Annual Symposium on the Theory of Computing, ACM,1991.64. M. Goemans and D. Williamson. :878 approximation algorithms for Max-CUTand Max-2SAT. Proceedings of the Twenty Sixth Annual Symposium on theTheory of Computing, ACM, 1994.65. O. Goldreich. A taxonomy of proof systems. In SIGACT News complexitytheory column 4, SIGACT News Vol. 25, No. 1, 1994.66. O. Goldreich. Probabilistic proof systems. Proceedings of the InternationalCongress of Mathematicians, 1994.67. O. Goldreich and L. Levin. A hard-core predicate for any one-way function.Proceedings of the Twenty First Annual Symposium on the Theory of Com-puting, ACM, 1989.68. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing buttheir validity and a methodology of cryptographic protocol design. Proceedingsof the Twenty Seventh Annual Symposium on the Foundations of ComputerScience, IEEE, 1986.69. O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:The highly noisy case. Proceedings of the Thirty Sixth Annual Symposium onthe Foundations of Computer Science, IEEE, 1995.70. S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of inter-active proof systems. SIAM Journal on Computing, 18:186{208, 1989.71. D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-centerproblem. Mathematics of Operations Research, 10(2):180{184, May 1985.72. D.S. Hochbaum and D.B. Shmoys. A uni�ed approach to approximation al-gorithms for bottleneck problems. Journal of the ACM, 33(3):533{550, July1986.

Bibliography 7773. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms forscheduling problems: Theoretical and practical results. Journal of the ACM,34(1):144{162, January 1987.74. R. Impagliazzo and D. Zuckerman. How to recycle random bits. Proceedingsof the Thirtieth Annual Symposium on the Foundations of Computer Science,IEEE, 1989.75. D. Johnson. Approximation algorithms for combinatorial problems. Journal ofComputer and Systems Sciences, 9 (1974), 256{278.76. D. Johnson. The NP-completeness column: an ongoing guide. Journal of Algo-rithms, 13, 1992.77. V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.Information Processing Letters, 37:27{35, 1991.78. S. Kannan. Program Result Checking with Applications. PhD thesis, Universityof California, Berkeley, 1990.79. D. Karger, R. Motwani, and G.D.S. Ramkumar. On approximating the longestpath in a graph. Proceedings Workshop on Algorithms and Data Structures,Lecture Notes in Computer Science (Springer-Verlag), vol. 709, pp. 421{430,1993.80. R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller andJ.W. Thatcher, editors, Complexity of Computer Computations, pages 85{103.Plenum Press, 1972.81. N. Karmakar and R.M. Karp. An E�cient Approximation Scheme For TheOne-Dimensional Bin Packing Problem. Proceedings of the Twenty Third An-nual Symposium on the Foundations of Computer Science, IEEE, 1982.82. S. Khanna, N. Linial and S. Safra. On the hardness of approximating thechromatic number. Proceedings of the Second Israel Symposium on Theoryand Computing Systems, 1993.83. S. Khanna, R. Motwani, M. Sudan and U. Vazirani. On syntactic versus com-putational views of approximability. Proceedings of the Thirty Fifth AnnualSymposium on the Foundations of Computer Science, IEEE, 1994.84. P. Kolaitis and M. Vardi. The decision problem for the probabilities of higher-order properties. Proceedings of the Nineteenth Annual Symposium on theTheory of Computing, ACM, 1987.85. D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for NEX-PTIME. Proceedings of the Thirty Second Annual Symposium on the Foun-dations of Computer Science, IEEE, 1991.86. L. Levin. Universal'ny��e pereborny��e zadachi (Universal search problems, inRussian). Problemy Peredachi Informatsii, 9:265{266, 1973. A corrected En-glish translation appears in an appendix to Trakhtenbrot [109].87. R. Lipton. New directions in testing. In J. Feigenbaum and M. Merritt, editors,Distributed Computing and Cryptography, DIMACS Series in Discrete Mathand Theoretical Computer Science, American Mathematical Society, 2:191{202,1991.88. M. Luby. A simple parallel algorithm for the maximal independent set problem.SIAM Journal of Computing, 15(4):1036{1053, 1986.89. C. Lund and M. Yannakakis. On the hardness of approximating minimizationproblems. Preprint, June 1992.90. C. Lund and M. Yannakakis. The approximation of maximum subgraph prob-lems. Proceedings of ICALP 93, Lecture Notes in Computer Science Vol. 700,Springer Verlag, 1993.91. C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for inter-active proof systems. Proceedings of the Thirty First Annual Symposium onthe Foundations of Computer Science, IEEE, 1990.

78 Bibliography92. R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report,Dept. of Computer Science, Stanford University (1992).93. C. Papadimitriou and M. Yannakakis. Optimization, approximation and com-plexity classes. Journal of Computer and System Sciences, 43:425{440, 1991.94. C. Papadimitriou and M. Yannakakis. The traveling salesman problem withdistances one and two. Journal of Mathematics of Operations Research, 1992.95. A. Paz and S. Moran. Non-deterministic polynomial optimization problemsand their approximation. Theoretical Computer Science, 15:251{277, 1981.96. S. Phillips and S. Safra. PCP and tighter bounds for approximating MAXSNP.Manuscript, Stanford University, 1992.97. A. Polishchuk and D. Spielman. Nearly Linear Sized Holographic Proofs. Pro-ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing,ACM, 1994.98. R. Raz. A parallel repetition theorem. Proceedings of the Twenty SeventhAnnual Symposium on the Theory of Computing, ACM, 1995.99. I.S. Reed and G. Solomon. Polynomial codes over certain �nite �elds. Journalof the Society of Industrial and Applied Mathematics, 8:300{304, June 1960.100. R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-Testing and Self-Correcting Programs. PhD thesis, University of California at Berkeley, 1990.101. R. Rubinfeld and M. Sudan. Testing polynomial functions e�ciently andover rational domains. Proceedings of the Third Symposium on Discrete Al-gorithms, ACM, 1994.102. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials and theirapplications to program testing. To appear in SIAM Journal on Computing.Technical Report RC 19156, IBM Research Division, T. J. Watson ResearchCenter, P.O. Box 218, Yorktown Heights, NY 10598, September 1993.103. S. Sahni and T. Gonzalez. P-complete approximation problems. Journal ofthe ACM, 23:555{565, 1976.104. J. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial iden-tities. Journal of the ACM, 27:701{717, 1980.105. A. Shamir. IP = PSPACE. In Proceedings of the 31st Annual IEEE Symposiumon Foundations of Computer Science, pages 11{15, 1990.106. A. Shen. Personal Communication, May 1991.107. D. Shmoys. Computing near-optimal solutions to combinatorial optimizationproblems. In W. Cook, L. Lovasz, and P.D. Seymour, Editors, DIMACS vol-ume on Combinatorial Optimization, 1995.108. G. Tardos. Multi-prover encoding schemes and three prover proof systems.Proceedings of the Ninth Annual Conference on Structure in Complexity The-ory, IEEE, 1994.109. B.A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-forcesearch) algorithms. Annals of the History of Computing, 6:384{400, 1984.110. van der Waerden. Algebra, volume 1. Frederick Ungar Publishing Co., Inc.,1970.111. M. Yannakakis. On the approximation of maximum satis�ability. Proceedingsof the Third Symposium on Discrete Algorithms, ACM, 1994.112. D. Zuckerman. NP-Complete Problems have a version that is hard to Approx-imate. Proceedings of the Eighth Annual Conference on Structure in Complex-ity Theory, IEEE, 1993.

A. The Berlekamp Welch decoderThe essence of the Berlekamp Welch technique lies in their ability to userational functions to describe a sequence of points most of which lie on aunivariate polynomial.We �rst give some basic facts about rational functions.In this section, we can allow these functions to be functions over any �eld F .A.1 Preliminaries: rational functionsDe�nition A.1.1 (rational function). A function r : F ! F is a rationalfunction if it can be expressed as r(x) = f(x)g(x) for polynomials f and g. Thedegree of r(x) is given by the ordered pair (d1; d2), where d1 is the degree off(x) and d2 is the degree of g(x).De�nition A.1.2. A rational function r(x) describes a sequence f(xi; yi)ji = 1 to ng if for all i, yi = r(xi) or r(xi) evaluates to 0=0.Fact A.1.1 (uniqueness). If rational functions f1(x)g1(x) and f2(x)g2(x) both of de-gree (d1; d2) where d1+d2 < n describe a given sequence f(xi; yi)ji = 1 to ng,then f1g1 � f2g2 .Proof [Sketch]: Follows from the fact that the polynomials f1 � g2 and f2 � g1agree at each of the points xi. But these are both polynomials of degreed1+ d2 and if they agree at n > d1 + d2 points, then they must be identical.Hence f1g1 � f2g2 . �Fact A.1.2 (interpolation). Given a sequence f(xi; yi)ji = 1 to ng, a ra-tional function of degree (d1; d2) that describes the given sequence can befound in time polynomial in n, provided one exists.Proof: Observe that if we let the coe�cients of f and g be unknowns, thenthe constraints f(xi) = yi � g(xi) become linear constraints in the unknowns.Thus if the linear system so obtained has a solution, then it can be found bymatrix inversion. �

80 A. The Berlekamp Welch decoderA.2 The decoderRecall that the task we wish to solve is the following:Given: n points f(xi; yi)ji = 1 to ng.Output: A polynomial p of degree at most d such that for all but k values ofi, yi = p(xi) (where 2k + d < n).Claim. There exists a rational function r of degree (k+d; k) which describesthe given sequence.Proof: Consider a polynomialW which evaluates to zero at xi if yi 6= p(xi). Itis clear that such a polynomial with degree is at most k exists. Now considerthe rational function p�WW . This describes all the input points. �We are now in a position to prove Lemma 2.3.1:Lemma 2.3.1 Given n points (xi; yi) 2 F 2, there exists an algorithm which�nds a degree d polynomial g such that g(xi) = yi for all but k values of i,where 2k + d < n, if such a g exists. The running time of the algorithm ispolynomial in d and n.Proof: Claim A.2 tells us that there exists a rational function of the formg�WW which describes the given points. A rational function which describesthe given points can be found by interpolation and the rational functions areunique except for multiplication by common factors, and thus are of the formg�W 0W 0 . Thus the quotient of the so obtained rational function gives us g. �

B. Composing proof systemsHere we prove Lemma 4.3.1. Recall the de�nition of rPCP. We wish to prove:Lemma 4.3.1 If NP � rPCP(r1(n); q1(n)) and NP � rPCP(r2(n); q2(n)),then NP � rPCP(r1(n) + r2(q1(n)); q2(q1(n))).Proof: The proof follows in a straightforward manner based on the discussionof Section 4.3. The proof is somewhat long since we have to ensure thatthe composed system satis�es all the properties required of an rPCP proofsystem.Input Encoding. Let E1 be the coding scheme for the rPCP(r1(n); q1(n))proof system and let E2 be the coding scheme for the rPCP(r2(n); q2(n))proof system. Then the coding E for the composed proof system is obtainedby �rst encoding x according to E1 and thus obtaining a s1(n)� q1(n) tableT1x and then encoding each q1(n)-bit entry of T1x as a s2(q1(n))� q2(q1(n))entry. The �nal table for x thus contains s1(n) � s2(q1(n)) entries each ofwhich is q2(q1(n)) bits long.The inverse mapping E�1 is obtained by viewing a table T : [s1(n)] �[s2(q1(n))] ! f0; 1gq2(q1(n)) as s1(n) tables of size s2(q1(n)) � q2(q1(n)) andinverting each of these tables according to E�12 . This gives s1(n) entries ofsize q1(n) which can be viewed as a s1(n)� q1(n) table which when invertedaccording to E�11 gives an n-bit string. This n bit string is de�ned to theinverse according to E�1 of the table T .Proof Tables. Let �1x be the proof table for x 2 L according to therPCP(r1(n); q1(n)) proof system. Then the �rst portion of the proof table �for the composed system consists of s1(n) tables of size s2(q1(n))�q2(q1(n)).These are the tables obtained by encoding each entry of �1x according to E2.The second portion of � consists of one table for each possible randomstring r 2 f0; 1gr1(n). Let y1; � � � ; yc0 be the contents of the c0 locations of thetables E1(x1); : : : ; E1(xc) and �1 that are read by the tester T1 on the choiceof r as a random string. Further, let Cr be the circuit of size poly(q1(n))which decides whether to accept y1; � � � ; yc0 or not. Then the table � containsa table �2r of size s2(q1(n)) � q2(q1(n)) which proves that (Cr; y1; : : : ; yc0)represents a circuit with an accepting input assignment in y1 � � �yc0 . (Noticethat this is a polytime computable predicate and hence in NP.)

82 B. Composing proof systemsTester. The tester T for the composed proof system acts as follows. It �rstpicks a random string r 2 f0; 1gr1(n) and tries to simulate the action of thetester T1. This would involve reading y1; : : : ; yc0 and then verifying that acircuit Cr will accept (y1; : : : ; yc0). The tester will thus encode the represen-tation of the circuit Cr using E2 and then use the second proof system andthe proof �2r to verify that E2(Cr); E2(y1); : : : ; E2(yc0) represents a circuitwith an accepting input assignment. Notice further that the computation ofthe tester T can be expressed as a circuit of size poly(q2(q1(n)O(1))) (whichis the same circuit which describes the computation of tester T2 on inputE2(Cr); E2(y1); : : : ; E2(yc0) and proof �2r).Correctness. It is clear that if x1 � x2 � � �xc 2 L then there exists a proofsuch that the tester T always outputs PASS. For the other direction, considertables �1; : : : ; �c such that E�1(�1) � � �E�1(�c) 62 L. Let � be a proof whichtries to prove that E�1(�1) � � �E�1(�c) 2 L. We will show that the tester Twill output FAIL on this proof with probability at least 1=4.Let � (1)1 ; : : : ; � (1)c be the s1(n)� q1(n) tables obtained by interpreting thetables �1; : : : ; �c as s1(n) tables of size s2(q1(n)) � q2(q1(n)) and decodingeach such table according to E�12 . Similarly let �1 be the s1(n)� q1(n) tableobtained by decoding the tables of the �rst half of � according to ThenE�11 (� (1)1) �E�11 (� (c)1) 62 L. Therefore we �nd that for half the choices of r 2f0; 1gr1(n), the tester T1;r(E�11 (� (1)1)�E�11 (� (c)1); �1) will output FAIL. Now forall such choices of r, Let the contents of the entries of �1; : : : ; �c and �1 as readby the tester T1 be y1; : : : ; yc0 . Then, y1; : : : ; yc0 are the inverse encodings ofsome tables � (2)1 ; : : : ; tau(2)c0 according to E�12 . T1;r(y1; : : : ; yc0) outputs FAIL,By the property of the second proof system, we have that for at least halfthe choices of r(2) 2 f0; 1gr2(q1(n)), the tester T2;r(2) (� (2)1 ; : : : ; tau(2)c0 ; �2 willoutput FAIL for any proof �2. Thus with probability 1=4 the tester T outputsfail on any proof �.By running the same tester thrice on this proof system, the probabilityof outputting fail can be increased to 37=64 which is greater than a half. �

C. A characterization of NP via polynomialsequencesWe �rst show how to construct a sequence of polynomials which veri�es thata 3-CNF formula is satis�able.Lemma 4.2.1 ([20, 19]) For a 3-CNF formula � there exists a polynomialsequence of length and width at most logn, with polynomials of degree atmost log2 n in �(lognloglogn) variables, such that sequence can be terminated inthe trivial polynomial if and only if � is satis�able.Proof: The proof places the formula � and the assignment A in a suitableencoding and then veri�es the consistency of A for �.To encode n-bits a1; : : : ; an which represent an assignment to n variables,we will use the (m;h; F)-polynomial extension encoding, where hm = n.Recall that this means that we pick a set H � F (with jHj = h) and let A bethe function from Hm to f0; 1g which is speci�ed on n places by a1; : : : ; an.The encoding is the extension of A to a low-degree polynomial ~A (of degreeat most mh).The encoding of the 3-CNF formula is obtained as follows: We view theformula as a function f from H3m � f0; 1g3 to f0; 1g, where f(z1; z2; z3; b1;b2; b3) = 1 if the formula has a clause which contains the variable z1; z2; z3with negated variables indicated by the bit bi being 1. The encoding of thisformula will be a function ~f : F 3m+3 ! F .Consider the function sat? : F 3m+3 ! F de�ned as follows:sat?(z1; z2; z3; b1; b2; b3) = 3Yi=1(~A(zi) � bi + (1� ~A(zi)) � (1� bi))sat? is a polynomial of degree O(mh) and evaluates to zero in the domainH3m � f0; 1g3 if the clause given by (z1; z2; z3; b1; b2; b3) is satis�ed by theassignment.Now consider the polynomialg(0)(z1; z2; z3; b1; b2; b3) = f(z1; z2; z3; b1; b2; b3) � sat?(z1; z2; z3; b1; b2; b3)Our task is to ensure that g(0) is zero on the domain H3m � f0; 1g3.Let m0 = 3m + 3. g(0) is a function on m0 variables, say z1; : : : ; zm0 , andwe wish to ensure that g restricted to Hm0 is zero. We do so by constructing asequence of polynomials such that the �nal polynomial will not be zero if theinitial one is not zero on this subdomain. The intuition behind the rest of this

84 C. A characterization of NP via polynomial sequencesproof is as follows. E�ectively we want to simulate the e�ect of an OR gatewhich has fanin Hm0 , by a polynomial sequence with small width and length.So �rst we implement the OR gate with fanin Hm0 by a circuit of depth m0and in which each gate has fanin H (in the obvious way). Then we show howto implement each OR gate in this circuit { approximately { by a low degreepolynomial. This leads to a polynomial sequence whose width is the fanin ofthe circuit and whose length is the depth of the circuit.The polynomial g(i) is a function of the variables zi+1; : : : ; zm0 andw1; : : : ; wi and is de�ned as follows:g(i)(zi+1; :::; zm0;w1; :::; wi) = Xy2H g(i�1)(y; zi+1; : : : ; zm0 ;w1; : : : ; wi�1)�w�(y)i(where � is some function that maps the elements in H to distinct integersin the range 0; : : : ; h� 1).It is clear that the g(i)'s are polynomials of degree O(h) in each variable.To complete the argument we wish to show that g(m0) identically becomeszero if and only if g(0) is zero on the domain Hm0 .Let r1; : : : ; rm0 be randomly chosen from F . We will show that g(i)(zi+1;: : : ; zm0 ; r1; : : : ; ri) is non-zero with high probability, if g(i�1)(y; zi+1; : : : ; zm0 ;r1; : : : ; ri�1) is non-zero for any y 2 H. Let cy = g(i�1)(y; zi+1; : : : ; zm0 ; r1;: : : ; ri�1). Then g(i)(zi+1; : : : ; zm0 ; r1; : : : ; wi) =Py2H cy �w�(y)i , is a univari-ate polynomial of degree h in wi which is not identically zero. Thus for a ran-dom choice of wi = ri the summation is non-zero with probability 1� h=jF j.Conversely, also observe that if the cy's are all zero then the weighted sumis zero. This gives us the \approximate" OR gate we were looking for. Bya simple argument, it can now be shown that with probability 1�m0h=jF j,g(m0)(r1; : : : ; rm0) is non-zero, implying that g(m0) is not identically zero.Thus we have shown how to build a construction sequence A,sat?,g(0); : : : ; g(m0) with the property that 9A such that g(m0) � 0 if and onlyif f represents a satis�able 3-CNF formula.Observe further that the length, width and degree of the sequence is aspromised. �Now we are in a position to show a stronger version of this lemma: i.e.,where the inputs are themselves part of the sequence. We will let the inputsx1; : : : ; xc be encoded by the (m;h; F)-polynomial extension code Em;h;F .The decoder E�1m;h;F �nds the closest polynomial to a function f : Fm ! Fand uses its values on the space Hm as the message. (Observe that the mes-sage so obtained is a message from jF jn and not necessarily f0; 1gn. Since Lwill only include strings from f0; 1gn, we will have to exclude all the remain-ing strings explicitly.)Theorem 4.4.1 Given a constant c > 0 and language L 2 NP and a pa-rameter n, a (lognloglogn ; logn)-construction rule for degree log2 n polynomi-als g(0); : : : ; g(l) where g(i) : Fm ! F , can be constructed in polynomialtime, with the property that 9g(0) s.t. g(l) � 0 , x1 � x2 � � �xc 2 L, where

C. A characterization of NP via polynomial sequences 85xi 2 Fn is the decoding according to E�1m;h;F of the polynomial g(i). MoreoverjF j = O(polylogn) and m = �(lognloglogn). 1Proof: The proof follows from the following basic ideas:{ (Cook's Theorem) Given c, n and L we can construct a 3-CNF formula�n on n0 = cn + nO(1) such that 9y such that �n(x1; x2; : : : ; xc; y) is trueif and only if x1 � � �xc 2 L.{ (Assignment) Let g(0) be the Em;h;F encoding of the assignment to y.Let g(i) be the encodings of xi. Construct g(c+1) : Fm+1 ! F to beg(c+1)(i; z) = g(i)(z). We will name this the assignment function A.Now we are in a position to apply the lemma described above and constructa sequence of polynomials g(c+2); : : : ; g(l) such that the �nal polynomial iszero if and only if the assignment given by A satis�es �n. �
1 Some attributional remarks: Most of the technical work required for this theoremwas done by Babai, Fortnow and Lund [20], but their characterization refersspeci�cally only to NEXPTIME languages. The works of Babai, Fortnow, Levinand Szegedy [19] and Feige, Goldwasser, Lovasz, Safra and Szegedy [50] scaledown the [20] proof to NP languages. In order to scale down this result Babai,Fortnow, Levin and Szegedy [19] needed more compressed representations of theassignment function than found in the encoding used by Babai, Fortnow andLund [20]. They were the �rst to use the particular size of H as used in the proofhere. The observation that one could work with a constant number of encodedinputs is made by Arora and Safra [6].

Index
approximation 63approximation by polynomials 46approximation preserving reductions61checker 6, 9close 15constraint satisfaction problem 64curve 16, 18distance 2{ absolute 9{ between functions 15{ relative 9{ to function family 8encoding scheme 51, 52, 55error-correction 9error-detection 9evenly spaced points 26evenly spaced test 29, 31Hadamard Codes 10hardness of approximation{ chromatic number 61{ clique size 14, 62{ MAX SNP 14, 67L-reduction 62, 64linear corrector 54linearity 8, 53linearity testing 54lines 16, 34LONGEST PATH 66MAX 2 SAT 65MAX 3 SAT 65MAX CLIQUE 66MAX CUT 65MAX PCP 66MAX SNP 14, 62, 64{67

neighborhood 3, 23, 24neighborhood constraint 24optimization problem 62oracle 4, 12pairwise independence 20PCP 49, 62permanent 9, 22, 41polynomial{ construction rule 5, 40, 50, 52, 84,85{ { satis�ability 5, 43{ distance 2{ implicit 23{ random self-reducibility 17{ reconstruction 21{ self-correction 2, 11{ { multivariate 21, 41{ { univariate 18{ testing 3, 23{ { speci�c 40{ { univariate 25{ { with help 4, 42Polynomial Evaluation Codes 11Polynomial Extension Codes 11, 52,84proof 1{ interactive 12{ multiprover interactive 8, 12, 58{ probabilistically checkable 1, 13, 48{ transparent 12, 48prover 4PTAS 63query complexity 13, 49, 57random self-reducibility 8, 16, 22randomness complexity 13, 49recursive proof checking 50, 53, 57, 81Reed Solomon Codes 1086

Index 87resilience 15rPCP 51, 53, 57, 81segmented proofs 50, 51self-corrector 1, 7, 16self-tester 1, 7self-testing/correcting{ function family 8SHORTEST SUPERSTRING 66SNP 64STEINER TREE 66TSP(1,2) 65veri�er 1, 4{ probabilistic 12VERTEX COVER 65

