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Abstract

Efficient Checking of Polynomials and Proofs

and the Hardness of Approximation Problems

by

Madhu Sudan

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Umesh V. Vazirani, Chair

The definition of the class NP [Coo71, Lev73] highlights the problem of verification of

proofs as one of central interest to theoretical computer science. Recent efforts have

shown that the efficiency of the verification can be greatly improved by allowing the

verifier access to random bits and accepting probabilistic guarantees from the verifier

[BFL91, BFLS91, FGL+91, AS92]. We improve upon the efficiency of the proof

systems developed above and obtain proofs which can be verified probabilistically by

examining only a constant number of (randomly chosen) bits of the proof.

The efficiently verifiable proofs constructed here rely on the structural properties of

low-degree polynomials. We explore the properties of these functions by examining

some simple and basic questions about them. We consider questions of the form:

• (testing) Given an oracle for a function f , is f close to a low-degree polyno-

mial?

• (correcting) Let f be close to a low-degree polynomial g, is it possible to

efficiently reconstruct the value of g on any given input using an oracle for f?
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The questions described above have been raised before in the context of coding

theory as the problems of error-detecting and error-correcting of codes. More recently

interest in such questions has been regenerated due to its connections with the area of

program result checking. We use results from coding theory as a starting point and

combine these with several algorithmic techniques including pairwise independent

sampling to give efficient randomized algorithms for these tasks. As a consequence

we obtain fast randomized algorithms for error-detection and error-correction for

some well-known codes.

The expressive nature of low-degree polynomials suffices to capture the complexity

of the class NP and we translate our results on the efficiency of the testing and

correcting procedures into two different efficiently verifiable proof systems for decid-

ing membership questions for NP languages. One proof system generates small and

somewhat efficiently verifiable proofs and the other generates very large but very effi-

ciently verifiable proofs. We then employ new techniques from the paper of [AS92] to

compose these proof systems to obtain small proofs which can be verified by probing

them in just a constant number of (randomly chosen) bits.

An important consequence of this result is that for a large class of NP-complete

optimization problems, it can be shown that finding even approximate solutions

is an NP-hard problem. The particular class of optimization problems we con-

sider is MAX SNP, introduced by Papadimitriou and Yannakakis [PY91]. For every

MAX SNP-hard problem we show that there is a constant ε, such that approximating

the optimum to within a relative error of ε is NP-hard.

Approved: Umesh Vazirani
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Chapter 1

Introduction

The concept of a proof whose correctness can be verified in polynomial time is cen-

tral to theoretical computer science. This is the defining property of the funda-

mental complexity class NP. Recently this notion has been extended by allowing

the polynomial time verifier access to random bits and extending the notion of a

proof to allow the verifier a tiny probability of accepting a fallacious proof (see

[Bab85, GMR89, BOGKW88, FRS88, BFLS91, AS92]). Such probabilistically check-

able proofs are unexpectedly powerful and their power has been explored in several

recent papers [BFL91, BFLS91, FGL+91, AS92]. These papers show that even ver-

ifiers with severely constrained access to the proof can check proofs of very general

statements – namely membership for any NP language.

In this dissertation we carry this process to completion by showing that verifiers

that access only constant number of bits in the proof can still verify membership

proofs for NP languages. To do this, we have to develop some tools which reveal

some new characteristics of low-degree polynomials over finite fields. Our motivation

for studying these problems came from the theory of self-testing/correcting pro-

grams [BLR90, Rub90]. It turns out that there is a fundamental connection between

the testing and correcting of polynomials and the existence of efficient probabilisti-
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cally checkable proofs. Here we have tried to highlight this connection be deriving

previously known results as well as some of the new results in a uniform manner from

our results on the testing of polynomials. 1

The early papers on NP-completeness [Coo71, Lev73, Kar72] linked the notion of

proof verification to a variety of optimization problems. This link was used to es-

tablish the hardness of finding exact solutions to a variety of optimization problems,

by showing them to be NP-complete. The new notions of proofs are very robust,

in that even an approximately good proof would be sufficient to convince verifier of

the truth of a statement. Thus, one would hope that the new proof systems should

lead to hardness results for finding even approximate solutions to some optimization

problem. Feige et al. [FGL+91] were the first to bring out such a connection that

shows that approximating the clique size in graphs is hard. Inspired by this result, we

bring out a different connection which enables us to show a variety of problems are

hard to approximate. The problems we consider are based on the class MAX SNP,

defined by Papadimitriou and Yannakakis [PY91]. Our result shows that for every

MAX SNP-hard problem there exists a constant ε such that estimating the optimum

value to the problem to within relative error ε is NP-hard.

1.1 Some problems related to Polynomials

Many of the techniques used in the area of interactive proofs (probabilistically check-

able proofs) are based on the properties of low-degree polynomials. The structural

properties of low-degree polynomials has found wide applications in the area of cod-

ing theory. These applications are essentially based on the following observation:

“The value of a univariate degree d polynomial at any point can be reconstructed
1The development of the proofs as described here is quite different from the way in which these

results evolved. Therefore the ideas from these past developments cannot be fully localized within
our exposition. An effort has been made though to provide references to the past work whose ideas
are used in every step.
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from the value of the polynomial at any d+ 1 places.” This in turn implies that two

distinct polynomials disagree with each other on most inputs, and such a statement

holds even for multivariate polynomials. Next we introduce a norm for the distance

between functions, which captures this fact tersely (For the sake of uniformity in our

discussion we only talk of polynomials over finite fields):

Definition 1.1.1 Let F be a finite field and let f and g be functions from the space

Fm to F (i.e., f and g are functions on m-variables). The distance between f and

g, denoted d(f, g), is the fraction of inputs from Fm on which f and g disagree. f

and g are said to be ε-close if d(f, g) ≤ ε.

Using the above notation, we can express the distance property of polynomials as

follows:

Lemma 1.1.2 (cf. [Sch80]) Let f and g be polynomials over F in m variables with

total degree at most d. Then d(f, g) ≥ 1− d
|F | .

Thus for sufficiently large finite fields (|F | >> d), the distance between two poly-

nomials is nearly 1. Now suppose we are given a function f which is known to be

very close to a degree d polynomial. Schwartz’s Lemma guarantees that the nearest

polynomial is unique and thus can be recovered. We examine the efficiency of a

reconstruction procedure by posing the following question:

Problem 1 (correcting polynomials) Let f : Fm 7→ F be ε-close to some poly-

nomial g of total degree at most d. Given an oracle for f and a setting b1, . . . , bm ∈ F
to the m variables, find g(b1, . . . , bm).

It turns out that the univariate version of this problem is well-studied in coding

theory. In Chapter 2 we describe how these methods imply an efficient randomized

algorithm to solve this problem for any ε < 1/2 (provided F is large enough). The

running time of this algorithm is polynomial in d and 1
(1/2−ε) . With respect to the

multivariate correction problem we show how to reduce this to the univariate case
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by structured random sampling from the multivariate input space. The solution so

obtained for the multivariate problem solves the correction problem for any ε < 1/2

(provided F is sufficiently large). The running time in this case is poly(d,m, 1
(1/2−ε)).

The solution provided here can be applied back to problems in coding theory to

get codes with very interesting randomized error-correcting schemes. The error-

correcting scheme can find the value of any bit of the codeword using very few

probes into a corrupted received word.

The next problem we consider is closely related to the problem of correcting polyno-

mials. This problem considers the task of testing if an arbitrary function is close to

some polynomial. Formally:

Problem 2 (low-degree testing) Let f : Fm 7→ F be given by an oracle. Deter-

mine if there exists a polynomial g of degree at most d which is ε-close to f .

While the statements of Problems 1 and 2 are syntactically close to each other, the

techniques used to solve the testing question are much more complex. The differ-

ence in the two questions may be summarized as follows: The correcting question

deals only with polynomials and functions that are close to polynomials and hence

uses properties satisfied by polynomials. By contrast, the testing problem could be

handed any arbitrary function and therefore to construct testers one needs to iso-

late properties which are satisfied exclusively by polynomials (and functions close to

polynomials). In Chapter 3 we provide efficient randomized solutions for this task.

The final result constructs a tester that probes f in O(d) places and accepts f if it

is a degree d polynomial and rejects f , with high probability, if f is not close to any

degree d polynomial. The running time of this tester is poly(m, d). (Note: It can be

shown that both the randomization and the approximate nature of the answer are

needed to solve this problem with this efficiency.)

The basic paradigm used in the tests described in Chapter 3 is the following: We

describe small neighborhoods – sets of size O(d) from the input space – on which the

value of any degree d polynomial is forced to satisfy some simple constraints. For
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any specific neighborhood one can test efficiently that the constraints do indeed hold

on that neighborhood. Our choice of the neighborhoods guarantees, using standard

results from algebra, that “f satisfies all the neighborhood constraints” if and only

if “f is a degree d polynomial”. But checking that all the neighborhoods all satis-

fied would take too long, and the best that can be hoped for is an estimate on the

fraction of neighborhoods where the constraints are violated. (Such an estimate can

be easily obtained by random sampling.) We are able to establish that for certain

neighborhood structures the fraction of neighborhoods with violated constraints is

closely related to the distance of f from low-degree polynomials. Therefore an ef-

ficient low-degree tester need only approximate the number of violated constraints.

Our proof uses an interesting blend of probabilistic techniques and algebra and reveal

new ways of characterizing polynomials which may be of independent interest.

The results on testing also contribute to coding theory by providing new randomized

error-detecting mechanisms for some well-known codes. This connection is described

in Section 1.3. The mechanisms also find application to the area of program checking.

Such connections are described in Section 1.2.

1.1.1 Proof verification

The testing problem posed above could be interpreted in the following way. Suppose

an entity, called the verifier, wishes to verify that a given function f is close to some

low-degree polynomial, then it can do so by probing f in O(d) places. Suppose we

introduce another entity, called the prover, who wishes to persuade the verifier that

f is close to a degree d polynomial and is willing to provide additional information

about f to aid the process. Then how “easy” is it to persuade the verifier of such a

fact. (The terminology used here comes from the area of interactive proofs [Bab85,

BM88, GMR89].)

We make this setting more precise now: We will expect the prover to provide the
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additional information about f in the form of an oracle O. The properties required

of the verifier should be:

• If f is a low-degree polynomial then there must exist an oracle which persuades

the verifier all the time.

• If f is not close to any polynomial then for every oracle O′ the verifier should

reject f with high probability.

The parameters of the verification procedure that we will examine are:

• At how many points does the verifier probe the value of f?

• How many questions does the verifier need to ask of the oracle O?

• How large is the answer given by O to any one question?

• How large is this oracle O, i.e., how many different questions could have been

potentially asked of this oracle?

Problem 3 (low-degree test with help) Let f : Fm 7→ F be given by an oracle.

Provide some auxiliary information about f in the form of an oracle O, so that a

verifier can test if f is ε-close to a degree d polynomial by probing f and O at only

a constant number of places?

The solution to the low-degree test gets easily transformed in this setting to give a

solution, with the feature that O is a function from F 2m to FO(d), i.e., O is polyno-

mially large in the representation of f and provides only small pieces of information

about f on any question (much smaller than, say, specifying all the coefficients of

f). This solution is also described in Chapter 3.

Thus we find that statements of a very restricted nature – “f has low-degree” – can

be proved in very efficient manner by the results from low-degree testing. In order,

to translate this result into results about more general statements we first define
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an artificial problem about polynomials: “satisfiability of polynomial construction

rules”. It turns out that for a certain choice of parameters this problem is NP-hard.

Therefore obtaining an efficiently verifiable proof for this problem results in efficiently

verifiable proofs for the membership problem for all languages in NP.

Definition 1.1.3 (polynomial construction rule) Given an initial polynomial g(0),

a construction rule for a sequence of degree d polynomials g(1), . . . , g(l) is a set of rules

r1, . . . , rl, where ri describes how to evaluate the polynomial g(i) at any point x̂ ∈ Fm

using oracles for the previously defined polynomials g(0), . . . , g(i−1). The only con-

straint on the rule ri is that its representation should be polynomially bounded in the

input space size (i.e., O(poly(|F |m))). l is referred to as the length of such a rule.

The maximum number of oracle calls made by any rule to evaluate any input is called

the width of the rule and is denoted w.

Definition 1.1.4 A polynomial construction rule r1, . . . , rk is satisfiable if there

exists an initial polynomial g(0) such that the final polynomial g(l) as constructed by

the rule is identically zero.

The next problem we define looks at proofs of satisfiability of polynomial construction

rules.

Problem 4 (testing satisfiability of polynomial construction rules) Given a

construction rule

r1, . . . , rl of length l and width w, for degree d polynomials polynomials of width w,

provide an oracle O such that a probabilistic guarantee on the satisfiability of the

construction rule can be obtained by by probing O at a constant number of places.

Once again we expect that if the rule is not satisfiable then the verification mechanism

should reject every oracle (proof) with high probability. On the other hand for a

satisfiable construction rule there must exist an oracle which is always accepted by

the verification mechanism.



8

The result on testing specific polynomials can be used to solve the above problem

using oracles of the form O : FO(m) 7→ F poly(m,d,l,w). This solution is described also

described in Chapter 3. This problem becomes interesting because for certain care-

fully chosen values of the parameters involved (i.e., |F |, d, l, w and m) the polynomial

construction rule satisfiability problem is an NP-complete problem and this is shown

in Appendix 9. In particular, the following can be shown:

• Given a 3-CNF formula φ on n-variables, a polynomial construction rule r1, . . . , rk

can be computed in time poly(n) such that the construction rules are satisfi-

able if and only if φ is satisfiable. Moreover, |F |, d, l, w are O(polylog n) and

m = θ( logn
loglogn).

For such values of |F |, d, l, w and m the solution described above implies that there

exists an oracle O of size poly(n) whose answers to questions are O(polylog n) bits

long such that by asking this oracle a constant number of questions suffice to get a

probabilistic guarantee on the satisfiability of a 3-CNF formula. In particular this

gives proofs that the verifier needs to examine only O(polylog n) bits to verify mem-

bership in NP languages, and this resembles the result of [BFLS91] in its efficiency.

But the locality of the way the proof is probed (i.e., in a constant number of entries

which are O(polylog n) bits long) allows for the proofs to be checked recursively,

using the techniques in [AS92]. Repeated employment of this idea yields proofs

which can be verified by making O(log(c) n) probes into the proof (here log(c) the

log function composed c times). We also provide in Chapter 4 a new proof system

that provides exponentially large proofs of satisfiability, but which can be verified by

probing a constant number of bits of the proof. This proof system also uses results

of low degree testing and in particular the testing of linear (degree 1) functions from

[BLR90]. Composing the earlier developed proof systems with the new one gives us

the final result: Polynomial sized proofs of membership in NP which are verifiable

by probing them in a constant number of bits.
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In the rest of this chapter we introduce in greater detail the areas to which the

problems described above relate and describe the effect of the solutions obtained

here to these areas.

1.2 Program Result Checking

The notion of program result checking was initiated by Blum and Kannan [Blu88,

BK89, Kan90] as a new approach for ensuring software reliability. The approach

advocates the use of fast checks performed at runtime to obtain guarantees on the

correctness of the solution obtained on specific runs of the program. Formally, a

Checker is defined as follows:

Definition 1.2.1 A Checker for a function g is a (randomized) algorithm that

takes as input a program P supposedly computing g and an input x and behaves as

follows:

• If the program does not compute g correctly on the given input, then the checker

must fail (P, x) with high probability.

• If the program computes g correctly everywhere, then the checker must pass

(P, x) with high probability.

By not checking for the correctness of the program on every input, the task of check-

ing is a potentially more tractable problem than that of formally verifying its correct-

ness. On the other hand, such guarantees still suffice to establish that the program

does not produce a wrong answer any time that it is actually used. These features

make program checking an attractive alternative to some of the traditional methods

for guaranteeing reliability of programs. For a more detailed study of checking and a

comparison of its advantages versus other techniques for ensuring software reliability,

see [Kan90, Rub90].
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A significant amount of success has been achieved in the task of constructing check-

ers and checkers are available for a wide variety of problems including sorting, linear

programming and number theoretic applications [AHK, BK89, Kan90]. A particular

approach to the task of obtaining checkers that has met with considerable success

was introduced by Blum, Luby and Rubinfeld [BLR90]. They decompose the task of

checking a program into two phases: a preprocessing phase and a runtime phase. In

the preprocessing phase they test the correctness of the program on “randomly” cho-

sen inputs from a carefully chosen distribution. In the runtime phase they compute

the value of the function correctly on arbitrary inputs using the knowledge that the

program has been tested for this distribution. The former phase is the self-testing

phase and the latter phase is referred to as the self-correcting phase. The notion

of self-correction was also independently introduced by Lipton [Lip91]. We state

the formal definitions next. In the following definitions we consider a function g

described over a finite domain and the notation d(P, g) reflects the fraction of inputs

on which the program P does not compute g. (The original definitions of [BLR90]

allow for more general norms that could used to estimate the distance between P and

g. Here we only define the concepts for the special case of the uniform norm, since

all our results work with such a norm.)

Definition 1.2.2 ([BLR90]) For ε > 0, a ε-self-tester T for a function g, is a

randomized algorithm which uses a program P as a black box and performs as follows:

• If d(P, g) = 0 then T outputs PASS, with high probability.

• If d(P, g) ≥ ε then T outputs FAIL, with high probability.

Definition 1.2.3 ([BLR90],[Lip91]) For ε > 0, a ε-self-corrector C for function

g, is a randomized algorithm for computing g which uses a program P as a black box

and on input x, computes g(x) correctly, with high probability (over internal coin

flips) if d(P, g) ≤ ε.
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Sometimes, we might not be interested in actually testing a specific function g, but

rather just that P has a specific property. To formalize this notion, we introduce the

notion of testers for function families.

Definition 1.2.4 The distance between a function f and a family of functions F ,

denoted ∆(f,F), is defined to be

min
g∈F
{d(f, g)}

Definition 1.2.5 For ε > 0, a ε-self-tester T for a function family F , is a (ran-

domized) algorithm which uses a program P as a black box and performs as follows:

• If ∆(P,F) = 0, then T outputs PASS(with high probability).

• If ∆(P,F) ≥ ε then T outputs FAIL, (with high probability).

It is a straightforward observation that if a function g has a self-testing/correcting

pair then it has a checker. Conversely, if a function has a checker, then it has a

self-tester.

The existence of self-correctors for functions is a very special structural property.

The existence of a self-corrector for a function g implies that g is as hard to compute

on the average as in the worst case. Such an equivalence in the worst case and

average case behavior is not known for many functions and might not be true of

NP-hard functions. Blum, Luby and Rubinfeld use the notion of “random self-

reducibility” (introduced by [AFK89], see also [Fei93]) to exhibit self-correctors for a

large collection of functions. This property can be observed in a number of algebraic

functions. For instance, say that a function g mapping from a finite group G to

a group H linear if for all x, y ∈ G, g(x) + g(y) = g(x + y) (in other words g

is a homomorphism from group G to group H). Then it can be shown that all

linear functions have the random self-reducibility property (see [BLR90]). [BLR90]

cite many examples of linear functions: The Mod function, Integer Multiplication,
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Modular Multiplication, Integer Division, Matrix Multiplication etc. all of which

have self-correctors due to this observation. [Lip91] based on the techniques of [BF90]

has similarly shown the random self-reducibility of multivariate polynomials and thus

all multivariate polynomials have self-correctors.

While the existence of self-correctors of functions may be a rare occurrence, in the

cases where they have been found, proofs of correctness have been straightforward.

The construction of self-testers for functions on the other hand has been invariably

a much harder task. The first class of functions for which self-testers were shown

was the class of linear functions. [BLR90] show that there exists a function family

tester for the family of linear functions. Moreover, if a linear function g is given by

its values on a subset S of points from the domain, then g has a tester, provided

g is uniquely determined by its values on the set S. The results of [BFL91] also

give function family testers for the family of multilinear functions and this plays an

important role in their work on showing MIP=NEXPTIME.

In the language of program checking, the basic issue explored in Chapter 2 is the the

largest value of ε for which an ε self-corrector exists for multivariate polynomials.

The main issue considered in Chapter 3 is the construction of self-testers for the

family of low-degree polynomials and the self-testing of polynomials.

A number of interesting algebraic computation tasks can be expressed as computa-

tions of low-degree polynomials, e.g., the determinant of a matrix, the permanent,

the product of two matrices, inverse of a matrix etc. The results of Chapters 2 and 3

can be used to construct program checkers for such problems.

1.3 Connections with Coding Theory

The notions of testing and correcting relate to notions of error-detection and error-

correction in coding theory in a very strong sense. In this section, we briefly describe

the basic tasks of coding theory and compare them with the task of testing and
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correcting functions. The special case of testing and correcting polynomials turns out

to be particularly relevant since some well-known codes inherit their nice properties

from the properties of polynomials. Examples of such codes are also given in this

section, along with a description of how this connection helps in designing algorithms

for both program correcting and error-correction in codes.

Definitions A generalized2 code over the alphabet Σ is a function E from Σk 7→
Σn, where elements of the domain of E are the message words and the elements in

the image of E form the codewords. For any two n-alphabet words A and B over Σ,

the distance between A and B, is the number of places where A and B differ. The

minimum distance of a code E is the minimum, over all possible pairs of codewords

in E, of the distance between the two words.

The computation of E(a) given a message a is the task of encoding. Given a word

A ∈ Σn, determining if it is a valid codeword of E (i.e., if there exists an a such that

A = E(a)) is referred to as error-detection. Given a word A ∈ Σk, computing the

codeword E(a) with minimum distance from A is the task of error-correction. Typi-

cally this task is equivalent to the task of computing the message a which minimizes

the distance between E(a) and A. The latter task is referred to as decoding.

Connection with testing and correcting of functions The equivalence be-

tween testing/correcting and coding theory maybe viewed as follows. Let F be a

function family where each function in F maps from a finite domain D to a range

R. The functions in F represent the messages. The encoding of a message f is

the string from R|D| obtained by writing the value of f explicitly on all its inputs.

The task of testing membership in the function family F , becomes the task of error-
2The word generalized is used to represent the fact that the codewords are not necessarily over

a binary alphabet. Codes over the binary alphabet are of greater direct interest since most commu-
nication lines do transmit binary information. Nevertheless, even for the task of constructing good
binary codes, constructions of good generalized codes are very useful.
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detection. The task of self-correcting a function f ′ : D 7→ R, becomes the task of

error-correction.

The above equivalence shows that if the task of testing/correcting for some family F
is easy, then a good code can be found for the related message class. Conversely, the

existence of good codes would imply testing/correcting for a related function family.

In the specific case of low-degree polynomials, the Schwartz’s Lemma guarantees

large distance between any two message words.

Next we give examples of codes which may be obtained from polynomials.

Reed Solomon Codes Let F be a finite field of size n. The Generalized Reed

Solomon codes (see [RS60]) encode messages from the space F k into codewords in

the range Fn as follows. Let < c0, . . . , ck−1 >∈ F k be a message. The message

represents the polynomial C : F 7→ F given by C(x) =
∑k
i=1 cix

i. The encoding

of the message is the sequence {C(x)}x∈F . Thus the codeword is a word from Fn.

Since two degree k − 1 polynomials can agree at a maximum of k − 1 points, the

distance between two codewords C and D is n− k + 1.

Hadamard Codes The Hadamard codes are binary codes which map from {0, 1}k

to {0, 1}2k−1
. The construction of such codes is usually defined recursively, but

here we describe it in terms of polynomials over the field GF(2). A message <

c0, . . . , ck−1 > represents the linear function C in k − 1 variables x1, . . . , xk−1 as

follows:

C(x1, . . . , xk−1) = c0 +
k−1∑
i=1

ci ∗ xi

The encoding of the message is the sequence {C(x1, . . . , xk−1)}<x1,...,xk−1>∈{0,1}k−1 .

Since the codeword is a polynomial of degree 1 over a field of size 2, we observe

that by Schwartz’s Lemma, two distinct codewords differ on at least half the places,

implying that the minimum distance of the Hadamard codes is 2k−2.
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Polynomial Evaluation Codes Both the codes given above can be unified as

follows: Let N(m, d) be the number of terms (monomials) in m variables of total

degree at most d. Then for a finite field F of size at least d, the (m, d) polynomial

code has FN(m,d) as the message space and F |F |
m

as the range space. A message

represents the coefficients of the N(m, d) monomials, and thus a polynomial of total

degree at most d. The encoding of a message consists of representing the polynomial

explicitly by its value on the |F |m possible inputs. Schwartz’s Lemma implies that

the minimum distance of such codes is |F |m(1− d
|F |). Notice that the Reed Solomon

codes are obtained by setting m = 1 and d = k − 1, and the Hadamard codes by

setting m = k − 1 and d = 1.

Polynomial Extension Codes Based on how the message is as the representation

of a polynomial, we get two different kinds of coding schemes. The polynomial

evaluation codes were obtained by interpreting the message as a set of coefficients.

If instead, we let the message specify a polynomial by its value on a selected set of

places, then we obtain the polynomial extension codes. For a subset H ⊂ F , where

the cardinality of H is h, the (m,h) extension code has a message space F h
m

and

codewords are from F |F |
m

. The message represents the value of a polynomial g of

degree h in each of the m variables (and hence of total degree at most mh) at the hm

points in Hm. Such a polynomial does exist and is unique. The encoding is obtained

by evaluating this polynomial at all the points in Fm. Once again Schwartz’s Lemma

guarantees that the minimum distance of this code is |F |m(1− mh
|F | ). The advantage

of specifying a code in this way is that the message is embedded in the codeword.

This property turns out to be useful in many applications.

Algorithmic implications The algorithmic implication of this connection works

in both directions. In Chapter 2, it is shown how to use the techniques developed

from error-correction of Reed Solomon Codes to get self-correctors for programs

that compute univariate polynomials. In the other direction, the testers and cor-
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rectors developed for multivariate polynomials (in Chapters 2 and 3) show that the

Polynomial Evaluation Codes have extremely fast randomized error-detection and

error-correction schemes. Such a randomized error-detector would guarantee that a

word A is very “close” to a valid codeword, with high probability, after looking at

A in very few places. Similarly, a randomized error-corrector would compute the

symbol of the nearest codeword at any one location correctly, with high probability,

by examining a corrupted codeword at only a few locations. Such efficient error-

detecting and correcting schemes were not known previously. Babai et al. [BFLS91]

were the first to use this connection to build such fast error-correcting and detecting

schemes for some codes. Our results improve on the efficiency of such schemes and

extend it to include all the codes here.

1.4 Probabilistic Checking of Proofs

The notion of interactive proofs was first defined by Babai [Bab85, BM88] and Gold-

wasser, Micali and Rackoff [GMR89]. They study languages which permit interactive

proofs of membership which are verifiable by a probabilistic verifier in polynomial

time and call the collection of such languages IP. Goldwasser, Micali and Wigder-

son [GMW86] provided evidence to show that the class IP strictly contains NP, by

showing that graph non-isomorphism, a problem not known to be in NP, can be

proved efficiently interactively and thus lies in the class IP. Recent breakthroughs

completely characterize the power of IP and the results of Lund, Fortnow, Karloff

and Nisan [LFKN90] and Shamir [Sha90] shows IP = PSPACE.

A related model of interactive proofs which is of more interest to us is the model

where the verifier gets to ask questions from more than one non-interacting provers

[BOGKW88] or equivalently when the prover is assumed to be a non-adaptive entity

i.e., an oracle [FRS88]. Languages which admit efficient proofs of membership under

the multiple prover proof system are said to be in the class MIP and the recent result
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of Babai, Fortnow and Lund [BFL91] provides an exact characterization of this class

i.e., MIP = NEXPTIME.

One way to view an oracle-based interactive proof is as follows: If we explicitly write

down the answer of the oracle on every question then we get a exponential sized table

which is a proof of membership in NEXPTIME languages which can be verified very

efficiently (in polynomial time) by a probabilistic verifier with random access to this

table. This interpretation inspired Babai, Fortnow, Levin and Szegedy [BFLS91] to

define the notion of transparent proofs: Informally, a transparent proof of a statement

of the form x ∈ L either proves a correct statement or mistakes will appear in the

proof almost everywhere, thus enabling a probabilistic verifier to spot it by a cursory

examination. To formalize this concept, Babai et al. placed bounds on the running

time of the probabilistic verifier and considered the kind of languages which have

transparent proofs that could be verified in time t(n). They scale down the result in

[BFL91] to show that all languages in NP have polynomial sized transparent proofs

that can be verified in O(polylog n) time, under the assumption that the input was

presented in some error-correcting code. Such an assumption is necessary since the

in O(polylog n) time the verifier cannot even read the whole input. Notice that even

under the assumption that the input is presented in an convenient form, Ω(log n) is

a lower bound on the running time of the verifier, since the verifier needs to have the

power to access the entire proof.

A refinement of the notion of a transparent proof – probabilistically checkable proof

– was defined by Arora and Safra [AS92]. Instead of concentrating on the running

time of the probabilistic verifier that verifies the proof, the new notion concentrates

on the sensitivity of the verifier to the proof. They consider the number of bits of

the proof that are actually read by the probabilistic verifier on any choice of random

bits, and call this the query complexity of the probabilistically checkable proof. This

parameter has no inherent logarithmic lower bounds in contrast to the running time

of the verifier. Moreover, by not placing only polynomial time restrictions on the
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running time of the verifier, the new notion does not require inputs to be encoded

in any form. Arora and Safra show that all languages in NP have probabilistically

checkable proofs with query complexity O(polyloglog n) (for inputs of size n).

Based on this notion of a proof system [AS92] define a class of languages PCP,

with two parameters: the number of random bits used by the verifier and the query

complexity. The class PCP(r(n), q(n)) consists of all languages which have prob-

abilistically checkable proofs where the verifier uses r(n) bits of randomness and

reads q(n) bits of the proof to verify proofs of membership in the language. In

the new terminology of Arora and Safra, the previous results may be stated as

NEXPTIME = PCP(poly(n),poly(n)) ([BFL91]), NP ⊂ PCP(polylogn, polylog n)

([BFLS91]), NP ⊂ PCP(log n loglog n, log n loglog n) ([FGL+91]) and NP ⊂ PCP(log n,polyloglog n)

shown by [AS92]. The last of these provides an exact characterization of NP (since

containment in the other direction follows in a straightforward manner).

In Chapter 4 we build on and improve upon the results described above to obtain a

tighter characterization of NP as PCP(log n,O(1)).

1.5 Hardness Results for Approximation Problems

The areas of “proof checking” and combinatorial optimization seem quite unrelated

at a first glance. Yet, in a surprising twist, Feige et al. [FGL+91], used the new results

on probabilistically checkable proofs to show hardness results for approximating the

clique-size. They show that unless NP ⊂ DTIME(nloglogn), the size of the largest

clique in a graph cannot be estimated to within constant factors. Subsequently,

by improving the performance of the probabilistically checkable proofs, [AS92] and

[ALM+92] have been able to improve this to show that approximating the clique size

to within nε (for some positive ε) is NP-hard.

Intuitively, the connection between the probabilistically checkable proofs and the

approximation hardness results are due to the following reason. The existence of
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“robust” (probabilistically checkable) proofs for all languages in NP implies that the

membership question for any such language can be converted to a problem which has

a “gap” associated with it - namely, the gap in the probability of accepting a good

proof vs. the probability of accepting a bad proof. (Here a “bad” proof represents

the proof of a wrong statement, rather than, say, the proof of a correct statement

with a few errors in it.) This gap can be translated via approximation preserving

reductions to construct graphs with a large gap in the clique size. Approximating

the clique size in such graphs suffices to decide membership for languages in NP.

In Chapter 5 we show a similar connection between approximation problems and

probabilistically checkable proofs. In fact, we create an optimization problem which

tries to estimate the probability of acceptance of any proof for a given statement.

Almost by definition this problem turns out to be NP-hard to approximate. The

structure of the problem turns out be very simple and hence can be reduced to

many other optimization problems. In particular, we show that the class MAX SNP,

defined by Papadimitriou and Yannakakis [PY91], contains this problem. A large

variety of approximation problems are known to be MAX SNP-hard [PY91, PY92,

BP89, BJL+91, DJP+92, Kan91] and thus the result from Chapter 5 translates into

non-approximability result for all these problems unless NP = P.
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Chapter 2

On the resilience of polynomials

In this chapter we consider the task of correcting multivariate polynomials. We

restrict our attention to this problem over large finite fields. We recall the basic

notation and the problem statement next:

For functions f and g mapping from Fm to F , the distance between f and g, d(f, g),

is defined to be the fraction of inputs from Fm where f and g disagree. g and f

are said to be ε-close if d(f, g) ≤ ε. For a function family F , the notation, ∆(f,F),

represents the distance from f to the member of F that is closest to f .

Correcting Polynomials

Given: An oracle to compute f : Fm 7→ F , where f is ε-close to some polynomial g

of total degree at most d and a setting b1, . . . , bm ∈ F to the m variables.

Output: g(b1, . . . , bm).

The particular parameter we will be interested in is the “resilience” of multivariate

polynomials, i.e., the largest value of ε for which the above problem can be solved

efficiently. In particular, we will be interested in solutions whose running time is

poly(m, d) for fixed ε. It is straightforward to see that when ε = 1/2, then the

above problem does not have a well-defined solution, since there might exist two
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polynomials g1 and g2 such that d(f, g1) = d(f, g2) = 1/2. Thus ε = 1/2− δ (δ > 0)

is the best resilience that can be attained. In this chapter we show how to attain

such a resilience: In particular, we give a randomized algorithm, which runs in time

poly(d,m, 1
δ ), to solve the polynomial correction problem over finite fields, provided

|F | ≥ Ω((1
δ + d)2).

2.1 Preliminaries

We consider polynomials over a finite field F . The family of all polynomials of degree

at most d on the variables x1, . . . , xm will be denoted F (d)[x1, . . . , xm]. A polynomial

g is thus a mapping from the vector space Fm to F . We will use the vector notation

x̂ to represent an element of the domain. For s, t ∈ F , we will use the notation s ∗ t
to represent their product in the field. For t ∈ F and ĥ ∈ Fm the notation t ∗ ĥ will

represent the vector in Fm with each coordinate of ĥ multiplied by t.

Definition 2.1.1 A curve through the vector space Fm is a function C : F 7→ Fm,

i.e., C takes a parameter t and returns a point C(t) ∈ Fm. A curve is thus a

collection of m functions c1, . . . , cm where each ci maps elements from F to F .

Definition 2.1.2 If the functions c1 to cm can be expressed as polynomials, then the

largest of the degrees of ci, is defined to be the degree of the curve C.

We will use the following fact about low-degree curves through vector spaces.

Fact 2.1.3 Let C be a curve of degree d1 and g a polynomial on m variables of total

degree d2. Let us define g restricted to C to be the function g|C : F 7→ F where

g|C(t) = g(C(t)). Then g restricted to C is a polynomial of degree d1d2.

Fact 2.1.4 Given d+ 1 points x̂1, . . . , x̂d+1, from the space Fm, there exists a curve

of degree d which passes through the d+ 1 points.
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Proof: This follows from the fact that one can construct degree d functions

c1, . . . , cm such that ci(tj) = (x̂j)i for distinct t1, . . . , td+1 ∈ F . 2

A special case of curves that will be of particular interest to us is lines through

Fm, i.e., curves of the form C(t) = x̂ + t ∗ ĥ. Notice that a degree d multivariate

polynomial restricted to a line becomes a univariate degree d polynomial.

2.2 Achieving some resilience: Random self-reducibility

The notion of random self-reducibility was introduced as a tool to implement instance-

hiding schemes. The first formal definition occurs in [AFK89] (see also [Fei93] for a

survey). Here we present a restricted definition which suffices for our purposes.

Definition 2.2.1 (random self-reducibility) A function g mapping from a finite

domain D to a range R is said to be random self-reducible, if the value of g at any

input x ∈ D can be computed efficiently from the value of g at points x1, . . . , xk where

each xi is a random variable distributed uniformly over the domain D and the joint

distribution on < x1, . . . , xk > is efficiently sampleable.

The following observation was made by Blum, Luby and Rubinfeld [BLR90].

Observation 2.2.2 Every random self-reducible function has a self-corrector.

Lipton [Lip91] based on the work of Beaver and Feigenbaum [BF90] shows that the

family of multivariate polynomials over large finite fields are random self-reducible.

Lemma 2.2.3 ([BF90],[Lip91]) Let g : Fm 7→ F be a degree d polynomial, where

F is a finite field such that |F | ≥ d+ 2. Then g is random self-reducible.

Proof: Let x̂ be any arbitrary point in Fm. Pick a point ĥ ∈R Fm and consider

the “line” through the points x̂ and x̂+ ĥ, i.e., the set of points {x̂+ t ∗ ĥ|t ∈ F}. g
restricted to this line is a univariate polynomial in t of degree at most d. Thus, for
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any set S ⊂ F of size d+ 1, we find that the value g(x̂) can be computed (efficiently)

from the values of g at {x̂+t∗ĥ|t ∈ S} (by interpolating for the value of the univariate

polynomial in t which describes g on the line {x̂ + t ∗ ĥ|t ∈ F} and evaluating this

polynomial at t = 0).

Notice further, that for t 6= 0, x̂ + t ∗ ĥ is distributed uniformly over Fm. Thus if

we pick S to be any subset of F \ {0} of size d+ 1, then the value of g at any fixed

point x̂ can be computed efficiently from the value of g at the d+ 1 randomly chosen

points {x̂+ t ∗ ĥ|t ∈ S}. Such a set S exists since |F | ≥ d+ 2. 2

Using the above random self-reduction, the following can be shown easily.

Corollary 2.2.4 If g is a degree d polynomial in m variables from a finite field F ,

then g is 1
3(d+1) -resilient.

2.3 Achieving nearly optimal resilience

In this section we consider the task of recovering from large amounts of error. For

achieving this task we look at the random self-reduction of Lemma 2.2.3 more care-

fully. Observe, that the random self-reduction really performs as follows: It picks a

univariate subdomain of Fm i.e., a line in Fm, that contains the point we are inter-

ested in, and then uses univariate interpolation on this line to find the correct value

of the function at every point on the line.

Here we improve upon the above self-reduction in phases. First, we consider the

restricted problem of correcting univariate polynomials and try to achieve a resilient

interpolation mechanism: one that can find the value of the correct polynomial even

in the presence of a significant amount of error. Next, we show how to solve the

problem of multivariate self-correction, by giving a technique for picking especially

“nice” univariate subdomains. The results of this section appear in [GLR+91] and

[GS92].
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2.3.1 Univariate polynomials: Error correcting codes

Here, we wish to solve the following problem:

Problem 1

Given: A function f : F 7→ F such that ∆(f, F (d)[x]) ≤ 1/2− δ and a point a ∈ F .

Output: g(a), where g ∈ F (d)[x] and d(f, g) ≤ 1/2− δ.

Note that the problem is well-posed only if g is unique with respect to the given

conditions, i.e., when |F | > d
(2δ) .

Let n be a sufficiently large number (for the purposes required here, n = poly(d, 1
δ )

suffices). Pick points xi ∈ F randomly, for i = 1 to n, and let yi = f(xi). Applying

Chernoff bounds, we may conclude that with high probability, the fraction of points

such that f(xi) 6= g(xi) is approximately the same from the set {x1, . . . , xn} as

from the entire field F . Choosing n large enough, the number of indices i such that

yi 6= g(xi) can be made smaller than (n− d− 1)/2. Thus our problem reduces to the

following one:

Problem 2

Input: n pairs (xi, yi) such that for all but k (s.t. 2k+d < n) values of i, yi = g(xi),

for some univariate polynomial g of degree at most 2d.

Output: g

Such a problem arises in various ways in coding theory. If the set of xi’s exhausts all

the elements of the field F , then this is the problem of decoding the Reed-Solomon

codes. If the xi are of the form ωi, such that ωt = 1, then the problem becomes one

of correcting generalized BCH codes. In the general form as it is stated above (with

no constraints on the forms of the xi’s), the problem can still be solved efficiently

and directly due to an elegant method of Berlekamp and Welch [BW]. We state their

result here; their proof is included in the appendix.
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Lemma 2.3.1 (univariate self-corrector: [BW]) Given n points (xi, yi) ∈ F 2,

there exists an algorithm which finds a degree d polynomial g such that g(xi) = yi

for all but k values of i, where 2k + d < n, if such a g exists. The running time of

the algorithm is polynomial in k, d and n.

As a corollary we obtain the following:

Corollary 2.3.2 The family of univariate polynomials of degree at most d, is 1/2−δ-
resilient, for all δ > 0.

2.3.2 Multivariate polynomials: “Nice” univariate curves

We now return to the main task of self-correcting multivariate polynomials from

functions that are wrong almost half the time. The problem we solve here is the

following: For parameters δ > 0 and a positive integer d, let F be a finite field of size

Ω((1
δ + d)2). Let g : Fm 7→ F be a multivariate polynomial of degree at most d:

Problem 3

Given : f such that d(f, g) ≤ 1/2− δ and a1, a2, · · · , am ∈ F .

Output : g(a1, a2, · · · , am).

In this section we describe a randomized reduction from Problem 3 to the univariate

self-correction problem.

We construct a subdomain D ⊂ Fm parametrized by a single variable x (i.e., the

points in the domain D are given by {D(x)|x ∈ F}), such that D satisfies the

following properties:

1. The function g′(x) ≡ g(D(x)), is a polynomial whose degree is O(d) in x.

2. The point â ≡< a1, . . . , am > is contained in D; In fact we will ensure that

D(0) = â.
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3. With high probability, f agrees with g on approximately the same fraction of

inputs from the domain D as from the domain Fm.

The three properties listed above help us as follows: The first property ensures

that we are looking at univariate polynomials over the domain D, while the second

property makes sure that this helps us find g(a1, . . . , am). The last property ensures

that we do not lose too much information about g during the process of the reduction.

Properties 1 and 3 are contrasting in nature. Property 1 requires the domain D to

be nicely structured and expects D to be a univariate curve of constant degree in

Fm. On the other hand, Property 3 is what would be expected if D were a random

sample of Fm.

Before going on to the construction of such a domain D, we first reexamine the

reduction of Beaver and Feigenbaum (see Lemma 2.2.3). Notice that their reduction

does indeed construct a univariate subdomain by picking D to be a line through

the space Fm. But this construction only achieves a very weak form of property 3.

This is pointed out by Gemmell et al. [GLR+91], where it is shown, using Markov’s

Inequality, that if f and g agree on all but ε fraction of the inputs from Fm, then with

probability 1− 1
k , f and g agree on all but kε fraction of the inputs from the domain

D. This also allows [GLR+91] to show that the family of multivariate polynomials

is (1/4− δ)-resilient. This construction is not of much use though if ε is more than

1/4, since then the probability with which f agrees with g on at least half the points

from D, is less than a half.

In order to achieve the higher degree of randomness as required by property 3, we

modify the construction of Lemma 2.2.3 as follows.

Pick α̂ and β̂ uniformly and randomly from Fm

Let Dα̂,β̂(x) ≡ α̂ ∗ x2 + β̂ ∗ x+ â

Dα̂,β̂ ≡ {Dα̂,β̂(x)|x ∈ F}
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Each coordinate of Dα̂,β̂(x) is a polynomial of degree 2 in x. Hence g′ is a polynomial

of degree at most 2d in x. Also Dα̂,β̂(0) = b̂. Thus we see that Dα̂,β̂ as picked above

satisfies properties 1 and 2. 1

The following claim establishes that Dα̂,β̂ also forms a pairwise independent sample

of Fm.

Claim 2.3.3 For a finite field F , b̂1, b̂2 ∈ Fm, and for distinct x1, x2 ∈ F \ {0},

Pr
α̂,β̂

[Dα̂,β̂(x1) = b̂1 and Dα̂,β̂(x2) = b̂2] =
1
|F |2n

Proof: For each coordinate i ∈ [n], there exists exactly one degree 2 polynomial

pi in x, such that pi(0) = ai, pi(x1) = (b̂1)i and pi(x2) = (b̂2)i. Thus when we pick

a random polynomial pi such that pi(0) = bi for the ith coordinate, the probability

that pi(x1) = (b̂1)i and pi(x2) = (b̂2)i, is 1
|F |2 . Since the events are independent for

each coordinate, we have

Pr
α̂,β̂

[Dα̂,β̂(x1) = b̂1 and Dα̂,β̂(x2) = b̂2] =
1
|F |2n

2

The above claim establishes that any set S of the form S ⊂ {Dα̂,β̂(x)|x ∈ F \ {0}}
is a pairwise independent sample of Fn. When combined with the following lemma,

the above claim shows that the domain D also satisfies Property 3.

Lemma 2.3.4 If S ⊂ Fm is a pairwise independent sample of n elements from

Fm, and if d(f, g) ≤ 1/2 − δ then the probability that f agrees with g on at least

n(1/2 + δ)− c
√
n points from S is at least 1− 1

c2
.

Proof [Sketch]: Let I be the indicator variable for the condition f = g i.e.,

I(x̂) =

 1 if f(x̂) = g(x̂)

0 otherwise

1The idea of substituting low-degree polynomials in a single variable for the different variables, is
not a new one. In particular, this has been used by Beaver et al. [BFKR91], to reduce the number
of oracles used in instance hiding schemes. The underlying property that they extract is similar.
They use the fact that substitution by degree t-polynomials yields t-wise independent spaces.
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Then by the fact that Chebychev’s Inequality holds for pairwise independent variables

(see for instance [Lub86]) one can conclude that the expected value of I over the

domain S is very close to the expected value of I over the domain Fm. More precisely,

for positive c

Pr
[
|Ex̂∈RS [I(x̂)]− Ex̂∈RFm [I(x̂)]| ≥ c/

√
|S|
]
≤ 1/c2

Thus we find that g and f agree on at least n(1/2 + δ)− c
√
n points of S. 2

Thus the domain D has all the three properties required of it. Thus the problem

of multivariate self-correction on the domain Fm has been reduced to the task of

univariate self-correction (of g′(0)) on the domain Dα̂,β̂. By Lemma 2.3.1 this can

be done in time polynomial in n and d for error at most 1/2− δ. Thus we have the

following theorem:

Theorem 2.1 (multivariate self-corrector :[GS92]) For a positive integer d and

δ > 0, the family of degree d polynomials in m variables over sufficiently large fi-

nite fields F (|F | ≥ Ω((1
δ + d)2)) is (1/2 − δ)-resilient. The running time of the

self-corrector is polynomial in m, d and 1
δ .

2.3.3 Simultaneous self-correction for many points

Here we consider a slight twist on the problem of self-correction and show that the

techniques of the previous sections adapt easily to handle this problem.

The new problem we consider is the following: Suppose we are interested in the value

of a polynomial g : Fm 7→ F at l places – â1, â2, . . . , âl – and the only information we

have about g is given by a function f such that d(f, g) ≤ 1/2− δ. The problem can

obviously be solved by using the self-corrector of the previous section l times. But

here we give a more direct procedure which can retrieve all the l values simultaneously

in one step.

To achieve the reduction we construct (with some randomization) a domain D such

that the following properties hold:
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1. D is a univariate curve of degree O(ld).

2. D passes through the points â1, . . . , âl.

3. D forms a pairwise independent sample of Fm (except at the pointsD(1), . . . , D(l)).

Such a domain can be constructed by picking r̂1 and r̂2 randomly from Fm and then

letting D be the univariate curve which contains the points â1, â2, . . . , âl, r̂1, r̂2.

We now use the univariate self-corrector of Lemma 2.3.1 to find the polynomial g′

which describes g on the curve D. g′(1), . . . , g(l) gives us the desired l values.

Thus we have the following lemma:

Lemma 2.3.5 For a positive integer d and δ > 0, given a function f such that

∃g ∈ F d[x1, . . . , xm] such that d(f, g) ≤ 1/2 − δ, the value of g at l points can be

simultaneously reconstructed from f by a reduction to one univariate reconstruction

problem for a polynomial of degree O(ld).

2.4 Discussion

Higher fraction of error: The reconstruction problem If the distance ∆(f, F (d)[x1, . . . , xm])

is larger than 1/2 (say .9) then the self-correction problem is ill defined and hence

cannot be solved. But we could redefine the problem and instead ask for any function

g ∈ F (d)[x1, . . . , xm] which satisfies d(f, g) < .9. This corresponds to the maximum

likelihood decoding problem in coding theory. This problem is studied by Ar, Lip-

ton, Rubinfeld and Sudan [ALRS92], where a number of other applications for this

problem are shown. They solve this problem for a restricted model of error which

suffices for their applications. They also show that an extension of the methods from

here can reduce the multivariate version of this problem to the univariate case. The

univariate case for general error still remains open.
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Implications for the permanent Lipton [Lip91] observed that the permanent

of an n × n matrix is a polynomial of degree n and is hence random self-reducible

(over sufficiently large finite fields). The implication of this was that unless #P =

BPP, even the task of computing the permanent on a large fraction of the matrices

would not be tractable (i.e., not computable in randomized polynomial time). The

improvements shown here now imply that computing the permanent on even 1/2 + δ

fraction of all n × n matrices from a large finite field is hard unless #P = BPP.

Improving on this work further, Feige and Lund [FL92b], have shown that unless

#P = ΣP
2 (which in particular implies a collapse of the polynomial hierarchy), the

permanent of n×n matrices cannot be computed on even exponentially small fraction

of all matrices (over large finite fields).

Random self-reduction over small fields Another important issue is the ran-

dom self-reducibility of computations over small finite fields. Of course, for a general

polynomial, this would not be achievable since in general polynomials need not differ

at very many places over small fields. But for special polynomials other properties of

the function can be used to achieve some resilience and this is indeed the case for the

permanent over GF(3) (see Feigenbaum and Fortnow [FF91] and Babai and Fortnow

[BF91]). The resilience shown by them is inverse polynomial in the dimension of the

matrix and it is over a distribution which is not uniform. It would be interesting to

improve either of the two aspects.
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Chapter 3

Low-degree tests

In this chapter we discuss issues on testing polynomials. The first problem we con-

sider here is:

Low-degree testing

Given: A function f : Fm 7→ F as an oracle, a positive integer d and real number

ε > 0.

Output: PASS if f ∈ F (d)[x1, . . . , xm] and FAIL if ∆(f, F (d)[x1, . . . , xm]) > ε.

A closely related problem to this is the following approximation problem: “Given a

function f , estimate the distance ∆(f, F (d)[x1, · · · , xm]) to within an additive factor

of ε/2”. In the following sections we describe such estimators, first for the univariate

case and then for the multivariate case. (The results are expressed in terms of

low-degree testing but can be converted to the approximation setting.) The main

parameter of interest will be the number of probes made into f by such a tester. The

tester presented in Section 3.2.3 probes the oracle for f in only O(d) places. Notice

that d+ 2 is a lower bound on the number of queries on f , since for any d+ 1 points

from Fm and any d+1 values from F , there exists a polynomial which takes on those

values at those places, and hence no function can be rejected by the tester.
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The basic outline that all the testers described in this chapter is the following: We

isolate “neighborhoods” in the input space (Fm), i.e., sets of very small size from Fm,

where any degree d polynomial must show some redundancy. More specifically, we

isolate neighborhoods of size O(d), where the value of the polynomial on d+1 points

forces its value at the remaining points in the neighborhood. Thus each neighborhood

expresses a constraint that f must satisfy if it were a degree d polynomial. We now

estimate the number of neighborhoods on which the constraints are violated. This

is an easy task since for any one neighborhood, testing whether the constraint is

satisfied takes poly(d) steps. Transforming this estimate on the number of unsatisfied

neighborhoods into an estimate on the distance of f from the family F (d)[...] will

hence occupy most of our attention from here onwards.

The second problem we consider is the following:

Testing specific polynomials:

Given: A function f : Fm 7→ F as an oracle; and an “implicit description” of a

polynomial g.

Output: An estimate for d(f, g) (or alternatively PASS if f ≡ g and FAIL if d(f, g) ≥
ε).

The solution to the problem will depend on what form the “implicit” description of

g takes. We elaborate on two presentations of g under which testing is possible:

• g is described by its value on enough points so as to specify it uniquely: In

particular, if we are given an oracle which can provide the value of g on some

space Im, where I ⊂ F and |I| ≥ 2d, then we can test for g very efficiently.

• g is described by a construction. Making this notion precise requires some

effort and Section 3.3.2 describes the notion along with a solution on how to

test g in such circumstances.

It is worth pointing out that most of the effort involved in solving these problems is
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directed towards making the notions precise. Once this is done, the solutions follow

in a straightforward manner using the low-degree tests.

Finally, in this chapter, we consider the two problems described above in a slightly

different setting which is related to the area of interactive proofs (probabilistically

checkable proofs). More specifically, we consider the difficulty of “persuading” a

verifier that a function f presented by an oracle is close to the family of multivari-

ate polynomials of degree at most d. We show that for any function f that is a

multivariate polynomial, there is a small amount of additional information O, such

that the tester, on probing f and O at only a constant number of values, will be

convinced that f is close to a low-degree polynomial. On the other hand if f is not

close to any low-degree polynomial, then for any augmenting information O′ tester

would detect that f is not a low-degree polynomial. Similarly we also consider the

task of persuading a verifier that a function f is close to a polynomial g where g is

presented by a rule for its construction.

3.1 Univariate Polynomials

3.1.1 A Simple Test

We start by describing a very simple tester for univariate polynomials. The tester

runs in time polynomial in d, and can be used to test over any finite subset of a

(potentially infinite) field. The tester is described in terms of testing over a finite

field F .

The test is obtained by defining all subsets of d+ 2 points from F to be “neighbor-

hoods”. A “neighborhood constraint” enforces the fact that on the neighborhood,

the function f looks like a polynomial. Lemma 3.1.1 shows that the distance we

are interested in estimating, ∆(f, F (d)[x]), is bounded from above by the fraction of

violated constraints. The Basic Univariate Test estimates the latter quantity by
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basic sampling.

program Basic Univariate Test

Repeat O(1) times

Pick d+ 2 points x0, . . . , xd, xd+1 ∈R F
Verify that f on x0, . . . , xd+1 is a degree d polynomial

The correctness of the tester follows from the following lemma.

Lemma 3.1.1 Let f is a function such that

Pr
x0,...,xd+1

[∃ a polynomial passing through (xi, f(xi)) ∀i ∈ {0, . . . , d+ 1}] ≥ 1− δ

Then ∆(f, F (d)[x]) ≤ δ.

Proof: Let g be the degree d polynomial which minimizes d(f, g) and let the

distance between f and g be δ′. Now fix z0, . . . , zd and let h be the unique degree

d polynomial such that h(zi) = f(zi), for i ∈ {0, . . . , d}. By the definition of δ′, we

have that

Pr
xd+1∈RF

[h(xd+1) = f(xd+1)] ≤ 1− δ′

Thus

Pr
x0,...,xd+1

[∃ a polynomial passing through (xi, f(xi)) ∀i ∈ {0, . . . , d+ 1}]

≤ max
z0,...,zd

Pr
xd+1

[ poly through z0, . . . , zd also passes through xd+1]

≤ 1− δ′

2

The tester above establishes that univariate testing is an easy task and can be done in

polynomial time (in the degree of the polynomial). Furthermore, the tester probes f

in only O(d) places. Yet, the tester given above does not reveal any new or interesting

properties of polynomials, and it cannot be generalized to multivariate polynomials.

Moreover from the point of viewing of testing “programs that compute polynomials”
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it is not very useful, since it is not “different” from a program that computes the poly-

nomial. Next we describe a different tester for univariate polynomials which is more

useful to construct program checkers. It also reveals new properties of polynomials

which enable us to extend it to test multivariate polynomials.

3.1.2 A Test Based on Evenly Spaced Points

The tester of this section works only for fields of the form Zp for a prime p. In

particular, this fact is used in Lemma 3.1.3.

Definition 3.1.2 We say that a set of points {x0, · · · , xn} is evenly spaced if ∃h
such that xi = x0 + i ∗ h.

The tester on this section uses evenly spaced points as neighborhoods, i.e., neigh-

borhoods are of the form {x + i ∗ h}d+1
i=0 . The constraints specify that f on the

neighborhoods should agree with some polynomial. Lemma 3.1.4 shows that if all

neighborhood constraints are met by a function g, then g is a polynomial of degree

d. Theorem 3.1 shows that the distance of f from the family of degree d polynomials

is at most twice the fraction of violated constraints, thus showing that is suffices to

test on evenly spaced neighborhoods.

The following lemma shows that interpolation (testing if a neighborhood constraint is

violated) is a much easier task for evenly spaced points. In fact, the interpolation can

be performed without using any multiplication and this makes the tester “different”

from any function evaluating the polynomial.

Lemma 3.1.3 (cf. [dW70] pages 86–91) The points {(xi, yi)|i ∈ {0, . . . , d+1};xi =

x+ i∗h;xi, yi ∈ Zp} lie on a degree d polynomial if and only if
∑d+1
i=0 αiyi = 0, where

αi = (−1)(i+1)
(d+1
i

)
.

Proof [Sketch]: Define the functions f (j), j = 0 to d+ 1 as follows:

f (0)(xi) = yi and f (j)(xi) = f (j−1)(xi)− f (j−1)(xi+1)
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The function f (j) agrees with a degree d− j polynomial if and only if f (j−1) agrees

with a degree d− j + 1 polynomial. In particular this implies that f (d) is a constant

and thus f (d+1)(x0) = 0, if and only if f (0) is a degree d polynomial. But f (d+1)(x0) =∑d+1
i=0 αiyi. 2

Note: The proof also shows that the constants αi never need to be evaluated. Instead

the summation can be calculated by evaluating all the functions f (j). In all, this takes

O(d2) additions and subtractions, but no multiplications.

Furthermore, evenly spaced points suffice to characterize functions that are polyno-

mials.

Lemma 3.1.4 (cf. [dW70] pages 86–91) f : Zp 7→ Zp is a polynomial of degree

at most d if and only if ∀x, h ∈ Zp,
∑d+1
i=0 αif(x+ i ∗ h) = 0.

Proof [Sketch]: Lemma 3.1.3 immediately gives the implication in one direction.

The other direction, i.e., ∀x, h ∈ Zp,
∑d+1
i=0 αif(x + i ∗ h) = 0 ⇒ f is a degree

d polynomial follows from looking at the special case of h = 1. In this case the

function is specified at all points in Zp by its values at the set {0, . . . , d}. Moreover

if g is the unique polynomial which equals f on the points {0, . . . , d}, then g equals

f everywhere. 2

The following theorem shows that it suffices to test that the interpolation identities

hold for evenly spaced points, in order to verify that a given function has low-degree.

Theorem 3.1 Let f be a function from Zp to Zp such that

Pr
x,h∈RZp

[
d+1∑
i=0

αif(x+ i ∗ h) = 0

]
≥ 1− δ where δ ≤ O(

1
d2

)

Then there exists a function g such that ∀x, h ∈ Zp,
∑d+1
i=0 αig(x + i ∗ h) = 0 and

d(f, g) ≤ 2δ.

In particular, the bounds above imply that the tester resulting from this theorem

would need to probe f in O(d3) places (since to verify that the test above holds
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with probability 1 − O(1/d2) the test would need to be repeated O(d2) times, and

each repetition involves probing f at O(d) places). The proof of this theorem follows

Lemmas 3.1.5, 3.1.6 and 3.1.7.

Define g(x) to be majh∈Zp

∑d+1
i=1 αiP (x+ i ∗ h).

Lemma 3.1.5 g and f agree on more than 1− 2δ fraction of the inputs from Zp.

Proof: Consider the set of elements x such that Prh[f(x) =
∑d+1
i=1 αif(x+ i∗h)] <

1/2. If the fraction of such elements is more than 2δ then it contradicts the condition

that Prx,h[
∑d+1
i=0 αif(x+ i ∗ h) = 0] = δ. For all remaining elements, f(x) = g(x). 2

In the following lemmas, we show that the function g satisfies the interpolation

formula for all x, h. We do this by first showing that for all x, g(x) is equal to

the interpolation of f at x by most offsets h. We then use this to show that the

interpolation formula is satisfied by g for all x, h.

Lemma 3.1.6 For all x ∈ Zp, Prh [g(x) =
∑d+1
i=1 αif(x+ i ∗ h)] ≥ 1− 2(d+ 1)δ.

Proof: Observe that

h1, h2 ∈R Zp ⇒ x+ i ∗ h1 ∈R Zp and x+ j ∗ h2 ∈R Zp

⇒ Pr
h1,h2

[f(x+ i ∗ h1) =
d+1∑
j=1

αjf(x+ i ∗ h1 + j ∗ h2)] ≥ 1− δ

and Pr
h1,h2

[f(x+ j ∗ h2) =
d+1∑
i=1

αif(x+ i ∗ h1 + j ∗ h2)] ≥ 1− δ

Combining the two we get

Pr
h1,h2

[
d+1∑
i=1

αif(x+ i ∗ h1)

=
d+1∑
i=1

d+1∑
j=1

αiαjf(x+ i ∗ h1 + j ∗ h2)

=
d+1∑
j=1

αif(x+ j ∗ h1)] ≥ 1− 2(d+ 1)δ
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The lemma now follows from the observation that the probability that the same ob-

ject is drawn twice from a set in two independent trials lower bounds the probability

of drawing the most likely object in one trial. (Suppose the objects are ordered so

that pi is the probability of drawing object i, and p1 ≥ p2 ≥ . . .. Then the probability

of drawing the same object twice is
∑
i p

2
i ≤

∑
i p1pi = p1.) 2

Lemma 3.1.7 For all x, h ∈ Zp, if δ ≤ 1
2(d+2)2

, then
∑d+1
i=0 αig(x + i ∗ h) = 0 (and

thus g is a degree d polynomial).

Proof: Let h1, h2 ∈R Zp. Then h1 + i∗h2 ∈R Zp implying that for all 0 ≤ i ≤ d+1

Pr
h1,h2

[g(x+ i ∗ h) =
d+1∑
j=1

αjf((x+ i ∗ h) + j ∗ (h1 + i ∗ h2))] ≥ 1− 2(d+ 1)δ

Furthermore, we have for all 1 ≤ j ≤ d+ 1

Pr
h1,h2

[
d+1∑
i=0

αjf((x+ j ∗ h1) + i ∗ (h+ j ∗ h2)) = 0] ≥ 1− δ

Putting these two together we get

Pr
h1,h2

[
d+1∑
i=0

αig(x+i∗h) =
d+1∑
j=1

αj

d+1∑
i=0

αif((x+j∗h1)+i∗(h+j∗h2)) = 0] ≥ 1−2δ(d+1)2 > 0

The lemma follows since the statement in the lemma is independent of h1, h2, and

therefore if its probability is positive, it must be 1.

By Lemma 3.1.4 g must be a polynomial of degree at most d. 2

Proof: [of Theorem 3.1] Follows from Lemmas 3.1.5 and 3.1.7. 2

This theorem can now be used to construct a tester for univariate polynomials as

follows. This tester first appeared in [GLR+91] and [Rub90].

program Evenly-Spaced-Test

Repeat O(d2 log(1/β)) times

Pick x, t ∈R Zp and verify that
∑d+1
i=0 αif(x+ i ∗ t) = 0

Reject if any of the test fails
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Theorem 3.2 If the computation of a program can be expressed by a low-degree

polynomial correctly on all its inputs from Zp, then it is passed by Evenly-Spaced-

Test. If the output of the program is not O( 1
d2

)-close to a univariate polynomial,

then with probability 1− β, it is rejected by Evenly-Spaced-Test.

Proof: With confidence 1− β, the program Evenly-Spaced Multivariate Test

will find a bad neighborhood if the fraction of bad neighborhoods is greater than

O( 1
d2

). If the fraction is smaller then by Theorem 3.1 the program’s computation is

O( 1
d2

)-close to a multivariate polynomial. 2

The tester given above forms a very practical program checker for programs that

compute polynomials. Though the proof given here works only for Zp, it can easily

be extended to work for functions from Zm to Zm. With a bit more work, the same

ideas can even be used to test polynomials over the reals and the integers. Such a

test is not described here. Details of this tester appear in [RS92].

The interesting element of the tester is that it reveals that testing low-degreeness

over strongly correlated samples suffices to establish low-degreeness over the whole

domain. The fact that strongly correlated samples can give a lot of structure is

exploited in the next section to give very simple low-degree tests for multivariate

polynomials.

3.2 Multivariate Polynomials

In this section we first describe a simple extension of the “Evenly Spaced Test” of the

previous section which works for multivariate polynomials. Then we work on improv-

ing the efficiency of the tester (so that the number of tests that it performs becomes

smaller). The efficiency is improved by first considering the special case of bivari-

ate polynomials and then showing how to reduce the testing of general multivariate

polynomial testing to testing of bivariate polynomials.
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3.2.1 Extending the evenly spaced tester

It turns out that the evenly spaced tester of the previous section easily extends to

multivariate polynomials in the following way. We pick vectors x̂ and ĥ uniformly at

random from Zmp , and test that the interpolation identity holds for neighborhoods

of the form {x̂, x̂+ ĥ, x̂+2∗ ĥ, . . . , x̂+(d+1)∗ ĥ}. Theorem 3.1 can now be extended

to apply to the functions on vector spaces to give the following extension:

Theorem 3.3 If f : Zmp 7→ Zp is a function such that

Pr
x̂,ĥ∈RZm

p

[
d+1∑
i=0

αif(x̂+ i ∗ ĥ) = 0

]
≥ 1− δ

then, if δ ≤ O(1/d2), there exists a function g : Zmp 7→ Zp, such that d(g, f) ≤ 2δ

and

∀x̂, ĥ ∈ Zmp
d+1∑
i=0

αig(x̂+ i ∗ ĥ) = 0

The proof of the above fact follows from syntactic modifications to the proof of

Theorem 3.1 and is hence omitted here. Moreover, we later state and prove a theorem

(Theorem 3.7) which subsumes this theorem.

It still remains to be shown that the function obtained from Theorem 3.3 is a poly-

nomial of degree d and we include of a proof of this statement next.

Lemma 3.2.1 If g : Zmp 7→ Zp is a function such that

∀x̂, ĥ ∈ Zmp
d+1∑
i=0

αig(x̂+ i ∗ ĥ) = 0

then g is a polynomial in the m variables of total degree at most d, provided p ≥ md.

Proof [Sketch]: We break the proof into two parts. First we show that the

function g is a polynomial of individual degree at most d in each variable. We then

show that the total degree of this low-degree polynomial is at most d.



41

We first observe that by restricting our attention to ĥ’s of the form δj (the vector

whose coordinates are zero in all but the jth coordinate, where it is one), we can

establish that for every restriction of the values of v1, . . . , vj−1, vj+1, . . . , vm, the

function g is a degree d polynomial in vj (by Lemma 3.1.3). Since this holds for all

j ∈ {1, . . . ,m}, g must be a multivariate polynomial in the variables v1, . . . , vm of

individual degree at most d in each variable.

At this point we already have a loose bound on the total degree of g. It is at most md,

since there are m variables and the degree in each variable is at most d. Now observe

that a random instantiation of the type vj = xj + i ∗ hj , would leave g as a function

of i and for most random choices of x̂ and ĥ, this would be a degree k polynomial

in i where k is the total degree of g. But we know from the interpolation identity

satisfied by g that it a random instantiation leaves it to be a degree d polynomial in

i. Thus k, the total degree of g, must be d. 2

Thus Theorem 3.3 allows us to use the following program as a tester for multivariate

polynomials.

program Evenly-Spaced Multivariate Test

Repeat O(d2 log(1/β)) times

Pick x̂ and ĥ uniformly and randomly from Zmp
Verify that

∑d+1
i=0 f(x̂+ i ∗ ĥ) = 0

Reject if the test fails

Theorem 3.4 If the computation of a program can be expressed by a low-degree

polynomial correctly on all its inputs from Zmp , then it is passed by Evenly-Spaced

Multivariate Test. If the output of the program is not O( 1
d2

)-close to a polynomial,

then with probability 1− β, it is rejected by Evenly-Spaced Multivariate Test.
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3.2.2 Efficient testing of bivariate polynomials

In this subsection we consider the task of testing a bivariate polynomial in the vari-

ables x and y. To be more precise we consider the task of testing the family of

functions whose individual degree in x and y is at most d each. (Note that this is in

contrast to the rest of this chapter (thesis?) where we usually consider only the total

degree. The reason for this deviation becomes clear in Section 3.2.3.) We will also be

considering functions over some arbitrary finite field F (not necessarily of the form

Zp) whose size will need to be sufficiently large (and will be established later).

We attempt to solve this problem by extending the Basic Univariate Tester of

Section 3.1.1. We define some notation first:

The set of points {(x0, y)|y ∈ F} will be called a row. The set of points {(x, y0)|x ∈
F} will be called a column.

The neighborhoods for this test consists of all sets of d+ 2 points from a single row

or from a single column. Theorem 3.5 shows that the distance of f from a bivariate

polynomial of degree d is within a constant multiplicative factor of the number of

violated constraints.

program Basic Bivariate Test

Repeat k times

Pick x0, . . . , xd+1 ; y ∈R F
Verify that f(x0, y), . . . , f(xd+1, y) is a degree d poly (in x)

Pick y0, . . . , yd+1 x ∈R F
Verify that f(x, y0), . . . , f(x, yd+1) is a degree d poly (in y)

Reject if the test fails

The following theorem is needed to prove the correctness of the tester and appears

as the Matrix Transposition Lemma in [RS92]. Notice that in the above test, the

number of iterations has not been specified yet. This will depend on how strong our
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theorem is. We will establish here that k = O(d) suffices. A tighter theorem on this

was proved more recently by Arora and Safra [AS92]. They make very elegant use of

the Berlekamp-Welch technique to show that k = O(1) suffices! Since the efficiency

of this result becomes important in the next section, we include a statement of their

result in this section.

Theorem 3.5 Let f be a function such that

Pr
x0,y0∈F

[f(x0, y0) lies on same degree d poly as most points on its row] ≥ 1− ε

Pr
x0,y0∈F

[f(x0, y0) lies on same degree d poly as most points its column] ≥ 1− ε

Then there exists a polynomial g of degree at most d in x and y such that d(f, g) ≤ 4ε,

provided ε < 1/12d and |F | ≥ 3d( 1
1−12εd).

Proof [Sketch]: Call a row good, if the function fx0(y) ≡ f(x0, y) satisfies

∆(fx0 , F
d[y]) ≤ .49. Good columns are defined similarly. Call a point good if it

lies on a polynomial describing 0.51 fraction of the points on its row and on a poly-

nomial describing 0.51 fraction of the points on its column. (In particular, note that

all points on bad rows and all point on bad columns are bad.)

We first show that most points are good. We then find a 3d×3d submatrix of points

that are all good and fit a bivariate polynomial g which agrees with f on all these

points. Observe that if a row (column) has d+ 1 good points where f agrees with g,

then f agrees with g on all the good points in its row (column). Repeated application

of this observation allows us to show that f agrees with g on all good points.

The following can be shown by simple counting arguments to the conditions guaran-

teed by the theorem:

Pr
x,y∈RF

[(x, y) is bad ] ≤ 4ε (3.1)

A 3d × 3d submatrix, (i.e. X × Y where X,Y ⊂ F , |X|, |Y | = 3d) is called good if

all the points in X × Y are good.
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Claim: A good submatrix exists.

Proof: Consider a random setX = {x1, . . . , x3d} of the rows. The expected number

of bad points on these rows is at most 12dε|F |. Thus, if 12dε < 1 and |F | ≥ 3d( 1
12εd),

then with positive probability, at least 3d columns contain no bad points in the rows

indexed by X. Call these 2d columns the set Y . X × Y is a good submatrix.

Since a good submatrix has the property that all points on the submatrix lie on

degree polynomials of its rows and columns, it follows that there exists a polynomial

g of degree d in x and y which agrees with the entire submatrix. We now show that

g agrees with all good points.

Claim: If a bivariate polynomial g of degree at most d agrees with f on a good

3d× 3d submatrix, then it agrees with f on all good points.

Proof: The basic idea behind each of the following steps is that if d+1 good points

from a row (column) agree with g then all good points on that row (column) agree

with g. First, observe that all good points from the rows indexed by X agree with g.

Next, observe that at least 51% of the good columns will have more than d+ 1 good

points in the rows indexed by X, and for these columns, all the good points agree

with g. Now consider all the good rows: At least 2% of the points from any good

row are both good and lie on one of the 51% columns selected by the previous step,

and hence the best polynomial for these rows must agree with g. Thus we have that

f at all good points agrees with g.

Thus Prx,y∈F [f(x, y) = g(x, y)] ≥ 1− 4ε. 2

Theorem 3.6 (Arora & Safra) There exists a positive constant ε′ such that if ε <

ε′ and f is a function which satisfies

Pr
x0,y0∈F

[f(x0, y0) lies on same degree d poly as most points on its row] ≥ 1− ε

Pr
x0,y0∈F

[f(x0, y0) lies on same degree d poly as most points on its column] ≥ 1− ε

Then there exists a polynomial g of degree at most d in x and y such d(f, g) ≤ 4ε.
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3.2.3 Efficient reduction from multivariate polynomials to bivariate

polynomials

In this section we relate the work of the previous section to the proof of Theorem 3.3.

The connection yields improved testers for multivariate polynomials and can be used

to construct testers for the family of degree d polynomials which look at the value of

a function at only O(d) points to test it. The proof of this section is essentially from

from [RS92]. The efficiency shown here is better than that shown in [RS92], due to

the use of Lemma 3.6 which is from [AS92].

Definition 3.2.2 For x̂, ĥ ∈ Fm, the set of points {x̂+ t∗ ĥ|t ∈ F} will be called the

line through x̂ with offset ĥ.

Definition 3.2.3 For a function f : Fm 7→ F , and points x̂, ĥ ∈ Fm, we define P (f)

x̂,ĥ

to be the univariate polynomial of degree d in t which agrees with f at most points

on the line through x̂ with offset ĥ.

An alternate way of stating Theorem 3.3 is the following: “If the fraction of lines

for which f restricted to the line is not close to a univariate polynomial is small

(o( 1
d2

)), then f is close to some multivariate polynomial g.” By doing a more careful

analysis of the proof of Theorem 3.3 and using the results on bivariate testing, we

can improve this to get the following result:

Theorem 3.7 There exists a constant δ′ > 0 such that if 0 < δ ≤ δ′ and f is a

function from Fm to F which satisfies

Pr
x̂,ĥ∈RFm

[
f(x̂) = P

(f)

x̂,ĥ
(0)
]
≥ 1− δ

then there exists a polynomial g : Fm → F of total degree at most d such that

d(f, g) ≤ 2δ.

The proof of this theorem follows the same outline as the proof of Theorem 3.1, with

a tighter analysis.
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We define g as follows

g ≡ majorityĥ∈Fm{P (f)

x̂,ĥ
(0)}

Notice the similarity between the above definition and the definition of g in the

proof of Theorem 3.1. The main difference is the element of error-correction which

has gone into its definition. Instead of insisting that all points on the line through

x̂ with offset ĥ lie on single univariate polynomial, we are allowing the function to

deviate a bit, but we correct for this deviation in the definition of g.

Lemma 3.2.4

Pr
x̂

[g(x̂) = f(x̂)] ≥ 1− 2δ

Proof: Follows from applying Markov’s Inequality to the condition given in the

theorem. 2

Let ε′ be the constant from Theorem 3.6.

Lemma 3.2.5

Pr
ĥ1,ĥ2

[
P

(f)

x̂,ĥ1
(0) = P

(f)

x̂,ĥ2
(0)
]
≥ 1− 4δ

ε′

Proof: Pick ĥ1, ĥ2 ∈ Fm and define M = {myz} to be the matrix given by

myz = f(x̂+ yĥ1 + zĥ2). Since x̂+ yĥ1 and ĥ2 are random and independent of each

other, we have

Pr
ĥ1,ĥ2

[
P

(f)

x̂+zĥ2,ĥ1
(y) = f(x̂+ yĥ1 + zĥ2)

]
≥ 1− δ

Pr
ĥ1,ĥ2

[
P

(f)

x̂+yĥ1,ĥ2
(z) = f(x̂+ yĥ1 + zĥ2)

]
≥ 1− δ

Thus we have that with probability at least 1− 2δ
ε′ the following conditions hold:

Pr
y,z

[myz lies on best polynomial in z fitting the elements on the yth row] ≥ 1− ε′
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and

Pr
y,z

[myz lies on best polynomial in y fitting the elements on the zth column] ≥ 1−ε′

We are now in a position to apply Lemma 3.6 to find that there exists a bivari-

ate polynomial Q of degree at most d in both y and z which agrees with the best

polynomials fitting most rows and the best polynomials fitting most columns. More

precisely, if Y1 = {y| best polynomial fitting the yth row agrees with Q} and Z1 = {z|
best polynomial fitting the zth column agrees with Q}, then |Y1|, |Z1| ≥ (1− 4ε′)|F |.

We will now establish that the best polynomial fitting the 0th row and the 0th column

also agrees with Q (using the fact hat ĥ1 and ĥ2 are random).

For y, z ∈R F , since x̂+ yĥ1 and ĥ2 are random and independent, we have

Pr
ĥ1,ĥ2

[
P

(f)

x̂+yĥ1,ĥ2
(0) = f(x̂+ yĥ1)

]
≥ 1− δ

Similarly

Pr
ĥ1,ĥ2

[
P

(f)

x̂+zĥ2,ĥ1
(0) = f(x̂+ zĥ2)

]
≥ 1− δ

Thus, if we let

Y2 = {y|P (f)

x̂+yĥ1,ĥ2
(0) = f(x̂+ yĥ1)}

Z2 = {z|P (f)

x̂+zĥ2,ĥ1
(0) = f(x̂+ zĥ2)}

Then by Markov’s inequality, we have

Pr
ĥ1,ĥ2

[
|Y2| ≥ (1− ε′)|F |

]
≥ 1− δ

ε′

Pr
ĥ1,ĥ2

[
|Z2| ≥ (1− ε′)|F |

]
≥ 1− δ

ε′

Thus with probability at least 1 − 4δ
ε′ we have |Y1 ∩ Y2| ≥ (1 − 5ε′)|F | and |Z1 ∩

Z2| ≥ (1 − 5ε′)|F |. But for y ∈ Y1 ∩ Y2, we have that P
(f)

x̂+yĥ1,ĥ2
(z) = Q(y, z)
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and my0 = P
(f)

x̂+yĥ1,ĥ2
(0). Implying that for y ∈ Y1 ∩ Y2, my0 = Q(y, 0). Thus if

(1−5ε′) > 1/2, we have that the best polynomial fitting the points my0 is Q(y, z)|z=0.

Similarly, we have the best polynomial fitting m0z is Q(y, z)|y=0. Thus we find that

P
(f)

x̂,ĥ1
(0) = P

(f)

x̂,ĥ2
(0) = Q(0, 0). 2

Lemma 3.2.6

∀x̂, ĥ g(x̂) = P
(g)

x̂,ĥ
(0)

Proof: We pick ĥ1, ĥ2 ∈R Fm and define the following matrix

M = {myz}, where my0 = g(x̂+ yĥ) and myz = f(x̂+ yĥ+ z(ĥ1 + yĥ2))

.

As usual we first establish that most points on the matrix are good, i.e., for any

y, z ∈ F ,

Pr
ĥ1,ĥ2

[
f(x̂+ yĥ+ z(ĥ1 + yĥ2)) = g(x̂+ yĥ+ z(ĥ1 + yĥ2)) = P

(f)

x̂+yĥ,ĥ1+yĥ2
(z)
]
≥ 1−δ1

where δ1 = 2δ + 4δ
ε′ . Similarly, we have that

Pr
ĥ1,ĥ2

[
myz = f(x̂+ yĥ+ z(ĥ1 + yĥ2)) = P

(f)

x̂+zĥ1,ĥ+zĥ2
(y)
]
≥ 1− δ

Thus using Markov’s inequality we have that with probability at least 1− δ2 (where

δ2 ≡ (δ1+δ)
ε′ ), for at least (1 − ε′) fraction of the y, z pairs, myz lies on the best

polynomial fitting its row and column. Using Lemma 3.6 again we get that there

exists a polynomial Q of degree at most d in y and z, such that it agrees with the

best polynomial on at least 1−4ε′ fraction of the rows (and at least 1−4ε′ fraction of

the columns). Let Y1 (Z1) be the set of rows (columns) where this agreement holds.

We will now establish that with high probability m00 equals Q(0, 0) and my0 =

Q(y, 0) for at least half the y’s.



49

For any fixed y we have that

Pr
ĥ1,ĥ2

[
my0 ≡ g(x̂+ yĥ) = P

(f)

x̂+yĥ,ĥ1+yĥ2
(0)
]
≥ 1− δ1

Thus, with probability at least 1−δ2 we have that for at least 1−ε fraction of the y’s

my0 = P
(f)

x̂+yĥ,ĥ1+yĥ2
(0). But for such y in Y1 we have that P (f)

x̂+yĥ,ĥ1+yĥ2
(z) = Q(y, z).

Thus if 1− 5ε > 1/2, we have that for a majority of the y’s, my0 = Q(y, 0).

By a similar argument we can establish that with probability at least 1 − δ2, for at

least half the z’s m0z = Q(0, z). Thus we have P (f)

x̂,ĥ1
(z) = Q(0, z). Now for y = 0,

we have

Pr
ĥ1,ĥ2

[
m00 ≡ g(x̂) = P

(f)

x̂,ĥ1
(0)
]
≥ 1− δ1

Thus with probability at least 1− δ2 − δ1 we have m00 = Q(0, 0).

Thus with probability at least 1−3δ2−δ1, g(x̂) lies on the best polynomial that fits the

majority of the points {g(x̂+yĥ)}. But this statement is independent of the random

variables ĥ1 and ĥ2, and hence must hold with probability one (if 3δ2 + δ1 < 1). 2

Proof (of Theorem 3.7): By Lemmas 3.2.4 and 3.2.6 we know that there exists

a function g such that Prx̂∈Fm [g(x) = f(x)] ≥ 1 − 2δ and that ∀x̂, ĥ ∈ Fm, g(x̂) =

P
(g)

x̂,ĥ
(0). But the latter condition implies g is a multivariate polynomial of degree at

most d, since it satisfies the condition needed for the application of Lemma 3.2.1. 2

3.3 Testing Specific Polynomials

In this section we consider the task of testing if a function f is almost equal to a

specific polynomial g. There are various possibilities of how g might be specified.

For instance, we might know the value of g at sufficiently many places to determine

it uniquely. Alternatively, g might be a well known polynomial, like the determinant

or the permanent and hence we might know enough properties about g to determine

it uniquely. Here we consider two cases by which the polynomial might be specified,

and how to test in those cases.
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3.3.1 Polynomials Specified by Value

Here we consider a polynomial g : Fm 7→ F whose value on some subset of the form

Im, where I ⊂ F , is provided by an oracle.

Lemma 3.3.1 Given an arbitrary function f and a specification of a degree d polyno-

mial g by its values at some subset Im of points, testing that Prx̂∈Fm [f(x) = g(x)] ≥
1− δ takes O(d |I||I|−d) probes.

Proof: Using the tester given by Theorem 3.7 we first verify that there exists a

multivariate polynomial g′ of degree at most d such that d(f, g′) ≤ δ. Next we make

sure that g′ equals g for most points in Im. In order to do this we should be able to

compute g′ for any one point in Im (notice that f might not equal g′ on any point in

Im!). To do this we use the Multivariate Self Corrector given by Theorem 2.1, to

compute g′(x̂) for x̂ ∈ Im. Now we can estimate the quantity Prx̂∈Fm [g(x̂) = g′(x̂)].

By Schwartz’s Lemma [Sch80] we know that if this quantity is greater than |I|−d
|I|

then g ≡ g′. Thus using O( |I||I|−d) evaluations of g′ we can test whether g′ = g or not.

Thus using O(d |I||I|−d) probes into f we can test if g is close to f or not. 2

3.3.2 Polynomials Specified by Construction

Here we consider the case where the polynomial is specified by a construction. We

define the notion of a construction rule for polynomials and then show that polyno-

mials specified by construction rules are testable. We illustrate the power of such

construction rules by demonstrating a simple example of such a rule for the perma-

nent.

Definition 3.3.2 (polynomial construction rule) Given an initial polynomial g(0),

a construction rule for a sequence of degree d polynomials g(1), . . . , g(l) is a set of rules

r1, . . . , rl, where ri describes how to evaluate the polynomial g(i) at any point x̂ ∈ Fm

using oracles for the previously defined polynomials g(0), . . . , g(i−1). The only con-

straint on the rule ri is that its representation should be polynomially bounded in the
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input space size (i.e., O(poly(|F |m))). l is referred to as the length of such a rule.

The maximum number of oracle calls made by any rule to evaluate any input is called

the width of the rule and is denoted w.

The tester for such functions can be obtained from the downward-self-reducibility

theorem of Blum, Luby and Rubinfeld [BLR90]. We include a version of their theorem

here that is weaker than the original theorem they prove. The tester also resembles

the Sum-Check protocols of [LFKN90, Sha90, BFL91].

Let δ > 0 be a constant smaller than the constant of Theorem 3.7.

Theorem 3.8 ([BLR90]) Given oracles for a sequence of functions f (1), . . . , f (l),

an oracle for an initial polynomial g(0), and a construction rule r1, . . . , rl of width

w for degree d polynomials g(1), . . . , g(l) (g(i) : Fm 7→ F ) there exists a tester which

verifies that the f (i) is δ-close to g(i) for all i ∈ {1, . . . , l}. Moreover the test probes

the sequence f in poly(l, w, d) points.

Proof: The tester for this sequence steps through the sequence establishing in-

ductively that f (i) is δ-close to g(i). Assume inductively that the the tester has

established that f (i) and g(i) are close, for i < k. To establish that f (k) and g(k)

are close, we first establish that f (k) is close to a degree d polynomial and then test

if f (k)(x̂) = g(k)(x̂) for randomly chosen points x̂ ∈ Fm. To evaluate g(k)(x̂), the

tester can use rule rk, provided it has access to oracles for g(i), i < k. To obtain an

oracle for g(i), i > 0, the oracle uses the fact that f (i) is close to g(i), and thus the

Multivariate Self Corrector given by Theorem 2.1 can be used to simulate an

oracle for g(i). Thus g(k)(x̂) can be computed in time poly(w, d) using oracle calls to

f (i), i < k. The tester can thus test the entire sequence using poly(l, w, d) calls to

the oracles for the sequence f and g(0). 2

Notice that the above proof does not really use the fact that we are working with

polynomials. It only uses the random-self-reducibility of the functions g(i). Yet we

have shown here only the weaker form of this theorem. In the next section we will



52

improve upon the efficiency of this theorem in a related model. This improvement

will be used in later chapters to obtain transparent proofs of NP-hard statements.

Note on the running time of the above tester: The running time of the above tester is

effectively bounded (within factors of poly(l, w, d)) by the representation of the rule

r1, . . . , rk and the time taken to evaluate such any of the ri’s.

The following example illustrates the power of such testers.

Example 1

The Permanent: Let g(n)(x11, · · · , xij , · · · , xnn) be the permanent of the n×n matrix

whose ijth entry is xij. Then g(n) is a polynomial of degree at most n. Furthermore

g(n) can be constructed from g(n−1) as follows:

g(n)(x11, . . . , xnn) =
n∑
i=1

xi1 ∗ f (n−1)(X(i)(x11, . . . , xnn))

where the function X(i) projects the n×n vector so as to obtain the (1, i)th minor of

the matrix given by {xij}.

Thus the permanent can be represented by a constructible sequence of polynomials,

and hence by Theorem 3.8 can be tested.

Lastly we also make the following observation on the amount of randomness needed

by the tests given here.

Corollary 3.3.3 (to Theorem 3.8) A sequence of functions, g(0), . . . , g(l) (g(i) :

Fm 7→ F ), given by a construction sequence can be tested using O(m log |F | + l)

random bits.

Proof: Notice that any one phase (i.e., testing is f (i) is close to g(i)) takes

O(m log |F |) random bits. A naive implementation of the tester would thus take

O(km log |F |) random bits. But we can save on this randomness by recycling the

random bits via the technique of Impagliazzo and Zuckerman [IZ89]. This would

allow each additional phase to reuse most of the old random bits, and would need
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only a constant number of fresh random bits per phase. Thus the whole algorithm

can be implemented using O(m log |F |+ k) random bits. 2

3.4 Efficient testing of polynomials in the presence of

help

The previous sections concentrated on the task of verifying that a function f is close

to a polynomial. This could be viewed in the setting of interactive proofs where the

verifier (tester) is being persuaded of this fact without any help from the prover. We

now consider the situation where the prover is allowed to help the verifier (tester)

by providing additional information about the function f . We expect the additional

information to be presented in the form of an oracle O which is queried by the

verifier. (In this section we will use the words“verifier” and “tester” interchangeably.)

Formally:

Proofs of Low-degree

Given an oracle for a function f : Fm 7→ F , is it possible to specify some additional

information O about f so that a tester can verify that f is close to a degree d poly-

nomial. In particular, the tester should reject f with high probability if f is not close

to a low-degree polynomial. On the other hand, if f is a degree d polynomial there

should exist an O such that the tester always accepts f .

The following parameters will be of interest to us:

• The running time of the tester.

• The size of the oracle O.

• The length of O’s response on any single question.

• The number of questions asked of O by the verifier.
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• The number of probes made by the verifier into f .

Theorem 3.9 There exists a tester T such that given a function f : Fm 7→ F

• f is a polynomial of degree at most d⇒ ∃ an oracle O such that T (f,O) outputs

PASS.

• ∆(f, F (d)[x1, . . . , xm]) ≥ δ ⇒ ∀ oracles O, T (f,O′) outputs FAIL with high

probability.

O can be expressed as a function from F 2m to F d+1, i.e., the size of O is quadratic

in the size of the oracle for f and the length of the responses of O are poly(d, log |F |)
bits. Moreover, T probes f and O in only a constant number of places.

Proof: Recall the definition of P (f)

x̂,ĥ
from the proof of Theorem 3.7: P (f)

x̂,ĥ
is the

univariate polynomial of degree d in the parameter t which agrees with f at most

points on the line through x̂ with offset ĥ. The tester of Theorem 3.7 can be now be

simplified as follows.

program T(f,O);

Repeat O( 1
δ2

) times

Pick x̂, ĥ ∈R Fm and t ∈R F
Let p = O(x̂, ĥ)

Verify that p(t) = f(x̂+ t ∗ ĥ)

Reject if the test fails

The proof of correctness follows from the observation that it always to O’s benefit

to answer with P
(f)

x̂,ĥ
. In this case the tester above behaves exactly as the tester in

Theorem 3.7. 2

Lastly we consider a problem in the spirit of the problem considered in Theorem 3.8,

which we state slightly differently to make the problem statement simpler. The

motivation for this problem will become clear in the next chapter.
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Recall the definition of a polynomial construction rule 3.3.2.

Definition 3.4.1 A polynomial construction rule r1, . . . , rl is satisfiable if there ex-

ists a polynomial g(0) such that the sequence of polynomials g(1), . . . , g(l), computed

from g(0) according to the construction rule, terminates with g(l) ≡ 0.

The next problem we consider deals with proofs of satisfiability of construction rules.

Satisfiability of polynomial construction rules

Given a construction rule r1, . . . , rl of width w for degree d polynomials, provide

an oracle O which proves the satisfiability of the rule. In particular, if the rule is

satisfiable, then there must exist an oracle which is always accepted by the tester. On

the other hand, if the rule is not satisfiable, then any oracle O′ must be rejected by

the tester with high probability.

The starting point for our solution to this problem is the result of Theorem 3.8, i.e.,

the oracle can provide tables for the polynomials g(0), . . . , g(l) ≡ 0 and then the tester

of Theorem‘3.8 can be used to verify that the construction rules have been obeyed.

In order to cut down on the number of questions asked of such an oracle we use some

of the work done on parallelizing the MIP = NEXPTIME protocol by Lapidot and

Shamir [LS91], and some improvements on it by Feige and Lovasz [FL92a].

Theorem 3.10 Given polynomial construction rule r1, . . . , rl of width w, for degree

d polynomials from Fm to F for a sufficiently large finite field (|F | > poly(l, w, d,m)

suffices), there exists a tester T such that:

• If r1, . . . , rl is satisfiable, then there exists an oracle O such that T always

outputs PASS.

• If r1, . . . , rl is not satisfiable, then for all oracles O′, the tester T outputs

FAIL with high probability.

Moreover the size of the oracle is poly(|F |m, 2l) and the response of the oracle to
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any question is poly(l, w, d, log |F |,m) bits long and the tester probes O in only a

constant number of points.

Proof: The tester here will be constructed so as to simulate the tester of Theo-

rem 3.8 and the oracle will be created so as to aid this tester. The oracle will thus be

expected to provide the oracles for the functions g(0), . . . , g(l). An obvious simulation

of the tester of Theorem 3.8 would involve performing low-degree tests on each of

the l+ 1 functions and hence too many probes into the oracle. Instead we will work

with a single polynomial G, defined on m + 1 variables, which represents all of the

functions g(i).

G(z, x̂) ≡ g(i)(x̂) if z is the ith element of F for 0 ≤ i ≤ l

Such a polynomial G exists with degree l in z and total degree in at most d+ l.

Suppose the oracle O provides us with a function f supposedly representing G. We

will expect the oracle to augment it with flines, which takes two points x̂ and ĥ as

argument and returns the value of the best polynomial fitting f on the line through

x̂ with offset ĥ. Using flines we can test according to Theorem 3.9 to see if there

exists a low-degree polynomial f̃ which is δ-close to f .

Furthermore, we can compute f̃ at any point x̂ by picking a random point ĥ and

using flines to find the polynomial describing h on the line through x̂ and x̂ + ĥ.

Evaluating this polynomial at 0 gives us f̃(x̂). Evaluating this polynomial at t ∈R F
and cross checking with h(x̂ + t ∗ ĥ) ensures us that the wrong polynomial is not

returned by flines. Thus effectively we have an oracle for f̃ .

The polynomial f̃ gives us a sequence of polynomials f (i) : Fm 7→ F and we need to

ensure that f (i) = g(i) (i.e., the construction rules have been obeyed). The tester of

Theorem 3.8 shows how to do this by looking at the value of the functions f (i) at

O(lw) points. In order to find the value of the functions f (i) on these points, which

is equivalent to finding the value of f̃ at some lw points x̂1, . . . , x̂lw, we use the

idea of “simultaneous self-correction” (see Lemma 2.3.5). We construct a curve C of
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degree lw which passes through the points x̂1, . . . , x̂lw. Observe that f̃ restricted to

this curve must be some polynomial p of degree at most (d + l)lw. Now we expect

the oracle to provide the value of f̃ restricted to the curve C (explicitly). Suppose

the oracle returns a polynomial p′. If p = p′ then we are done, since the we can

now simulate the tester of Theorem 3.8. But the oracle may describe a polynomial

p′ 6= p. In order to detect this we pick a random value of t ∈ F and check that

p′(t) = f̃(C(t)) and these two will be different with probability 1− (d+l)lw
|F | .

In summary, we have:

Oracle The oracle consists of the functions f , flines and a function fcurves which

describes f̃ on some curves of degree lw. The number of different curves that T

may query about is bounded by the number of different random strings used by

the tester which is 2O(m log |F |+d+l). Thus fcurves can be expressed as function from

2O(m log |F |+d+l) 7→ F (d+l)lw and this dominates the size of the oracle.

Tester Tests that f is close to a low-degree polynomial f̃ . Then it simulates the

action of the tester of Theorem 3.8 by generating all the points where the value of

f̃ is required. It constructs a low-degree curve which passes through all these points

and queries fcurves for the polynomial describing f̃ on this curve. It then queries

flines and f at once each to reconstruct the value of f̃ at one point. Finally it makes

sure that f (l) is identically zero. In all this takes a constant number of probes into

O (some constant for the low-degree test, 3 for the questions needed to simulate the

tester of Theorem 3.8 and a constant to ensure f (l) ≡ 0). 2

3.5 Discussion

History A tester for multivariate polynomials was first constructed by Babai,

Fortnow and Lund [BFL91]. This was followed up by more efficient versions in
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[BFLS91, FGL+91, AS92]. All the testers did have one common ingredient though:

They test for the degree of each variable individually and thus have an inherent Ω(m)

lower bound on the number of probes required. The tester developed in this chapter

was developed in parallel in [GLR+91, She91, RS92]. By not testing for the degree

of each variable explicitly, the tester showed potential to perform better than the

testers of [BFL91, BFLS91, FGL+91, AS92]. Yet a key element was missing in the

analysis of the tester, which was finally remedied by the work of Arora and Safra

[AS92]. The observation that putting [RS92] and [AS92] together yields a test which

requires only a constant number of probes is made in [ALM+92]. One interesting

open question is: “How large must the field size be as a function of the degree d, so

that the low-degree test of Theorem 3.7 works”. This in turn reduces to the question

of seeing how small the field size may be while the Arora-Safra tester still works.

The analysis given in [AS92] shows that the field size could be O(d3), and this can

be improved to show O(d2) suffices. It seems possible that this number could be

reduced to being O(d).

Testing approximate polynomials A large number of analytic functions can be

closely approximated by polynomials. Moreover when computing functions over the

reals one might be willing to tolerate a small amount of error in the answers. In order

to make testers which apply to such situations, one requires testers which will test

if a function is closely approximated by a (multivariate) polynomial. As a starting

point for this one would need testers which don’t depend on the nice properties of

finite fields. Such a test does exist and is described in [RS92]. But even for univariate

functions that are closely approximated by polynomials, no tester seems to be known.

We feel that simple extensions of the tests given in this chapter should yield a test

for approximate polynomials.
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Chapter 4

Transparent proofs and the class

PCP

The problems considered towards the end of the previous chapter were raised in the

context of an interactive proof setting. We were considering the task of proving

certain statements about polynomials to a verifier by writing down (or providing

an oracle) some information for the verifier. The proofs so obtained were checkable

very efficiently by a probabilistic verifier. In this chapter we set up this notion more

formally, outlining the parameters of interest, and by exploring such probabilistically

checkable proofs for more general statements. A particular feature of interest will be

the number of bits of the proof that are examined by the probabilistic verifier. A

second parameter of interest is the number of random bits used by the verifier to

verify the proof.

We show how the results of the previous chapter can be translated to get prob-

abilistically checkable proofs of fairly general statements – namely, statements of

the form x ∈ L where L is a language in NP. The translation uses the work of

[BFL91, BFLS91] which shows that the problem of testing satisfiability of construc-

tion rules in NP-complete for a certain choice of parameters. The probabilistically
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checkable proofs that result can be verified by a probabilistic verifier who tosses

O(log n) coins and probes the proof in O(polylog n) bits.

Next we outline the idea of “recursive” proof checking of Arora and Safra [AS92].

The idea shows that if the proof systems are restricted to obey a certain format, then

they can be composed as follows: If a proof system examines q1(n) bits of a proof,

and another one examines q2(n) bits of a proof, then they can be composed to get

a proof system which examines q2(q1(n)) bits of the proof. Furthermore the amount

of randomness used by the composed system grows as r1(n) + r2(q1(n)) where r1(n)

and r2(n) are the number of random bits used by the two proof systems.

The proof system obtained from the results of the previous chapter can be shown to

conform to the restrictions and this gives us one place to start from. We also develop

a second proof system which examines only a constant number of bits in the proof

but uses many random bits. The composition idea shows how to compose these

proof systems with each other, eventually giving proof systems where the verifier

tosses O(log n) coins and looks at only constantly many bits in the proof to verify

it. The results of this chapter appear in [ALM+92].

4.1 Definitions

The basic task of this chapter is the construction of proof systems which “magnify

errors”. Such proof systems should have the feature that if a statement is true then

the proof system should admit error-free proofs of the statement. On the other hand,

any “proof” of an incorrect statement should be riddled with errors. Formalizing

this notion takes some effort and here we present two efforts which make this notion

precise.

The first notion we study is that of “transparent proofs” due to Babai, Fortnow,

Levin and Szegedy [BFLS91]. [BFLS91] achieve this formalism by restricting the

running time of probabilistic verifier. Such a restriction implies that evidence of
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the fallacy of a statement must be scattered densely in any proof of an incorrect

statement (since in very little time, the verifier is able to find evidence of the mistake

in the proof). Yet, when we consider statements of the type x ∈ L, a verifier that

attempts to verify this statement needs to be given at least enough time to read x.

Thus it seems that the running time of the verifier would need to be at least linear

in the input size. Babai et al. get around this by expecting the “theorem” to be also

presented in a “transparent” form i.e., they expect the input x to be presented in an

error-correcting encoding. The following definition is presented somewhat informally.

Definition 4.1.1 (transparent proof: [BFLS91]) A pair of strings (X,π), where

X is a “theorem-candidate” and π is a “proof-candidate” is in transparent form, if

X is encoded in an error-correcting code and the pair (X,π) can be verified by a

probabilistic verifier in time polylogarithmic in the size of the theorem plus proof and

the verifier is given random access to the strings X and π. In particular, if X is

the encoding of a correct theorem, there must exist a proof π which will be accepted

by the verifier for all its random choices and if X is close to the encoding of a false

theorem, or not close to the encoding of any valid statement, then it must be rejected

by the probabilistic verifier with high probability.

Babai et al., based on the work of [BFL91], show that all theorems and proofs can

be placed in a transparent form by increasing their size by a slightly superlinear

factor. One interesting aspect of this formalism is the rather “blind” nature of the

verification process. The verifier at the end of its verification, has little idea of what

the statement being proved is, and what the proof looks like. The only guarantee it

is able to give is that the two are consistent with each other. This rather surprising

nature of these proof systems will turn out to be useful in Section 4.3.

The next notion we study is that of probabilistically checkable proofs due to Arora

and Safra [AS92]. Instead of characterizing the “transparency” of a proof system

using the running time of a verifier, they characterize it using the number of bits

of a proof that are examined by the verifier to verify the proof. By examining this
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parameter, and allowing the running time of the verifier to be fairly large, they do

not need inputs to be presented in an error-correcting code. Moreover, any verifier

for NP statements would need to have the ability to address the entire proof and

this places an inherent logarithmic lower bound on the running time of the verifier.

The number of bits of the proof examined by a verifier has no such inherent lower

bounds and thus allows for a much more sensitive characterization of the quality of

proof systems. A second parameter examined by Arora and Safra is the number of

random bits used by the verifier. This gives an implicit bound on the size of the proof

and is also motivated by some of the applications of such proofs systems [FGL+91]

(see also Chapter 5). We define the notion in terms of languages which have efficient

probabilistically checkable proofs.

Definition 4.1.2 (PCP: [AS92]) A language L is in the class PCP(r(n), q(n)) if

there exists a tester T such that ∀x ∈ {0, 1}n, we have:

• If x ∈ L, then there exists a proof π such that T (r, x, π) outputs PASS, for all

r ∈ {0, 1}O(r(n)).

• If x 6∈ L then for all proofs π′, T (r, x, π′) outputs FAIL for at least half the

strings r ∈ {0, 1}O(r(n)).

Furthermore, for any fixed value of r, T (r, x, π) depends on only O(q(n)) bits of π,

and its running time is bounded by poly(n, r(n), q(n)).

The result of Babai et al. [BFLS91], improving on [BFL91], can be viewed in this

setting as showing NP ⊂ PCP(polylog n,polylog n). (The implicit guarantee on

the proof size obtained from this characterization is weaker than that shown by

Babai et al. The proof sizes as obtained by Babai et al. are nearly linear in

the size of any witness of x ∈ L.) Feige et al. [FGL+91], improved on [BFL91]

differently to show that NP ⊂ PCP(log n loglog n, log n loglog n), but their proofs

are superpolynomial in size. Arora and Safra were the first to bring both parame-

ters below the “logarithmic” level, thus allowing for an exact characterization: they
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show NP = PCP(log n, polyloglog n). In this chapter we work towards showing

NP = PCP(log n,O(1)).

¿From here onwards we will use the words “transparent proofs” and “probabilistically

checkable proofs” interchangeably. The notion we will use will be that of [AS92] and

precise statements will always be made in terms of PCP.

4.2 A transparent proof for languages in NP

The first probabilistically checkable proof we will describe follows in a very simple

manner from the following characterization of NP in terms of polynomial construction

sequences of very short width and length (both are logarithmic in the length of the

input). The characterization is implicit in the work of [BFL91, BFLS91].

Lemma 4.2.1 ([BFL91, BFLS91]) Given a language L ∈ NP and an instance

x ∈ {0, 1}n, a construction rule of length log n and width log n for degree log2 n

polynomials in Θ( logn
loglogn) variables from a finite field F of size O(log2 n), can be

computed in polynomial time, with the property that the construction rule is satisfiable

if and only if φ is satisfiable.

The proof of this lemma is included in the appendix. This gives us the first trans-

parent proof of NP as follows:

Lemma 4.2.2 NP ⊆ PCP(log n,polylog n)

Proof: By Lemma 4.2.1 we know that given a language L ∈ NP and an input

x of length n, we can compute in polynomial time a construction rule r1, . . . , rl of

width O(log n) which is satisfiable if and only if x ∈ L. By Theorem 3.10, we can

construct proofs of satisfiability of r1, . . . , rl which has size poly(n), where the tester

uses O(log n) bits of randomness, and probes the proof in O(polylog n) bits. 2
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4.3 Recursive Proof Checking

The proof system developed in Lemma 4.2.2 has nicer properties than just verifiability

using O(polylogn) bits. One particular feature of the proof system is its ability to

perform almost “blind checks” i.e., the proof system could have been modified so

that it is presented with a pair of inputs (X,π) and by making very few probes into

X and π the verifier could have established the consistency of π as proof x ∈ L

where X encodes x in an error-correcting code. A second feature that comes out

of the work put into Theorem 3.10 is the following: If proof is written as an array

indexed by the questions asked by the tester and whose contents reflect the answers

of the oracle to the questions, then the proof can be verified by looking at a constant

number of entries of the array, where each entry is O(polylog n) bits long. We call

this the property of having “segmented” proofs.

The latter property implies that the verifier, in order to verify x ∈ L tosses O(log n)

coins and then its task reduces to verifying that a constant number of entries that

it reads y1, . . . , yc from the proof table satisfy some simple computation performed

by it (i.e., T (y1, . . . , yc) outputs PASS). The key idea behind the notion of recursive

proof checking is to use the “blind checkability” of such proof systems to obtain a

proof that T (y1, . . . , yc) outputs PASS without reading y1, . . . , yc. Since the strings yi

are of length O(polylog n), a proof of such a fact would (hopefully) be a table of size

poly(polylog n) whose entries are O(polyloglog n) bits long. The recursive testing

of this fact would thus hopefully probe a constant number of entries in these small

tables, giving proofs verifiable with O(polyloglog n) probes.

One problem with the immediate implementation of this idea is that the guarantee

on blind checkability assumes that the input x for a statement of the type x ∈ L is

presented in an error-correcting encoding. But the recursion involves statements of

the type y1 · y2 · · · yc ∈ L, where the prover can only provide individual encodings of

the yi’s. It turns out though that the proof verification system of [BFLS91] can be
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modified to get the “blind checkability” even when the input is given in the form of

a constant number of encoded entries and this was first observed by [AS92].

Thus we restrict our attention to proof systems which have both the properties

considered above, namely, segmented proofs and blind checkability when the input

is presented by a constant number of encoded pieces and show how to compose such

proofs systems to achieve proof systems with improved query complexity.

We formalize the notion of tables and encodings next. Some care must be taken

to define the behavior of the proof systems in the context of working with encoded

inputs. In particular, one would need to handle the case where the supposed encoding

of the input is not really close to any valid encoding. One would like the proof system

to reject such a proof and this notion is made precise via the notion of the inverse

mapping of an encoding scheme.

Definition 4.3.1 (segmented tables) An s(n) × q(n)-table τ is a function from

[s(n)] to {0, 1}q(n). The values τ(i), 1 ≤ i ≤ s(n) will be referred to as the segments

of τ .

Definition 4.3.2 (Encoding/Decoding) An s(n) × q(n)-encoding scheme E en-

codes n bit strings into an s(n)×q(n)-table. A decoder E−1 for E is a function which

takes tables of size s(n)× q(n) and produces n bit strings, such that E−1(E(x)) = x.

Notice that in general most elements of the domain of E−1 are not constructed from

applying E to any string, yet E−1 maps them to strings from the domain of E. This

is supposed to resemble the task of performing error-correction and then decoding.

Definition 4.3.3 (restricted PCP) A language L is in the class rPCP(r(n), q(n))

if ∀ constants c > 0, ∃s(n) ≤ 2r(n), and an s(n) × q(n)-encoding scheme E with a

decoder E−1 and a tester T , such that given c n-bit strings x1, . . . , xc, the following

are true:

• If x1 · x2 · · ·xc (the concatenation of x1 through xc) is contained in L, then
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there exists a s(n) × q(n)-proof table π such that for all random choices of

r ∈ {0, 1}r(n), the tester Tr accepts E(x1), . . . , E(xc) and π.

• If x1 · x2 · · ·xc 6∈ L, then for all proofs π′ and for all tables τ1, . . . , τc such

that E−1(τi) = xi, Tr rejects τ1, . . . , τc, π′ for at least half the choices of r ∈
{0, 1}r(n).

Moreover, the output of the tester T for a fixed choice of r depends on only a constant

number of segments of the input tables and the proof table, and can be computed by

a circuit whose size is poly(q(n)). Lastly, E should be polynomial time computable.

(Notice that E−1 need not be computable efficiently.)

The following lemma is based directly on the work of [AS92] and shows that two

rPCP proof systems can be composed to get potentially more efficient rPCP proof

systems.

Lemma 4.3.4 If NP ⊂ rPCP(r1(n), q1(n)) and NP ⊂ rPCP(r2(n), q2(n))

then NP ⊂ rPCP(r(n), q(n)) where r(n) = r1(n)+r2(q1(n)O(1)) and q(n) = q2(q1(n)O(1)).

The proof of this lemma is straightforward given the definition of rPCP. This proof

is deferred to the appendix.

4.4 Restricted PCP’s for languages in NP

The characterization of NP in terms of polynomial sequences can be strengthened

so as to be able to use encoded inputs. The encoding we will choose for the inputs

will be the (m,h)-polynomial extension encoding. Recall that for any choice of hm

values {vẑ}ẑ∈Hm , there exists a polynomial g : Fm 7→ F of degree at most mh such

that g(ẑ) = vẑ for ẑ ∈ Hm.

Definition 4.4.1 For an n bit string x where n = hm, the encoding Em,h,F encodes

x according to the (m,h) polynomial extension encoding (i.e., finds a polynomial g
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which agrees with x on the space Hm and writes out its value over all the points in

Fm). The inversion scheme E−1
m,h,F we will pick for E will map every function from

Fm to F , to the closest degree mh polynomial (ties may be broken arbitrarily) and

use its values over the domain Hm as the value of the inverse.

Lemma 4.4.2 Given a language L ∈ NP, a constant c and an input length n,

a sequence of degree log2 n polynomials g(0), . . . , g(l) (g(i) : Fm+1 7→ F ) of length

O( logn
loglogn) and width O(log n) can be constructed in polynomial time such that: ∃g(0)s.t.g(l) ≡

0 if and only if x1 · · ·xc ∈ L where xi = E−1
m,h,F (g(0)|z1=i) (where the notation g(0)|z1=i

represents the polynomial on m variables obtained by setting the value of the first

variable z1 to a value i ∈ F ). Lastly m = Θ( logn
loglogn), |F | = polylog n and h = log n.

The proof of this statement is included in the appendix. This allows us to construct

our first restricted PCP proof system.

Lemma 4.4.3 NP ⊂ rPCP(log n,polylog n).

Proof: The rPCP proof π will consist of g(0), g(l) and an oracle O according to

Theorem 3.10 which allows us to verify using a constant number of probes into O,

g(l) and g(0) that the construction rules have been obeyed. The length of the longest

segments in this proof are the entries of O which are of length O(polylog n) bits long.

The tester T is essentially the same as the tester of Theorem 3.10 who verifies that

g(l) has been obtained from g(0) by following the construction rules. In addition the

tester will ensure that g(l) ≡ 0. The number of random bits is essentially the same

as in the tester of Theorem 3.10, which is O(m log |F |+ l) = O(log n). 2

Notice that by composing this system with itself, using Lemma 4.3.4, we can obtain

NP ⊂ rPCP(logn,polyloglog n) and by continuing the process, we can get NP ⊂
log(c) n, for any constant c (where log(c) denotes the cth iterated logarithm function).

Yet this does not seem to suffice to show a result of the form NP ⊂ rPCP(log n,O(1)).

In order to show such a result we need some protocol where the number of bits read
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is independent of the length of the statement being proved. In the next section we

describe such a proof system.

4.5 A long and robust proof system

In this section, we construct long but highly transparent proofs of membership for

languages in NP. The essential idea behind reducing the size of the table entries

is the use of very low degree polynomials. In fact, all the results of this section

are derived from polynomials of degree one. This results in the need to use many

variables in the polynomials, so as to encode sufficient amounts of information. This

in turn, is what causes the explosion in the amount of randomness by exponential

factors.

4.5.1 Preliminaries: Linear functions

We first review some of the key facts about linear functions. Some of the facts

mentioned here might follow from the work done on higher degree polynomials in

Chapters 3 and 2, but we mention them here anyway to reemphasize the basic prop-

erties that will be used in the rest of this section.

Definition 4.5.1 (linearity) A function A : Fm 7→ F is called linear if there exist

a1, . . . , am ∈ F such that A(x1, . . . , xm) =
∑m
i=1 ai ∗ xi.

The following is a well-known fact.

Fact 4.5.2 A function A : Fm 7→ F is linear if and only if for all x̂, ŷ ∈ Fm,

A(x̂+ ŷ) = A(x̂) +A(ŷ).

The fact above was strengthened very significantly by Blum, Luby and Rubinfeld

[BLR90] who show that the property used above is a very “robust” one, and can

hence be used to construct testers for the family of linear functions.
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Lemma 4.5.3 (linearity tester: [BLR90]) If (̃A) : Fm 7→ F satisfies

Pr
x̂,ŷ∈UFm

[
Ã(x̂+ ŷ) = Ã(x̂) + Ã(ŷ)

]
≥ 1− δ/2

then ∃ a linear function A such that d(A, Ã) ≤ δ, provided δ ≤ 1/3.

Blum, Luby and Rubinfeld [BLR90] also show that the family of linear functions

is self-correctable. In fact, they show that the value of a linear function can be

computed correctly anywhere, using two calls to a function that is close to it.

Lemma 4.5.4 (linear self-corrector: [BLR90]) If Ã is δ-close to a linear func-

tion A, then for all x̂ ∈ Fm

Pr
ŷ∈UFm

[
A(x̂) = Ã(ŷ + x̂)− Ã(ŷ)

]
≥ 1− 2δ

The important point about the lemmas above is that both hold for all finite fields

and in particular GF (2). This immediately allows us to create error-correcting codes

with very interesting error detection and correction properties. The encoding of

n-bits a1, . . . , an is the 2n bit string {A(x̂)}x̂∈Zn
2

. The linearity tester becomes a ran-

domized error detector and the self-corrector becomes a randomized error correcting

scheme. These properties will now be used in the next section to construct proofs of

satisfiability.

4.5.2 Long Proofs of Satisfiability

In this section we consider a 3-CNF formula φ on n variables v1, . . . , vn and m clauses

C1, . . . , Cm. The prover is expected to prove the satisfiability of φ by providing a

satisfying assignment a1, . . . , an, encoded in a suitable error-correcting code.

The coding scheme we choose here is based on the scheme of coding via linear func-

tions, that we touched upon in the previous section. We first develop some notation.

The assignment a1, . . . , an will be denoted by the vector â ∈ Zn2 .
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Definition 4.5.5 For vectors x̂ ∈ Z l2 and ŷ ∈ Zm2 , let x̂◦ ŷ denote the outer product

ẑ ∈ Z lm2 , given by zij = xi ∗ yj. Note that although ẑ is an l ×m matrix, we will

sometimes view it as an lm-dimensional vector. The exact view should be clear from

the context.

Let b̂ = â ◦ â and let ĉ = â ◦ b̂. Further let A : Zn2 → Z2, B : Zn2

2 → Z2 and

C : Zn3

2 → Z2 be the linear functions whose coefficients are given by â, b̂ and ĉ.

A(x) =
n∑
i=1

ai ∗ xi

B(y) =
n∑
i=1

n∑
j=1

bij ∗ yij

C(z) =
n∑
i=1

n∑
j=1

n∑
k=1

cijk ∗ zijk

The encoding scheme for â that we choose is the following: The prover writes down

the values of the functions A, B and C explicitly for each input.

The intuition for choosing this encoding is the following:

1. By using the results on linearity testing it should be possible to verify the

authenticity of such codewords.

2. Given the information specified above correctly, one can compute the value of

any degree 3 polynomial in n variables at the point â.

3. A 3-CNF formula should be closely related to degree 3 polynomials.

We now provide precise statements of the claims above and prove them.

Lemma 4.5.6 Given functions Ã, B̃ and C̃, and a constant δ > 0 there exists a

tester T , and a constant c such that:
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• If there exists a vector â such that Ã, B̃ and C̃ give the encoding of â,

then T (r, Ã, B̃, C̃) outputs PASS for all r ∈ {0, 1}O(n3).

• If for all vectors â, at least one of the distances d(A, Ã), d(B, B̃) and d(C, C̃) is

not bounded by δ, then T (r, Ã, B̃, C̃) outputs FAIL, for at least half the random

strings r ∈ {0, 1}O(n3).

Furthermore, for any fixed choice of r, T ’s output depends on at most c values of Ã,

B̃ and C̃.

Proof: The tester T first tests that the functions Ã, B̃, C̃ are linear functions,

using the tester from Lemma 4.5.3. This yields strings â, b̂ and ĉ such that: if A,B

and C are the linear function with coefficients â, b̂ and ĉ respectively, then d(A < Ã)i,

d(B, B̃) and d(C, C̃) are all bounded by δ. This tester needs to probe Ã, B̃ and C̃

in O((1
δ )2) places. Further note that at this point we could use the self-corrector of

Lemma 4.5.4 we can compute the functions A, B and C at any point correctly with

high probability.

At this point the only aspect left to be tested is that b̂ = â ◦ â and that ĉ = â ◦ b̂.
We now test that these properties hold. These tests will be based on the randomized

algorithm for verifying matrix products, due to Freivalds [Fre79]. Consider the n×n
matrix X such Xij = bij and let Y be the n × n matrix obtained by viewing â ◦ â
as an n × n matrix. The property we wish to verify is that X = Y . The idea of

Freivalds’ matrix multiplication checker is to consider a random vector x̂ ∈ Zn2 and

verifying that xTX = xTY . It can be shown that if X 6= Y then this products differ

with probability at least half.

Further, consider a randomly chosen vector y ∈ Zn2 and the products xTXy and

xTY y. If xTX 6= xTY then these products differ with probability half. Thus with

probability at least a quarter, we have that xTXy 6= xTY y, if X 6= Y . But now

consider the product xTXy: this is equal to B(x ◦ y), and the product xT (â ◦ â)y

equals A(x) ∗ A(y). Thus the identity can be tested by evaluating the functions A
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and B at three points in all. The process can be repeated constantly many times

to get high enough confidence. A similar test checking that C(x ◦ y) = A(x) ∗ B(y)

concludes the test. 2

Next consider the task of evaluating any degree 3 polynomial f at the point a1, . . . , an.

f can be written as

f(a1, . . . , an) = α+
∑
i∈S1

ai +
∑

(i,j)∈S2

ai ∗ aj +
∑

(i,j,k)∈S3

ai ∗ aj ∗ ak

= α+
∑
i∈S1

ai +
∑

(i,j)∈S2

bij +
∑

(i,j,k)∈S3

cijk

= α+A(χ(S1)) +B(χ(S2)) + C(χ(S3))

(where S1, S2 and S3 are sets that depend only of f and χ(S1), χ(S2) and χ(S3)

are the characteristic vectors of these sets). Thus any degree 3 polynomial can be

evaluated at â by computing A. B and C at one point each. Next we show that

3-CNF formulae are closely related to degree 3 polynomials.

Lemma 4.5.7 Given a 3-CNF formula φ, and an assignment a1, . . . , an, a degree

3 polynomial φ̃ : Zn2 7→ zt can be constructed (without knowledge of the assignment)

such that

• If a1, . . . , an satisfies φ, then φ̃(a1, . . . , an) = 0.

• If a1, . . . , an does not satisfy φ then φ̃(a1, . . . , an) = 1 with probability 1/2.

Proof: We first arithmetize every clause Cj into an arithmetic expression C̃j over

Z2 (over the same set of variables), so that Cj is satisfied by â if and only if C̃j

evaluates to zero. This is done as follows: If Cj is the clause v1 ∨ v2 ∨ ¬v3 then C̃j

will be the expression (1− v1) ∗ (1− v2) ∗ v3. Notice that each clause gets converted

in this fashion to a degree 3 polynomial and the whole formula φ is satisfied only if

each expression C̃j evaluates to zero at vi = ai.
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Now consider taking the inner product of the vector < C̃1, . . . , C̃m > with a randomly

chosen m-bit vector r. If the vector < C̃1, . . . , C̃m > is not identically zero then the

inner product will be non-zero with probability half. Thus if we let φ̃ be the inner

product i.e.,
∑m
j=1 rj ∗C̃j then φ̃ is a degree three polynomial in the n variables which

satisfies the conditions required by the Lemma. 2

Thus we are in a position to prove the following lemma.

Lemma 4.5.8 NP ⊆ prPCP(poly(n), 1).

Proof: For any language L and fixed input length n, we create a 3-CNF formula

φ such that

∀w ∈ {0, 1}n∃y such that φ(w, y) is true ⇔ w ∈ L

We then expect the prover to encode the string a = w · y using the encoding mech-

anism (i.e., the functions A, B and C) as constructed in this section. The tester

T first verifies that the encoding describes a valid assignment, using Lemma 4.5.6

and then verifies that it corresponds to a satisfying assignment of φ by creating φ̃

as described in Lemma 4.5.7. Notice further that the parity a = w · y on any subset

of the bits can be expressed as the value of A at a certain point. The tester T uses

this fact to verify that the initial portion of a is the same as w. The tester picks

a random subset of the bits of w and compares its parity with the parity of a on

the same subset of bits. If the initial portion of a is different from w then this test

will detect this with probability half. This test is repeat enough times to get large

enough probabilities of detecting cheating.

Thus tester T rejects the proof (i.e., the functions A, B and C), with probability

half if w 6∈ L and accepts with probability one if w ∈ L. 2

Lemma 4.5.9 NP ⊂ rPCP(poly(n), O(1))

Proof: To convert the proof system of Lemma 4.5.8 to a rPCP(poly(n), O(1))

proof system we observe that if the input w = w1 ·w2 · · ·wc are each encoded by the
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parities of all their subsets, then the last phase of the tester’s verification process,

just compares entries from the encodings of w1 etc. with the value of A at some

point. Thus there exists an encoding scheme E and a proof π such that the tester

looks at O(1) bits from the encodings of w1, · · · , wc and O(1) bits of the proof π and

verifies that w1 · w2 · · ·wc ∈ L. 2

4.6 Small proofs with constant communication: Recur-

sion

The results of the previous two sections can be combined using the recursion lemma,

Lemma 4.3.4 to get proofs which combine the best of both the proof systems.

Theorem 4.1 NP ⊂ rPCP(log n,O(1))

Proof: Using Lemmas 4.3.4 and 4.4.3, we get that NP ⊂ rPCP(log n,polyloglog n).

Now using this result and Lemma 4.5.9, we see that L ⊂ rPCP(log n,O(1)). 2

The result can be extended to get the following theorem for general NTIME classes.

Theorem 4.2 If L ∈ NTIME(t(n)), then L ∈ PCP(log(t(n) + n), O(1)).

Thus the following corollaries become immediate.

Corollary 4.6.1 NE = PCP(n,O(1))

Corollary 4.6.2 NEXPTIME = PCP(poly(n), O(1))

4.7 Discussion

The rPCP(poly(n), O(1)) protocol discussed in this chapter is new to [ALM+92].

The

rPCP(log n,polylog n) protocol is based on the work done by Lapidot and Shamir
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[LS91] and Feige and Lovasz [FL92a] on parallelizing the MIP = NEXPTIME proto-

col, but has some new elements to it. In particular, the amount of randomness used

in the protocols of [LS91, FL92a] seems to be superlogarithmic and we are able to

reduce this to O(log n). Moreover, their final protocols does not seem to be able to

handle the situation where the input comes in a constant number of error-corrected

pieces. The recursive proof construction technique described here is almost entirely

due to the work of Arora and Safra [AS92]. Some of the formalism was introduced

in [ALM+92].

Open Questions The most important question that does remain open is what is

the smallest number of bits that need to be read from a transparent proof to achieve

a fixed probability of detecting a false proof. In the next chapter a connection is

pointed out between the PCP proof systems and 3SAT. This connection shows that

if the probability of detecting cheating is allowed to be an arbitrarily small constant,

then reading 3 bits of the proof suffices. Moreover, if the error of the verifier is

expected to be one sided, then 3 bits are necessary (the computation of a verifier

when it reads only 2 bits can be equated to the satisfiability of a 2-SAT formula).

Lastly, in this regard, it may be pointed out that if the error of the verifier is allowed

to be two-sided then even reading two bits suffices.

Our result shows that any proof can be converted into a transparent proof which

is within a polynomial factor of the size of the original proof. In contrast to this,

the transparent proofs of [BFLS91] are nearly linear in the size of the original proof.

This raises the question of whether the proofs of this section can be compressed into

a nearly linear size. This question seems to get mapped down to the question of the

efficiency of the low-degree test and the question about the field sizes required for

the Arora-Safra Tester that is raised at the end of Chapter 3.
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Chapter 5

Hardness of approximations

The notion of NP-completeness [Coo71, Lev73, Kar72] was developed primarily as

an attempt to explain the apparent intractability of a large family of combinato-

rial optimization problems. The resulting theoretical framework [GJ79] was defined

mainly in terms of decision problems obtained by imposing bounds on the value of

the objective function. This permitted the development of an elegant body of results

and the formalism sufficed for the purposes of classifying the complexity of finding

optimal solutions to a wide variety of optimization problems.

Attempts to extend this analysis to the task of finding approximate solutions to

the same set of problems, was not very successful. Problem which seemed equiva-

lent when the goal was to find exact solutions, seems to break apart into problems

of widely varying complexity when the goal was relaxed to that of finding approx-

imate solutions. Some problems like the knapsack problem have extremely good

approximation algorithms [GJ79]. Other problems have algorithms where the error

of approximation can be made arbitrarily small, but the penalties paid for improved

solutions are heavy. An example of such a problem is the task of minimizing the

makespan on a parallel machine - a scheduling problem studied in [HS87]. Yet other

problems like the Euclidean TSP and vertex cover seemed approximable to some



77

constant factor but not arbitrarily small ones; and finally we have problems which

seem no easier to approximate than to solve exactly e.g. Chromatic number.

Some initial success was obtained in showing the hardness of even approximating

certain problems: For the traveling salesman problem without triangle inequality

Sahni and Gonzalez [SG76] showed that finding a solution within any constant factor

of optimal is also NP-hard. Garey and Johnson [GJ76] showed that the chromatic

number a graph could not be approximated to within a factor of 2−ε. They also show

that if the clique number of a graph cannot be approximated to within some constant

factor, then it cannot be approximated to within any constant factor. Hochbaum and

Shmoys [HS85, HS86] study some minmax problems where they show tight bounds

on the factor to which these problems may be approximated unless NP = P.

The lack of approximation preserving reductions among optimization problems seemed

to isolate these efforts and the search for such reductions became the goal of a

wide body of research [ADP77, ADP80, AMSP80, PM81]. The most successful of

these efforts seems to be the work of Papadimitriou and Yannakakis [PY91] where

they used a syntactic characterization of NP due to Fagin [Fag74] to define a class

called MAX SNP. They also defined a particular approximation preserving reduc-

tion called the L-reduction (for linear reductions) used these reductions to find

complete problems for this class. All problems in this class were approximable

to some degree, and the complete problems for the class seemed hard to approxi-

mate to arbitrarily small factors. The class MAX SNP seemed to provide a much

need framework to deal with approximation problems and this was evidenced by

the large number of problems which were subsequently shown to be hard for this

class [PY91, PY92, BP89, BJL+91, DJP+92, Kan91, BS92, KMR92].

Yet, the hardness of MAX SNP seemed like a weaker condition than hardness for

NP, and except for the chromatic number no unweighted combinatorial problem

could be shown to being hard to approximate to some degree. It hence came as a big

surprise when Feige, Goldwasser, Lovasz Safra and Szegedy [FGL+91], were able to
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show hardness (under a slightly weaker assumption than P 6= NP) of approximating

the clique number of graphs to within constant factors. The hardness result used

recent results in the area of interactive proofs in a very clever but simple manner,

thus serving to illustrate the power of the machinery that had been built in the area

of interactive proofs. Here, by showing an equally simple connection between such

results and MAX SNP, we are able to show hardness results for all MAX SNP hard

problems.

In the following sections we will first define the notions of approximation problems

and lay out the various goals that could be set for an approximation problem. In

the following section we delve into the class MAX SNP and outline some of its

features. We then go on to relate the notion of probabilistically checkable proofs with

MAX SNP. We do so by formulating the task of finding a PCP as an optimization

problem in MAX SNP. The gap in the definition of PCP creates a gap in the

optimization problem, which yields a hardness result even for the approximate version

to this problem.

5.1 Optimization Problems and Approximation Algo-

rithms

The following is the definition of a NP optimization problem.

Definition 5.1.1 (optimization problem) An instance I of a NP optimization

problem Π consists of the pair (S, value) where S represents the solution space and

value : S 7→ < is a polynomial time computable function referred to as the objective

function. The goal of the problem maybe any one of the following:

1. Given a real number k, determine if there exists a solution s such that value(s) ≥
k (or value(s) ≤ k for minimization problems).
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2. Find the maximum (minimum) achievable value of value over S. This quantity

is denoted OPT(I).

3. Find the solution s ∈ S which maximizes (minimizes) value(s). Typically, the

solution space S is of the form {0, 1}n and the function value has a description

length which is polynomial in n.

It turns out that for many interesting problems (and in particular, the NP-complete

ones), the above three goals are equivalent under polynomial time reductions. For

approximation versions of the above questions, though, the problems may not re-

main equivalent any more. In this chapter we will use the following notion of an

approximate solution for an optimization problem.

Definition 5.1.2 (approximation algorithm) An ε-approximation algorithm for

an NP optimization problem Π, takes an instance I as input and outputs an estimate

E which satisfies
E

1 + ε
≤ OPT ≤ (1 + ε)E

Notice that the above definition corresponds to the second of the three possible

definitions of exact optimization problems. Note that in many applications, it would

be more useful to produce an algorithm actually outputs a solution which comes close

to the maximum value. But, since we are trying to prove negative results about the

existence of such algorithms, proving it for the weaker notion is a stronger result.

Definition 5.1.3 (polynomial time approximation scheme: PTAS) For an

optimization problem Π, a polynomial time approximation scheme, takes a parameter

ε and produces an ε-approximation algorithm Aε for the problem Π. The running time

of Aε on inputs of length n is bounded by a polynomial in n. (The input here is a

description of the solution space S and the function f .)

The research efforts of the past two decades [ADP77, ADP80, AMSP80, GJ79, GJ78,

PM81] have broadly aimed at classifying approximation versions of optimization

problems into one of the following classes:
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1. Fully polynomial time approximable problems: These are problems Π, for which

there exists an algorithm A, such that A takes as input an instance I of Π and

an approximation factor ε and produces as output an ε-approximate estimate.

The running time of A is polynomial in |I| and 1
ε .

2. Problems with polynomial time approximation schemes.

3. Approximable problems: These are problems for which some constant ε exists,

such that an ε-approximate estimate can be found in polynomial time.

4. Hard problems: These are problems for which no constant factor approximation

is known.

5.2 MAX SNP: Constraint Satisfaction Problems

The class MAX SNP was defined by Papadimitriou and Yannakakis [PY91] based

on the syntactic definition of NP of Fagin [Fag74] and on subsequent definition of

strict-NP due to Kolaitis and Vardi [KV87]. The formal definitions are presented

below.

Definition 5.2.1 (NP: [Fag74]) A predicate Π on structures I, is in NP if it can

be expressed in the form ∃Sφ(I, S), where S is a structure and φ is a first order

predicate.

(In the above definition Π is equivalent to the problem and I the instance of the

problem.)

Definition 5.2.2 (SNP: [KV87]) A predicate Π on structures I, is in SNP if it

can be expressed in the form ∃S∀xφ(x, I, S), where S is a structure and φ is a quan-

tifier free predicate.
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Definition 5.2.3 (MAX SNP: [PY91]) An optimization problem Π on structures

I is in MAX SNP if its objective function can be expressed as

max
S
|{x : φ(x, I, S)}|

The following problem provides an alternate view of MAX SNP. It defines a com-

binatorial problem which turns out to be the “universal” MAX SNP problem. The

combinatorial nature of the problem statement might make it an easier definition to

use.

Definition 5.2.4 A constraint of arity c is function from c boolean variables to the

range {0, 1}. The constraint is said to be satisfied by an instantiation of its inputs

if the boolean function evaluates to 1 at the instantiation.

Definition 5.2.5 (constraint satisfaction problem) For a constant c, an instance

I of c-CSP consists of a set of constraints C1, · · · , Cm of arity c on variables x1, . . . , xn

where the objective function is

max
assignments to x1, . . . , xn

| {Ci|Ci is satisfied by the assignment } |

The c-CSP is a universal MAX SNP problem in the sense that a problem lies in

MAX SNP if and only if there exists a c such that it can be expressed as a c-CSP.

The proof of this claim is straightforward and omitted.

Papadimitriou and Yannakakis also introduced the notion of a linear reduction

(L-reduction) which is an approximation preserving reduction. The notion of L-

reductions allows them to find complete problems for the class MAX SNP.

Definition 5.2.6 (linear reduction: [PY91]) Optimization problem Π L-reduces

to Π′ if there exist polynomial time computable functions f, g and constant α, β ≥ 0

such that

1. f reduces an instance I of Π to an instance I ′ of Π′ with the property that

OPT(I) ≤ αOPT(I ′).
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2. g maps solutions s′ of I ′ to solutions s of I such that |value′(s′)−OPT(I ′)| ≤
β|value(s)−OPT(I)|.

It is clear from the above definition that if there is a polynomial time algorithm for

Π
′

with worst-case error ε, then there is a polynomial time algorithm for Π with

worst-case error αβε. Using the above definition of L-reductions, Papadimitriou and

Yannakakis showed that the following problems were complete for MAX SNP. This

means, in particular, that if any of the following problems has a PTAS then all

problems in MAX SNP have a PTAS.

MAX 3-SAT: Given a 3-CNF formula, find an assignment which maximizes the

number of satisfied clauses.

MAX 2-SAT: Given a 2-CNF formula, find an assignment which maximizes the

number of satisfied clauses.

INDEPENDENT SET-B: Given a graph G with maximum degree of any vertex

being bounded by a constant B, find the largest independent set in the graph.

VERTEX COVER-B: Given a graph G with maximum degree of any vertex being

bounded by a constant B, find the smallest set of vertices which covers all the edges

in the graph.

MAXCUT: Given a graph G find a partition of the vertices which maximizes the

number of edges crossing the cut.

Further, they show that every problem in MAX SNP is approximable to some con-

stant factor.

Lemma 5.2.7 ([PY91]) For every problem Π in MAX SNP, there exists a constant

ε such that there exists an ε-approximation algorithm for Π which runs in polynomial

time.

Proof: We use the universality of the c-CSP. Consider a constraint optimization

problem with constraints C1 to Cm where any constraint is a function of at most
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c variables. Let m′ be the number of constraints which are individually satisfiable

i.e., constraints for which there exists an instantiation which will satisfy them. Then
m′

2c ≤ OPT(I) ≤ m′. Thus an algorithm that computes m′ and outputs it is a

2c-approximation algorithm. 2

Even more interesting than problems in MAX SNP are the wide variety of problems

that are known to be hard for this class. We compile here a list of few of them.

TSP(1, 2): ([PY92]) Given a complete graph on n vertices with lengths on its

edges, such that all edge lengths are either one or two, find the length of the shortest

tour which visits all vertices at least once.

STEINER TREE(1, 2): ([BP89]) Given a complete graph on n vertices with

weights on its edges, such that all edge weights are either 1 or 2, and a subset S of

the vertices, find the minimum weight subgraph which connects the vertices of S.

SHORTEST SUPERSTRING: ([BJL+91]) Given a set of strings S1, . . . , Sk,

over the alphabet {0, 1}, find the length of the shortest string S which contains all

the given strings as substrings.

MAX CLIQUE: ([BS92, FGL+91]) 1 Given a graph G find the largest clique in

the graph. (This problem was shown to be very hard for MAX SNP, in that if the

clique size could be approximated to within nδ for any δ > 0, then there exists a

PTAS for MAX 3-SAT.)

LONGEST PATH: ([PY92, KMR92, Aza92]) Given a graph G, approximate

the length of the longest path in the graph to within any constant factor.
1Berman and Schnitger [BS92] showed the hardness result mentioned here under the assumption

that MAX 3-SAT did not have randomized PTAS. The assumption could be made weaker using
some of the known derandomization techniques (say, using the idea of recycling random bits [IZ89]).
The result could also be observed from the reduction of Feige et al. [FGL+91] as a special case.
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5.3 Non-existence of PTAS for MAX SNP hard prob-

lems

We now establish the hardness of approximating MAX SNP hard problems to within

arbitrarily small factors of approximation. The results of this section also appear in

[ALM+92].

Consider a language L ∈ NP and a transparent proof of membership of an input

instance x in the language L. The question of deciding whether such a proof exists

can be converted into an optimization problem as follows:

• The space of solutions will be all possible s(n) bit strings, each one representing

a potential proof. Each bit of the proof will be treated as an independent

variable. This creates s(n) variables denoted πi.

• For each possible random string r tossed by the tester of the transparent proof,

we set up a constraint Tr,x to simulate the tester’s action on the chosen random

string. The constraint Tr,x is a specification on some O(1) variables from the

set {π1, . . . , πs(n)}.

• The optimization problem which questions the existence of a valid proof is:

MAX PCP:

Given x ∈ {0, 1}n find max
π∈{0,1}s(n)

{ Number of Tr,x constraints satisfied by π}

Claim 5.3.1 MAX PCP ∈ MAX SNP

Proof: By Theorem 4.1 we have NP = PCP(log n,O(1)). Thus the number

of different random strings is polynomial in the input size. Hence the number of

constraints is polynomial in |x|. Further, since each Tr,x is a constraint on a constant

number of the variables πi, this fits the definition of a constraint satisfaction problem

and thus is a MAX SNP problem. 2
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Claim 5.3.2 Approximating MAX PCP to within 10% is NP-hard.

Proof: Consider an arbitrary language L ∈ NP and an instance x ∈ {0, 1}n. The

MAX PCP problem deciding whether x has a transparent proof of membership will

have an optimum value of either 2r(n) if x ∈ L or at most 2r(n)−1 if x 6∈ L. Thus a

10% approximation to the optimum value will give an answer of at least .9 × 2r(n)

or at most .55 × 2r(n). Thus even a 10% approximate answer suffices to distinguish

between the cases x ∈ L and x 6∈ L. Thus approximating MAX PCP to within 10%

suffices to decide membership for any language in NP. 2

Theorem 5.1 For every MAX SNP-hard problem Π, there exists a constant ε such

that finding ε-approximate solutions to Π is NP-hard.

Proof: The proof follows from the fact that there exists an approximation preserv-

ing reduction from MAX PCP to any MAX SNP-hard problem. In particular, given

any MAX SNP-hard Π, there exists an ε such that an ε-approximate solution to Π

would yield a 10% approximate solution to MAX PCP. Thus finding ε-approximate

solutions to Π is NP-hard. 2
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Chapter 6

Conclusions

We have proved that any NP language admits an efficient probabilistically checkable

proof of membership. This proof need only be examined in a constant number of

randomly chosen places by a polynomial time verifier. Currently, the transformation

from the standard proof to the transparent proof requires a slightly super-quadratic

blowup in size. Can this be substantially improved? We should point out that since

mathematicians rarely write up proofs in enough detail to be machine checkable,

our results should not be regarded as having practical consequences to mathematical

proof checking. Nevertheless, it is possible that these techniques might be useful

in ensuring software reliability – by making it possible to build redundancy into

computations so that they can be efficiently checked. The blowup in the size of the

above transformation is quite crucial for this application.

One interesting consequence of our results on testing and correcting of polynomi-

als is that we obtain efficient randomized algorithms for error-detection and error-

correction of some classical codes, like the Hadamard codes and the Reed-Solomon

codes. The error-detection algorithm can very efficiently and by making very few

probes into a received word, approximate its distance from a valid codeword. The

error-correction algorithm can retrieve any bit of the nearest codeword to the received
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word by making very few probes into the received word. These error-detection and

error-correction schemes have already been put to theoretical use in this work. It re-

mains to be seen if they be put to practical use. The efficient randomized algorithms

can be converted into fast deterministic parallel algorithms, and such error detecting

and correcting schemes might be of some interest.

The surprising connection between efficient probabilistically checkable proofs and the

hardness of approximating clique sizes in graphs, due to [FGL+91], is now much bet-

ter understood. Here we showed that for every MAX SNP-hard problem, there exists

a constant ε such that approximating the optimum value to within a relative error of

ε is NP-hard. More recently, Lund and Yannakakis [LY92] have shown strong hard-

ness results for approximating the chromatic number of graphs and approximating

the minimum set cover size for a family of sets. In the light of all these devel-

opments, it appears that this connection between probabilistically checkable proofs

and approximation problems is a fundamental one. Several questions still need to be

resolved including the complexity of approximating the traveling salesman problem

on the plane, approximating the longest path in a graph, finding the magnification

of a graph, the length of shortest vector in a lattice etc. The last of these problems is

particularly interesting since the approximate version of this problem is not very sen-

sitive to the exact norm being used, and thus a hardness under any one norm would

yield a hardness result under all norms. This is an example of one situation where

the hardness of approximation might end up providing the first NP-completeness

for even the exact problem, since the “shortest vector in a lattice” problem is not

known to be NP-hard under arbitrary norms. A concrete example of such a result

may be found in [LY92], where they show the hardness of approximating a certain

problem thus providing the first proof showing hardness of exact computation for

that problem.

The exact constant for the number of bits examined by probabilistic proof systems

for NP is also very important, since this is directly related to the constants for which
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the different approximation problems become NP-hard. Of course, the number of

bits examined can be traded off against the probability of discovering a fallacious

proof. In fact, if one is willing to accept only a tiny probability of detecting a false

proof, then for a certain proof system examining 3 bits of a proof is sufficient. Thus

the precise version of the question would ask: How many bits of a proof need to be

examined if the verifier is expected to reject false claims with probability half? At

present, the best known bound on the number of bits probed in polynomial sized

proofs seems to be less than a 100 bits. [PS92, Sud92]. Such a result would translate

to showing that MAX 3-SAT cannot be approximated to within 1
300 . This, of course,

is far from being tight (the best known upper bound for the constant is 1/8).

One way of interpreting the hardness result for approximating MAX 3-SAT is the

following: we need to perturb the input in a large number of places to go from

“yes” instances of a problem (one that is largely satisfiable) to “no” instances of a

problem (one in which a significant fraction of the clauses are not satisfied under any

assignment). Thus the hardness of this problem is not attributable to the sensitivity

to the input. An extreme form of this interpretation leads us to consider the question

of whether we can draw the input from the uniform distribution (or any polynomial

time sampleable distribution) and still get problems that are very hard? Interestingly

enough one of the key techniques relying on the power of polynomials – random self-

reducibility – has already been used to show instances of average case hard problems

for #P [Lip91]. It would be interesting to see if any of these techniques can be used

to show average case hardness for problems in NP.
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Chapter 7

The Berlekamp Welch Decoder

The essence of the Berlekamp Welch technique lies in their ability to use rational

functions to describe a sequence of points most of which lie on a univariate polyno-

mial. We first give some basic facts about rational functions. In this section, we can

allow these functions to be functions over any field F .

7.1 Preliminaries: Rational Functions

Definition 7.1.1 (rational function) A function r : F 7→ F is a rational function

if it can be expressed as r(x) = f(x)
g(x) for polynomials f and g. The degree of r(x) is

given by the ordered pair (d1, d2), where d1 is the degree of f(x) and d2 is the degree

of g(x).

Definition 7.1.2 A rational function r(x) describes a sequence {(xi, yi)|i = 1 to n}
if for all i, yi = r(xi) or r(xi) evaluates to 0/0.

Fact 7.1.3 (uniqueness) If rational functions f1(x)
g1(x) and f2(x)

g2(x) both of degree (d1, d2)

where d1 + d2 < n describe a given sequence {(xi, yi)|i = 1 to n}, then f1
g1
≡ f2

g2
.
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Proof [Sketch]: Follows from the fact that the polynomials f1 ∗ g2 and f2 ∗ g1
agree at each of the points xi. But these are both polynomials of degree d1 + d2 and

if they agree at n > d1 + d2 points, then they must be identical. Hence f1
g1
≡ f2

g2
. 2

Fact 7.1.4 (interpolation) Given a sequence {(xi, yi)|i = 1 to n}, a rational func-

tion of degree (d1, d2) that describes the given sequence can be found in time polyno-

mial in n, provided one exists.

Proof: Observe that if we let the coefficients of f and g be unknowns, then the

constraints f(xi) = yi ∗g(xi) become linear constraints in the unknowns. Thus if the

linear system so obtained has a solution, then it can be found by matrix inversion.

2

7.2 The Decoder

Recall that the task we wish to solve is the following:

Given: n points {(xi, yi)|i = 1 to n}.

Output: A polynomial p of degree at most d such that for all but k values of i,

yi = p(xi) (where 2k + d < n).

Claim 7.2.1 There exists a rational function r of degree (k + d, k) which describes

the given sequence.

Proof: Consider a polynomial W which evaluates to zero at xi if yi 6= p(xi). Such

a polynomial exists whose degree is at most k. Now consider the rational function
p·W
W . This describes all the input points. 2

We are now in a position to prove Lemma 2.3.1:

Lemma 2.3.1 Given n points (xi, yi) ∈ F 2, there exists an algorithm which finds a

degree d polynomial g such that g(xi) = yi for all but k values of i, where 2k+d < n,

if such a g exists. The running time of the algorithm is polynomial in d and n.
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Proof: Claim 7.2.1 tells us that there exists a rational function of the form g·W
W

which describes the given points. A rational function which describes the given

points can be found by interpolation and the rational functions are unique except for

multiplication by common factors, and thus are of the form g·W ′
W ′ . Thus the quotient

of the so obtained rational function gives us g. 2
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Chapter 8

Composing Proof Systems

Here we prove Lemma 4.3.4. Recall the definition of rPCP and the statement to be

proved.

Lemma 4.3.4 If NP ⊂ rPCP(r1(n), q1(n)) and NP ⊂ rPCP(r2(n), q2(n)),

then NP ⊂ rPCP(r1(n) + r2(q1(n)), q2(q1(n))).

Proof: The proof follows in a straightforward manner based on the discussion of

Section 4.3. The proof is somewhat long since we have to ensure that the composed

system satisfies all the properties required of an rPCP proof system.

Input Encoding Let E1 be the coding scheme for the rPCP(r1(n), q1(n)) proof

system and let E2 be the coding scheme for the rPCP(r2(n), q2(n)) proof system.

Then the coding E for the composed proof system is obtained by first encoding x

according to E1 and thus obtaining a s1(n)× q1(n) table T1x and then encoding each

q1(n)-bit entry of T1x as a s2(q1(n)) × q2(q1(n)) entry. The final table for x thus

contains s1(n)× s2(q1(n)) entries each of which is q2(q1(n)) bits long.

The inverse mapping E−1 is obtained by viewing a table T : [s1(n)]× [s2(q1(n))] 7→
{0, 1}q2(q1(n)) as s1(n) tables of size s2(q1(n))× q2(q1(n)) and inverting each of these
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tables according to E−1
2 . This gives s1(n) entries of size q1(n) which can be viewed

as a s1(n)× q1(n) table which when inverted according to E−1
1 gives an n-bit string.

This n bit string is defined to the inverse according to E−1 of the table T .

Proof Tables Let π1x be the proof table for x ∈ L according to the rPCP(r1(n), q1(n))

proof system. Then the first portion of the proof table π for the composed system

consists of s1(n) tables of size s2(q1(n)) × q2(q1(n)). These are the tables obtained

by encoding each entry of π1x according to E2.

The second portion of π consists consists of one table for each possible random

string r ∈ {0, 1}r1(n). Let y1, · · · , yc′ be the contents of the c′ locations of the tables

E1(x1), . . . , E1(xc) and π1 that are read by the tester T1 on the choice of r as a random

string. Further, let Cr be the circuit of size poly(q1(n)) which decides whether to

accept y1, · · · , yc′ or not. Then the table π contains a table π2r of size s2(q1(n)) ×
q2(q1(n)) which proves that (Cr, y1, . . . , yc′) represents a circuit with an accepting

input assignment in y1 · · · yc′ . (Notice that this is a polytime computable predicate

and hence in NP.)

Tester The tester T for the composed proof system acts as follows. It first picks

a random string r ∈ {0, 1}r1(n) and tries to simulate the action of the tester T1.

This would involve reading y1, . . . , yc′ and then verifying that a circuit Cr will ac-

cept (y1, . . . , yc′). The tester will thus encode the representation of the circuit Cr

using E2 and then use the second proof system and the proof π2r to verify that

E2(Cr), E2(y1), . . . , E2(yc′) represents a circuit with an accepting input assignment.

Notice further that the computation of the tester T can be expressed as a circuit of

size poly(q2(q1(n)O(1))) (which is the same circuit which describes the computation

of tester T2 on input E2(Cr), E2(y1), . . . , E2(yc′) and proof π2r).
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Correctness It is clear that if x1 · x2 · · ·xc ∈ L then there exists a proof such that

the tester T always outputs PASS. For the other direction, consider tables τ1, . . . , τc

such that E−1(τ1) · · ·E−1(τc) 6∈ L. Let π be a proof which tries to prove that

E−1(τ1) · · ·E−1(τc) ∈ L. We will show that the tester T will output FAIL on this

proof with probability at least 1/4.

Let τ (1)
1 , . . . , τ

(1)
c be the s1(n) × q1(n) tables obtained by interpreting the tables

τ1, . . . , τc as s1(n) tables of size s2(q1(n)) × q2(q1(n)) and decoding each such table

according to E−1
2 . Similarly let π1 be the s1(n)×q1(n) table obtained by decoding the

tables of the first half of π according to Then E−1
1 (τ (1)

1 ) ·E−1
1 (τ (c)

1 ) 6∈ L. Therefore we

find that for half the choices of r ∈ {0, 1}r1(n), the tester T1,r(E−1
1 (τ (1)

1 )·E−1
1 (τ (c)

1 ), π1)

will output FAIL. Now for all such choices of r, Let the contents of the entries of

τ1, . . . , τc and π1 as read by the tester T1 be y1, . . . , yc′ . Then, y1, . . . , yc′ are the

inverse encodings of some tables τ (2)
1 , . . . , tau

(2)
c′ according to E−1

2 . T1,r(y1, . . . , yc′)

outputs FAIL, By the property of the second proof system, we have that for at least

half the choices of r(2) ∈ {0, 1}r2(q1(n)), the tester T2,r(2)(τ
(2)
1 , . . . , tau

(2)
c′ , π2 will output

FAIL for any proof π2. Thus with probability 1/4 the tester T outputs fail on any

proof π.

By running the same tester thrice on this proof system, the probability of outputting

fail can be increased to 37/64 which is greater than a half.

2
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Chapter 9

A Characterization of NP via

Polynomial Sequences

We first show how to construct a sequence of polynomials which verifies that a 3-CNF

formula is satisfiable.

Lemma 4.2.1 ([BFL91, BFLS91]) For a 3-CNF formula φ there exists a polyno-

mial sequence of length and width at most log n, with polynomials of degree at most

log2 n in Θ( logn
loglogn) variables, such that sequence can be terminated in the trivial

polynomial if and only if φ is satisfiable.

Proof: The proof places the formula φ and the assignment A in a suitable encoding

and then verifies the consistency of A for φ.

To encode n-bits a1, . . . , an which represent an assignment to n variables, we will use

the (m,h, F )-polynomial extension encoding, where hm = n. Recall that this means

that we pick a set H ⊂ F (with |H| = h) and let A be the function from Hm to

{0, 1} which is specified on n places by a1, . . . , an. The encoding is the extension of

A to a low-degree polynomial Ã (of degree at most mh).

The encoding of the 3-CNF formula is obtained as follows: We view the formula as a
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function f from H3m×{0, 1}3 to {0, 1}, where f(ẑ1, ẑ2, ẑ3, b1, b2, b3) = 1 if the formula

has a clause which contains the variable ẑ1, ẑ2, ẑ3 with negated variables indicated by

the bit bi being 1. The encoding of this formula will be a function f̃ : F 3m+3 7→ F .

Consider the function sat? : F 3m+3 7→ F defined as follows:

sat?(ẑ1, ẑ2, ẑ3, b1, b2, b3) =
3∏
i=1

(Ã(ẑi) ∗ bi + (1− Ã(ẑi)) ∗ (1− bi))

sat? is a polynomial of degree O(mh) and evaluates to zero in the domain H3m ×
{0, 1}3 if the clause given by (ẑ1, ẑ2, ẑ3, b1, b2, b3) is satisfied by the assignment.

Now consider the polynomial

g(0)(ẑ1, ẑ2, ẑ3, b1, b2, b3) = f(ẑ1, ẑ2, ẑ3, b1, b2, b3) ∗ sat?(ẑ1, ẑ2, ẑ3, b1, b2, b3)

Our task is to ensure that g(0) is zero on the domain H3m × {0, 1}3.

Let m′ = 3m + 3. g(0) is a function on m′ variables, say z1, . . . , zm′ , and we wish

to ensure that g restricted to Hm′ is zero. We do so by constructing a sequence of

polynomials such that the final polynomial will not be zero if the initial one is not

zero on this subdomain. The intuition behind the rest of this proof is as follows.

Effectively we want to simulate the effect of an OR gate which has fanin Hm′, by

a polynomial sequence with small width and length. So first we implement the OR

gate with fanin Hm′ by a circuit of depth m′ and in which each gate has fanin H

(in the obvious way). Then we show how to implement each OR gate in this circuit

– approximately – by a low degree polynomial. This leads to a polynomial sequence

whose width is the fanin of the circuit and whose length is the depth of the circuit.

The polynomial g(i) is a function of the variables zi+1, . . . , zm′ and w1, . . . , wi and is

defined as follows:

g(i)(zi+1, . . . , zm′ ;w1, . . . , wi) =
∑
y∈H

g(i−1)(y, zi+1, . . . , zm′ ;w1, . . . , wi−1) ∗ wζ(y)i

(where ζ is some function that maps the elements in H to distinct integers in the

range 0, . . . , h− 1).
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It is clear that the g(i)’s are polynomials of degree O(h) in each variable. To complete

the argument we wish to show that g(m′) identically becomes zero if and only if g(0)

is zero on the domain Hm′ .

Let r1, . . . , rm′ be randomly chosen from F . We will show that g(i)(zi+1, . . . , zm′ ; r1, . . . , ri)

is non-zero with high probability, if g(i−1)(y, zi+1, . . . , zm′ ; r1, . . . , ri−1) is non-zero for

any y ∈ H. Let cy = g(i−1)(y, zi+1, . . . , zm′ ; r1, . . . , ri−1). Then g(i)(zi+1, . . . , zm′ ; r1, . . . , wi) =∑
y∈H cy ∗w

ζ(y)
i , is a univariate polynomial of degree h in wi which is not identically

zero. Thus for a random choice of wi = ri the summation is non-zero with probability

1−h/|F |. Conversely, also observe that if the cy’s are all zero then the weighted sum

is zero. This gives us the “approximate” OR gate we were looking for. By a simple

argument, it can now be shown that with probability 1−m′h/|F |, g(m′)(r1, . . . , rm′)

is non-zero, implying that g(m′) is not identically zero.

Thus we have shown how to build a construction sequence A,sat?,g(0), . . . , g(m′)

with the property that ∃A such that g(m′) ≡ 0 if and only if f represents a satisfiable

3-CNF formula.

Observe further that the length, width and degree of the sequence is as promised. 2

Now we are in a position to show a stronger version of this lemma: i.e., where the

inputs are themselves part of the sequence. We will let the inputs x1, . . . , xc be

encoded by the (m,h, F )-polynomial extension code Em,h,F . The decoder E−1
m,h,F

finds the closest polynomial to a function f : Fm 7→ F and uses its values on the

space Hm as the message. (Observe that the message so obtained is a message from

|F |n and not necessarily {0, 1}n. Since L will only include strings from {0, 1}n, we

will have to exclude all the remaining strings explicitly.)

Lemma 4.4.2Given a constant c > 0 and language L ∈ NP and a parameter n,

a ( logn
loglogn , log n)-construction rule for degree log2 n polynomials g(0), . . . , g(l) where

g(i) : Fm 7→ F , can be constructed in polynomial time, with the property that ∃g(0)

s.t. g(l) ≡ 0 ⇔ x1 · x2 · · ·xc ∈ L, where xi ∈ Fn is the decoding according to E−1
m,h,F
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of the polynomial g(i). Moreover |F | = O(polylog n) and m = Θ( logn
loglogn). 1

Proof: The proof follows from the following basic ideas:

• (Cook’s Theorem) Given c, n and L we can construct a 3-CNF formula φn

on n′ = cn + nO(1) such that ∃y such that φn(x1, x2, . . . , xc, y) is true if and

only if x1 · · ·xc ∈ L.

• (Assignment) Let g(0) be the Em,h,F encoding of the assignment to y. Let

g(i) be the encodings of xi. Construct g(c+1) : Fm+1 7→ F to be g(c+1)(i, ẑ) =

g(i)(ẑ). We will name this the assignment function A.

Now we are in a position to apply the lemma described above and construct a se-

quence of polynomials g(c+2), . . . , g(l) such that the final polynomial is zero if and

only if the assignment given by A satisfies φn.

2

1Some attributional remarks: Most of the technical work required for this theorem was done in
the work of [BFL91], but their characterization refers specifically only to NEXPTIME languages.
The work of Babai, Fortnow, Levin and Szegedy [BFLS91] is the first to point out the significance to
NP languages. In order to scale down their result they also needed more compressed representations
of the assignment function than found in the encoding used by [BFL91]. They were the first to
use the particular size of H as used in the proof here. The observation that one could work with a
constant number of encoded inputs is made by Arora and Safra [AS92].


