
FREE BITS, PCPS AND NON-APPROXIMABILITY – TOWARDS
TIGHT RESULTS∗

MIHIR BELLARE† , ODED GOLDREICH‡ , AND MADHU SUDAN§

Abstract. This paper continues the investigation of the connection between probabilistically
checkable proofs (PCPs) the approximability of NP-optimization problems. The emphasis is on
proving tight non-approximability results via consideration of measures like the “free bit complexity”
and the “amortized free bit complexity” of proof systems.

The first part of the paper presents a collection of new proof systems based on a new error-
correcting code called the long code. We provide a proof system which has amortized free bit

complexity of 2 + ε, implying that approximating Max Clique within N
1
3−ε, and approximating the

Chromatic Number within N
1
5−ε, are hard assuming NP 6= coRP, for any ε > 0. We also derive the

first explicit and reasonable constant hardness factors for Min Vertex Cover, Max2SAT, and Max
Cut, and improve the hardness factor for Max3SAT. We note that our non-approximability factors
for MaxSNP problems are appreciably close to the values known to be achievable by polynomial
time algorithms. Finally we note a general approach to the derivation of strong non-approximability
results under which the problem reduces to the construction of certain “gadgets.”

The increasing strength of non-approximability results obtained via the PCP connection moti-
vates us to ask how far this can go, and whether PCPs are inherent in any way. The second part of
the paper addresses this. The main result is a “reversal” of the FGLSS connection: where the latter
had shown how to translate proof systems for NP into NP-hardness of approximation results for Max
Clique, we show how any NP-hardness of approximation result for Max Clique yields a proof system
for NP. Roughly our result says that for any constant f if Max Clique is NP-hard to approximate
within N1/(1+f) then NP ⊆ FPCP[log, f], the latter being the class of languages possessing proofs of
logarithmic randomness and amortized free bit complexity f . This suggests that PCPs are inherent
to obtaining non-approximability results. Furthermore the tight relation suggests that reducing the
amortized free bit complexity is necessary for improving the non-approximability results for Max
Clique.

The third part of our paper initiates a systematic investigation of the properties of PCP and
FPCP as a function of the various parameters: randomness, query complexity, free bit complexity,
amortized free bit complexity, proof size, etc. We are particularly interested in “triviality” results,
which indicate which classes are not powerful enough to capture NP. We also distill the role of
randomized reductions in this area, and provide a variety of useful transformations between proof
checking complexity classes.

Key words. Intractability, Approximation, NP-hardness, Probabilistic Proof Systems.

AMS subject classifications. 68Q15.

1. Introduction. In the Max Clique problem we are given a graph G and must
find the value of MaxClique(G) = max{ |S| : S is a clique in G }. It is an example of
an NP-optimization problem, of which others are to find the chromatic number of a
graph; to find the size of the smallest vertex cover; etc. These problems arise in many
settings, and efficient solutions are much desired. Unfortunately, many important NP-

∗ In honor of Shimon Even’s 60th birthday. Extended abstract appeared in the 36th IEEE Sym-
posium on Foundations of Computer Science, 1995.
† Department of Computer Science and Engineering, University of California at San Diego, La

Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu. Supported in part by NSF CAREER Award
CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering. Some of this
work was done when the author was at IBM.
‡ Department of Computer Science and Applied Mathematics, Weizmann Institute of Sciences,

Rehovot, Israel. E-mail: oded@wisdom.weizmann.ac.il. Supported in part by grant No. 92-00226
from the US–Israel Binational Science Foundation (BSF), Jerusalem, Israel.
§ Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139, USA.

E-mail: madhu@theory.lcs.mit.edu. Some of this work was done when the author was at IBM.

1

2 M. BELLARE, O. GOLDREICH, AND M. SUDAN

optimization problems (those mentioned above in particular) are NP-hard to solve.
So algorithm designers seek efficient (polynomial time) approximation algorithms.

An approximation algorithm delivers a number that is supposed to be close to
optimal. The quality of the algorithm is measured in terms of how close. For ex-
ample, if µ(N) ≥ 1 is a function of the number N of vertices in a graph G, then
we say an algorithm A approximates Max Clique within µ, or is factor µ approxim-
ation algorithm, if MaxClique(G)/µ(N) ≤ A(G) ≤ MaxClique(G) for every graph
G. (For a minimization problem like Chromatic Number, we require instead that
ChromNum(G) ≤ A(G) ≤ µ(N) · ChromNum(G) where ChromNum(G) is the chro-
matic number of G.)

The search for efficient approximation algorithms achieving good factors has met
with varied success. For some problems, good approximation algorithms were found.
For some important problems, including Max Clique and Chromatic Number, the
best approximation algorithms found achieved factors only marginally better than
the trivial factor of N . For others, like Minimum Vertex Cover, simple algorithms
achieving reasonable factors were discovered quite quickly, but it was unclear whether
one could do better. Algorithm designers want to know whether this is due to some
inherent intractability, or only to the lack of cleverness in algorithm design.

Some early non-approximability results were able to indicate (at least for some
problems) that very good approximation (ie. achieving factors very close to optimal)
can be NP-hard. But the real breakthrough came more recently, when a strong hard-
ness of approximation result for Max Clique was shown by establishing a connection
between Max Clique and the existence of probabilistically checkable proof (PCP) sys-
tems for NP. Since then, similar connections have been found to other optimization
problems. Meanwhile with the construction of more efficient proof systems, the fac-
tors within which approximation is shown hard continue to increase. Indeed, in some
cases, even tight results seem in sight.

This paper continues the development of the connection between PCPs and hard-
ness of approximation with the goal of getting tight results. On the one hand, we
continue past work by building new proof systems and obtaining improved non-
approximability results; on the other hand we open some new directions with an
exploration of the limits of the PCP connection.

In what follows we provide a little background and then a high level overview of
our results. The rich history of the ideas in this area is overviewed in Section 1.3, and
more detailed histories are provided in the body of the paper.

1.1. Some background and definitions. We will be informal and as brief as
possible; formal definitions can be found in Section 2.

Proof systems and parameters. A probabilistic proof system is described by a
probabilistic, polynomial time verifier V . It takes an input x of length n and tosses
coins R. It has oracle access to a poly(n) length string σ describing the proof: to
access a bit it writes a O(log n) bit address and is returned the corresponding bit
of the proof. Following its computation it will either accept or reject its input x.
The accepting probability, denoted ACC [V (x)], is the maximum, over all σ, of the
probability (over R) that V accepts x on coins R and proof string σ. While the
task is typically language recognition (namely to recognize whether x is in some fixed
language L) we will, more generally, consider promise problems (A,B) consisting of
a set A of “positive” instances and a set B of “negative” instances [36]. A languages
L is identified with the promise problem (L,L).

Of interest in the applications are various parameters of the system. The com-

PCP – TOWARDS TIGHT RESULTS 3

pleteness probability c = c(n) and the soundness probability s = s(n) are defined in
the usual ways. In case c = 1 we say that the system has perfect completeness. The
gap is g = c/s. The query complexity is the maximum (over all coin tosses and proof
strings) of the number of bits of the proof that are examined by the verifier. The
free-bit complexity, roughly speaking, is the logarithm of number of possible accept-
ing configurations of V on coins R and input x. (For example a verifier which makes
3 queries and accepts iff the parity of the answers is odd has 4 accepting configuration
and thus free-bit complexity 2.)

Either the query or the free-bit complexity may be considered in amortized form:
e.g. the amortized free-bit complexity is the free-bit complexity (of a proof system
with perfect completeness) divided by the logarithm of the gap. (That is, the number
of free-bits needed per factor of 2 increase in the gap.) Also, either the query or free-
bit complexity may be considered on the average, the average being over the random
string of the verifier.

Denote by PCPc,s[r, q] the class of promise problems recognized by verifiers toss-
ing r coins, having query complexity q, and achieving completeness probability c and
soundness probability s. FPCPc,s[r, f] is defined analogously with f being the free-
bit complexity. PCP[r, q] is defined analogously with q being the amortized query
complexity, and FPCP[r, f] is defined analogously with f the amortized free-bit com-
plexity.

Max Clique approximation. Although we look at many optimization problems
there is a particular focus on Max Clique. Recall the best known polynomial time app-
roximation algorithm for Max Clique achieves a factor of only N1−o(1) [28], scarcely
better than the trivial factor of N . (Throughout the paper, when discussing the Max
Clique problem, or any other problem about graphs, N denotes the number of ver-
tices in the graph.) Can one find even an N1−ε factor approximation algorithm for
Max Clique for some ε < 1? An additional motivation for searching for such “weak”
approximation algorithms was suggested by Blum [26]. He showed that a polynomial-
time N1−ε-factor approximation algorithm for Max Clique implies a polynomial time
algorithm to color a three colorable graph with O(logN) colors [26], which is much
better than currently known [63]. But perhaps N1−o(1) is the best possible. Resolving
the approximation complexity of this basic problem seems, in any case, to be worth
some effort.

Gaps in clique size. Hardness of approximation (say of Max Clique) is typically
shown via the construction of promise problems with gaps in max clique size. Specifi-
cally, let Gap-MaxCliquec,s be the promise problem (A,B) defined as follows: A is the
set of all graphs G with MaxClique(G)/N ≥ c(N), and B is the set of all graphs G
with MaxClique(G)/N < s(N). The gap is defined as c/s. Now, a hardness result will
typically specify a value of the gap g(N) = c(N)/s(N) for which Gap-MaxCliquec,s is
NP-hard under a (randomized) Karp reduction. This means that there is no polyno-
mial time algorithm to approximate the Max Clique size of an N node graph within
g(N) unless NP has randomized polynomial time algorithms. Gap problems can be
similarly defined for all the other optimization problems we consider. From now on,
we discuss approximation in terms of these gap problems.

The connection: Making gaps from proofs. The FGLSS-reduction [40] is a
reduction of a promise problem (A,B) to Gap-MaxCliquec,s for some appropriate c, s
defined by the reduction. It works by using a verifier V of a pcp system for (A,B) to
map any instance x ∈ A∪B to a graph Gx so that MaxClique(Gx) reflects ACC [V (x)].

4 M. BELLARE, O. GOLDREICH, AND M. SUDAN

focus error queries free-bits previous related result

3 queries 0.85 3 2 error 72
73

via MaxSAT [23]

2 free-bits 0.794 O(1) 2

error 1/2 1
2

11 7 32 queries (24 on average) [41]

amortized free-bits O(2−m) 23m 2m 3m free-bits [23]

Fig. 1. New PCP Systems for NP, all with logarithmic randomness.

For the best results one typically uses a randomized form of this reduction due to
[25, 86] and it is this that we will assume henceforth.

A NP-hard gap problem is obtained roughly as follows. First, one exhibits an
appropriate proof system for NP. Then one applies the FGLSS reduction. The
factor indicated hard depends on the proof system parameters. A key element in
getting better results has been the distilling of appropriate pcp-parameters. The
sequence of works [40, 9, 8, 21, 41, 23] lead us through a sequence of parameters: query
complexity, free-bit complexity and, finally, for the best known results, amortized
free-bit complexity. The connection in terms of amortized free-bits can be stated as
follows: if NP reduces to FPCP[log, f] then NP also reduces to Gap-MaxCliquec,s,
with gap c(N)/s(N) = N1/(1+f). (In both cases the reduction is via randomized
Karp reductions, and terms of ε > 0 which can be arbitrarily small are ignored.)
In particular if NP ⊆ FPCP[log, f] then approximating the max clique size of an
N vertex graph within N1/(1+f) in polynomial time is not possible unless NP has
efficient randomized polynomial time algorithms.

1.2. Overview of our results.

1.2.1. New proof systems and non-approximability results. This section
describes the new proof systems that we construct and the non-approximability results
that we derive from them.

New proof systems. We present several new ways of capturing NP via probabilistic
proof systems, summarized below and in Figure 1:
(1) For every ε > 0 it is the case that NP ⊆ FPCP[log, 2 + ε].
(2) NP ⊆ PCP1,1/2[log, 11].
(3) NP ⊆ FPCP1,s[log, 2] for s = 0.794.
(4) NP ⊆ PCP1,s[log, 3] for any s > 0.85.
Some of these results are motivated by applications, others purely as interesting items
in proof theory.

The search for proof systems of low amortized free-bit complexity is motivated
of course by the FGLSS reduction. Bellare and Sudan [23] have shown that NP ⊆
FPCP[log, 3+ε] for every ε > 0. The first result above improves upon this, presenting
a new proof system with amortized free-bit complexity 2 + ε.

The question of how low one can get the (worst-case and average) query com-
plexity required to attain soundness error 1/2 was investigated a lot in earlier works
because they were applying the result to obtain Max Clique hardness results. We now
know we can do better with amortized free-bit complexity. Nevertheless, the original
question is still one to which we are curious to know the answer.

Minimizing the soundness error obtainable using only two (non-amortized!) free-
bits is important for a more pragmatic reason. It enables us to get the first explicit

PCP – TOWARDS TIGHT RESULTS 5

Problem Approx Non-Approx

Factor Due to Our Factor Previous
Factor

Assumption

Max3SAT 1.258 [85, 51, 84] 1.038 1 + 1
72

[23] P 6= NP

MaxE3SAT 1 + 1
7

folklore 1 + 1
26

unspecified [8] P 6= NP

Max2SAT 1.075 [51, 39] 1.013 1 + 1
504

(im-
plied [23])

P 6= NP

Max⊕SAT 2 folklore 1 + 1
7

P 6= NP

MaxCUT 1.139 [51] 1.014 unspecified [8] P 6= NP

MinVC 2− o(1) [14, 74] 1 + 1
15

unspecified [8] P 6= NP

Max-Clique N1−o(1) [28] N
1
4 [23] NP 6⊆ coRP̃

N
1
3 N

1
5 coRP 6= NP

N
1
4 N

1
6 [23] P 6= NP

Chromatic N1−o(1) [28] N
1
10 [23] NP 6⊆ coRP̃

Number N
1
5 N

1
7 [45] coRP 6= NP

N
1
7 N

1
14 [23] P 6= NP

Fig. 2. Approximation factors attainable by polynomial-time algorithms (Approx) versus factors
we show are hard to achieve (Non-Approx). MaxE3SAT (resp., Max⊕SAT) denote the maximization
problem for CNF formulae having exactly 3 different literals in each clause (resp., a conjunction of
parity clauses).

and reasonably strong constant non-approximability result for the Min Vertex Cover
problem. This application is discussed below.

Finally, the soundness achievable using only three query bits is natural to consider
given the results on the Max 3SAT gap problem. Indeed, if there is an NP-hard Max
3SAT gap problem with certain gap then one can easily get a three query proof system
with the same gap. But in fact one can do better as indicated above.

New non-approximability results. The results are summarized in Figure 2. (In
the last items, we ignore terms of N ε where ε > 0 is an arbitrarily small positive
constant.) Refer to Section 2.4.2 for the definitions of the problems.

The conclusion for Max Clique follows, of course, from the FGLSS-reduction
and the first proof system listed above. The conclusion for the Chromatic Number
follows from a recent reduction of Fürer [45], which in turn builds on reductions in
[71, 66, 23]. (Fürer’s work and ours are contemporaneous and thus we view the N1/5

hardness result as jointly due to both papers.)
The improvements for the MaxSNP problems are perhaps more significant than

the Max Clique one: We see hardness results for MaxSNP problems that are compa-
rable to the factors achieved by known polynomial time approximation algorithms.

We are obtaining the first explicit and reasonable non-approximability factor for
Max2SAT, MaxCUT and minimum Vertex Cover. Recall that the latter is approx-
imable within 2-o(1) [14, 74]. Our results for MaxCUT and Max2SAT show that it
is infeasible to find a solution with value which is only a factor of 1.01 from optimal.
This may be contrasted with the recent results of [51, 39] which shows that solutions
which are within 1.14 and 1.075, respectively, of the optimum are obtainable in poly-
nomial time. Thus, even though we do not know if the “pcp approach” allows to
get the best possible non-approximability results for these problems, we feel that the
current results are not ridiculously far from the known upper bounds.

6 M. BELLARE, O. GOLDREICH, AND M. SUDAN

General framework. We emphasize a general framework for the derivation of
strong non-approximability results for MaxSNP problems which results from our tests
and proof systems. We use direct reductions from verifiers to the problems of interest.
(This follows and extends [21], prior to which results had used “generic” reductions,
which did not take advantage of the nature of the tests performed by the verifier.)
In particular, in our case it turns out that the verifier only performs two kinds of
tests — (1) verify that a + b + c = σ (mod 2); and (2) verify that a + bc = σc,
where a, b, b0, b1, c are answer bits obtained from the oracle and the σ’s are fixed
bits. By constructing local gadgets (i.e., one gadget per random coin toss sequence)
to verify each of the verifier’s tests, we achieve better non-approximability results
than using more general reductions. In particular our work seems to suggest that
optimizing for gadgets which “check” the two conditions listed above will lead to
reasonably good lower bounds for many MaxSNP problems. In this way, obtaining a
non-approximability result for a particular problem is reduced to the construction of
appropriate “gadgets” to “represent” two simple functions.

Techniques. The main technical contribution is a new error-correcting code which
we have called the “long code. This code encodes an n-bit string as a 22n bit string
which consists of the value of every boolean function on the n-bit string. It is easy to
see such codes have large Hamming distance. We show that this code is also easily
“testable” and “correctable”, and derive the new proof systems based on this.

As in all recent constructions of efficient pcp’s our construction also relies on the
use of recursive construction of verifiers, introduced by Arora and Safra [9]. We have
the advantage of being able to use, at the outer level, the recent verifier of Raz [79],
which was not available to previous authors. The inner level verifier relies on the use
of a “good” encoding scheme. Beginning with [8], constructions of this verifier have
used the Hadamard Code; in this paper we use instead the long code.

1.2.2. Proofs and approximation: Potential and limits. As the above
indicates, non-approximability results are getting steadily stronger, especially for Max
Clique. How far can they go? And, in minimizing amortized free-bits, are we on the
right track? Are there other ways? The next set of results provides answers to these
kinds of questions.

Reversing the connection: Making proofs from gaps. The FGLSS Red-
uction Lemma indicates that one route to good non-approximability results for Max
Clique is to show NP ⊆ FPCP[log, f] for values of f which are as small as possible.
We present a “reverse connection” which says that, in a sense, this is the only way to
proceed. Namely, we “invert” the above FGLSS-reduction. Roughly, we show that,
for any constant f , the following statements are equivalent:
(1) NP reduces to Gap-MaxCliquec,s with gap c(N)/s(N) = N1/(1+f).

(2) NP reduces to FPCP[log, f].
The (2)⇒(1) direction is the FGLSS-reduction; The (1)⇒(2) direction is our reversed
connection. (The statement ignores terms of ε > 0 which can be arbitrarily small. The
proof and a more precise statement are in Section 8.) In both cases the reduction is
randomized. Furthermore the statement holds both for Karp and for Cook reductions.
Also, if (1) holds with a deterministic Karp reduction then NP ⊆ FPCP

′
[log, f], where

FPCP′ is defined as being the amortized free-bit complexity of proof systems with
almost-perfect completeness (i.e., c = 1− o(1)).

In other words any method of proving NP-hardness of Max Clique approximat-
ion to a factor of N1/(1+f) implies that NP has proof systems of amortized free-bit

PCP – TOWARDS TIGHT RESULTS 7

complexity f .
We stress both the “qualitative” and the “quantitative” aspects of this result.

Qualitatively, it provides an answer to the following kind of a question: “What
do proofs have to do with approximating clique size, and can we not prove non-
approximability results without using proof checking?” The result indicates that
proofs are inherent, and explains, perhaps, why hardness results avoiding the proof
connection have not appeared.

However, at this stage it is the quantitative aspect that interests us more. It
says that to get tighter results on Max Clique hardness, we must construct proof
systems to minimize the amortized free-bit complexity. So our current efforts (recall
that we have the amortized free-bit complexity down to two, yielding a N1/3 hardness
for Max Clique) are in the right direction. To prove that, say Max Clique is hard to
approximate within

√
N , our reverse connection says we must construct proof systems

with amortized free-bit complexity one.
Yet the reverse connection does more than guide our choice of parameters. It is

also a useful conceptual tool since it allows us to go from graphs to proof systems and
vice versa, in the process perhaps gaining some property. As an example we show
how all known hardness results for chromatic number can be viewed (with almost no
loss in efficiency) as reductions from Max Clique — even though these were essen-
tially hardness results based on proof checking. Other examples demonstrating the
usefulness of the equivalence may be found in Section 8.4. We believe that exploring
and exploiting further this duality is a fruitful avenue to pursue.

A lower bounds on amortized free-bits. Having shown that the minimization
of amortized free-bits is unavoidable, we asked ourselves how low we can take them.
Our approach here was to look at current techniques and assess their limitations. We
stress that this approach makes various assumptions about methods, and is intended
to show that significantly novel techniques are required to go further. But it does
not suggest an inherent limitation.

We show that, under the framework used within this and previous papers on this
subject, amortized free-bit complexity of 2 seems to be a natural barrier: any proof
system in this framework must use 2 − ε amortized free-bits, where ε > 0 as usual
can be arbitrarily small. The result, including a definition of what we mean by the
“framework,” is in Section 9. Loosely speaking, it considers proof systems which,
among other things, probe two oracles in order to check that one oracle is “close” to
a codeword (i.e., a codeword test) and the second oracle encodes a projection of the
information encoded in the first oracle (i.e., a projection test).

In retrospect, our lower bounds justify H̊astad’s two deviations from these tech-
niques; specifically, his relaxation of the codeword test [55] and his relaxation of the
projection test [56]. Specifically, H̊astad [55, 56] has constructed a pcp system (for
NP) of amortized free-bit complexity ε, ∀ε > 0. This was done in two stages/papers.
In his first paper [55], H̊astad builds on the framework presented in the current work
but introduces a relaxed codeword test which is conducted within amortized free-bit
complexity ε. In his second paper [56], H̊astad abandons the current framework and
utilizes a relaxed projection test which is conducted within amortized free-bit com-
plexity ε. Our lower bounds justify H̊astad’s deviations from the intuitive but more
stringent forms of the codeword and projection tests.

1.2.3. Properties and transforms of PCP and FPCP. Probabilistic proofs
involve a vast arena of complexity parameters: query complexity, free-bit complex-
ity, amortized free-bit complexity, randomness, and proof sizes to name a few. Some

8 M. BELLARE, O. GOLDREICH, AND M. SUDAN

might, at first glance, seem less “natural” than others; yet all are important in appli-
cations. A better understanding of the basic properties and relations between these
parameters would help move us forward.

We initiate, therefore, a systematic investigation of the properties of pcp com-
plexity classes as a function of the parameter values. Besides providing new results
we take the opportunity to state and prove a few folklore ones.

A contribution of this work is to distill and formalize the role of randomized
reductions. These transforms provide an elegant and concise way to state connections
between PCPs and approximability, or just between different kinds of proof systems,
and make it easier to manipulate the many connections that exist to derive new
results.

We begin with “triviality results,” namely results which say that certain param-
eter combinations yield classes probably not capable of capturing NP.

For simplicity we restrict attention in this part to classes of languages, not classes
of promise problems.

Triviality results. Perhaps the first thing to ask is whether, instead of amor-
tized free-bit complexity, we could work with any of the simpler measures. After all
FPCP[log, f] contains each of the following classes:

PCP1,1/2[log, f] ; PCP[log, f] ; FPCP1,1/2[log, f] .

Thus it would suffice to minimize the query complexity to get error 1/2; or the amor-
tized query complexity; or the free-bit complexity to get error 1/2. However it turns
out these complexities will not enable us to reach our target (of reducing the com-
plexity to almost zero and thus proving that clique is hard to approximate to within
a N1−ε factor, for every ε > 0). This is because the following classes are all contained
in P:

(1) PCP1,1/2[log, 2]

(2) PCP[log, 1]
(3) FPCP1,1/2[log, 1].
Thus, we cannot expect to construct pcp systems for NP with either query complexity
2 (this is actually folklore predating our work); or amortized query complexity 1;
or free-bit complexity 1. However it is a feature of amortized free-bit complexity
that so far it seems entirely possible that NP reduces to FPCP[log, f] with f an
arbitrarily small constant. Indeed, if we believe (conjecture) that Max Clique is hard
to approximate with N1−ε for any ε > 0 then such proof systems must exist, by virtue
of the equivalence stated above. In fact, even if we do not believe that Max Clique is
hard to approximate with N1−ε for any ε > 0, it turns out that the amortized query
bit parameter will be too weak to capture the hardness of the clique function. In fact,
if Max Clique is hard to approximate to within Nα, then the best hardness result
obtainable from the amortized query bit parameter would be of the form N

α
2−α . This

is shown by invoking Corollary 10.11 which shows that the amortized query complexity
parameter is always one unit larger than the amortized free-bit parameter (and we
know that the amortized free bit parameter captures the hardness of Max Clique
tightly).

Other results. We have already mentioned above that strict limitations on various
query parameters make PCP very weak. Actually, for every s < 1, PCP1,s[log, 2] and
FPCP1,s[log, 1] collapse to P. This means that pcp systems with perfect completeness
are very weak when restricted to either two queries or to free-bit complexity one.

PCP – TOWARDS TIGHT RESULTS 9

However, pcp systems with completeness error and the very same query (resp., free-
bit) bounds are not so weak. In particular, it is well known that NP = PCPc,s[log, 2]
for some 0 < s < c < 1 (e.g., by using the NP-hardness of approximating Max2SAT).
We show that NP = FPCPc,s[log, 1] for some 0 < s < c < 1 (specifically, c = 1

2 and
s = 0.8 · c). Furthermore, for some smaller 0 < s < c < 1, the following holds

NP = FPCPc,s[log, 0]

(specifically, with c = 1
4 and s = 1

5). We find the last assertion quite intriguing.
It seems to indicate that one needs to be very careful when making conjectures
regarding free-bit complexity. Furthermore, one has to be very careful also when
making conjectures regarding amortized free-bit complexity; for example, the result
P = PCP[log, 1] holds also when one allows non-perfect completeness (in the defini-
tion of PCP[·, ·]) as long as the gap is greater than 2q per q queries, but an analogous
result cannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[·, ·]).

Trying to understand the power of pcp systems with low free-bit complexity,
we have waived the bound on the randomness complexity. Recall that in this case
pcp systems are able to recognize non-deterministic exponential time (i.e., NEXPT =
PCP1,1/2[poly,poly]) [11]. Thus, it may be of interest to indicate that for every s < 1,

FPCP1,s[poly, 0] ⊆ coNP

FPCP1,s[poly, 1] ⊆ PSPACE

It seems that FPCP1,1/2[poly, 0] is not contained in BPP, since Quadratic Non-
Residuosity and Graph Non-Isomorphism belong to the former class. (Specifically,
the interactive proofs of [53] and [52] can be viewed as a pcp system with polynomial
randomness, query complexity 1 and free-bit complexity 0.) Thus, it seems that the
obvious observation PCP1,s[poly, 1] ⊆ AM (for every s < 1, where AM stands for one
round Arthur-Merlin games), would also be hard to improve upon.

Transformations between proof systems. We provide various useful transfor-
mation of pcp systems. These transformations are analogous to transformations that
can be applied to graphs with respect to the Max Clique problem. In view of the
relation (mentioned above), between FPCP and the gap-clique promise problem, this
analogy is hardly surprising.

One type of transformation amplifies the gap (i.e., the ratio between complete-
ness and soundness bounds) of the proof system while preserving its amortized free-bit
complexity and incurring a relatively small additional cost in the randomness complex-
ity. Specifically, using a randomized reduction we can transform FPCP1, 12

[log, f] into
FPCP1,2−k [log +k, k · f] (ignoring multiplicative factors of 1 + ε for arbitrarily small
ε > 0). This transformation is analogous to the well-known transformation of Berman
and Schnitger [25]. Alternatively, using a known deterministic amplification method
based on [2, 70] one can transform FPCP1, 12

[log, f] into FPCP1,2−k [log +2k, k ·f]. (To
the best of our knowledge this transformation has never appeared with a full proof.)
Both alternatives are important ingredients in transforming pcp results into clique
in-approximability results via the FGLSS method.

A second type of transformation moves the location of the gap (or, equivalently,
the completeness parameter). The gap itself is preserved by the transformation but
moving it is related to changing the free-bit complexity (and thus the amortized
free-bit complexity is not preserved). Moving the gap ‘up’ requires increasing the
free-bit complexity, whereas moving the gap ‘down’ allows to decrease the free-bit
complexity. For example, we randomly reduce FPCPc,s[log, f] to FPCP1,s·log[log, f +

10 M. BELLARE, O. GOLDREICH, AND M. SUDAN

log(1/c) + log log]. On the other hand, for every k ≤ f , we (deterministically) reduce
FPCPc,s[log, f] into FPCP c

2k
, s
2k

[log, f − k], provided that the original system has
at least 2k accepting configurations per each possible sequence of coin-tosses. (This
condition is satisfied in many natural pcp systems, even for k = f .)

1.3. History. Early work in non-approximability includes that of Garey and
Johnson [47] showing that it is NP-hard to approximate the chromatic factor within a
factor less than two. The indication of higher factors, and results for other problems,
had to wait for the interactive proof approach.

Interactive proofs were introduced by Goldwasser, Micali and Rackoff [53] and
Babai [10]. Ben-Or, Goldwasser, Kilian and Wigderson [24] extended these ideas to
define a notion of multi-prover interactive proofs. Fortnow, Rompel and Sipser [44]
showed that the class, MIP, of languages possessing multi-prover interactive proofs
equals the class of languages which have (using todays terms) probabilistically check-
able proofs (of unrestricted, and thus polynomial, randomness and query complexity).

First indication to the power of interactive proof systems was given in [52], where
it was shown that interactive proofs exist for Graph Non-Isomorphism (whereas this
language is not known to be in NP). However, the real breakthrough came with the
result of Lund, Fortnow, Karloff and Nisan [72] who used algebraic methods to show
that all coNP languages (and actually, all languages in P#P) have interactive proof
systems. These techniques were used by Shamir [81] to show that IP = PSPACE.

A central result that enabled the connection to hardness of approximation is
that of Babai, Fortnow and Lund [11]. They showed that the class MIP equals the
class NEXP (i.e., languages recognizable in non-deterministic exponential time). The
latter result has been “scaled-down” to the NP-level by two independent groups of
researchers. Babai, Fortnow, Lund and Szegedy [12] showed that if the input is
encoded using a special error-correcting code (for which encoding and decoding can
be performed in polynomial-time) then NP has transparent proof systems (i.e., it
is possible to verify the correctness of the proof in poly-logarithmic time). Feige,
Goldwasser, Lovász, Safra and Szegedy [40] showed that NP has probabilistically
checkable proofs of poly-logarithmic randomness and query complexity; namely, NP ⊆
PCP1,1/2[r, q], where r(n) = q(n) = O(log n · log log n).

A hardness of approximation result based on interactive proofs was first proved by
Condon [31]. The breakthrough PCP connection to approximation was made by Feige,
Goldwasser, Lovász, Safra and Szegedy [40]. They showed that NP ⊆ PCP1,s[r, q] im-
plies that approximating the maximum clique in a 2r(n)+q(n)-vertices graph to within
a 1/s(n) factor is infeasible (i.e., not doable in polynomial-time), provided that NP
is not in Dtime(2O(r+q)). (Here n is the length of the input x to the pcp verifier.)
Combined with the above-mentioned results, they obtained the first in a sequence of
strong non-approximability results for Max Clique: a non-approximability factor of
2log1−εN , ∀ε > 0, assuming NP does not have quasi-polynomial time algorithms.

After the work of [40] the field took off in two major directions. One was to extend
the interactive proof approach to prove the non-approximability of other optimization
problems. Direct reductions from proofs were used to show the hardness of quadratic
programming [22, 43], Max3SAT [8], set cover [71], and other problems [16]. The
earlier work of Papadimitriou and Yannakakis introducing the class MaxSNP [76] now
came into play; by reduction from Max3SAT it implied hardness of approximation
for any MaxSNP-hard problem. Also, reductions from Max Clique lead to hardness
results for the chromatic number [71] and other problems [86].

The other direction was to increase factors, and reduce assumptions, for exist-

PCP – TOWARDS TIGHT RESULTS 11

ing hardness of approximation results. This involves improving the efficiency of the
underlying proof systems and/or the efficiency of the reductions.

The first stage of this enterprise started with the work of Arora and Safra [9].
They showed that NP ⊆ PCP1,1/2[log, o(log)]. This provided the first strong NP-

hardness result for Max Clique (specifically, a hardness factor of 2
√

logN). This work
introduced the idea of recursive proof checking, which turned out to play a funda-
mental role in all subsequent developments. Interestingly, the idea of encoding inputs
in an error-correcting form (as suggested in [12]) is essential to make “recursion”
work. Arora, Lund, Motwani, Sudan and Szegedy [8] reduced the query complexity
of pcp systems for NP to a constant, while preserving the logarithmic randomness
complexity; namely, they showed that NP = PCP1,1/2[log, O(1)]. This immediately
implied the NP-hardness of approximating Max Clique within N ε, for some ε > 0.
Furthermore, it also implied that Max-3-Sat is NP-hard to approximate to within
some constant factor [8] and so is any MaxSNP-hard problem [76].

The second stage of this enterprise started with the work of Bellare, Goldwasser,
Lund and Russell [21]. The goal was to improve (increase) the constant ε in the
exponent of the hardness of approximation factor for Max Clique, and also to improve
the constant values of the hardness factors in the MaxSNP hardness results. They
presented new proof systems minimizing query complexity and exploited a slightly
improved version of the FGLSS-reduction due to [25, 86] to get a N1/30 hardness
of approximation factor for Max Clique. Feige and Kilian [41], however, observed
that one should work with free-bits, and noted that the free-bit complexity of the
system of [21] was 14, yielding a N1/15 hardness factor. Bellare and Sudan then
suggested the notion of amortized free-bits. They constructed proof systems achieving
amortized free-bit complexity three, and in thus obtained a N1/4 hardness for Max
Clique assuming NP 6⊆ coRP̃.
Detailed histories for specific topics are given in Sections 2.2.3 and 2.4.3.

1.4. Related work. Following the presentation of our results, Arora has also in-
vestigated the limitations of proof checking techniques in proving non-approximability
results [6]. Like in our free-bit lower bound result, he tries to assess the limita-
tions of current techniques by making some assumptions about these techniques and
then showing a lower bound. His focus is on the reductions, which he assumes are
“code like.” In this setting he can show that one should not expect to prove non-
approximability of Max Clique within N1/2. (The assumptions made by us and by
Arora do not seem to be comparable: neither implies the other. In retrospect, both
sets of assumptions could be by-passed – as done by H̊astad [55, 56].)

1.5. Subsequent work. Our prophecy by which the PCP approach is leading
to tight non-approximability results is in the process of materializing (see Figure 3).
By now, tight results are known for central problems such as Min-Set-Cover (cf.,
[71, 21, 38]), Max-Clique (cf., [55, 56]), Min-Coloring ([42]), and Max-3SAT (cf.,
[57]). The latter results were obtained subsequently to the current work, and while
building on it.

Amortized free-bits and Max-Clique. The most intriguing problem left open
by our work has been resolved by H̊astad [55, 56]. He proved our conjecture (cf., [20])
by which, for every ε > 0, it is the case that NP ⊆ FPCP[log, ε]. The Long-Code,
introduced in this work, plays a pivotal role in H̊astad’s work. He also uses the idea
of folding. Applying the FGLSS-reduction to the new proof system, H̊astad obtains
a tight result for Max-Clique by showing that for every ε > 0, assuming NP 6= coRP,

12 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Problem EASY to Ap-
prox. Factor

HARD to Approx. Factor Tight?

Factor Due to Ours New Assumption

Max3SAT 1 + 1
7

+ ε [64] 1 + 1
26

1 + 1
7
− ε

[57]
P 6= NP Yes

MaxE3SAT 1 + 1
7

folklore 1 + 1
26

1 + 1
7
− ε

[57]
P 6= NP Yes

Max2SAT 1.075 [51, 39] 1.013 1.047 [57] P 6= NP No

Max⊕SAT 2 folklore 1 + 1
7
− ε 2− ε [57] P 6= NP Yes

MaxCUT 1.139 [51] 1.014 1.062 [57] P 6= NP No

MinVC 2− o(1) [14, 74] 1 + 1
15

1 + 1
6
− ε

[57]
P 6= NP No

Max-Clique N1−o(1) [28] N
1
3−ε N1−ε [56] coRP 6= NP Yes

N
1
4−ε N

1
2−ε [56] P 6= NP No

Chrom. No. N1−o(1) [28] N
1
5−ε N1−ε [42] coRP 6= NP Yes

Fig. 3. State of the art regarding easy and hard approximation factors (updated July 1997).
Here ε > 0 is an arbitrarily small constant.

there is no polynomial time algorithm to approximate Max-Clique within a factor of
N1−ε.

Improved 3-query proofs and Max-SNP. Another challenge, one we even did
not dare state, was achieved as well: H̊astad [57] has recently obtained optimal non-
approximability results to MaxSNP problems such as Max-E3-SAT. Furthermore, he
has improved over all our non-approximability results for MaxSNP problems, obtain-
ing non-approximability factors of 22/21 and 17/16 for Max-2-SAT and Max-CUT,
respectively. Underlying these results is a new proof system for NP which yields
NP ⊆ PCP1−ε,0.5[log, 3], for any ε > 0. In addition, H̊astad [57] shows that NP
is contained in PCP1,0.75+ε[log, 3] (and it follows that NP ⊆ PCP1,0.5[log, 9]). The
Long-Code plays a pivotal role in all these proof systems.

Improved 2-free-bits proofs and Min-VC. The above-mentioned proof system
of H̊astad [57] uses two (non-amortized) free-bits, and so NP ⊆ FPCP1−ε,0.5[log, 2],
for every ε > 0. This sets the non-approximability bound for Min Vertex-Cover at
7
6 − ε.

Chromatic Number. Feige and Kilian [42] have introduced a new approach to
showing hardness of approximability of ChromNum, based on a new measure of proof
checking complexity called the covering complexity. By modifying our proof systems
so as to preserve the amortized free-bit complexity and achieve low covering com-
plexity, they proved a that approximating ChromNum within N1/3 is hard unless
NP = coRP. They were able to similarly modify H̊astad’s proof systems [55, 56] and
thereby improve the hard factor to N1−ε, for any ε > 0.

Gadgets. Another research direction, suggested in early versions of this work [20],
was taken on by Trevisan et. al. [84] who initiated a systematic study of the con-
struction of gadgets. In particular, they showed that the gadgets we have used in
our reductions to the MaxSAT problems were optimal, and constructed better (and
optimal) gadgets for reduction to MaxCUT.

PCP – TOWARDS TIGHT RESULTS 13

Weights. An important issue neglected in our treatment of MaxSNP problems
is the issue of weights. For example, in our MaxSAT problems we have allowed
the same clause to appear many times in the formula, which can be considered as
allowing “small” weights. Certainly, one may want non-approximability results for the
unweighted case (where one does not allow multiple occurrences of the same clause).
This issue is treated in a subsequent paper by Crescenzi et. al. [34]. Essentially, they
show that the unweighted cases of all problems considered in our paper are as hard
as the weighted cases.

1.6. Directions for further research. Although the most intriguing open
problems suggested in previous versions of this work [20] have been resolved, some
very interesting problems remain. We mention a few.

2-free-bits proofs and Min-VC. As we show, NP ⊆ FPCPc,s[log, f] implies that
approximating Min Vertex-Cover up to a 2f−s

2f−c factor is NP-hard. This motivates us
to ask whether the following, increasingly stronger, conjectures hold.
(1) NP ⊆ FPCP1−ε,ε[log, 2] (or even NP ⊆ FPCP1,ε[log, 2]) for every ε > 0. This

would imply a hardness factor of 4
3 − ε for MinVC.

(2) For f def= log2 3, NP ⊆ FPCP1−ε,ε[log, f] (or even NP ⊆ FPCP1,ε[log, f]) for
every ε > 0. This would imply a hardness factor of 3

2 − ε.
(3) NP ⊆ FPCP1−ε,ε[log, 1] for every ε > 0. This would imply a hardness factor of

2− ε.
Recall that FPCP1,s[log, 1] ⊆ P, for every s < 1, whereas NP ⊆ FPCP1−ε,0.5[log, 2]
[57]. It will be interesting (though of no application for MinVC) to know whether
NP ⊆ FPCP1,0.5+ε[log, 2].

Perfect versus imperfect completeness. H̊astad’s work [57] is indeed the
trigger for the last question and similarly we wonder whether NP ⊆ PCP1,0.5+ε[log, 3].
Non-perfect completeness seems to be useful in [57], but it is to be seen if this is
inherent. Similar issues arise with respect to some results in the current work (e.g.,
see our transformations for increasing acceptance probability of proof systems).

De-randomization. We know that FPCP[log, f] is randomly reducible to

FPCP1,2−k [log +(1 + ε)k, (1 + ε)k · f] .

On the other hand, the former class is contained in (i.e., is deterministically reduced
to) the class FPCP1,2−k [log +(2 + ε)k, (1 + ε)k · f], for arbitrarily small ε > 0. Can
one obtain the best of both worlds; namely, a deterministic reduction of FPCP[log, f]
to, say, FPCP1,2−k [log +(1 + ε)k, (1 + ε)k · f], for arbitrarily small ε > 0. An affirma-
tive answer will allow us to infer from NP ⊆ FPCP[log, f] that approximating Max
Clique to within an N

1
1+f+ε factor is NP-hard (rather than NP-hard under randomized

reductions).
One ingredient of our method for reversing the FGLSS-reduction is the random-

ized reduction of the class FPCPc,s[log, f] to the class FPCP1, logc ·s
[log, f + log(1/c) +

log log]. (This statement is proved using the ideas in Section 11. An alternative ex-
position, making use of a randomized graph-layering process, is given in Section 8.)
Anyhow, randomness plays an essential role in obtaining a pcp system with perfect
completeness.1 The question is whether the class FPCPc,s[log, f] is contained in the

1 This makes our results more elegant, but actually – as indicated in Section 8, we could have
settled for “almost perfect” completeness which suffices for presenting an inverse of the “FGLSS-

14 M. BELLARE, O. GOLDREICH, AND M. SUDAN

class FPCP1, logc ·s
[log, f + log(1/c) + log log] (rather than being randomly reducible to

it).

1.7. Previous versions of this paper. An extended abstract of this work
appeared in the proceedings of the FOCS 95 conference [19]. It was backed up by
the first versions of this large manuscript [20], posted on ECCC. The paper went
through several revisions due to improvements and corrections in the results. These
were regularly posted on ECCC (as revisions to [20]). This is the fifth version of the
work.

1.8. Organization. This introduction is followed by a section that contains
definitions as well as detailed histories. The main content of the paper is divided into
three parts:

Part I – New proof systems and non-approximability results, consisting of Sec-
tions 3 to 7, contains the materiel discussed in Section 1.2.1. See overview in
Section 3.1.
Part II – Proofs and approximation: Potential and limitations, consisting of Sec-
tions 8 and 9, contains the materiel discussed in Section 1.2.2. Specifically, Sec-
tion 8 contain the “reverse reduction” of Clique hardness to PCP, and Section 9
contains lower bounds on the free-bit complexity of certain tasks.
Part III – PCP: Properties and Transformations, consisting of Sections 10
and 11, contains the materiel discussed in Section 1.2.3. Specifically, Section 10
studies the expressive power of PCP systems with certain parameters, and
Section 11 contains transformations among PCP classes.

2. Definitions and histories.

2.1. General notation and definitions. For integer n let [n] = {1, . . . , n}. A
graph always means an undirected graph with no self-loops, unless otherwise indi-
cated. We let ‖G‖ denote the number of vertices in graph G = (V,E).

A probabilistic machine K has one or more inputs x1, x2, It tosses coins
to create a random string R, usually of some length r(·) which is a function of the
(lengths of the) inputs. We let K(x1, x2, . . . ;R) denote the output of K when it uses
the random string R. Typically we are interested in the probability space associated
to a random choice of R.

A function is admissible if it is polynomially bounded and polynomial-time com-
putable. We will ask that all functions measuring complexity (e.g. the query com-
plexity q = q(n)) be admissible.

In defining complexity classes we will consider promise problems rather than
languages. (This convention is adopted since approximation problems are easily cast
as promise problems.) Following Even et. al. [36], a promise problem is a pair of
disjoint sets (A,B), the first being the set of “positive” instances and the second the
set of “negative” instances. A language L is identified with (L,L).

2.2. Proof systems.

2.2.1. Basic Setting. A verifier is a probabilistic machine V taking one or more
inputs and also allowed access to one or more oracles. Let x denote the sequence of all
inputs to V and let n denote its length. During the course of its computation on coins
R and input x, the verifier makes queries of its oracles. Its final decision to accept or

reduction”.

PCP – TOWARDS TIGHT RESULTS 15

reject is a function DECV (x, a;R) of x,R and the sequence a of all the bits obtained
from the oracle in the computation. Contrary to standard terminology, acceptance in
this paper will correspond to outputting 0 and rejection to outputting 1.

Oracles are formally functions, with the context specifying for each the domain
and range. Sometimes, however, an algorithm will be given a string s as an oracle.
(Giving a verifier s as an oracle models a “written proof” model in which someone has
“written” s somewhere and the verifier wants to check it.) This is to be interpreted
in the natural way; namely the oracle takes an index i and returns the i-th bit of s.
Let π denote the sequence (tuple) of all proof oracles supplied to the verifier V . Now
for verifier V examining the proofs π and having input x, we let

ACC [V π(x)] = PrR [V π(x;R) = 0]

denote the probability that V accepts when its random string is R. We then let

ACC [V (x)] = max
π

ACC [V π(x)] .

This is the maximum accepting probability, over all possible choices of proof sequences
π. (The domain from which the proofs are chosen depends, as mentioned above, on
the context.)

Let patternV (x;R) be the set of all sequences a such that DECV (x, a;R) = 0.
(That is, all sequences of oracle answers leading to acceptance). A generator for V
is a poly(n)-time computable function G such that patternV (x;R) = G(x,R) for all
x,R. (That is, it can efficiently generate the set of accepted patterns.)

2.2.2. Parameters. We are interested in a host of parameters that capture
various complexity measures of the proof checking process. They are all functions of
the length n of the input x given to the verifier V . In the following σ denotes the
concatenation of all the proof strings given to the verifier. Also recall we are interested
in proof systems for promise problems (A,B) rather than just for languages.

coins = Number of coins tossed by verifier. Typically denoted r.
pflen = Length of the proof provided to the verifier. Typically denoted l.

c = Completeness probability. Namely

min{ ACC [V (x)] : x ∈ A and |x| = n } .
s = Soundness probability. Namely

max{ ACC [V (x)] : x ∈ B and |x| = n } .
g = Gap. Namely c/s.

Now we move to various measures of the “information” conveyed by the oracle to the
verifier. For simplicity we consider here only oracles that return a single bit on each
query; that is, they correspond to strings, or “written proofs.”

query = The query complexity on input x is the maximum, over all possible
random strings R of V , of the number of bits of σ accessed by V on
input x. The query complexity of the system q = q(n) is the maximum
of this over all inputs x ∈ A ∪B of length n.

queryav = The average query bit complexity on input x is the average, over R, of
the number of bits of the proof σ accessed by V on input x and coins
R. The average query complexity of the system is the maximum of
this over all x ∈ A ∪B of length n. Typically denoted qav.

16 M. BELLARE, O. GOLDREICH, AND M. SUDAN

query = V is said to have amortized query bit complexity q̄ if q/ lg(g) ≤ q̄ where
q is the query bit complexity and g is the gap, and, furthermore, q is
at most logarithmic in n.

free = The free bit complexity of V is f if there is a generator G such that
|G(x,R)| ≤ 2f for all R and all x ∈ A ∪B of length n.

freeav = The average free bit complexity of V is fav if there is a generator G
such that ER [|G(x,R)|] ≤ 2fav for all x ∈ A ∪B of length n.

free = V is said to have amortized free bit complexity f̄ if f/ lg(g) ≤ f̄ where
f is the free bit complexity and g is the gap.

Notice that amortized query complexity is restricted to be at most logarithmic. We
don’t need to explicitly make this restriction for the amortized free bit complexity
since it is a consequence of the efficient generation condition.

In case the completeness parameter equals 1 (i.e., c = 1), we say that the system is
of perfect completeness. In case the completeness parameter, c, satisfies c(n) = 1−o(1),
we say that the system is of almost-perfect completeness.

The consideration of combinations of all these parameters give rise to a potentially
vast number of different complexity classes. We will use a generic notation in which
the parameter values are specified by name, except that, optionally, the completeness
and soundness can, if they appear, do so as subscripts. Thus for example we have
things like:

PCPc,s[coins = r ; query = q ; pflen = 2r ; free = f . . .] .

However most often we’ll work with the following abbreviations:

PCPc,s[r, q]
def= PCPc,s[coins = r ; query = q]

PCPc[r, q] def= PCPc,·[coins = r ; query = q]

FPCPc,s[r, f] def= PCPc,s[coins = r ; free = f]

FPCPc,s[r, f, l]
def= PCPc,s[coins = r ; free = f ; pflen = l]

FPCPc[r, f] def= PCPc,·[coins = r ; free = f] .

We stress that in the definitions of the amortized classes, PCPc[r, q] and FPCPc[r, f],
we refer to the completeness parameter c (but not to the soundness parameter). In
case c = 1, we may omit this parameter and shorthand the amortized classes of perfect
completeness by PCP[r, q] and FPCP[r, f], respectively. Namely,

PCP[r, q] def= PCP1[r, q]

FPCP[r, f] def= FPCP1[r, f]

2.2.3. History of proof systems. The model underlying what are now known
as “probabilistically checkable proofs” is the “oracle model” of Fortnow, Rompel and
Sipser [44], introduced as an equivalent version (with respect to language recognition
power) of the multi-prover model of Ben-Or, Goldwasser, Kilian and Wigderson [24].
Interestingly, as shown by [12, 40], this framework can be applied in a meaningful man-
ner also to languages in NP. These works provide the verifier V with a “written” proof,
modeled as an oracle to which V provides the “address” of a bit position in the proof
string and is returned the corresponding bit of the proof. Babai et. al. [12] suggested a
model in which the inputs are encoded in a special (polynomial-time computable and
decodable) error-correcting code and the verifier works in poly-logarithmic time. Here

PCP – TOWARDS TIGHT RESULTS 17

Due to q qav

[8] some constant some constant

[21] 36 29

[41] 32 24

This paper 11 10.9

Fig. 4. Worst case (q) and average (qav) number of queries needed to get 1/2 soundness with
logarithmic randomness; that is, results of the form of Eq. (1).

we follow the model of Feige et. al. [40] where the verifier is probabilistic polynomial-
time (as usual) and one considers finer complexity measures such as the query and
randomness complexity. The FGLSS-reduction (cf., [40]), stated in terms of the query
complexity (number of binary queries), randomness complexity and error probability
of the proof system, has focused attention on the above model and these parameters.
The class PCP1,1/2[r, q] was made explicit by [9].

The parameterization was expanded by [21] to explicitly consider the answer
size (the oracle was allowed to return more than one bit at a time) and query size–
their notation included five parameters: randomness, number of queries, size of each
query, size of each answer, and error probability. They also similarly parameterized
(single round) multi-prover proofs, drawing attention to the analogue with pcp. This
served to focus attention on the roles of various parameters, both in reductions and
in constructions. Also they introduced the consideration of average query complexity,
the first in a sequence of parameter changes towards doing better for clique.

Free bits are implicit in [41] and formalized in [23]. Amortized free bits are
introduced in [23] but formalized a little better here.

Proof sizes were considered in [12, 78]. We consider them here for a different
reason – they play an important role in that the randomized FGLSS reduction [25, 86]
depends actually on this parameter (rather than on the randomness complexity).

The discussion of previous proof systems is coupled with the discussion of Max
Clique in Section 2.4.3. We conclude the current section, by discussing two somewhat
related topics: query minimization and constant-prover proof systems.

Query complexity minimization. One seeks results of the form

NP = PCP1,1/2[coins = log ; query = q ; queryav = qav] .(1)

This was originally done for deriving NP-hardness results for the approximation of
MaxClique, but subsequent work has indicated that other parameters actually govern
this application. Still, the query complexity of a proof system remains a most natural
measure, and it is an intriguing question as to how many bits of a proof you need
to look at to detect an error with a given probability. Specifically, we consider the
question of determining the values of q, qav for which Eq. (1) holds.

The fundamental result of [8] states that q, qav may be constants (independent
of the input length). Reductions in the values of these constants were obtained since
then and are depicted in Figure 4. See Section 6 for our results.

Role of constant-prover proofs in PCP – perspective. Constant-prover
proofs have been instrumental in the derivation of non-approximability results in
several ways. One of these is that they are a good starting point for reductions—
examples of such are reductions of two-prover proofs to quadratic programming [22,
43] and set cover [71]. However, it is a different aspect of constant prover proofs that

18 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Due to Provers Coins Answer size Canonical? Can be made
canonical?

[67, 43] 2 polylog polylog No Yes [23]

[8] poly(ε−1) log polylog No ?

[21] 4 log polyloglog No ?

[82] 3 log O(1) No ?

[41] 2 log O(1) No With 3 provers
[23]

[79] 2 log O(1) Yes (NA)

Fig. 5. Constant prover PCPs achieving error which is a fixed, but arbitrarily small, constant ε.

is of more direct concern to us. This aspect is the use of constant-prover proof systems
as the penultimate step of the recursion, and begins with [8]. It is instrumental in
getting PCP systems with only a constant number of queries. Their construction
requires that these proof systems have low complexity: error which is any constant,
and randomness and answer sizes that are preferably logarithmic. The number of
provers and the randomness and query complexity determine the quality of many non-
approximability results (e.g., poly-logarithmic rather than logarithmic complexities
translate into non-approximability results using assumptions about quasi-polynomial
time classes rather than polynomial time ones). The available constant-prover proof
systems appear in Figure 5 and are discussed below. Throughout this discussion we
consider proof systems obtaining an arbitrary small constant error probability.

The two-prover proofs of Lapidot-Shamir and Feige-Lovász [67, 43] had poly-
logarithmic randomness and answer sizes, so [8] used a modification of these, in the
process increasing the number of provers to a constant much larger than two. The later
constructions of few-prover proofs of [21, 82, 41] lead to better non-approximability
results.

Bellare and Sudan [23] identified some extra features of constant prover proofs
whose presence they showed could be exploited to further increase the non-approx-
imability factors. These features are captured in their definition of canonical verifiers
(cf. Section 3.4). But the proof systems of [41] that had worked above no longer
sufficed— they are not canonical. So instead [23] used (a slight modification of) the
proofs of [67, 43], thereby incurring poly-logarithmic randomness and answer sizes, so
that the assumptions in their non-approximability results pertain to quasi-polynomial
time classes. (Alternatively they modify the [41] system to a canonical three-prover
one, but then incur a decrease in the non-approximability factors due to having more
provers).

A breakthrough result in this area is Raz’s Parallel Repetition Theorem which
implies the existence of a two-provers proof system with logarithmic randomness and
constant answer size [79]. Furthermore, this proof system is canonical.

2.3. Reductions between problems and classes. We will consider reduc-
tions between promise problems. A deterministic Karp reduction from (A1, B1) to
(A2, B2) is a polynomial time function T which for all x satisfies: if x ∈ A1 then
T (x) ∈ A2 and if x ∈ B1 then T (x) ∈ B2. A randomized Karp reduction from
(A1, B1) to (A2, B2) is a probabilistic, polynomial time function T which takes two
arguments: an input x and a security parameter k, the latter written in unary. The

PCP – TOWARDS TIGHT RESULTS 19

transformation is required to have the property that

x ∈ A1 =⇒ Pr
[
T (x, 1k) ∈ A2

] def= p1(x, k) ≥ 1− 2−k

x ∈ B1 =⇒ Pr
[
T (x, 1k) ∈ B2

] def= p2(x, k) ≥ 1− 2−k .

The probability is over the coin tosses of T . We say the reduction has perfect complete-
ness if p1 = 1 and perfect soundness if p2 = 1. Notice a deterministic reduction cor-
responds to a randomized one in which p1 = p2 = 1. We write (A1, B1) ≤KR (A2, B2)
if there is a randomized Karp reduction from (A1, B1) to (A2, B2). If the reduction
is deterministic we omit the subscript of “R,” or, sometimes, for emphasis, replace it
by a subscript of “D.”

An example is the randomized FGLSS transformation [40, 25, 86]. Here (A1, B1)
is typically an NP-complete language L, and (A2, B2) is Gap-MaxCliquec,s for some
c, s which are determined by the transformation. (See Section 2.4 for definition of
latter.) This transformation has perfect soundness, while, on the other hand, it is
possible to get p1 = 1− 2− poly(n).

Similarly one can define (randomized) Cook reductions. The notation for these
reductions is ≤CR .

Let C be a complexity class (e.g. NP). We say that C reduces to (A2, B2) if for
every (A1, B1) in C it is the case that (A1, B1) reduces to (A2, B2). An example is
to say that NP reduces to Gap-MaxCliquec,s. We say that C1 reduces to C2, where
C1 and C2 are complexity classes, if for every (A1, B1) in C1 there is an (A2, B2) in
C2 such that (A1, B1) reduces to (A2, B2). An example is to say that NP reduces to
FPCP[log, f]. The notation of ≤KR or ≤CR extends to these cases as well.

Notice that our definition of reducibility ensures that this relation is transitive.
For simplicity we sometimes view a randomized reduction T as a function only of

x, and write T (x). In such a case it is to be understood that the security parameters
has been set to some convenient value, such as k = 2.

Historical Note. We’ve followed the common tradition regarding the names
of polynomial-time reductions: many-to-one reductions are called Karp-reductions
whereas (polynomial-time) Turing reductions are called Cook-reductions. This ter-
minology is somewhat unfair towards Levin whose work on NP-completeness [69] was
independent of those of Cook [32] and Karp [65]. Actually, the reductions consid-
ered by Levin are more restricted as they also efficiently transform the corresponding
NP-witnesses (this is an artifact of Levin’s desire to treat search problems rather
than decision problems). In fact, such reductions (not surprisingly termed Levin-
reductions) are essential for results such as Corollary 8.15. (Yet, this is the only
example in the current paper.)

2.4. Approximation problems and quality. We discuss optimization prob-
lems, approximation algorithms for them, and how hardness is shown via the produc-
tion of “hard gaps.” We then list all the problems considered in this paper.

2.4.1. Optimization problems, approximation and gaps. An optimization
problem Φ = (S, g, ‖ · ‖, ‖ · ‖∗, opt) is specified by:

• A function S associating to any instance w a solution set S(w) 6= ∅.
• An objective function g associating to any instance w and solution y ∈ S(w) a

non-negative real number g(w, y). This number is sometimes called the value
of solution y.

• Two norm functions ‖ · ‖, ‖ · ‖∗, the first admissible, the second polynomial time

20 M. BELLARE, O. GOLDREICH, AND M. SUDAN

computable, each associating to any instance w a non-negative real number;
their roles will be explained later.

• An indication opt ∈ {min,max} of the type of optimization, whether maximiza-
tion or minimization.

The task, given w, is to either maximize (this if opt = max) or minimize (this if
opt = min), the value g(w, y), over all y ∈ S(w).

Definition 2.1. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗, opt) be an optimization problem. The
optimum value for instance w is denoted Φ(w) and defined by

Φ(w) =

{
maxy∈S(w) g(w, y) if Φ is a maximization problem
miny∈S(w) g(w, y) if Φ is a minimization problem.

We sometimes consider the normalized optimum, defined by Φ(w) = Φ(w)/‖w‖∗.

The above definition illustrates the role of the second norm: it is to normalize the
optimum. Thus ‖ · ‖∗ will usually be chosen to make 0 ≤ Φ(w) ≤ 1, depending on the
problem.

Approximation. An approximation algorithm for Φ = (S, g, ‖ · ‖, ‖ · ‖∗, opt) is an
algorithm A which on input w tries to output a number as close as possible to Φ(w).
Unless otherwise indicated, an approximation algorithm runs in time polynomial in
the length of w.

While the complexity of the algorithm is measured as a function of the length of
the input, the approximation quality is often measured as a function of some other
measure associated to the input. This is what we have called the first norm of w and
denoted ‖w‖. For example, for graph problems the first norm is typically the number
of vertices in the graph.

The notion of an approximation algorithm achieving a certain approximation fac-
tor is different depending on whether it is a maximization problem or a minimization
problem.

Definition 2.2. An approximation algorithm A for optimization problem Φ =
(S, g, ‖ ·‖, ‖ ·‖∗, opt) is said to achieve a factor µ(·) ≥ 1 if for all instances w its output
A(w) satisfies

• Φ(w)
µ(‖w‖)

≤ A(w) ≤ Φ(w) if Φ is a maximization problem, or

• Φ(w) ≤ A(w) ≤ µ(‖w‖) · Φ(w) if Φ is a minimization problem.

Note that as per this definition, our convention is that an approximation factor is
always a number at least one. In some other places, the approximation factor, at
least in the case of minimization problems, is a number less than one: they set it to
the reciprocal of what we set it.

Gap problems. We are interested in instances of an optimization problem for which
the optimum is promised to be either “very high” or “very low.” We capture this by
associating to any optimization problem a promise problem, depending on a pair of
“thresholds” c, s, both admissible functions of the first norm and satisfying 0 < s(·) <
c(·). It is convenient to make the definition in terms of the normalized optimum rather
than the optimum. We consider maximization and minimization problems separately.

PCP – TOWARDS TIGHT RESULTS 21

Definition 2.3. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗,max) be a maximization problem, and
let 0 < s(·) < c(·) be admissible functions of the first norm. Define

Y = { w : Φ(w) ≥ c(‖w‖) }
N = { w : Φ(w) < s(‖w‖) }

Gap-Φc,s = (Y,N) .

The gap of the promise problem is defined to be c/s.

It is important that the inequality in the definitions of Y,N is strict in one case and
not in the other. The same is true below although the order is reversed.

Definition 2.4. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗,min) be a minimization problem, and
let 0 < s(·) < c(·) be admissible functions of the first norm. Define

Y = { w : Φ(w) ≤ s(‖w‖) }
N = { w : Φ(w) > c(‖w‖) }

Gap-Φc,s = (Y,N) .

The gap of the promise problem is defined to be c/s.

In this way, each of the many optimization problems we consider will give rise to a
gap problem.

Showing non-approximability via gaps. Hardness of approximation of some op-
timization problem is shown by reducing NP to Gap-Φc,s via a (possibly randomized)
Karp reduction. (This is called producing “hard gaps.”) The following proposition
says that we can show Φ is hard to approximate within a factor equal to the gap by
showing NP ≤K Gap-Φc,s, and the assumption under which the non-approximability
result holds depends on the type of reduction. It is this proposition that motivates
the consideration of gap problems.

Proposition 2.5. Optimization problem Φ has no factor c/s approximation
algorithm

Under this assumption: If this is true:
P 6= NP NP ≤KD Gap-Φc,s
NP 6= coRP NP ≤KR Gap-Φc,s via a reduction with

perfect completeness
NP 6⊆ BPP NP ≤KR Gap-Φc,s

Proof. Let us illustrate by proving the first of the three claims under the assump-
tion that the problem is one of maximization. We proceed by contradiction. Given a
(polynomial time) algorithm A that achieves an approximation factor of µ = c/s for
Φ, we present a polynomial time algorithm B to decide L, where L is any language
in NP. Let T be a (deterministic, Karp) reduction of L to Gap-Φc,s. On input x our
algorithm B computes w = T (x). Next it computes α = s(‖w‖) · ‖w‖∗. Finally, B
invokes A on w, outputs 1 (indicating x ∈ L) if A(w) ≥ α and 0 otherwise (indicating
x 6∈ L).

Since A runs in polynomail-time and the functions s, ‖ · ‖, ‖ · ‖∗ are polynomial
time computable (by assumption), the algorithm B runs in polynomial time. We
claim that B is always right. To see this, first let Y,N be the two parts of the promise
problem Gap-Φc,s as per Definition 2.3. Now consider two cases.

First suppose x ∈ L. Then w = T (x) ∈ Y because T is a correct reduction of L to
Gap-Φc,s. So Φ(w) ≥ c(‖w‖) by Definition 2.3. But then, starting from Definition 2.2

22 M. BELLARE, O. GOLDREICH, AND M. SUDAN

and simplifying, we have

A(w) ≥ Φ(w)
c(‖w‖)/s(‖w‖)

=
Φ(w) · ‖w‖∗

c(‖w‖)/s(‖w‖)

≥ c(‖w‖) · ‖w‖∗

c(‖w‖)/s(‖w‖)
= s(‖w‖) · ‖w‖∗ = α .

Thus, B will output 1, as desired.
Now suppose x 6∈ L. Then w = T (x) ∈ N . So Φ(w) < s(‖w‖) by Definition 2.3.

Starting from Definition 2.2 and simplifying, we have

A(w) ≤ Φ(w) = Φ(w) · ‖w‖∗ < s(‖w‖) · ‖w‖∗ = α .

Thus B will output 0 as desired.
The proofs for the other cases are similar (and thus omitted).

2.4.2. Some optimization problems we consider. A formula is a set of
clauses (i.e., or-clauses) over some set of literals. We consider various classes of for-
mulae. In particular, 3-SAT formulae (at most three literals in each clause), E3-SAT
formulae (exactly three different literals in each clause) and 2-SAT formulae (at most
two literals in each clause). We use the generic notation X-SAT to stand for some
specified class of formulae; thus the above correspond to X ∈ {3,E3, 2}. To each value
of X we associate an optimization problem:

Problem: MaxXSAT
Instance: X-SAT formula ϕ
Solutions: An assignment v which associates to any variable x of ϕ a boolean value
v(x) ∈ {0, 1}. (Not necessarily a satisfying assignment!)
Objective Function: The value of an assignment v is the number of clauses in ϕ that
v makes true
Norm: The norm ‖ϕ‖ of formula ϕ is the number of clauses in it, and ‖ϕ‖∗ is the same
Type: Maximization

In particular we have optimization problems Max2SAT, Max3SAT, MaxE3SAT, and
their corresponding gap problems.

Problem: MaxLinEq
Instance: A set of linear equations over GF(2)
Solutions: An assignment v which associates to any variable x in the set of equations
a value v(x) ∈ GF(2)
Objective Function: The value of an assignment v is the number of equations that v
satisfies
Norm: Both norms are set to the number of equations in the instance
Type: Maximization

Problem: MaxCUT
Instance: G,w, where G = (V,E) is a graph and w: E → R+ is a weight function
Solutions: A cut S, S in G, meaning a partition V = S ∪ S of V into disjoint sets
Objective Function: The value of a cut is its weight w(S, S), the sum of the weights of
the edges with one endpoint in S and the other in S.
Norm: ‖G,w‖ = |V | and ‖G,w‖∗ =

∑
e∈E w(e)

Type: Maximization

PCP – TOWARDS TIGHT RESULTS 23

Problem: MinVC
Instance: Graph G = (V,E)
Solutions: A vertex cover in G, meaning a set V ′ ⊆ V such that V ′ ∩ {u, v} 6= ∅ for
every {u, v} ∈ E.
Objective Function: The value of vertex cover V ′ is it size, meaning the number of
vertices in it
Norm: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph
Type: Minimization

Similarly for any integer B we can define MinVC-B, the version of MinVC in which
the instance is a graph of degree B.

Problem: MaxClique
Instance: Graph G = (V,E)
Solutions: A clique in G, meaning a set C ⊆ V such that {u, v} ∈ E for every pair
u, v of distinct vertices in C
Objective Function: The value of clique C is its size, meaning the number of vertices
in it
Norm: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph
Type: Maximization

Problem: ChromNum
Instance: Graph G = (V,E)
Solutions: A coloring of G, meaning a map c: V → {1, . . . , k}, for some k, such that
c(u) 6= c(v) for any {u, v} ∈ E
Objective Function: The value of c is the number k of colors it uses
Norm: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph
Type: Minimization

As per our general notation, Φ(w) is the optimum for instance w of optimization
problem Φ. Given the above, this means, for example, that MaxClique(G) is the
maximum clique size in graph G; ChromNum(G) is the chromatic number of G;
MinVC(G) is the minimum vertex cover size of G; etc. The corresponding normalized
versions get bars overhead. We will use these notations in what follows.

By the above, MaxXSAT(ϕ) is the maximum number of simultaneously satis-
fiable clauses in ϕ. We abuse notation slightly by dropping the “X”, writing just
MaxSAT(ϕ). Similarly for the normalized version.

2.4.3. History of approximability results for these problems.

Satisfiability problems. Max3SAT is the canonical Max-SNP complete problem
[76]. A polynomial-time algorithm due to Yannakakis [85] approximates it to within a
factor of 4/3 < 1.334 (see Goemans and Williamson [50] for an alternate algorithm).
Currently the best known polynomial-time algorithm for Max3SAT achieves a factor
of 1.258 (and is due to Trevisan et. al. [84] which in turn build on Goemans and
Williamson [51]). For MaxE3SAT, which is also Max-SNP complete, a very simple al-
gorithm achieves an approximation of 8/7 ≤ 1.143 (where 7/8 is the expected fraction
of clauses satisfied by a uniformly chosen assignment).

Max2SAT is also Max-SNP complete [49, 76]. This problem is particularly in-
teresting because it has been the focus of recent improvements in the approxim-
ation factor attainable in polynomial-time. Specifically, Goemans and Williamson
[51] exhibited a polynomial time algorithm achieving an approximation factor of

24 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Due to Assuming Factor Technique

[8] P 6= NP some constant NP ⊆ PCP1,1/2[log, O(1)]; Red-
uction of this to Max3SAT.

[21] P̃ 6= NP̃ 94/93 Framework; better analyses; uses
proof systems of [67, 43].

[21] P 6= NP 113/112 New four-prover proof systems.

[41] P 6= NP 94/93 New two-prover proof systems.

[23] P̃ 6= NP̃ 66/65 Canonicity and some optimizations.

[23] P 6= NP 73/72 Canonicity and some optimizations.

This paper P 6= NP 27/26 Long code and new proof systems.

Fig. 6. Non-approximability results for Max3SAT indicating the factor shown hard and the
assumption under which this was done.

1
0.878 ≈ 1.139, and subsequently Feige and Goemans [39] exhibited an algorithm
achieving 1

0.931 ≈ 1.074.
Non-approximability results for Max-SNP problems begin with [8] who proved

that there exists a constant ε > 0 such that Gap-3SAT1,1−ε is NP-hard. They did
this by providing a reduction from a given NP language L to the promise prob-
lem in question, constructed by encoding as a 3-SAT instance the computation of
a PCP1,1/2[log, O(1)] verifier for an NP-complete language, the variables in the in-
stance corresponding to bits in the proof string. The basic paradigm of their reduction
has been maintained in later improvements.

Figure 6 depicts the progress. Improvements (in the constant value of the non-
approximability factor) begin with [21]. They used Hadamard code based inner verif-
iers following [8]. They also introduced a framework for better analysis, and improved
some previous analyses; we exploit in particular their better analyses of linearity test-
ing (cf. Section 3.5) and of Freivalds’s matrix multiplication test (cf. Lemma 3.16).
The improvement of Feige and Kilian [41] was obtained via new proof systems; that
of [23] by use of the canonicity property of constant prover proofs and some optimiza-
tions. (See Section 2.2.3 for a discussion of the role of constant-prover proofs in this
context).

Garey, Johnson and Stockmeyer [49] had provided, as early as 1976, a reduction of
Max3SAT to Max2SAT which showed that if the former is non-approximable within
(k + 1)/k then the latter is non-approximable within (7k + 1)/(7k). With the best
previous non-approximability factor for Max3SAT (namely 66/65) we would only get
a 456/455 factor non-approximability for Max2SAT. In fact, even using our new
Max3SAT result we would only get only a hardness factor of 185/184. See Section 4.2
for our results.

Linear equations. The MaxLinEq problem is known to be Max-SNP complete (see
[29] or [77]).

We remark that the problem of maximizing the number of satisfiable equations
should not be confused with the “complementary” problem of minimizing the number
of violated constraints, investigated by Arora et. al. [7]. Also the case of maximum
satisfiable linear constraints over larger fields (of size q) has been considered by Amaldi
and Kann [5], who show that this problem is hard to approximate to within a factor
of qε for some universal ε > 0. See Section 4.2.2 for our results.

Max Cut. In 1976, Sahni and Gonzales [80] gave a simple 2-approximation algorithm

PCP – TOWARDS TIGHT RESULTS 25

for this problem. Recently, in a breakthrough result, Goemans and Williamson [51]
gave a new algorithm which achieves a ratio of 1

0.878 = 1.139 for this problem. On
the other hand, [76] give an approximation preserving reduction from Max3SAT to
MaxCUT. Combined with [8] this shows that there exists a constant α > 1 such
that approximating MaxCUT within a factor of α is NP-hard. No explicit bounds
were given since and even using the best known hardness results for MAX 3SAT, one
suspects that the bound for MaxCUT would not be very large, since the reduction
uses constructions of constant degree expanders etc. See Section 4.3 for our results.

Vertex cover. There is a simple polynomial time algorithm to approximate MinVC
in unweighted graphs within a factor of 2. The algorithm, due to F. Gavril (cf. [48]),
consists of taking all vertices which appear in a maximal matching of the graph.
For weighted graphs, Bar-Yehuda and Even [13] and Hochbaum [58], gave algorithms
achieving the same approximation factor. The best known algorithm today achieves
a factor only slightly better, namely 2− (log log |V |)/(2 log |V |) [14, 74].

Evidence to the hardness of approximating MinVC was given by Bar-Yehuda
and Moran who showed that, for every k ≥ 2 and ε > 0, a 1 + 1

k − ε approximator
for (finding) a minimum vertex cover would yield an algorithm for coloring (k + 1)-
colorable graphs using only logarithmically many colors [15]. The version of MinVC
in which one restricts attention to graphs of degree bounded by a constant B, is
Max-SNP complete for suitably large B [76]. In particular they provide a reduction
from Max3SAT. Combined with [8] this implies the existence of a constant δ > 0
such that approximating MinVC within a factor of 1 + δ is hard unless P = NP. No
explicit value of δ has been stated until now. Indeed, the value that could be derived,
even using the best existing non-approximability results for Max3SAT, will be very
small, because of the cost of the reduction of [76], which first reduces Max3SAT to its
bounded version using expanders, and then reduces this to MinVC-B. See Section 5.2
for our results.

Max Clique. The best known polynomial time approximation algorithm for Max
Clique achieves a factor of only N1−o(1) [28], scarcely better than the trivial factor
of N . There is not even a heuristic algorithm that is conjectured to do better. (The
Lovász Theta function had been conjectured to approximate the Max Clique size
within

√
N but this conjecture was disproved by Feige [37].)

Prior to 1991, no non-approximability results on Max Clique were known. In 1991
the connection to proofs was made by Feige et. al. [40]. The FGLSS reduction says
that PCP1,e[coins = r ; query = q] Karp reduces to Gap-MaxCliquec,s via a reduction
running in time poly(2r+q), and with the gap c/s being a function of (r, q and) the
error e. In applying it one works with PCP classes containing NP. One obtains a
result saying Max Clique has no polynomial time approximation algorithm achieving
a certain factor, under an assumption about the deterministic time complexity of NP
(the time complexity depends on r, q and the factor on these, but, most importantly,
on the error e). In particular, these authors were able to “scale-down” the proof
system of [11] to indicate strong non-approximability factors of 2log1−εN for all ε > 0,
assuming NP is not in quasi-polynomial deterministic time. They also initiated work
on improving the factors and assumptions via better proof systems. The best result
in their paper is indicated in Figure 7.

Arora and Safra [9] reduced the randomness complexity of a PCP verifier for NP
to logarithmic — they showed NP = PCP1,1/2[coins = log ; query =

√
logN]. On the

other hand, it is easy to see that that random bits can be recycled for error-reduction
via the standard techniques of [2, 30, 59]. The consequence was the first NP-hardness

26 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Due to Factor Assumption

[40] 2log1−ε N for any ε > 0 NP 6⊆ P̃

[9] 2
√

logN P 6= NP

[8] N ε for some ε > 0 P 6= NP

[21] N1/30 NP 6= coRP

[21] N1/25 NP 6⊆ coRP̃

[41] N1/15 NP 6= coRP

[23] N1/6 P 6= NP

[23] N1/4 NP 6⊆ coRP̃

This paper N1/4 P 6= NP

This paper N1/3 NP 6= coRP

Fig. 7. Some Milestones in the project of proving non-approximability of the Clique number.

result for Max Clique approximation. The corresponding factor was 2
√

logN .
Arora et. al. [8] showed that NP = PCP1,1/2[coins = log ; query = O(1)], which

implied that there exists an ε > 0 for which approximating Max Clique within N ε was
NP-complete. The number of queries was unspecified, but indicated to be ≈ 104, so
ε ≈ 10−4. Later work has focused on reducing the constant value of ε in the exponent.

In later work a slightly tighter form of the FGLSS reduction due to [25, 86] has
been used. It says that PCP1,1/2[coins = r ; queryav = qav] reduces, via a randomized
Karp reduction, to Gap-MaxCliquec,s for some c, s satisfying c(N)/s(N) = N1/(1+qav),
and with the running time of the reduction being poly(2r). (We assume qav = O(1)
for simplicity.) (We omit factors of N ε where ε > 0 can be arbitrarily small, here
and in the following.) Thus the hardness factor was tied to the (average) number of
queries required to get soundness error 1/2. Meanwhile the assumption involved the
probabilistic, rather than deterministic time complexity of NP– it would be NP 6⊆
coRP̃ if r = polylog(n) and NP 6= coRP if r = log(n).

New proof systems of [21] were able to obtain significantly smaller query com-
plexity: they showed NP ⊆ PCP1,1/2[coins = polylog ; query = 24] and NP ⊆
PCP1,1/2[coins = log ; query = 29]. This leads to their hardness results shown in
Figure 7. However, significantly reducing the (average) number of bits queried seemed
hard.

However, as observed by Feige and Kilian, the performance of the FGLSS red-
uction actually depends on the free-bit complexity which may be significantly smaller
than the query complexity [41]. Namely, the factor in the above mentioned reduction
is N1/(1+f) where f is the free-bit complexity. They observed that the proof system
of [21] has free-bit complexity 14, yielding a N1/15 hardness of approximation factor.

The notion of amortized free-bits was introduced in [23]. They observed that the
performance of the reduction depended in fact on this quantity, and that the factor
was N1/(1+f̄) where f̄ is the amortized free bit complexity. They then showed that
NP ⊆ FPCP[polylog, 3]. This lead to a N1/4 hardness factor assuming NP 6= coRP̃.
See Section 7 for our results.

Chromatic Number. The first hardness result for the chromatic number is due to
Garey and Johnson [47]. They showed that if P 6= NP then there is no polynomial
time algorithm that can achieve a factor less than 2. This remained the best result
until the connection to proof systems, and the above mentioned results, emerged.

PCP – TOWARDS TIGHT RESULTS 27

Hardness results for the chromatic number were obtained via reduction from Max
Clique. A N ε factor hardness for Max Clique translates into a Nδ factor hardness
for the Chromatic number2, with δ = δ(ε) a function of ε. In all reductions δ(ε) =
min{h(ε), h(0.5)}, for some function h. The bigger h, the better the reduction.

The first reduction, namely that of Lund and Yannakakis [71], obtained h(ε) =
ε/(5 − 4ε). Via the Max Clique hardness results of [9, 8] this implies the chromatic
number is hard to approximate within Nδ for some δ > 0. But, again, δ is very small.
Improvements to δ were derived both by improvements to ε and improvements to the
function h used by the reduction.

A subsequent reduction of Khanna, Linial and Safra [66] is simpler but in fact
slightly less efficient, having h(ε) = ε/(5 + ε). A more efficient reduction is given by
[23] – they present a reduction obtaining h(ε) = ε/(3 − 2ε). Our N1/3 hardness for
Clique would yield, via this, a N1/7 hardness for the chromatic number. But more
recently an even more efficient reduction has become available, namely that of Fürer
[45]. This reduction achieves h(ε) = ε/(2− ε), and thereby we get our N1/5 hardness.

Following the appearance of our results, Feige and Kilian [42] have introduced a
new approach to showing hardness of approximability of ChromNum. See discussion
in Section 1.5.

Randomized and de-randomized error reduction. As mentioned above, ran-
domized and de-randomized error reduction techniques play an important role in
obtaining the best Clique hardness results via the FGLSS method. Typically, one
first reduces the error so that its logarithm relates to the query (or free-bit) com-
plexity and so that the initial randomness cost can be ignored (as long as it were
logarithmic). (Otherwise, one would have needed to construct proof systems which
minimize also this parameter; i.e., the constant factor in the logarithmic randomness
complexity.)

The randomized error reduction method originates in the work of Berman and
Schnitger [25] were it is applied to the Clique Gap promise problem. An alternative
description is given by Zuckerman [86]. Another alternative description, carried out
in the proof system, is presented in Section 11.

The de-randomized error reduction method consists of applying general, de-
randomized, error reduction techniques to the proof system setting.3 The best method
knows as the “Expander Walk” technique is due to Ajtai, Komlos and Szemeredi [2]
(see also [30, 59]). It is easy to see that this applies in the pcp context. (The usage
of these methods in the pcp context begins with [9].) It turns out that the (constant)
parameters of the expander, specifically the ratio ρ def= log2 d

log2 λ
, where d is the degree of

the expander and λ is the second eigenvalue (of its adjacency matrix), play an impor-
tant role here. In particular, ρ− 1 determines how much we lose with respect to the
randomized error reduction (e.g., NP ∈ FPCP[log, f] translates to a hardness factor
of N

1
1+f under NP 6⊆ BPP and to a hardness factor of N

1
ρ+f under NP 6= P). Thus

the Ramanujan Expander of Lubotzky, Phillips and Sarnak [70] play an important
role yielding ρ ≈ 2 (cf. Proposition 11.4), which is the best possible.

2 Actually all the reductions presented here, make assumptions regarding the structure of the
graph and hence do not directly yield the hardness results stated here. However, as a consequence
of some results from this paper, we are able to remove the assumptions made by the earlier papers
and hence present those results in a simpler form. See Section 8.4 for details.

3 An alternative approach, applicable to the Gap-Clique problem and presented in [3], is to
“de-randomize” the graph product construction of [25].

28 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Part I: New proof systems and non-approximability results

3. The Long Code and its machinery.

3.1. New PCPs and Hardness Results – Overview and guidemap. The
starting point for all our proof systems is a two-prover proof system achieving ar-
bitrarily small but fixed constant error with logarithmic randomness and constant
answer size, as provided by Raz [79]. This proof system has the property that the
answer of the second prover is supposed to be a predetermined function of the answer
of the first prover. Thus, verification in it amounts to checking that the first answer
satisfies some predicate and that the second answer equals the value obtained from
the first answer. Following the “proof composition” paradigm of Arora and Safra
[9], the proof string provided to the PCP verifier will consist of “encodings” of the
answers of the two provers under a suitable code. The PCP verifier will then check
these encodings. As usual, we will check both that these encodings are valid and that
they correspond to answers which would have been accepted by the original verifier.

Our main technical contribution is a new code, called the long code, and means
to check it. The long code of an n-bit information word a is the sequence of 22n

bits consisting of the values of all possible boolean functions at a. The long code
is certainly a disaster in terms of coding efficiency, but it has big advantages in the
context of proof verification, arising from the fact that it carries enormous amounts
of data about a. The difficulty will be to check that a prover claiming to write the
long code of some string a is really doing so.

The long code is described in Section 3.3. In Section 3.5 we provide what we call
the “atomic” tests for this code. These tests and their analysis are instrumental to all
that follows. Section 3.4 is also instrumental to all that follows. This section sets up
the framework for recursive proof checking which is used in all the later proof systems.

The atomic tests are exploited in Section 4.1, to construct a verifier that queries
the proof at 3 locations and performs one of two simple checks on the answers ob-
tained. These simple checks are implemented by gadgets of the MaxSNP problem at
hand, yielding the non-approximability results. Section 4.2 presents gadgets which are
CNF formulae of the corresponding type and Section 4.3 presents Max-CUT gadgets.
The non-approximability results for Max3SAT, MaxE3SAT, Max2SAT and MaxCUT
follow. The verifier of Section 4.1 benefits from another novel idea which is referred to
as folding (see Section 3.3). Folding contributes to the improved results for Max3SAT,
MaxE3SAT, Max2SAT and Max-CUT, but not to the results regarding Max Clique
(and Chromatic Number).

A reasonable non-approximability result for MinVC (Minimum Vertex Cover) can
be obtained by the above methodology, but a better result is obtained by constructing
a different verifier, for NP languages, that uses exactly two free-bits. This verifier is
then used to create a reduction of NP to MinVC via the FGLSS reduction and the
standard Karp reduction. This approach is presented in Section 5 where we try to
minimizing the soundness error attainable using exactly two free-bits.

In Section 6 we minimize the number of bits queried in a PCP to attain soundness
error 1/2 – the result is not of direct applicability, but it is intriguing to know how
low this number can go.

We then turn to Max Clique (and Chromatic Number). In Section 7.1 we provide
the “iterated” tests. (Here the atomic tests are invoked (sequentially) many times.
These invocations are not independent of each other.) This leads to a proof system in
which the number of amortized free-bits used is two. We then draw the implications

PCP – TOWARDS TIGHT RESULTS 29

for Max Clique (and Chromatic Number). A reader interested only in the (amortized)
free-bit and Max Clique results can proceed directly from Section 3.5 to and Section 7.

The improvement in the complexities of the proof systems is the main source of our
improved non-approximability results. In addition we also use (for the Max-SAT and
Max-CUT problems) a recent improvement in the analysis of linearity testing [17], and
introduce (problem specific) gadgets which represent the various tests of the resulting
PCP system.

3.2. Preliminaries to the Long Code. Here Σ = {0, 1} will be identified with
the finite field of two elements, the field operations being addition and multiplication
modulo two. If X and Y are sets, then Map(X,Y) denotes the set of all maps of X
to Y . For any m we regard Σm as a vector space over Σ, so that strings and vectors
are identified.

If a ∈ Σm then a(i) denotes its i-th bit. Similarly, if f is any function with range
Σm then f (i) denotes the i-th bit of its output.

Linearity. Let G,H be groups. A map f : G→ H is linear if f(x+y) = f(x)+f(y)
for all x, y ∈ G. Let Lin(G,H) denote the set of all linear maps of G to H.

When G = Σn and H = Σ, a function f : G → H is linear if and only if there
exists a ∈ Σn such that f(x) =

∑n
i=1 a

(i)x(i) for all x ∈ Σn.

Distance. The distance between functions f1, f2 defined over a common finite do-
main D is

Dist(f1, f2) = Pr
x
R←D

[f1(x) 6= f2(x)] .

Functions f1, f2 are ε-close if Dist(f1, f2) < ε. If f maps a group G to a group H
we denote by Dist(f,Lin) the minimum, over all g ∈ Lin(G,H), of Dist(f, g). (Note
the notation does not specify G,H which will be evident from the context). We are
mostly concerned with the case where G is a vector space V over Σ and H being Σ.
Notice that in this case we have Dist(f,Lin) ≤ 1/2 for all f : V → Σ.

Boolean Functions. Let l be an integer. We let Fl
def= Map(Σl,Σ) be the set of all

maps of Σl to Σ. We regard Fl as a vector space (of dimension 2l) over Σ. Addition
and multiplication of functions are defined pointwise.

We let Lm ⊆ Fm be the set Lin(Σm,Σ) of linear functions of Σm to Σ, and let
L∗m = Lm − {0} be the non-zero linear functions.

Let g ∈ Fm and ~f = (f1, . . . , fm) ∈ Fml . Then g ◦ ~f denotes the function in Fl
that assigns the value g(f1(x), . . . , fm(x)) to x ∈ Σl.

The Monomial Basis. For each S ⊆ [l] we let χS ∈ Fl be the monomial corre-
sponding to S, defined for x ∈ Σl by

χ
S(x) =

∏
i∈S x

(i) .

The empty monomial, namely χ∅, is defined to be the constant-one function (i.e.,
χ∅(x) = 1̄, for all x ∈ Σl). The functions {χS}S⊆[l] form a basis for the vector space
Fl which we call the monomial basis. This means that for each f ∈ Fl, there exists a
unique vector C(f) = (Cf (S))S⊆[l] ∈ Σ2l such that

f =
∑

S⊆[l] Cf (S) · χS
The expression on the right hand side above is called the monomial series for f , and
the members of C(f) are called the coefficients of f with respect to the monomial
basis. We note that C: Fl → Σ2l is a bijection. (The Monomial Basis is reminisent of
the Fourier Basis, but the two are actually different.)

30 M. BELLARE, O. GOLDREICH, AND M. SUDAN

3.3. Evaluation operators, the Long Code, and Folding.

Evaluation operators. Let a ∈ Σl. We define the map Ea: Fl → Σ by Ea(f) =
f(a) for all f ∈ Fl. We say that a map A: Fl → Σ is an evaluation operator if there
exists some a ∈ Σl such that A = Ea. We now provide a useful characterization of
evaluation operators. First we need a definition.

Definition 3.1. (Respecting the monomial basis): A map A: Fl → Σ is said to
respect the monomial basis if
(1) A(χ∅) = 1 and
(2) ∀ S, T ⊆ [l] : A(χS) ·A(χT) = A(χS∪T) .

Proposition 3.2. (Characterization of the evaluation operator): A map Ã: Fl →
Σ is an evaluation operator if and only if it is linear and respects the monomial basis.

Proof. Let a ∈ Σl. It is easy to see that Ea is linear: Ea(f + g) = (f + g)(a) =
f(a) + g(a) = Ea(f) + Ea(g). It is also easy to see Ea respects the monomial basis.
Firstly we have Ea(χ∅) = χ∅(a) = 1. Next, for every S, T ⊆ [l],

Ea(χS) · Ea(χT) = χ
S(a) · χT (a) =

∏
i∈S a

(i) ·
∏

i∈T a
(i) .

However x2 = x for any x ∈ Σ so∏
i∈S a

(i) ·
∏

i∈T a
(i) =

∏
i∈S∪T

a(i) = χ
S∪T (a) = Ea(χS∪T)

Now we turn to the converse. Let Ã: Fl → Σ be linear and respect the monomial
basis. For i = 1, . . . , l, let ai

def= Ã(χ{i}), and let a def= a1 . . . al. We claim that Ã = Ea.
The proof is as follows. We first claim that

∀ S ⊆ [l] : Ã(χS) = χ
S(a) .(2)

Since Ã respects the monomial basis we have Ã(χ∅) = 1 which in turn equals χ∅(a),
proving Eq. (2) for S = ∅. To establish Eq. (2) for S = {i1, . . . , it} 6= ∅, we write

Ã(χS) = Ã
(
χ{i1}∪···∪{it}

)
=
∏ t

j=1 Ã(χ{ij}) =
∏ t

j=1 aij = χS(a) .

where the second equality is due to the fact that Ã respects the monomial basis. This
establishes Eq. (2). Now for any f ∈ Fl we can use the linearity of Ã to see that

Ã(f) = Ã (
∑

S Cf (S) · χS)) =
∑

S Cf (S) · Ã(χS)

=
∑

S Cf (S) · χS(a) = f(a) = Ea(f) .

Thus Ã = Ea.

The Long Code. Intuitively, the encoding of a ∈ {0, 1}l (via the long code) is the
22l bit string which in position f ∈ Fl stores the bit f(a). The Long Code is thus
an extremely “redundant” code, encoding an l-bit string by the values, at a, of all
functions in Fl.

Definition 3.3. (Long Code:) The long code E: Σl → Map(Fl,Σ) is defined
for any a ∈ Σl by E(a) = Ea.

In some natural sense E is the longest possible code: E is the longest code which is
not repetitive (i.e., does not have two positions which are identical in all codewords).

We let Dist(A,Eval) = mina∈Σl Dist(A,Ea) be the distance from A to a closest
codeword of E. It is convenient to define E−1(A) ∈ Σl as the lexicographically least
a ∈ Σl such that Dist(A,Ea) = Dist(A,Eval). Notice that if Dist(A,Eval) < 1/4

PCP – TOWARDS TIGHT RESULTS 31

then there is exactly one a ∈ Σl such that Dist(A,Ea) = Dist(A,Eval), and so
E−1(A) is this a.

The long code is certainly a disaster in terms of coding efficiency, but it has a big
advantage in the context of proof verification. Consider, for example, the so-called
“circuit test” (i.e., testing that the answer of the first prover satisfies some prede-
termined predicate/circuit). In this context one needs to check that the codeword
encodes a string which satisfies a predetermined predicate (i.e., the codeword encodes
some w ∈ {0, 1}n which satisfies h(w) = 0, for some predetermined predicate h). The
point is that the value of this predicate appears explicitly in the codeword itself, and
furthermore it can be easily “self-corrected” by probing the codeword for the values
of the functions f and f +h, for a uniformly selected function f : {0, 1}n → {0, 1} (as
all these values appear explicitly in the codeword). Actually, the process of verifying,
via self-correction, that the value under h is zero can be incorporated into the task
of checking the validity of the codeword; this is done by the notion of “(h, 0)-folding”
(see below). The fact that we can avoid testing whether the codeword encodes a
string which satisfies a given function (or that this testing does not cost us anything)
is the key to the complexity improvements in our proof systems (over previous proof
systems in which a “circuit test” was taking place).

Folding. The intuition behind the notion we will now define is like this. When A is
the long code of some string x for which it is known that h(x) = b for some function
h and bit b, then half the bits of A become redundant because they can be computed
from the other half, via A(f) = A(f + h)− b. This phenomenon enables us to reduce
the proof checking complexity. To capture it we now define the notion of folding.

Fix ≺ to be some canonical, polynomial-time computable total order (reflexive,
antisymmetric, transitive) on the set Fl. Given functions A: Fl → Σ and h ∈ Fl \ {0̄}
(i.e., h is not the constant function 0̄) and bit b ∈ Σ, the (h, b)-folding of A is the
function A(h,b): Fl → Σ given by

A(h,b)(f) =

{
A(f) if f ≺ h+ f

A(f + h)− b otherwise.

(Notice that the above is well-defined for any h 6= 0̄.) For sake of technical simplicity
(see Definition 3.9), we define the (0̄, 0)-folding of A to be A itself; namely, A(0̄,0)(f) =
A(f), for every f ∈ Fl. As shown below, the (h, b)-folding of a function A is forced
to satisfy A(h,b)(f + h) = A(h,b)(f) + b, for every f ∈ Fl (whereas A itself may not
necessarily satisfy these equalities). Before proving this, let us generalize the notion
of folding to folding over several, specifically two, functions h1, h2 ∈ Fl (and bits
b1, b2 ∈ Σ).

Definition 3.4. (Folding): Let f, h1, h2 ∈ Fl. The (h1, h2)-span of f , denoted
spanh1,h2(f), is defined as the set {f+σ1h1+σ2h2 : σ1, σ2 ∈ Σ}. Let mincoefh1,h2(f)
be the pair (σ1, σ2) of elements of Σ for which f+σ1h1 +σ2h2 is the smallest function
(according to ≺) in spanh1,h2(f). Let A: Fl → Σ. Assume h1, h2 are distinct and non-
zero. Let b1, b2 ∈ Σ. The folding ofA over (h1, b1) and (h2, b2), denotedA(h1,b1),(h2,b2),
is defined for every f ∈ Fl by

A(h1,b1),(h2,b2)(f) = A(f + σ1h1 + σ2h2)− σ1b1 − σ2b2 ,

where (σ1, σ2) = mincoefh1,h2(f).

The definition extends naturally to the following two cases. In case (h1, b1) = (h2, b2),
folding over the two (identical) pairs is defined as folding over one pair. In case h1 ≡ 0̄

32 M. BELLARE, O. GOLDREICH, AND M. SUDAN

and b1 = 0, folding over both (h1, b1) and (h2, b2) is defined as folding over (h2, b2).
Note that folding over two pairs is invariant under the order between the pairs; namely,
A(h1,b1),(h2,b2) ≡ A(h2,b2),(h1,b1). Finally, observe that a function A: Fl → Σ that is
folded over two functions (i.e., over both (h1, b1) and (h2, b2)) is folded over each of
them (i.e., over each (hi, bi)).

Proposition 3.5. (Folding forces equalities): Let A: Fl → Σ, h1, h2 ∈ Fl and
b1, b2 ∈ Σ (with bi = 0 in case hi ≡ 0̄). Then, for every f ∈ Fl,

A(h1,b1),(h2,b2)(f + h1) = A(h1,b1),(h2,b2)(f) + b1

Proof. By definition, A(h1,b1),(h2,b2)(f) = A(f + σ1h1 + σ2h2) − σ1b1 − σ2b2,
where the function f + σ1h1 + σ2h2 is the smallest function in spanh1,h2(f). Since
spanh1,h2(f + h1) ≡ spanh1,h2(f), we have A(h1,b1),(h2,b2)(f + h1) = A(f + σ1h1 +
σ2h2)− (σ1 − 1)b1 − σ2b2. The claim follows.

As a corollary to the above (combined with the self-correcting paradigm [27]), we
get

Proposition 3.6. (folding and the evaluation operator): Let A: Fl → Σ, h ∈ Fl,
b ∈ Σ and a ∈ Σl. Suppose that for any f ∈ Fl it is the case that A(f+h) = A(f)+b.
Then Dist(A,Ea) < 1/2 implies h(a) = b. Consequently, if Dist(A(h,b),(h′,b′), Ea) <
1/2 then h(a) = b, provided b = 0 if h ≡ 0̄.

Proof. By the hypothesis, we have A(h+f) = A(f)+b, for every f ∈ Fl. Suppose
that Dist(A,Ea) < 1/2. Then, noting that Ea is linear and applying a self-correction
process (cf., Corollary 3.14 below), we get Ea(h) = b. Using the definition of the Eval-
uator operator (i.e., Ea(h) = h(a)) we have h(a) = b. The consequence for A(h,b),(h′,b′)

follows since by Proposition 3.5 we have A(h,b),(h′,b′)(f + h) = A(h,b),(h′,b′)(f) + b for
any f ∈ Fl.

The verifiers constructed below make virtual access to “folded” functions rather
than to the functions themselves. Virtual access to a folding of A is implemented by
actual accessing A itself according to the definition of folding (e.g., say one wants to
access A(h,0) at f then one determines whether f ≺ h+ f or not and accesses either
A(f) or A(f + h), accordingly). One benefit of folding in our context is illustrated
by Proposition 3.6; in case a (h, b)-folded function is close to a codeword (in the long
code), we infer that the codeword encodes a string a satisfying h(a) = b. We will see
that folding (the long code) over (h, 0) allows us to get rid of a standard ingredient
in proof verification; the so-called “circuit test”.

In the sequel, we will use folding over the pairs (h, 0) and (1̄, 1), where h ∈ Fl is an
arbitrary function (typically not identically zero) and 1̄ is the constant-one function.
Folding over (1̄, 1) allows us to simplify the “codeword” test (w.r.t. the long-code).

3.4. Recursive verification of proofs. This section specifies the basic struc-
ture of proof construction, and in particular provides the definitions of the notions
of inner and outer verifiers which will be used throughout. It is useful to understand
these things before proceeding to the tests.

Overview. The constructions of efficient proofs that follow will exploit the notion of
recursive verifier construction due to Arora and Safra [9]. We will use just one level of
recursion. We first define a notion of a canonical outer verifier whose intent is to cap-
ture two-prover one-round proof systems [24] having certain special properties; these

PCP – TOWARDS TIGHT RESULTS 33

verifiers will be our starting point. We then define a canonical inner verifier. Recur-
sion is captured by an appropriate definition of a composed verifier whose attributes
we relate to those of the original verifiers in Theorem 3.12.

The specific outer verifier we will use is one obtained by a recent work of Raz
[79]. We will construct various inner verifiers based on the long code and the tests in
Section 3.5 and Section 7.1. Theorem 3.12 will be used ubiquitously to combine the
two.

Comparison with previous work. For a history and a better understanding of the
role of constant-prover proof systems in this context, see Section 2.4.3. In comparison,
our definition of outer verifiers (below) asks for almost the same canonicity properties
as in [23]. (The only difference is that they have required σ to be a projection function,
whereas we can deal with an arbitrary function. But we don’t take advantage of this
fact.) In addition we need answer sizes of log log n as opposed to the O(log n) of
previous methods, for reasons explained below. This means that even the (modified)
[67, 43] type proofs won’t suffice for us. We could use the three-prover modification
of [41] but the cost would wipe out our gain. Luckily this discussion is moot since
we can use the recent result of Raz [79] to provide us with a canonical two-prover
proof having logarithmic randomness, constant answer size, and any constant error.
This makes an ideal starting point. To simplify the definitions below we insisted on
constant answer size and two provers from the start.

The inner verifiers used in all previous works are based on the use of the Hadamard
code constructions of [8]. (The improvements mentioned above are obtained by check-
ing this same code in more efficient ways). We instead use a new code, namely the
long code, as the basis of our inner verifiers. Note the codewords (in the long code)
have length double exponential in the message, explaining our need for log log n an-
swer sizes in the outer verifier. We also incorporate into the definitions the new idea
of folding which we will see means we don’t need a circuit test (a hint towards this
fact is already present in the definition of a good inner verifier).

3.4.1. Outer verifiers. As mentioned above, outer verifiers will model certain
special kinds of two-prover, one-round proof systems. We think of the verifier as
provided with a pair of proof oracles π, π1, and allowed one query to each. The
desired properties concern the complexity of the system and a certain behavior in the
checking of the proof, as we now describe.

Let r1, s, s1: Z+ → Z+ and let l and l1 be positive integers. An (l, l1)-canonical
outer verifier Vouter takes as input x ∈ Σn, and has oracle access to a pair of proofs
π̄: [s(n)]→ Σl and π̄1: [s1(n)]→ Σl1 . It does the following.

(1) Picks a random string R1 of length r1(n).
(2) Computes, as a function of x and R1, queries q ∈ [s(n)] and q1 ∈ [s1(n)], and

a (circuit computing a) function σ: Σl → Σl1 (which is determined by x and
R1). Determines, based on x and q, a function h: Σl → Σ (and computes an
appropriate representation of it).
(We stress that h does not depend on R1, only on q and x).

(3) Lets a = π̄(q) and a1 = π̄1(q1).
(4) If h(a) 6= 0 then rejects.
(5) If σ(a) 6= a1 then rejects.
(6) Otherwise accepts.
We call s, s1 the proof sizes for Vouter and r1 the randomness of Vouter.

34 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Recall that by the conventions in Section 2, ACC [V π̄,π̄1
outer(x)] denotes the prob-

ability, over the choice of R1, that Vouter accepts, and ACC [Vouter(x)] denotes the
maximum of ACC [V π̄,π̄1

outer(x)] over all possible proofs π̄, π̄1.

Definition 3.7. (Goodness of outer verifier): Outer verifier Vouter is ε-good for
language L if for all x it is the case that
(1) x ∈ L implies ACC [Vouter(x)] = 1.
(2) x 6∈ L implies ACC [Vouter(x)] ≤ ε.

Employing the FRS-method [44] to any PCP(log,O(1))-system for NP (e.g., [8]) one
gets a canonical verifier which is δ-good for some δ < 1. (Roughly, the method is to
take the given pcp system, send all queries to one oracle, and, as a check, a random
one of them to the other oracle.) Using the Parallel Repetition Theorem of Raz, we
obtain our starting point –

Lemma 3.8. (Construction of outer verifiers): Let L ∈ NP. Then for every ε > 0
there exist positive integers l, l1 and c such that there exists an (l, l1)-canonical outer
verifier which is ε-good for L and uses randomness r(n) = c log2 n.

Actually, Raz’s Theorem [79] enables one to assert that l, l1 and c are O(log ε−1); but
we will not need this fact. Also, the function σ determined by this verifier is always
a projection, but we don’t use this fact either.

3.4.2. Inner verifiers. Inner verifiers are designed to efficiently verify that the
encoding of answers, which a (canonical) outer verifier expects to see, indeed satisfy
the checks which this outer verifier performs. Typically, the inner verifier performs a
combination of a codeword test (i.e., tests that each oracle is indeed a proper encoding
relative to a fixed code – in our case the Long Code), a projection test (i.e., that the
decoding of the second answer corresponds to the value of σ applied to the decoding
of the first), and a “circuit test” (i.e., that the decoding of the first answer evaluates
to 0 under the function h).

Let r2, l, l1 ∈ Z+. A (l, l1)-canonical inner verifier Vinner takes as inputs functions
σ: Σl → Σl1 and h ∈ Fl. (It may also take additional inputs, depending on the
context). It has oracle access to a pair of functions A: Fl → Σ and A1: Fl1 → Σ, and
uses r2 random bits. The parameters δ1, δ2 > 0 in the following should be thought as
extremely small: in our constructions, they are essentially 0 (see comment below).

Definition 3.9. (Goodness of inner verifier): An inner verifier Vinner is (ρ, δ1, δ2)-
good if for all σ, h as above–
(1) Suppose a ∈ Σl is such that h(a) = 0. Let a1 = σ(a) ∈ Σl1 . Then

ACC [V Ea,Ea1inner (σ, h)] = 1 .

(2) Suppose A,A1 are such that ACC [V A,A1
inner (σ, h)] ≥ ρ. Then there exists a ∈ Σl

such that:
(2.1) Dist(A(h,0),(1̄,1), Ea) < 1/2− δ1.
(2.2) Dist(A1, Eσ(a)) < 1/2− δ2.

We stress that although the inner verifier has access to the oracle A (and the hy-
pothesis in condition (2) of Definition 3.9 refers to its computations with oracle A),
the conclusion in condition (2.1) refers to A folded over both (h, 0) and (1̄, 1), where
1̄ is the constant-one function. (Typically, but not necessarily, the verifier satisfying
Definition 3.9 accesses the virtual oracle A(h,0),(1̄,1) by actual access to A according
to the definition of folding.) Furthermore, by Proposition 3.6, condition (2.1) implies

PCP – TOWARDS TIGHT RESULTS 35

that h(a) = 0. (Thus, there is no need to explicitly require h(a) = 0 in order to
make Theorem 3.12 work.) We comment that the upper bounds in conditions (2.1)
and (2.2) are chosen to be the largest ones which still allow us to prove Theorem 3.12
(below). Clearly, the complexity of the inner verifier decreases as these bounds in-
crease. This is the reason for setting δ1 and δ2 to be extremely small. We stress that
this optimization is important for the MaxSNP results but not for the Max Clique
result. In the latter case, we can use δi’s greater than 1

4 which simplifies a little the
analysis of the composition of verifiers (below).

Remark 3.10. (a tedious one): The above definition allows h to be identically
zero (although this case never occurs in our constructions nor in any other reasonable
application). This is the reason that we had to define folding over (0,0) as well. An
alternative approach would have been to require h 6≡ 0 and assert that this is the case
with respect to the outer verifier of Lemma 3.8.

3.4.3. Composition of verifiers. We now describe the canonical composition
of a (canonical) outer verifier with a (canonical) inner verifier. Let Vouter be a (l, l1)-
canonical outer verifier with randomness r1 and proof sizes s, s1. Let Vinner be a (l, l1)-
canonical inner verifier with randomness r2. Their composed verifier 〈Vouter, Vinner〉
takes as input x ∈ Σn and has oracle access to proofs π: [s(n)] × Fl → Σ and
π1: [s1(n)]×Fl1 → Σ. We ask that it does the following –

Picks random strings for both Vouter and Vinner; namely, picks a random string
R1 of length r1(n) and a random string R2 of length r2(n).
Computes queries q and q1 and functions σ and h as Vouter would compute them
given x,R1

Outputs V A,A1
inner (σ, h;R2) where A(·) = π(q, ·) and A1(·) = π1(q1, ·).

The randomness complexity of the composed verifier is r1 + r2 whereas its query and
free-bit complexities equal those of Vinner.

We show how the composed verifier 〈Vouter, Vinner〉 inherits the goodness of the
Vouter and Vinner. To do so we need the following Lemma. It is the counterpart of a
claim in [21, Lemma 3.5] and will be used in the same way. The lemma is derived
from a coding theory bound which is slight extension of bounds in [73, Ch. 7] (see
Appendix).

Lemma 3.11. Suppose 0 ≤ δ ≤ 1/2 and A: Fl → Σ. Then there are at most
1/(4δ2) codewords that have distance less than 1/2− δ from A. That is,∣∣{ a ∈ Σl : Dist(A,Ea) ≤ 1/2− δ }

∣∣ ≤ 1
4δ2

.

Furthermore, for δ > 1/4 the above set contains at most one string.

Proof. We know that Ea is linear for any a (cf. Proposition 3.2). So it suffices to
upper bound the size of the set

A = {X ∈ Lin(Fl,Σ) : Dist(A,X) ≤ 1/2− δ } .
This set has the same size as

B = {X −A : X ∈ Lin(Fl,Σ) and Dist(A,X) ≤ 1/2− δ } .

Let n = 22l and identify Map(Fl,Σ) with Σn in the natural way. Let w(·) denote the
Hamming weight. Now note that Z = X − A ∈ B implies w(Z)/n = Dist(X,A) ≤
1/2− δ. Furthermore if Z1 = X1 −A and Z2 = X2 −A are in B then Dist(Z1, Z2) =
Dist(X1, X2) and the latter is 1/2 if X1 6= X2, since X1, X2 are linear. Thus, B is a

36 M. BELLARE, O. GOLDREICH, AND M. SUDAN

set of binary vectors of length n, each of weight at most (0.5 − δ)n, and any two of
distance at least 0.5n apart. Invoking Lemma A.1 (with α = δ and β = 0), we upper
bound the size of B as desired. Finally, when δ > 1/4 the triangle inequality implies
that we cannot have a1 6= a2 so that Dist(A,Eai) ≤ 1/2− δ < 1/4 for both i = 1, 2.

In some applications of the following theorem, δ1, δ2 > 0 will first be chosen to be so
small that they may effectively be thought of as 0. (This is done in order to lower the
complexities of the inner verifiers.) Once the δi’s are fixed, ε will be chosen to be so
much smaller (than the δi’s) that ε/(16δ2

1δ
2
2) may be thought of as effectively 0. The

latter explains why we are interested in outer verifiers which achieve a constant, but
arbitrarily small, error ε. For completeness we provide a proof, following the ideas of
[9, 8, 21].

Theorem 3.12. (The composition theorem): Let Vouter be a (l, l1)-canonical
outer verifier. Suppose it is ε-good for L. Let Vinner be an (l, l1)-canonical inner
verifier that is (ρ, δ1, δ2)-good. Let V = 〈Vouter, Vinner〉 be the composed verifier, and
let x ∈ Σ∗. Then —
(1) If x ∈ L then ACC [V (x)] = 1
(2) If x 6∈ L then ACC [V (x)] ≤ ρ+ ε

16δ21δ
2
2

.
For δ1, δ2 > 1/4 the upper bound in (2) can be improved to ρ+ ε.

(The latter case (i.e., δ1, δ2 > 1/4) suffices for the Max Clique results.)
Proof. Let n = |x|, and let s, s1 denote the proof sizes of Vouter.
Suppose x ∈ L. By Definition 3.7 there exist proofs π̄: [s(n)] → Σl and π̄1

: [s1(n)] → Σl1 such that ACC [V π̄,π̄1
outer(x)] = 1. Let π: [s(n)] × Fl → Σ be defined

by π(q, f) = Eπ̄(q)(f). (In other words, replace the l bit string π̄(q) with its 22l bit
encoding under the long code, and let the new proof provide access to the bits in this
encoding). Similarly let π1: [s1(n)]× Fl1 → Σ be defined by π1(q1, f1) = Eπ̄1(q1)(f1).
Now one can check that the item (1) properties in Definitions 3.7 and 3.9 (of the outer
and inner verifier, respectively) imply that ACC [V π,π1(x)] = 1.

Now suppose x 6∈ L. Let π: [s(n)] × Fl → Σ and π1: [s1(n)] × Fl1 → Σ be proof
strings for V . We will show that ACC [V π,π1(x)] ≤ ρ + ε/(16δ2

1δ
2
2). Since π, π1 were

arbitrary, this will complete the proof.
We set N1 = b1/(4δ2

1)c and N2 = b1/(4δ2
2)c (with N1 = 1 if δ1 > 1/4 and N2 = 1

if δ2 > 1/4). The idea to show ACC [V π,π1(x)] ≤ ρ+N1N2 ·ε is as follows. We will first
define a collection of N1 proofs π̄1, . . . , π̄N1 and a collection of N2 proofs π̄1

1 , . . . , π̄
N2
1

so that each pair (π̄i, π̄j1) is a pair of oracles for the outer verifier. Next we will
partition the random strings R1 of the outer verifier into two categories, depending
on the performance of the inner verifier on the inputs (i.e., the functions σ, h and the
oracles A,A1) induced by R1. On the “bad” random strings of the outer verifier, the
inner verifier will accept with probability at most ρ; on the “good” ones, we will use
the soundness of the inner verifier to infer that that the outer verifier accepts under
some oracle pair (π̄i, π̄j1), for i ∈ [N1] and j ∈ [N2]. The soundness of the outer verifier
will be used to bound the probability of such acceptances.

We now turn to the actual analysis. We define N1 proofs π̄1, . . . , π̄N1 : [s(n)]→ Σl

as follows. Fix q ∈ [s(n)] and letA = π(q, ·). LetBq = {a ∈ Σl : Dist(A(h,0),(1̄,1), Ea) ≤
1/2− δ1 }. (Notice that for this set to be well-defined we use the fact that h is well-
defined given q.) Note that |Bq| ≤ N1 by Lemma 3.11. Order the elements of Bq in
some canonical way, adding dummy elements to bring the number to exactly N1, so
that they can be written as a1(q), . . . , aN1(q). Now set π̄i(q) = ai(q) for i = 1, . . . , N1.

PCP – TOWARDS TIGHT RESULTS 37

In a similar fashion we define π̄j1(q1) = aj1(q1) for j = 1, . . . , N2, where each aj1 = aj1(q1)
satisfies Dist(π1(q1, ·), Eaj1) ≤ 1/2− δ2.

Let R1 be a random string of Vouter. We say that R1 is good if

ACC [V π(q,·),π1(q1,·)
inner (σ, h)] ≥ ρ ,

where q, q1, σ, h are the queries and functions specified by R1. If R1 is not good we
say it is bad . The claim that follows says that if R1 is good then there is some choice
of the above defined proofs which leads the outer verifier to accept on coins R1.

Claim. Suppose R1 is good. Then there is an i ∈ [N1] and a j ∈ [N2] such that

V
π̄i,π̄j1
outer (x;R1) = 0.

Proof. Let q, q1, σ, h be the queries and functions specified by R1. Let A = π(q, ·)
and A1 = π1(q1, ·) (be the oracles accessed by the inner verifier). Since R1 is good we
have ACC [V A,A1

inner (σ, h)] ≥ ρ. So by Item (2) of Definition 3.9 there exists a ∈ Σl such
that Dist(A(h,0),(1̄,1), Ea) < 1/2 − δ1 and Dist(A1, Eσ(a)) < 1/2 − δ2. Let a1 = σ(a).
Since Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 it must be the case that a ∈ Bq, and hence there
exists i ∈ [N1] such that a = π̄i(q). Similarly Dist(A1, Eσ(a)) < 1/2 − δ implies that
there is some j ∈ [N] such that a1 = π̄j1(q1). By Proposition 3.6 we have h(a) = 0,
and we have σ(a) = a1 by (the above) definition. Now, by definition of the (execution

of the) canonical outer verifier, V π̄
i,π̄j1

outer (x;R1) = 0 holds. 2

By conditioning we have ACC [V π,π1(x)] ≤ α+ β where

α = PrR1 [R1 is good]

β = PrR1,R2 [V π,π1(x;R1R2) = 0 | R1 is bad] .

The definition of badness implies β ≤ ρ. On the other hand we can use the Claim to
see that

α ≤ PrR1

[
∃i ∈ [N1] , j ∈ [N2] : V π̄

i,π̄j1
outer (x;R1) = 0

]
≤

∑N1
i=1

∑N2
j=1 PrR1

[
V
π̄i,π̄j1
outer (x;R1) = 0

]
≤ N1N2 · ε ,

the last by the soundness of Vouter (i.e., Item (2) of Definition 3.7). Using the bound
on N1 and N2, the proof is concluded.

3.5. The atomic tests. Our constructions of proofs systems will use the outer
verifier of Lemma 3.8, composed via Theorem 3.12 with inner verifiers to be con-
structed. The brunt of our constructions is the construction of appropriate inner
verifiers. The inner verifier will have oracle access to a function A: Fl → Σ and a
function A1: Fl1 → Σ. In all our applications, A is supposed to be a folding of an
encoding of the answer a of the first prover (in a two-prover proof system) and A1 is
supposed to be the encoding of the answer a1 of the second prover. The verifier will
perform various tests to determine whether these claims are true. The design of these
tests is the subject of this subsection.

The atomic tests we provide here will be used directly in the proof systems for
showing non-approximability of Max3SAT, Max2SAT and MaxCUT. Furthermore,
they are also the basis of iterated tests which will lead to proof systems of amortized
free-bit complexity ≈ 2, which in turn are used for the Max Clique and Chromatic
Number results. We remark that for the applications to the above-mentioned MaxSNP

38 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The Atomic Tests. Here A: Fl → Σ and A1: Fl1 → Σ are the objects
being tested. The tests also take additional inputs or parameters: below
f, f1, f2, f3 ∈ Fl; g ∈ Fml1 ; and σ: Σl → Σl1 .

LinTest(A; f1, f2) (Linearity Test)
If A(f1) +A(f2) = A(f1 + f2) then output 0 else output 1.

MBTest(A; f1, f2, f3) (Respecting-Monomial-Basis Test)
If A(f1) = 0 then check if A(f1 · f2 + f3) = A(f3)
Otherwise (i.e. A(f1) = 1) then check if A(f1 · f2 + f2 + f3) = A(f3)
Output 0 if the relevant check succeeded, else output 1.

ProjTestσ(A,A1; f, g) (Projection Test)
If A1(g) = A(g ◦ σ + f)−A(f) then output 0, else output 1.

The Passing Probabilities. These are the probabilities we are interested
in:

LinPass(A) = Pr
f1,f2

R←Fl
[LinTest(A; f1, f2) = 0]

MBPass(A) = Pr
f1,f2,f3

R←Fl
[MBTest(A; f1, f2, f3) = 0]

ProjPassσ(A,A1) = Pr
f
R←Fl ; g

R←Fl1
[ProjTestσ(A,A1; f, g) = 0]

Fig. 8. The atomic tests and their passing probabilities.

problems it is important to have the best possible analysis of our atomic tests, and
what follows strives to this end. We stress that the exposition and analysis of these
tests, in this subsection, is independent of the usage of the codes in our proof systems.

Testing for a codeword. The first task that concerns us is to design a test which,
with high probability, passes if and only if A is close to an evaluation operator (i.e., a
valid codeword). The idea is to exploit the characterization of Proposition 3.2. Thus
we will perform (on A) a linearity test, and then a “Respect of Monomial Basis” test.
Linearity testing is well understood, and we will use the test of [27], with the analyses
of [27, 21, 17]. The main novelty is the Respect of Monomial Basis Test.

Circuit and projection. Having established that A is close to some evaluation
operator Ea, we now want to test two things. The first is that h(a) = 0 for some
predetermined function h. This test which would normally be implemented by “self-
correction” (i.e., evaluating h(a) by uniformly selecting f ∈ Fl and computing A(f +
h) − A(f)) is not needed here, since in our applications we will use an (h, 0)-folding
of A instead of A. Thus, it is left to test that the two oracles are consistent in the
sense that A1 is not too far from an evaluation operator which corresponds to σ(a)
for some predetermined function σ.

Self-correction. The following self-correction lemma is due to [27] and will be
used throughout.

Lemma 3.13. (Self Correction Lemma [27]): Let A, Ã: Fl → Σ with Ã linear,

PCP – TOWARDS TIGHT RESULTS 39

and let x = Dist(A, Ã). Then for every g ∈ Fl:

Pr
f
R←Fl

[
A(f + g)−A(f) = Ã(g)

]
≥ 1− 2x .

Proof.

Pr
f
R←Fl

[
A(f + g)−A(f) = Ã(g)

]
≥ Pr

f
R←Fl

[
A(f + g) = Ã(f + g) and A(f) = Ã(f)

]
≥ 1−

(
Pr

f
R←Fl

[
A(f + g) 6= Ã(f + g)

]
+ Pr

f
R←Fl

[
A(f) 6= Ã(f)

])
.

However each of the probabilities in the last expression is bounded above by x.

Corollary 3.14. Let A, Ã: Fl → Σ with Ã linear, and suppose x def= Dist(A, Ã) <
1/2. Suppose also that A(f + h) = A(f) + σ, for some fixed h ∈ Fl, σ ∈ Σ and every
f ∈ Fl. Then Ã(h) = σ.

Proof. By the hypothesis, we have A(f +h)−A(f) = σ for all functions f . Thus,
we can write

Pr
f
R←Fl

[
A(f + h)−A(f) = Ã(h)

]
= Pr

f
R←Fl

[
σ = Ã(h)

]
.

But the right hand side (and hence the left) is either 0 or 1 (as both h and σ are
fixed). However, by Lemma 3.13 the left hand side is bounded below by 1 − 2x > 0
and so the corollary follows.

Convention. All our tests output a bit, with 0 standing for accept and 1 for reject.

3.5.1. Atomic linearity test. The atomic linearity test shown in Figure 8 is
the one of Blum, Luby and Rubinfeld [27]. We want to lower bound the probability
1− LinPass(A) that the test rejects when its inputs f1, f2 are chosen at random, as
a function of x = Dist(A,Lin). The following lemma, due to Bellare et. al. [17], gives
the best known lower bound today.

Lemma 3.15. [17] Let A: Fl → Σ and let x = Dist(A,Lin). Then 1−LinPass(A) ≥
Γlin(x), where the function Γlin: [0, 1/2]→ [0, 1] is defined as follows:

Γlin(x) def=


3x− 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ 45/128
x 45/128 ≤ x ≤ 1/2.

The above lower bound is composed of three different bounds with “phase transitions”
at x = 5

16 and x = 45
128 . It was shown in [17] (see below) that this combined lower

bound is close to the best one possible.

Perspective. The general problem of linearity testing as introduced and studied by
Blum et. al. [27] is stated as follows: Given a function A: G → H, where G,H are
groups, obtain a lower bound on rA as a function of xA, where

rA = Pr
a,b

R←G
[A(a) +A(b) 6= A(a+ b)]

xA = Dist(A,Lin) .

Blum et. al. showed that rA ≥ 2
9xA, for every A. Their analysis was used in the proof

system and Max3SAT non-approximability result of [8]. Interest in the tightness of

40 M. BELLARE, O. GOLDREICH, AND M. SUDAN

the analysis began with [21], with the motivation of improving the Max3SAT non-
approximability results. They showed that rA ≥ 3xA − 6x2

A, for every A. This
establishes the first segment of the lower bound quoted above (i.e., of the function
Γlin). Also, it is possible to use [27] to show that rA ≥ 2/9 when xA ≥ 1/4. Putting
these together implies a two segment lower bound with phase transition at the largest
root of the equation 3x − 6x2 = 2

9 (i.e., at 1
4 +

√
33

36). This lower bound was used in
the Max3SAT analyses of [21] and [23].

However, for our applications (i.e., linearity testing over Fl as in Lemma 3.15),
the case of interest is when the underlying groups are G = GF(2)n and H = GF(2)
(since Fl may be identified with GF(2)n for n = 2l). The work of [17] focused on this
case and improved the bound on rA for the case xA ≥ 1

4 where A: GF(2)n → GF(2).
Specifically, they showed that rA ≥ 45/128 for xA ≥ 1

4 which establishes the second
segment of Γlin. They also showed that rA ≥ xA, for every A: GF(2)n → GF(2).
Combining the three lower bounds, they have derived the three-segment lower bound
stated in Lemma 3.15.

The optimality of the above analysis has been demonstrated as well in [17].
Essentially4, for every x ≤ 5/16 there are functions A: GF(2)n → GF(2) witnessing
rA = Γlin(xA) with xA = x. For the interval (5

16 ,
1
2], no tight results are known. In-

stead, [17] reports of computer constructed examples of functions A: GF(2)n → GF(2)
with xA in every interval [k

100 ,
k+1
100], for k = 32, 33, ..., 49, and rA < Γlin(xA)+ 1

20 . Fur-
thermore, they showed that there exist such functions with both xA and rA arbitrarily
close to 1

2 .

3.5.2. Monomial basis test. Having determined that A is close to linear, the
atomic respect of monomial basis test makes sure that the linear function close to A
respects the monomial basis. Let us denote the latter function (i.e., the linear function
closest to A) by Ã. Recalling Definition 3.1 we need to establish two things: namely,
that Ã(χ∅) = 1 and that Ã(χS) · Ã(χT) = Ã(χS∪T), for every S, T ⊆ [l]. Recall
that we do not have access to Ã but rather to A; still, the Self-Correction Lemma
provides an obvious avenue to bypass the difficulty provided Dist(A, Ã) < 1/4. This
would have yielded a solution but quite a wasteful one (though sufficient for the Max
Clique and Chromatic Number results). Instead, we adopt the following more efficient
procedure.

Firstly, by considering only oracles folded over (1̄, 1), we need not check that
Ã(χ∅) = 1. (This follows by combining Corollary 3.14 and the fact that the (1̄, 1)-
folded oracle A satisfies A(f + 1̄) = A(f) + 1, for all f ∈ Fl.) Secondly, we test that
Ã(χS) · Ã(χT) = Ã(χS∪T), for every S, T ⊆ [l], by taking random linear combinations
of the S’s and T ’s to be tested. Such linear combinations are nothing but uniformly
selected functions in Fl. Namely, we wish to test Ã(f) · Ã(g) = Ã(f · g), where f
and g are uniformly selected in Fl. Since A is close to Ã, we can inspect A(f) (resp.,
A(g)) rather than Ã(f) (resp., Ã(g)) with little harm. However, f · g is not uniformly
distributed (when f and g are uniformly selected in Fl) and thus Self-Correction will
be applied here. The resulting test is

A(f1) ·A(f2) = A(f1 · f2 + f3)−A(f3)(3)

This test was analyzed in a previous version of this work [20]; specifically, this test
was shown to reject a folded oracle A, with Ã (the linear function closest to A) which
does not respect the monomial basis, with probability at least (1−2x) · (3

8 −x+ x2

2) =

4 Actually, the statement holds only for x’s which are integral multiple of 2−n

PCP – TOWARDS TIGHT RESULTS 41

3
8 −

7
4x+ 5

2x
2− x3, where x = Dist(A, Ã). Here we present an adaptive version of the

above test, which performs even better. We observe that if A(f1) = 0 then there is
no need to fetch A(f2) (since the l.h.s. of Eq. (3) is zero regardless of A(f2)). Thus,
we merely test whether A(f1 · f2 + f3) − A(f3) = 0. But what should be done if
A(f1) = 1? In this case we may replace f1 by f1+1̄ (yielding A(f1+1̄) = A(f1)+1 = 0)
and test whether A((f1 + 1̄) · f2 + f3)−A(f3) = 0. The resulting test is depicted in
Figure 8.

A technical lemma. First we recall the following lemma of [21] which provides an
improved analysis of Freivalds’s matrix multiplication test in the special case when
the matrices are symmetric with common diagonal.

Lemma 3.16. (symmetric matrix multiplication test [21]): Let M1,M2 be N -by-
N symmetric matrices over Σ which agree on their diagonals. Suppose that M1 6= M2.
Then

Pr
x,y

R←ΣN
[xM1y 6= xM2y] ≥ 3

8
.

Furthermore, Pr
x
R←ΣN

[xM1 6= xM2] ≥ 3/4 .

Proof. Let M def= M1−M2. The probability that a uniformly selected combination
of the rows of M yields an all-zero vector is 2−r, where r is the rank of M . Since M
is symmetric, not identically zero and has a zero diagonal, it must have rank at least
2. Thus, Pr

x
R←ΣN

[
xM 6= 0N

]
≥ 3/4 and the lemma follows.

RMB detectors. Suppose that A is actually linear. In that case, the following
lemma provides a condition under which A respects the monomial basis. We start
with a definition.

Definition 3.17. (RMB detector): Let A: Fl → Σ and f ∈ Fl. We say that f
is a detector for A if

Pr
g
R←Fl

[A(f ′ · g) 6= 0] ≥ 1/2 .

where f ′ = f if A(f) = 0 and f ′ = f + 1̄ otherwise.

The number of detectors is clearly related to the rejection probability of the RMB
test. Suppose that A (or rather Ã) is linear. Clearly, if A respects the monomial basis
then it has no detectors. On the other hand, the following lemma asserts that if A
does not respect the monomial basis then it has many detectors.

Lemma 3.18. (RMB test for linear functions): Suppose Ã: Fl → Σ is linear,
Ã(χ∅) = 1 and Ã does not respect the monomial basis. Then at least a 3/4 fraction
of the functions in Fl are detectors for Ã.

Proof. Let N = 2l. We define a pair of N -by-N matrices whose rows and columns
are indexed by the subsets of [l]. Specifically, for S, T ⊆ [l], we set

M1[S, T] = Ã(χS) · Ã(χT)

M2[S, T] = Ã(χS∪T) .

Clearly, both M1 and M2 are symmetric, and they agree on the diagonal. Using
Ã(χ∅) = 1 we have, for every T ⊆ [l],

M1[∅, T] = Ã(χ∅) · Ã(χT) = 1 · Ã(χT) = M2[∅, T](4)

By the hypothesis that Ã does not respects the monomial basis it follows that M1 6=
M2. Our aim is to relate the inequality of the above matrices to the existence of

42 M. BELLARE, O. GOLDREICH, AND M. SUDAN

detectors for Ã. We first express the condition Ã(fg) = Ã(f) · Ã(g) in terms of these
matrices.

Recall that C:Fl → Σ2l is the transformation which to any f ∈ Fl associates
the vector (Cf (S))S⊆[l] whose entries are the coefficients of f in its monomial series.
Using the linearity of Ã we note that

Ã(f) · Ã(g) = Ã (
∑

S Cf (S) · χS) · Ã (
∑

T Cg(T) · χT)

=
[∑

S Cf (S) · Ã(χS)
]
·
[∑

T Cg(T) · Ã(χT)
]

=
∑

S,T Cf (S) · Ã(χS) · Ã(χT) · Cg(T)

= C(f)M1C(g) .

For the next step we first need the following.

Fact. Let f, g ∈ Fl and U ⊆ [l]. Then Cfg(U) =
∑

S∪T=U Cf (S) · Cg(T).

Using this fact (and the linearity of Ã) we have:

Ã(fg) = Ã (
∑

U Cfg(U) · χU)

=
∑

U Cfg(U) · Ã(χU)

=
∑

U

∑
S∪T=U Cf (S) · Cg(T) · Ã(χU)

=
∑

S,T Cf (S) · Cg(T) · Ã(χS∪T)

= C(f)M2C(g) .

Since Ã is linear and Ã(1̄) = 1 (as 1̄ = χ∅), we can rephrase the condition
A(f ′ · g) 6= 0, where f ′ = f if Ã(f) = 0 and f ′ = f + 1̄ otherwise, as A(f ′ · g) 6=
A(f ′) ·A(g). Thus, for every f (setting f ′ as above), we conclude that

A(f ′ · g) 6= A(f ′) ·A(g) if and only if C(f ′)M2C(g) 6= C(f ′)M1C(g) .

A key observation is that C(f) and C(f ′) are identical in all entries except, possibly,
for the entry corresponding to ∅ (i.e., Cf (S) = Cf ′(S) for all S 6= ∅). On the other
hand, by Eq. (4), we have M1[∅, ·] = M2[∅, ·]. Thus,

A(f ′ · g) 6= A(f ′) ·A(g) if and only if C(f)M2C(g) 6= C(f)M1C(g) .

Now we note that C is a bijection, so that if h is uniformly distributed in Fl then
C(h) is uniformly distributed in Σ2l . Fixing any f ∈ Fl and setting f ′ as above, we
have, for x = C(f),

Pr
g
R←Fl

[
Ã(f ′) · Ã(g) = Ã(f ′g)

]
= Pr

g
R←Fl

[C(f)M1C(g) = C(f)M2C(g)]

= Pr
y
R←Σ2l

[xM1y = xM2y] .

The latter probability is 1/2 if xM1 6= xM2 and zero otherwise. Invoking Lemma 3.16
we conclude that the first case, which coincides with f being a detector for Ã, holds
for at least 3/4 fraction of the f ∈ Fl. The lemma follows.

Lemma 3.18 suggests that if we knew A was linear we could test that it respects the
monomial basis by picking f, g at random and testing whether A(f ′g) = 0, where
f ′ = f if A(f) = 0 and f ′ = f + 1̄ otherwise. The lemma asserts that in case A is
linear and does not respect the monomial basis we will have

Pr
f,g

R←Fl
[A(f ′g) 6= 0] ≥ 3

4
· 1

2

PCP – TOWARDS TIGHT RESULTS 43

where 3/4 is a lower bound on the probability that f is a detector for A and

Pr
g
R←Fl

[A(f ′g) 6= 0] ≥ 1
2

for any detector f (by definition). However, we only know that A is close to linear.
Still we can perform an approximation of the above test via self-correction of the value
A(f ′g). This, indeed, is our test as indicated in Figure 8.

The RMB test. We are interested in lower bounding the probability 1−MBPass(A)
that the test rejects when f1, f2, f3 are chosen at random, as a function of the distance
of A to a linear function Ã, given that Ã does not respect the monomial basis. We
assume that A satisfies A(f + 1̄) = A(f) + 1 (for all f ∈ Fl), as is the case in all our
applications (since we use verifiers which access a (1̄, 1)-folded function). The first
item of the following lemma is in spirit of previous analysis of analogous tests. The
second item is somewhat unusual and will be used only in our construction of verifiers
of free-bit complexity 2 (cf., Section 5).

Lemma 3.19. (RMB test — final analysis): Let A, Ã: Fl → Σ be functions such
that Ã linear but does not respect the monomial basis. Let x = Dist(A, Ã). Suppose
that the function A satisfies A(f + 1̄) = A(f) + 1, for all f ∈ Fl. Then

(1) 1−MBPass(A) ≥ ΓRMB(x) def= 3
8 · (1− 2x).

(2) Pr
f1,f3

R←Fl
[∃f2 ∈ Fl s.t. MBTest(A; f1, f2, f3) = 1] ≥ 2 · ΓRMB(x).

In particular, the lemma holds for A(h,0),(1̄,1), where A: Fl → Σ is arbitrary and h ∈
Fl. We will consider the linear function closest to A(h,0),(1̄,1), denoted Ã, and the case
in which Ã does not respect the monomial basis. (In this case Dist(A(h,0),(1̄,1), Ã)) =
Dist(A(h,0),(1̄,1),Lin) ≤ 1/2.)

Proof. As a preparation to using Lemma 3.18, we first show that Ã(1̄) = 1. For
x < 1/2 this is justified by Corollary 3.14 (using the hypothesis A(f + 1̄) = A(f) + 1,
∀f ∈ Fl). Otherwise (i.e., in case x ≥ 1/2) the claimed lower bound (i.e., 3

8 ·(1−2x) ≤
0) holds vacuously.

Using Lemma 3.18 and Lemma 3.13 we lower bound the rejection probability of
the test as follows:

1−MBPass(A)

≥ Pr
f1
R←Fl

[
f1 is a detector for Ã

]
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[MBTest(A; f, f2, f3) = 1]
}

≥ 3
4
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[A(f ′f2 + f3) 6= A(f3)]
}

≥ 3
4
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[
0 6= Ã(f ′f2) = A(f ′f2 + f3)−A(f3)

]}
≥ 3

4
· 1

2
· min
f ′, g s.t. Ã(f ′g) 6= 0

{
Pr

f3
R←Fl

[
Ã(f ′ · g) = A(f ′ · g + f3)−A(f3)

]}
≥ 3

8
· (1− 2x)

where the second inequality uses Lemma 3.18, the fourth inequality follows by the

44 M. BELLARE, O. GOLDREICH, AND M. SUDAN

definition of a detector for Ã (by which Pr
g
R←Fl

[
Ã(f ′g) 6= 0

]
≥ 1/2), and the last

inequality follows by Lemma 3.13. This concludes the proof of Part (1). Part (2) is
proven analogously with the exception that we don’t lose a factor of two in the fourth
inequality (since here f2 is not selected at random but rather set existentially).

Remark 3.20. An RMB test for arbitrary A’s (rather than ones satisfying
A(f+1̄) = A(f)+1, ∀f ∈ Fl) can be derived by augmenting the above test with a test
of A(f + 1̄) = A(f) + 1 for uniformly chosen f ∈ Fl. The analysis of the augmented
part is as in the circuit test (below).

3.5.3. Atomic projection test. The final test checks that the second function
A1 is not too far from the evaluation operator Ea1 where a1 = σ(a) is a function of
the string a whose evaluation operator is close to A. Here, unlike previous works (for
instance [23]), σ may be an arbitrary mapping from Σl to Σl1 rather than being a
projection (i.e., satisfying σ(x) = x(i1) . . . x(il1) for some sequence 1 ≤ i1 < · · · < il1 ≤
l and all x ∈ Σl). Thus, the term “projection test” is adopted for merely historical
reasons.

Lemma 3.21. Let A: Fl → Σ and let σ: Σl → Σl1 be a function. Let a ∈ Σl

and let x = Dist(A,Ea). Let a1 = σ(a) ∈ Σl1 . Then 1 − ProjPassσ(A,A1) ≥
Dist(A1, Ea1) · (1− 2x).

Proof. We lower bound the rejection probability as follows:

Pr
f
R←Fl ; g

R←Fl1
[A1(g) 6= A(g ◦ σ + f)−A(f)]

≥ Pr
f
R←Fl ; g

R←Fl1
[A1(g) 6= Ea(g ◦ σ) and A(g ◦ σ + f)−A(f) = Ea(g ◦ σ)]

≥ Pr
g
R←Fl1

[A1(g) 6= Ea(g ◦ σ)] · (1− 2x) .

Here we used Lemma 3.13 in the last step. Now we note that Ea(g ◦σ) = (g ◦σ)(a) =
g(σ(a)) = Ea1(g). Hence the first term in the above product is just

Pr
g
R←Fl1

[A1(g) 6= Ea1(g)] = Dist(A1, Ea1) .

This concludes the proof.

3.5.4. Atomic circuit test. For sake of elegancy, we present also an atomic
Circuit Test, denoted CircTesth(A; f). The test consists of checking whether A(h+
f) = A(f) and it outputs 0 if equality holds and 1 otherwise. Assuming that A is
close to some evaluation operator Ea, the atomic circuit test uses self-correction [27]
to test that a given function h has value 0 at a. As explained above, this test is not
needed since all our proof systems will use a (h, 0)-folding (of A) and thus will impose
h(a) = 0. The analysis lower bounds the rejection probability, as a function of the
distance of A from linear, given that h(a) = 1.

Lemma 3.22. Let A: Fl → Σ and let a ∈ Σl. Let h ∈ Fl and x = Dist(A,Ea). If
h(a) = 1 then 1−CircPassh(A) ≥ 1− 2x, where

CircPassh(A) def= Pr
f
R←Fl

[CircTesth(A; f) = 0]

4. A new 3-query PCP and improved MaxSNP hardness results.

PCP – TOWARDS TIGHT RESULTS 45

The Max-SNP inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 ,
the verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. In addition
it takes three [0, 1] valued parameters p1, p2 and p3 such that p1 +p2 +p3 = 1.

Pick p R← [0, 1].

Case: p ≤ p1 :
Pick f1, f2

R← Fl.
LinTest(A(h,0),(1̄,1); f1, f2).

Case: p1 < p ≤ p1 + p2 :
Pick f1, f2, f3

R← Fl.
MBTest(A(h,0),(1̄,1); f1, f2, f3).

Case: p1 + p2 < p :
Pick f R← Fl and g

R← Fl1 .
ProjTestσ(A(h,0),(1̄,1), A1; f, g).

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄) or A(f + h+ 1̄).

Fig. 9. The Max-SNP inner verifier VSNPinner

4.1. The MAX SNP verifier. In this section we present a simple verifier which
performs one of two simple checks, each depending on only three queries. This verifier
will be the basis for the non-approximability results for several MaxSNP problems, in
particular Max3SAT, Max2SAT and MaxCUT, whence the name.

4.1.1. The inner verifier. Figure 9 describes an inner verifier. Our verifier is
adaptive; that is, some of its queries are determine as a function of answers to previous
queries. (The adaptivity is not obvious from Figure 9; it is rather ‘hidden’ in the RMB
Test — see Section 3.5.2). Thus, adaptivity is used to improve the performance of our
verifier and to strengthen the non-approximability results which follow (cf., previous
versions of this paper [20]).

The inner verifier, VSNPinner, takes the usual length parameters l, l1 as well as
additional (probability) parameters p1, p2 and p3 such that p1 + p2 + p3 = 1. It
performs just one test: with probability p1 the linearity test; with probability p2 the
respect of monomial basis test; and with probability p3 the projection test. Formally,
this is achieved by picking p at random and making cases based on its value.5 To
improve the results, we perform the tests on a folding of A over both (h, 0) and
(1̄, 1) (i.e., on A(h,0),(1̄,1)). We stress that A(h,0),(1̄,1) is a virtual oracle which is
implemented by the verifier which accesses the actual oracle A (on points determined
by the definition of folding). We now examine the goodness of VSNPinner. Recall the
definitions of Γlin(x) (specifically, note that Γlin(x) ≥ x) and ΓRMB(x) = 3

8 (1 − 2x),
for all x.

5 For simplicity p is depicted as being chosen as a random real number between 0 and 1. Of
course we cannot quite do this. But we will see later that the values of p1, p2, p3 in our final verifiers
are appropriate constants. So in fact an appropriate choice of p can be made using O(1) randomness,
which is what we will implicitly assume.

46 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Informally, the following lemma considers all the possible strategies of a “dis-
honest” prover and indicates the probability (denoted 1 − ρ) with which the verifier
detects an error (when run against such strategies). The three cases correspond to
the events that
(1) the function A(h,0),(1̄,1) may be very far from being linear;

(2) the function A(h,0),(1̄,1) is x-close to linear, for some x < 1
2 −δ1, but is not x-close

to a valid codeword (i.e., to a linear function which respects the monomial basis);
and

(3) the function A(h,0),(1̄,1) is x-close to linear but the encoding of

σ(E−1(A(h,0),(1̄,1)))

is very far from the function A1.

Lemma 4.1. (soundness of VSNPinner): Suppose δ1, δ2 > 0 and l, l1 ∈ Z+. Suppose
p1, p2, p3 ∈ [0, 1] satisfy p1 + p2 + p3 = 1. Then the (l, l1)-canonical inner verifier
VSNPinner is (ρ, δ1, δ2)-good, where 1− ρ = min(T1, T2, T3) and

(1) T1
def= p1 · (1

2 − δ1)

(2) T2
def= min x≤1/2−δ1 [p1 · Γlin(x) + p2 · ΓRMB(x)]

(3) T3
def= min x≤1/2−δ1 [p1 · Γlin(x) + p3 · (1

2 − δ2)(1− 2x)].

Proof. We consider an arbitrary pair of oracles, (A,A1), and the behavior of
VSNPinner when given access to this pair of oracles. Our analysis is broken up into cases
depending on (A,A1); specifically, the first case-partition depends on the distance of
A(h,0),(1̄,1) (i.e., the folding of A) from linear functions. We show that, in each case,
either the verifier rejects with probability bounded below by one of the three quantities
(above) or the oracle pair is such that rejection is not required.

Let x = Dist(A(h,0),(1̄,1),Lin).

Case 1: x ≥ 1
2 − δ1.

Lemma 3.15 implies that 1− LinPass(A(h,0),(1̄,1)) ≥ Γlin(x) ≥ x ≥ 1
2 − δ1. (The

second inequality follows from the fact that Γlin(x) ≥ x for all x.) Since VSNPinner

performs the atomic linearity test with probability p1 we have

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 · (

1
2
− δ1) ≥ 1− ρ(5)

Case 2: x ≤ 1
2 − δ1.

Lemma 3.15 implies that 1−LinPass(A(h,0),(1̄,1)) ≥ Γlin(x) and so the probability
that VSNPinner performs the linearity test and rejects is at least p1 · Γlin(x). Now let
Ã be a linear function such that Dist(A(h,0),(1̄,1), Ã) = x. We consider the following
sub-cases.

Case 2.1: Ã does not respect the monomial basis.
In this case Part (1) of Lemma 3.19 implies that 1 − MBPass(A(h,0),(1̄,1)) ≥

ΓRMB(x). So the probability that VSNPinner performs the atomic respect of monomial
basis test and rejects is at least p2 ·ΓRMB(x). Since the event that the verifier performs
a linearity test and the event that it performs a respect of monomial basis test are
mutually exclusive, we can add the probabilities of rejection and thus get

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 · Γlin(x) + p2 · ΓRMB(x) ≥ 1− ρ(6)

Case 2.2: Ã respects the monomial basis.

PCP – TOWARDS TIGHT RESULTS 47

By Proposition 3.2, Ã is an evaluation operator. So there exists a ∈ Σl such that
Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let a1 = σ(a). The proof splits into two
further sub-cases.

Case 2.2.1: d
def= Dist(A1, Ea1) ≥ 1

2 − δ2.
By Lemma 3.21 we have

1−ProjPassσ(A(h,0),(1̄,1), A1) ≥ d · (1− 2x) ≥ (1/2− δ2) · (1− 2x) .

So the probability that VSNPinner performs the projection test and rejects is at least
p3 · (1/2− δ2)(1− 2x). Thus, adding probabilities as in Case (2.1), we get

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 · Γlin(x) + p3 · (1/2− δ2)(1− 2x) ≥ 1− ρ(7)

Case 2.2.2: Else, we have x = Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 and Dist(A1, Ea1) <
1/2 − δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy conditions (2.1) and (2.2) in
Definition 3.9.

Observe that the only case which does not yield 1 − ACC [V A,A1
PCPinner(σ, h)] ≥

1 − ρ is Case (2.2.2). However, Case (2.2.2) satisfies conditions (2.1) and (2.2)
of Definition 3.9. Thus, VPCPinner satisfies condition (2) of Definition 3.9. Clearly,
VPCPinner also satisfies condition (1) of Definition 3.9, and thus the lemma follows.

The upper bound on the soundness error of VSNPinner, provided by Lemma 4.1, is some-
what complicated to grasp. Fortunately, using ΓRMB(x) = 3

8 (1− 2x) and Γlin(x) ≥ x,
for all x ≤ 1/2, we can simplify the expression as follows.

Claim 4.2. Let T1, T2 and T3 be as in Lemma 4.1, δ = max(δ1, δ2) > 0
and p1, p2, p3 ∈ [0, 1] satisfy p1 + p2 + p3 = 1. Then, T2 ≥ min{ 1

2p1,
3
8p2}, T3 ≥

min{ 1
2p1,

1
2p3} − δ, and

min{T1, T2, T3} ≥ min
{

1
2
p1,

3
8
p2,

1
2
p3

}
− δ .

Interestingly, this lower bound is tight.

Proof. Clearly, T1 = (1
2 −δ1)p1 ≥ 1

2p1−δ. To analyze T2, let h(x) def= p1 ·Γlin(x)+
p2 · ΓRMB(x).

Fact 1: minx≤1/2{h(x)} = min{ 3
8p2,

1
2p1} = min{h(0), h(1/2)}.

proof: by considering two cases and using Γlin(x) ≥ x and ΓRMB(x) = 3
8 −

3
4x.

case 1: p1 ≥ 3
4p2

h(x) ≥ p1x+
3
8
p2 −

3
4
p2x =

3
8
p2 + (p1 −

3
4
p2) · x ≥ 3

8
p2

case 2: p1 ≤ 3
4p2

h(x) ≥ p1x+
3
8
p2 −

3
4
p2x =

1
2
p1 + (

3
4
p2 − p1) · (1

2
− x) ≥ 1

2
p1

The fact follows by observing that h(0) = 3
8p2 and h(1/2) = 1

2p1. 2

Thus, we have T2 = min x≤1/2−δ1 [h(x)] ≥ min{ 1
2p1,

3
8p2}. The term T3 is ana-

lyzed similarly, by defining g(x) def= p1 ·Γlin(x)+p3 ·(1−2x)/2, and using the following
fact.

Fact 2: minx≤1/2{g(x)} = min{ 1
2p3,

1
2p1} = min{g(0), g(1/2)}.

proof: by considering two cases and using Γlin(x) ≥ x.
case 1: p1 ≥ p3

g(x) ≥ p1x+
1
2
p3 − p3x =

1
2
p3 + (p1 − p3) · x ≥ 1

2
p3

48 M. BELLARE, O. GOLDREICH, AND M. SUDAN

case 2: p1 ≤ p3

g(x) ≥ p1x+
1
2
p3 − p3x =

1
2
p1 + (p3 − p1) · (1

2
− x) ≥ 1

2
p1

The fact follows by observing that g(0) = 1
2p3 and g(1/2) = 1

2p1. 2

Thus, we have T3 ≥ min x≤1/2−δ2 [g(x)] − δ ≥ min{ 1
2p1,

1
2p3} − δ. The claim

follows.

4.1.2. Main application: the MaxSNP verifier. We are now ready to state
the main result of this section. It is a simple verifier for NP which achieves soundness
error approaching 85% while performing one of two very simple tests.

Proposition 4.3. (The MaxSNP Verifier): For any γ > 0 and for any language
L ∈ NP, there exists a verifier VSNP for L such that

• VSNP uses logarithmic randomness and is perfectly complete;
• VSNP has soundness error 17

20 + γ; and
• on access to an oracle π (and according to the outcome of the verifier’s coin

tosses), the verifier VSNP performs one of the following actions:
(1) Parity check: VSNP determines a bit b, makes three queries q1, q2 and q3,

and rejects if π(q1)⊕ π(q2)⊕ π(q3) 6= b.
(2) RMB check: VSNP determines two bits b0, b1, makes three out of four

predetermined queries, q1, q2, q3 and q4, and rejects if either (π(q1) =
0) ∧ (π(q2)⊕ π(q4) 6= b0) or (π(q1) = 1) ∧ (π(q3)⊕ π(q4) 6= b1).
That is, the verifier inspects π(q1) and consequently checks either π(q2)⊕
π(q4) ?= b0 or π(q3)⊕ π(q4) ?= b1.

Furthermore, the probability (over its coin tosses) that VSNP performs a parity
check is 3

5 (and the probability that VSNP performs a RMB check is 2
5).

Proof. Set δ1 = δ2 = γ/2 and ε = γ
2 · (16δ2

1δ
2
2) = γ5

2 > 0. Now, let l and l1
be integers such that the outer verifier, Vouter, guaranteed by Lemma 3.8 is (l, l1)-
canonical and ε-good for L. Consider the (l, l1)-canonical inner verifier VSNPinner,
working with the parameters p1, p2 and p3 set to minimize its error. Obviously this
calls for setting 1

2p1 = 3
8p2 = 1

2p3, which yields

p1 =
3
10

; p2 =
4
10

; p3 =
3
10

(8)

Let VSNP be the verifier obtained by composing Vouter with VSNPinner.
We start by analyzing the soundness error of VSNP. By Lemma 4.1 and Claim 4.2,

we know that the inner verifier VSNPinner, with pi’s as in Eq. (8), is (ρ, δ1, δ2)-good,
for

ρ ≤ 1− 1
2
· p3 + δ1 = 1− 3

20
+

1
2
· γ .

Invoking Theorem 3.12, we upper bound the soundness error of VSNP by 1− 3
20 + 1

2 ·
γ + ε

16δ21δ
2
2

which by the setting of ε yields the claimed bound (of 0.85 + γ).
Clearly, VSNP uses logarithmic randomness, has perfect completeness, and its

computation on the answers of the oracles are determined by VSNPinner. It is left to
observe that each of the three tests (i.e., Linearity, Monomial-Basis, and Projection),
performed by VSNPinner, is either a Parity Check or an RMB Check and that the latter
occurs with probability 0.4. First observe that with probability p1, VSNPinner performs
LinTest(A(h,0),(1̄,1); f1, f2), where g1, g2 ∈ Fl. Recall that query f to A(h,0),(1̄,1)

translates to a query in the set {f, f +h, f + 1̄, f +h+ 1̄} answered by A and that the

PCP – TOWARDS TIGHT RESULTS 49

answer is possibly complemented (by adding 1 mod 2). Thus, the above linearity test
translates to checking the exclusive-or of three values of A against a predetermined
bit b (i.e., this bit is determined by the number of times which have shifted a potential
query by 1̄). Similarly, MBTest(A(h,0),(1̄,1); f1, f2, f3) translates to an RMB Check
with b0, b1 and the ordering of the second/third function is determined by the folding
over 1̄. Finally, we observe that the projection test, performed by VSNPinner, also
amounts to a Parity Check; this time, on answers taken from two different oracles
(which can actually be viewed as one oracle).

Remark 4.4. (A tedious one): The probability that verifier VSNP, of the above
proposition, makes two identical queries is negligible. Specifically, it can be made
smaller than γ (mentioned in the proposition). Thus, we can ignore this case6 in the
next two sections and assume, without loss of generality, that all queries are distinct.

Implementing the MaxSNP verifier via Gadgets. In the following sections
we use the verifier of Proposition 4.3 to obtain hardness results for various variants
of MaxSAT as well as for MaxCUT. The hardness results are obtained by construct-
ing an instance of the problem at hand so that the instance represent the verifier’s
computation on input x. The primary aspect of the reduction is the construction of
gadgets which reflect the result of the verifier’s computation (i.e., accept/reject) after
performing one of the two types of checks, i.e., parity check or RMB check. We define
a performance measure of a gadget and then relate the hardness result achieved to
the performance measure obtained by the gadgets in use.7

Sources of our improvements. The explicit statement of a generic verifier for
deriving Max SNP hardness results is a novelty of our paper. Thus, a quantitative
comparison to previous works is not readily available. Certainly, we improve over
these works thanks to the use of the new LongCode-based inner-verifier, the atomic
tests and their analysis in Section 3.5, the new idea of folding, and the improved
analysis of linearity testing due to [17].

4.1.3. Another application: minimizing soundness error in 3-query
pcp. As a direct corollary to Proposition 4.3, we obtain

Theorem 4.5. For any s > 0.85, NP ⊆ PCP1,s[coins = log ; query = 3 ; free =
2].

4.2. Satisfiability problems. In this section we mainly deal with CNF formu-
lae. However the last subsection deals with formulae consisting of a conjunction of
parity (rather than or) clauses. Refer to Section 2.4 for definitions, in particular
for what is the problem MaxXSAT and the promise problem Gap-XSAT. Recall that
MaxSAT(()ϕ) is the maximum number of simultaneously satisfiable clauses in formula
ϕ and MaxSAT(ϕ) = MaxSAT(ϕ)/‖ϕ‖ be the normalized version, where ‖ϕ‖ is the
number of clauses in formula ϕ. See Section 2.4.3 for description of previous work.

6 Formally, suppose that when it occurs the verifier performs some standard check on fixed
different queries. This modification increases the soundness error by at most γ which tends to zero
anyhow.

7 Given that the performance of the various gadgets might be different for the different checks,
one might suspect that it might have been a better idea to first construct the gadgets and then to
optimize the soundness of VSNP keeping in mind the relative performance measures of the two kinds
of gadgets being employed. Surprisingly enough it turns out (cf., [20]) that the optimization is not
a function of the performance of the gadgets and indeed the choice of parameters p1, p2 and p3 as in
Equation (8) is optimal for the following reductions.

50 M. BELLARE, O. GOLDREICH, AND M. SUDAN

A consequence of the following theorem (apply Proposition 2.5) is that, assuming
P 6= NP there is no polynomial time algorithm to approximate: (1) Max3SAT within
a factor of 1.038; (2) MaxE3SAT within a factor of 1.038; (3) Max2SAT within a
factor of 1.013.

Theorem 4.6. (MaxSAT non-approximability results): The following problems
are NP-hard–
(1) Gap-3SATc,s with c = 1 and s = 26/27.
(2) Gap-E3SATc,s with c = 1 and s = 26/27.
(3) Gap-2SATc,s for some 0 < s < c < 1 satisfying c > 0.9 and c/s = 74/73.

Actually, Items (1) and (2) hold for any s > 1− 3
80 whereas Item (3) holds as long as

c
s < 1 + 3

217 . Item (1) is implied by Item (2) so we will prove only the latter.

4.2.1. The Hardness of MaxE3SAT and Max2SAT. Gadgets. In the con-
text of MaxSAT problems, we may easily replace a condition of the form a+ b+ c = 1
by ā+ b+ c = 0, where ā is the negation of the variable a. Thus, the task of designing
gadgets is simplified, and we need to implement two (simplified) types of checks: the
Parity Check (checking that a + b = c for a, b and c obtained from the oracle) and
the RMB-Check for a, b0, b1 and c obtained from the oracle). Accordingly a Parity
Check (PC) gadget, PC(a, b, c, x1, x2, . . . , xn), is a set of clauses over three distin-
guished variables a, b, c and n auxiliary variables x1, . . . , xn. It is an (α, β)-PC gadget
if the following is true: If a + b = c then MaxSAT(PC(a, b, c, x1, x2, . . . , xn)) = α;
else it is at most α − β. Similarly a Respect-Monomial-Basis Check (RMBC) gad-
get, RMBC(a, b0, b1, c, x1, . . . , xn), is a set of clauses over four distinguished variables
a, b0, b1, c and n auxiliary variables x1, . . . , xn. It is an (α, β)-RMBC gadget if the
following is true: If ba = c then MaxSAT(RMBC(a, b0, b1, c, x1, x2, . . . , xn)) = α; else
it is at most α − β. We stress that in both cases the maximum number of clauses
which are simultaneously satisfied is at most α. A gadget is said to be a X-SAT gadget
if, as a formula, it is a X-SAT formula.

The following lemma describes how gadgets of the above form can be used to
obtain the hardness of MaxSAT.

Lemma 4.7. (MaxSAT implementation of a verifier): Let V be a verifier for
L of logarithmic randomness, with perfect completeness and soundness s, such that
V performs either a single Parity Check (with probability q) or a single RMB check
(with probability 1 − q). Furthermore, suppose that in either case, the verifier never
makes two identical queries. If there exists an (α1, β)-Parity-Check X-SAT gadget
containing m1 clauses and an (α2, β)-RMBC X-SAT gadget containing m2 clauses
then L reduces to Gap-XSATc′,s′ for

c′ =
α1q + α2(1− q)
m1q +m2(1− q)

s′ =
α1q + α2(1− q)− (1− s)β

m1q +m2(1− q)

In particular c′

s′ ≥ 1 + (1−s)β
α1q+α2(1−q)−(1−s)β .

Remark 4.8. In the above lemma, we have assumed that both the PC and
RMBC gadgets have the same second parameter β. This assumption is not really a
restriction since we can transform a pair of a (α1, β1)-PC gadget and (α2, β2)-RMBC

PCP – TOWARDS TIGHT RESULTS 51

gadget into a pair of a (α1β2, β1β2)-PC gadget and a (α2β1, β1β2)-RMBC gadget,
thereby achieving this feature. (Actually, what really matters are the fractions αi/β.)

Proof. Let PC(a, b, c, x1, . . . , xn1) be the Parity Check gadget and let RMBC(a,
b, c, d, x1, . . . , xn2) be the RMBC gadget. We encode V ’s computation on input x by
a CNF formula ϕx. Corresponding to every bit π[q] of the proof (oracle) accessed
by the verifier V we create a variable y[q]. In addition we create some auxiliary
variables yAux[R, i] for each random string R used by the verifier V and i going from
1 to max(n1, n2). For each such R we will construct a formula ϕR which encodes the
computation of the verifier when its coins are R. The union of all these formulae will
be our ϕx.

On random string R if the verifier performs a parity check on bits π[q1], π[q2] and
π[q3], then ϕR consists of the clauses PC(y[q1], y[q2], y[q3], yAux[R, 1], . . . , yAux[R,n1]).
On the other hand if the verifier performs a RMB check on bits π[q1], π[q2], π[q3],
π[q4], then ϕR consists of the clauses RMBC(y[q1], y[q2], y[q3], y[q4], yAux[R, 1], . . . ,
yAux[R,n2]).

Let N denote the number of possible random strings used by V . Observe that
the number of clauses in ϕx equals m1 · qN +m2 · (1− q)N . We now analyze the value
of MaxSAT(ϕx).

If x ∈ L then there exists an oracle π such that V π(x) always accepts. Consider
the assignment y[q] = π[q] (i.e., y[q] is true iff π[q] = 1). Then for every R, there exists
an assignment to the variables yAux[R, i]’s such that the number of clauses of ϕR that
are satisfied by this assignment is α1 if R corresponds to a Parity Check and α2 if R
corresponds to a RMB-check. Since qN of the gadgets are PC-gadgets and (1− q)N
of the gadgets are RMBC-gadgets, we have MaxSAT(ϕx) ≥ qNα1 + (1− q)Nα2, and
the expression for c′ follows.

Now consider the case when x 6∈ L. We prove below that if there exists an
assignment which satisfies qNα1 + (1− q)Nα2 − (1− s)Nβ clauses of ϕx, then there
exists an oracle π such that V π(x) accepts with probability at least s. Since we know
this can not happen we conclude that MaxSAT(ϕx) < qNα1+(1−q)Nα2−(1−s)Nβ =
s′|ϕx|.

To prove the above claim, we convert any assignment to the variables y’s into
an oracle π in the natural way, i.e., π[q] = 1 iff y[q] is true. Now by the property of
the gadgets if a PC gadget PC(y[q1], y[q2], y[q3], yAux[R, 1], . . .) has more than α1−β
clauses satisfied then π[q1] ⊕ π[q2] = π[q3]. In turn this implies that the verifier V
accepts π on random string R. A similar argument can be made about the random
strings R which correspond to RMB checks. We also use the property that a PC
(resp., RMB) gadget cannot have more than α1 (resp., α2) satisfied clauses, even if
the claim it checks does hold. Thus, if an assignment satisfies qN · (α1 − β) + (1 −
q)N · (α2 − β) + sNβ clauses, then there must exist sN random strings R on which
V accepts. This proves the claim and the lemma follows.

Figure 10 describes gadgets which will be used for our MaxE3SAT construction: no-
tice they are exact-3-SAT gadgets. We have a (4, 1)-PC gadget, PC3, and a (4, 1)-
RMB gadget, RMBC3, each consisting of 4 clauses in which all the clauses have
exactly three variables. Both gadgets have no auxiliary variables. The PC3(a, b, c)
gadget is merely the canonical 3CNF of the expression a + b + c = 0. The first two
clauses in the RMBC3(a, b, b′, c) gadget are the canonical 3CNF of the expression
(a = 0) ⇒ (b = c), whereas the latter two clauses are the canonical 3CNF of the
expression (a = 1) ⇒ (b′ = c). Figure 11 similarly describes 2-SAT gadgets for our
Max2SAT construction. We have a (11, 1)-PC gadget, PC2, and a (11, 1)-RMB gad-

52 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The Max-E3-SAT Gadgets.
PC3(a, b, c) = {(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c)}

RMBC3(a, b, b′, c) = {(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b′ ∨ c), (a ∨ b′ ∨ c), }

Fig. 10. The MaxE3SAT Gadgets

The MAX 2SAT Gadgets.
PC2(a, b, c, x00, x01, x10, x11) =

{(x00 ∨ a), (x00 ∨ b), (x00 ∨ c),
(x01 ∨ a), (x01 ∨ b), (x01 ∨ c),
(x10 ∨ a), (x10 ∨ b), (x10 ∨ c),
(x11 ∨ a), (x11 ∨ b), (x11 ∨ c)}

RMBC2(a, b, b′, c, x00, x11, y00, y11) =
{(x00 ∨ b), (x00 ∨ c), (a ∨ x00),

(x11 ∨ b), (x11 ∨ c), (a ∨ x11),
(y00 ∨ b′), (y00 ∨ c), (a ∨ y00),
(y11 ∨ b′), (y11 ∨ c), (a ∨ y11)}.

Fig. 11. The Max2SAT Gadgets

get, RMBC2, each consisting of 12 clauses. Each gadget has four auxiliary variables.
The auxiliary variable xτσ in the PC2 gadget is supposed to be the indicator of the
event ((a = σ) ∧ (b = τ)). Thus, a + b = c allows to satisfy 11 clauses by appropri-
ately setting the indicator variables (e.g., if a = b = c = 0 then setting x00 = 1 and
the other xτσ’s to 0 satisfies all clauses except the last one). The RMBC2 gadget is
composed of two parts; the first six clauses handle the expression (a = 0)⇒ (b = c),
whereas the latter six clauses are for the expression (a = 1)⇒ (b′ = c).

Lemma 4.9. (SAT gadgets): The following gadgets exist
(1) E3-SAT gadgets: a (4, 1)-PC gadget of 4 clauses and a (4, 1)-RMB gadget of 4

clauses.
(2) 2-SAT gadgets: a (11, 1)-PC gadget of 12 clauses and a (11, 1)-RMB gadget of

12 clauses.

Remark 4.10. In previous versions of this work [20], it was observed that a ratio
of 4 between the number of clauses and the second parameter (i.e., β) is minimal
for both E3-SAT gadgets. Several questions regarding the α/β ratios achievable by
3-SAT and 2-SAT gadgets were posed. Answers were subsequently provided in [84],
which undertakes a general study of the construction of optimal gadgets.

Proof. [Lemma 4.9] We use the gadgets presented in Figure 10 and Figure 11.
The claim regarding E3-SAT follows from the motivating discussion above (i.e., by
which these gadgets are merely the canonical 3CNF expressions for the corresponding
conditions). The analysis of the 2-SAT gadgets in Figure 11 is straightforward but

PCP – TOWARDS TIGHT RESULTS 53

tedious; it is omitted from this version and can be found in previous versions of this
work [20].

Proof. [Theorem 4.6] The theorem follows by applying Lemma 4.7 to the verifier
of Proposition 4.3 and the gadgets of Lemma 4.9. Details follow.

Recall that by Remark 4.4, we may assume that the verifier does not make two
identical queries. Applying Lemma 4.7 to the verifier of Proposition 4.3 we obtain a
reduction of any language in NP to Gap-XSATc′,s′ for values of c′ and s′ determined
as a function of the gadget parameters, the probability parameter q and the soundness
s of the verifier of Proposition 4.3. Specifically, we observe that for E3-SAT we have
c′ = 1 (since αi = mi for i = 1, 2), whereas for 2-SAT we have 0.9 < c′ < 1 (since
αi
mi

= 11
12 for i = 1, 2). In both cases, β = 1 and the expression for c′/s′ is given by

1 +
1− s

qα1 + (1− q)α2 − (1− s)
(9)

where s and q are determined by Proposition 4.3; that is (for every γ > 0)

s = 1− 3
20

+ γ(10)

q =
3
5

(11)

Substituting Eq. (10) and (11) in Eq. (9), and letting γ → 0, we get
c′

s′
→ 1 +

3
12α1 + 8α2 − 3

.

The bounds for E3-SAT and 2-SAT now follow by using the αi’s values of Lemma 4.9.
In particular, for E3-SAT we get s′ → 77/80 and for 2-SAT we get c′

s′ → 1 + 3
217 .

We conclude this subsection by presenting a variant of Lemma 4.7. This variant refers
only to 3SAT formulae, but makes no restrictions on the verifier in the PCP system.

Lemma 4.11. (Max3SAT implementation of a generic verifier): Let L be in
PCP1,1−δ[log, 3], for some 0 < δ < 1. Then, L reduces to Gap-3SAT1,1− δ4

.

Proof. Let V be a verifier as guaranteed by the hypothesis. Building on Lemma 4.7,
it suffices to show that the computation of V on any possible random-tape can be cap-
tured by a 3CNF formula with at most 4 clauses. We consider the depth-3 branching
program which describes the acceptance of V on a specific random-tape. (The vari-
ables in this program correspond to queries that the verifier may make on this fixed
random-tape. Since the verifier may be adaptive, different variables may appear on
different paths.) In case this tree has at most 4 rejecting leaves (i.e., marked false)
writing corresponding 3CNF clauses (which state that these paths are not followed)
we are done. Otherwise, we consider the 4 depth-1 subtrees. For each such subtree
we do the following. In case both leaves are marked false we write a 2CNF clause
(which states that this subtree is not reached at all). In case a single leaf is marked
false we write one 3CNF clause (as above), and if no leaf is marked false we write
nothing.

Remark 4.12. The above argument can be easily extended to show that, for
any 0 ≤ ε, δ < 1,

PCP1−ε,1−δ[log, 3] ≤KD Gap-3SAT1−ε,1− δ4

54 M. BELLARE, O. GOLDREICH, AND M. SUDAN

4.2.2. Maximum Satisfiable Linear Constraints (Parity Clauses). Anal-
ogously to the MaxSAT problems considered above, we consider parity/linear clauses
rather than disjunctive clauses. In other words, we are given a system of linear equa-
tions over GF(2), and need to determine the maximum number of equations which may
be simultaneously satisfied. The problem in question is MaxLinEq (cf. Section 2.4.2).
See Section 2.4.3 for status and discussion of previous work. Here we provide an
explicit hardness factor via a direct reduction from the MaxSNP verifier.

Theorem 4.13. Gap-MaxLinEqc,s is NP-hard for c = 6/7 and any c
s < 8/7.

Proof. The theorem follows by constructing appropriate gadgets. A PC-gadget
is straightforward here and so we have a (1, 1)-PC gadget. We present a (3, 2)-RMB
gadget consisting of 4 equations. Specifically, for RMB(a, b0, b1, c) we present the
equations b0 + c = 0, a + b0 + c = 0, b1 + c = 0 and a + b1 + c = 1. Observe that
we can think of the RMB gadget as a (1.5, 1)-gadget with 2 clauses (or, equivalently,
think of the parity gadget as a (2, 2)-gadget with 2 clauses).

We obtain a hardness for Gap-MaxLinEqc′,s′ by proceeding as in the proof of
Theorem 4.6, where

c′

s′
→ 1 +

3
12α1 + 8α2 − 3

= 1 +
3

12 + 12− 3
=

8
7

and c′ = 3α1+2α2
3m1+2m2

= 6
7 .

4.3. MaxCUT. Refer to Section 2.4 for the definition of the MaxCUT problem
and the associated gap problem Gap-MaxCUTc,s. See Section 2.4.3 for discussion of
status and previous work. The following theorem (combined with Proposition 2.5)
shows that MaxCUT is NP-hard to approximate to within a factor of 1.014. We note
that the result of the following theorem holds also when the weights of the graph
are presented in unary (or, equivalently, when considering unweighted graphs with
parallel edges).

Theorem 4.14. (MaxCUT non-approximability result): Gap-MaxCUTc,s is NP-
hard for some c, s satisfying c > 0.6 and c/s > 1.014 (anything below 72/71).

A weaker result can be obtained for simple graphs without weights or parallel edges.
In particular, one may reduce the MaxCUT problem for graphs with parallel edges
to MaxCUT for simple graphs, by replacing every edge by a path of 3 edges. This
causes a loss of a factor of 3 in the hardness factor; that is, we would get a hardness
factor of 214/213 for the MaxCUT problem restricted to simple graphs. A better
reduction which preserves the non-approximation ratio has been recently suggested
by Crescenzi et. al. [34].

Gadgets. Unlike with MaxSAT problem, here we cannot negate variables at zero
cost. Still, we first define simplified gadgets for Parity and RMB checking and make
the necessary adaptations inside Lemma 4.15.

Gadgets will be used to express the verifier’s computation in terms of cuts in
graphs. A parity check gadget PC-CUT(a, b, c, T ;x1, . . . , xn) is a weighted graph on
n+ 4 vertices. Of these three vertices a, b, c correspond to oracle queries made by the
verifier. The vertex T will be a special vertex mapping cuts to truth values so that a
vertex corresponding to an oracle query is considered set to 1 if it resides in the T -side
of the cut (i.e., a is considered set to 1 by a cut (S, S) iff either a, T ∈ S or a, T ∈ S).
The gadget is an (α, β)-PC gadget if MaxCUT(PC-CUT(a, b, c, T ;x1, . . . , xn)) is ex-
actly α when restricted to cuts which induce a+b = c (i.e., either 0 or 2 of the vertices

PCP – TOWARDS TIGHT RESULTS 55

{a, b, c} lie on the same side of the cut as T), and is at most α− β when restricted to
cuts for which a+b 6= c. A cut gadget to check if a+b 6= c can be defined similarly. Sim-
ilarly a weighted graph RMBC-CUT(a, b0, b1, c, T ;x1, . . . , xn) is an (α, β)-RMBC gad-
get if it satisfies the property that MaxCUT(RMBC-CUT(a, b0, b1, c, T ;x1, . . . , xn))
is exactly α when restricted to cuts satisfying ba = c and is at most α − β oth-
erwise. Cut gadgets for the other generalized RMB checks (checking if ba 6= c, or
ba = c + a or ba 6= c + a) can be defined similarly. The following lemma (similar to
Lemma 4.7) shows how to use the above forms of gadgets to derive a reduction from
NP to Gap-MaxCUT.

Lemma 4.15. (MaxCUT implementation of a verifier): Let V be a verifier for
L of logarithmic randomness, with perfect completeness and soundness s, such that
V performs either a single Parity Check (with probability q) or a single RMB check
(with probability 1− q). Here, we refer to the generalized checks as defined in Propo-
sition 4.3. Furthermore, suppose that in either case, the verifier never makes two
identical queries. If there exists an (α1 − β, β)-PC gadget consisting of edges of total
weight w1 and an (α2−β, β)-RMBC gadget consisting of edges of total weight w2 then
L reduces to Gap-MaxCUTc′,s′ for c′ = α1q+α2(1−q)

w1q+w2(1−q) and s′ = α1q+α2(1−q)−(1−s)β
w1q+w2(1−q) . In

particular c′/s′ ≥ 1 + (1−s)β
α1q+α2(1−q)−(1−s)β .

Remark 4.16. Actually, the conclusion of the lemma holds provided all the
generalized parity check (resp., RMB-check) functions have (α1, β)-gadgets (resp.,
(α2, β)-gadgets).

Proof. Let PC-CUT(a, b, c, T, x1, . . . , xn1) denote the Parity Check gadget and
RMBC-CUT(a, b0, b1, c, T, x1, . . . , xn2) denote the RMBC gadget. These are simpli-
fied gadgets as defined above. Increasing the α value by β, we can easily obtain the
general gadgets as defined in Proposition 4.3. For example, to check that a+b+c = 1
we introduce a gadget which in addition to the variables a, b, c, T, x1, . . . , xn1), has an
auxiliary vertex, denoted ā. The new gadget consists of the edge (a, ā) having weight
β together with the weighted graph PC-CUT(ā, b, c, T, x1, . . . , xn1). Clearly, the result
is an (α1, β)-gadget for a+ b+ c = 1. Likewise we can check the condition ba+ c = τa,
where τ0, τ1 are any fixed bits as follows. In case τ0 = τ1 = 1 we introduce an auxiliary
vertex c̄, connect it to c by an edge of weight β and use the graph RMBC-CUT(a, b0,
b1, c̄, T, x1, . . . , xn2). In case τ0 = 0 and τ1 = 1 we introduce an auxiliary vertex b̄1,
connect it to b1 by an edge of weight β and use the graph RMBC-CUT(a, b0, b̄1, c,
T, x1, . . . , xn2). The case τ0 = 1 and τ1 = 0 is analogous, whereas τ0 = τ1 = 0 is
obtained by the simplified gadget itself. Thus, we have (α2, β)-gadgets for all cases
of the RMB Check. Throughout the rest of the proof, PC-CUT and RMBC-CUT
denote the generalized gadgets.

We create a graph Gx and weight function wx which encodes the actions of the
verifier V on input x. The vertices of Gx are as follows:
(1) For every bit π[q] of the proof queried by the verifier V , the graph Gx has a

vertex vπ[q].
(2) For every random string R tossed by the verifier V , we create vertices vR,i, for i

going from 1 to max{n1, n2}.
(3) There will be one special vertex T .
The edges of Gx are defined by the various gadgets. We stress that the same edge
may appear in different gadgets (and its weight in these gadgets may be different).
The graph Gx is defined by taking all these edges and thus it is a graph (or multi-

56 M. BELLARE, O. GOLDREICH, AND M. SUDAN

graph) with parallel edges and weights. The natural conversion of Gx into a graph
with no parallel edges replaces the parallel edges between two vertices with a single
edge whose weight is the sum of the weights of the original edges. Alternatively, since
the weights are constants which do not depend on x, we can transform Gx into a
unweighted graph with parallel edges.

Suppose that on random string R the verifier V queries the oracle for bits π[q1],
π[q2] and π[q3], and then does a parity check on these three bits. Then corresponding
to this random string we add the weighted edges of the graph GR to the graph
Gx where GR = PC-CUT(vπ[q1], vπ[q2], vπ[q3], T ; vR,1, . . . , vR,n1). Alternatively, if the
verifier V performs a respect of monomial basis test on the bits π[q1], π[q2], π[q3] and
π[q4], then we add the weighted edges of the graph GR = RMBC-CUT(vπ[q1], vπ[q2],
vπ[q3], vπ[q4], T ; vR,1, . . . , vR,n2).

Let N denote the number of possible random strings used by V . Observe that
the total weight of the edges of Gx is w1qN +w2(1− q)N . We now analyze the value
of MaxCUT(Gx).

If x ∈ L then there exists an oracle π such that V π(x) always accepts. We define
a cut (S, S̄) in Gx in the following way: We place T ∈ S and for every query q we
place vπ[q] ∈ S iff π[q] = 1. Then for each R, there exists an placement of the vertices
vR,i so that the size of the cut induced in GR is α1 if R corresponds to V performing
a Parity Check and α2 if R corresponds to V performing an RMB check. The weight
of the so obtained cut is α1qN + α2(1− q)N .

Now consider x 6∈ L. We claim that if there exists a cut (S, S̄) such that the
weight of the cut is greater than qNα1 + (1 − q)Nα2 − (1 − s)Nβ, then there exists
an oracle π, such that V π(x) accepts with probability at least s. Since we know this
can not happen we conclude that MaxCUT(Gx) < qNα1 + (1− q)Nα2 − (1− s)Nβ.
To prove the claim, we convert any cut in Gx into an oracle π where π[q] = 1 iff
T and vπ[q] lie on the same side of the cut. Now by the property of the gadgets
if a graph GR = PC-CUT(y[q1], y[q2], y[q3], T ;x1, . . . , xn1) contributes more than a
weight of α1 − β to the cut, then V accepts π on random string R. (Similarly if the
graph GR is an RMBC-gadget and contributes more than α2 − β to the cut then
V accepts π on random string R.) Recall that no gadget can contribute more than
the corresponding α to any cut. Thus if the total weight of the cut is more than
(α1 − β)qN + (α2 − β)(1 − q)N + sN · β, then V accepts on at least sN random
strings. This proves the claim and the lemma follows.

We now turn to the construction of cut-gadgets. Our first gadget, denoted

PC-CUT(a, b, c, T ; Aux) ,

is a complete graph defined on five vertices {a, b, c, T,Aux}. The weight function, w,
assign the edge {u, v} weight wu · wv, where wa = wb = wc = wT = 1 and wAux = 2.
The following claim shows how PC-CUT(a, b, c, T ; Aux) functions as a parity check
gadget.

Claim 4.17. (MaxCUT PC-gadget): PC-CUT(a, b, c, T ; Aux) is a (9, 1)-parity
check gadget consisting of edges of total weight 14.

The straightforward (but tedious) proof is omitted (and can be found in [20]).
The second gadget, denoted RMBC-CUT(a, b0, b1, c, T ; Aux1,Aux2,Aux3, a

′), is
composed of two graphs denoted G1 and G2, respectively. To motivate the con-
struction we first observe that the condition ba = c (i.e., (a = 0) ⇒ (b0 = c) and
(a = 1) ⇒ (b1 = c)) is equivalent to the conjunction of (b0 = b1) ⇒ (b0 = c)
and (b0 6= b1) ⇒ (a + b0 + c = 0). The graph G1(b0, b1, c; Aux1) will take care

PCP – TOWARDS TIGHT RESULTS 57

of the first implication. It consists of the vertex set {b0, b1, c,Aux1}, the unit-
weight edges {b0,Aux1} and {b1,Aux1}, and a weight 2 edge {c,Aux1}. The graph
G2(a, b0, b1, c, T ; Aux2,Aux3, a

′), taking care of the second implication, consists of
two subgraphs PC-CUT(a, b0, c, T ; Aux2) and PC-CUT(a, b1, c, T ; Aux3, a

′), where
the latter is supposed to “check” a + b1 + c = 1. Specifically, PC-CUT(a, b, c, T ;
Aux, a′) consists of the graph PC-CUT(a′, b, c, T ; Aux) and a unit-weight edge {a, a′}.
The following claim shows exactly how good this gadget is in “verifying” that ba = c.

Claim 4.18.
(MaxCUT RMB-gadget): RMBC-CUT(a, b0, b1, c, T ; Aux1,Aux2,Aux3, a

′) is
a (22, 2)-RMBC gadget consisting of edges of total weight 33.

Again, the straightforward proof is omitted (and can be found in [20]).

Proof. [Theorem 4.14] The theorem follows by combining Proposition 4.3, Lemma
4.15, Claim 4.17 and Claim 4.18 (when regarding the RMB gadget as a (11, 1)-gadget
rather than a (22, 2)-gadget). Details follows.

As in the proof of Theorem 4.6, when applying Lemma 4.15 to the verifier in
Proposition 4.3, we obtain the same expression for the gap, c′/s′, for which NP ≤KD
Gap-MaxCUTc′,s′ ; namely,

c′

s′
→ 1 +

(1− s)β
q · α1 + (1− q) · α2 − (1− s)β

= 1 +
3

12α1 + 8α2 − 3
.

Recall that here α1 − 1 = 9 and α2 − 1 = 11 (rather than α1 = 9 and α2 = 11 – see
Lemma 4.15). The above simplifies to 1 + 3

213 = 72
71 and the bound on c′

s′ follows. As
for c′, it equals 3α1+2α2

3m1+2m2
> 0.6.

5. Free bits and vertex cover. It is known that approximating the minimum
vertex cover of a graph to within a 1+ε factor is hard, for some ε > 0 [76, 8]. However,
we do not know of any previous attempt to provide a lower bound for ε. An initial at-
tempt may use VC-gadgets that implement the various tests in VSNPinner, analogously
to the way it was done in the previous sections for the Max SAT versions and Max
Cut. This yields a lower bound of ε > 1

43 > 0.023 (see details in previous versions of
this work [20]). However, a stronger result is obtained via free-bit complexity:8 We
apply the FGLSS-reduction to a proof system (for NP) of low free-bit complexity;
specifically to a proof system which uses 2 free-bits and has soundness error below
0.8. Consequently, the clique size, in case the original input is in the language, is at
least one fourth (1/4) of the size of the graph which means that translating clique-
approximation factors to VC-approximation factors yields only a loss of a factor of
3. Since the FGLSS-transformation translates the completeness/soundness ratio to
the gap-factor for approximating clique, our first goal is to construct for NP a proof
system which uses two free-bits and has soundness error as low as possible. We re-
mark that the proof system of Section 6 uses 7 free-bits and achieves soundness error
less than 1/2. The reader may observe that, following the above approach, it is not
worthwhile to use the proof system of Section 6 or any proof systems which achieves
a soundness error of 1/2 at the cost of 5 free-bits or more. On the other hand, in light

8 Furthermore, there seems to be little hope that the former approach can ever yield an improve-
ment over the better bounds subsequently obtained by H̊astad [57].

58 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The Enhanced RMB Test. Again, A: Fl → Σ is the object being tested,
and the test take additional inputs or parameters f1, f2 ∈ Fl.

EMBTest(A; f1, f2) (Enhanced Monomial-Basis Test)
For every f ∈ Fl, invoke MBTest(A; f1, f, f2).
Output 0 if all invocations answered with 0, else output 1.

The Passing Probability:

EMBPass(A) = Pr
f1,f2

R←Fl
[EMBTest(A; f1, f2) = 0]

Fig. 12. The Enhanced RMB test and its passing probability.

of the results of Section 10, we cannot hope for a proof system of free-bit complexity
1 for NP.

5.1. Minimizing the error achievable with two free bits. The pcp system
of Proposition 4.3 had free-bit complexity 2 (and query-complexity 3). However, a
smaller soundness error can be achieved if we make more queries. Our starting point is
Part (2) of Lemma 3.19 which suggests an RMB-test with a detection probability that
is twice as big, still using 2 free-bits (alas 2l + 2 rather than 3 queries). Specifically,
we consider an enhanced RMB test which on input f1, f2 ∈ Fl, goes over all f ∈ Fl
invoking the Atomic RMB test with input functions f1, f, f2. The enhanced RMB
Test, denoted EMBtest, is depicted in Figure 12. Further improvement is obtained
by “packing” together the Linearity Test and the Enhanced RMB Test (in contrast
to VSNPinner in which these tests were performed exclusively). Both tests make three
queries of which two are common, and the answers to these queries determine the
answer to the third query (which is different in the two tests). The resulting inner
verifier, denoted V2inner, is depicted in Figure 13. As VSNPinner, the verifier V2inner

works with functions/oracles A that are folded twice — once across (h, 0) and once
across (1̄, 1).

The following corollary is immediate from Part (2) of Lemma 3.19.

Corollary 5.1. (analysis of the Enhanced Monomial-Basis Test): Let A, Ã: Fl →
Σ with A satisfying A(f + 1̄) = A(f) + 1 for all f and Ã linear but not respecting the
monomial basis. Let x = Dist(A, Ã). Then

1−EMBPass(A) ≥ 3
4
· (1− 2x)

The following lemma is analogous to Lemma 4.1. Loosely speaking, it considers three
possible strategies of a “dishonest” prover and indicates the probability with which
the verifier detects an error.

Lemma 5.2. (soundness of V2inner): Let δ1, δ2 > 0, 0 ≤ p ≤ 1 and l, l1 ∈ Z+.
Then the (l, l1)-canonical inner verifier V2inner (with parameter p) is (ρ, δ1, δ2)-good,
where 1− ρ = min(T1, T2, T3) and

(1) T1
def= (1

2 − δ1) · p

(2) T2
def= p ·min x≤1/2−δ1 [max(Γlin(x) , 3

4 · (1− 2x))]

(3) T3
def= min x≤1/2−δ1 [p · Γlin(x) + (1− p) · (1

2 − δ2)(1− 2x)].

PCP – TOWARDS TIGHT RESULTS 59

The two free-bit inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 ,
the verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. In addition
it takes a parameter p ∈ [0, 1].

Pick q R← [0, 1].

Case: q ≤ p :
Pick f1, f2

R← Fl.
LinTest(A(h,0),(1̄,1); f1, f2).
EMBTest(A(h,0),(1̄,1); f1, f2).

Case: q > p :
Pick f R← Fl and g

R← Fl1 .
ProjTestσ(A(h,0),(1̄,1), A1; f, g).

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f) or
A(f + h) or A(f + 1̄) or A(f + h+ 1̄).

Fig. 13. The two free-bit inner verifier V2inner

Proof. The analysis is broken up into several cases as in the proof of Lemma 4.1.
Let x = Dist(A(h,0),(1̄,1),Lin).

Case 1: x ≥ 1/2− δ1.
Lemma 3.15 implies that 1−LinPass(A(h,0),(1̄,1)) ≥ Γlin(x) ≥ x ≥ 1/2−δ1. Since

V2inner performs the atomic linearity test with probability p, we have in this case

1− ACC [V A,A1
2inner(σ, h)] ≥ p · (1/2− δ1)

Case 2: x < 1/2− δ1.
Again, Lemma 3.15 implies that 1− LinPass(A(h,0),(1̄,1)) ≥ Γlin(x) and

1− ACC [V A,A1
2inner(σ, h)] ≥ p · Γlin(x)

follows. Now let Ã be a linear function such that Dist(A(h,0),(1̄,1), Ã) = x. We consider
the following sub-cases.

Case 2.1: Ã does not respect the monomial basis.
In this case Corollary 5.1 implies that 1−EMBPass(A(h,0),(1̄,1)) ≥ 3

4 (1−2x). So
the probability that V2inner rejects is at least p · 3

4 (1− 2x). Combining the two lower
bounds on 1− ACC [V A,A1

2inner(σ, h)], we get

1− ACC [V A,A1
2inner(σ, h)] ≥ p ·max(Γlin(x),

3
4

(1− 2x))

Case 2.2: Ã respects the monomial basis.
By Proposition 3.2, Ã is an evaluation operator. So there exists a ∈ Σl such that

Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let a1 = σ(a). The proof splits into two
further sub-cases.

Case 2.2.1: d
def= Dist(A1, Ea1) ≥ 1/2− δ2.

By Lemma 3.21 we have 1− ProjPassσ(A(h,0),(1̄,1), A1) ≥ d · (1− 2x) ≥ (1/2−
δ2) · (1− 2x). So the probability that V2inner performs the projection test and rejects
is at least (1−p) · (1/2− δ2)(1−2x). To this we add the probability of the exclusively

60 M. BELLARE, O. GOLDREICH, AND M. SUDAN

disjoint event in which the verifier performs the Linearity Test and rejects, obtaining

1− ACC [V A,A1
2inner(σ, h)] ≥ p · Γlin(x) + (1− p) · (1/2− δ2)(1− 2x)

Case 2.2.2: Else, we have x = Dist(A(h,0),(1̄,1), Ea) < 1/2−δ1 and Dist(A1, Ea1) <
1/2 − δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy conditions (2.1) and (2.2) in
Definition 3.9.

Similarly to the proof of Lemma 4.1, we infer that the lower bound on 1− ρ is as
claimed and the lemma follows.

We now simplify the soundness bound of the lemma. The proof of the first item uses
the fact that Γlin(x) ≥ 45/128 for all x ≥ 1/4. The second item uses the fact that
Γlin(x) ≥ x for all x ≤ 1/2.

Claim 5.3. :
(1) min x≤1/2−δ1 [max(Γlin(x) , 3

4 (1− 2x))] ≥ 45
128 .

(2) min x≤1/2−δ1 [p · Γlin(x) + (1− p) · (1
2 − x)] ≥ 1

2 ·min(p , 1− p).
(3) Let T1, T2 and T3 be as in Lemma 5.2. Then

min(T1, T2, T3) ≥ min
{

45
128
· p , 1

2
· (1− p)

}
−max(δ1, δ2)

Interestingly, the lower bound provided by Item (3) is tight. Optimization calls for
setting 45

128 · p = 1
2 · (1− p), which yields p = 64

109 and a soundness bound of 1− 45
128p+

max(δ1, δ2) = 1− 45
218 + max(δ1, δ2).

Proof. Towards proving Part (1) we consider two cases.
Case 1.1: x ≥ 1/4.
In this case, by definition of Γlin, we have

max(Γlin(x) ,
3
4

(1− 2x)) ≥ Γlin(x) ≥ 45
128

Case 1.2: x ≤ 1/4.
In this case we have

max(Γlin(x) ,
3
4

(1− 2x)) ≥ 3
4

(1− 2x) ≥ 3
8
>

45
128

This establishes Part (1). Towards proving Part (2) we consider two different cases.
Case 2.1: p ≤ (1− p).
In this case

p · Γlin(x) + (1− p) · (1
2
− x) ≥ p · x+ p · (1

2
− x) =

p

2
Case 2.2: p ≥ (1− p).
In this case

p · Γlin(x) + (1− p) · (1
2
− x) ≥ (1− p) · x+ (1− p) · (1

2
− x) =

1− p
2

This establishes Part (2). To prove Part (3) use Parts (1) and (2) to lower bound T2

and T3, respectively, and get

min(T1, T2, T3) ≥ min
{

(
1
2
− δ1) · p , 45

128
· p , 1

2
·min(p , 1− p)− δ2

}
≥ min

{
45
128
· p , 1

2
· (1− p)

}
−max(δ1, δ2)

The claim follows.

PCP – TOWARDS TIGHT RESULTS 61

Composing the above inner verifier with an adequate outer verifier, we get

Theorem 5.4. NP ⊆ FPCP1,s[log, 2], and furthermore, there is a constant q such
that NP ⊆ PCP1,s[coins = log ; free = 2 ; query = q], for any s > 173

218 ≈ 0.79357798.

Proof. Let δ = s− 173
218 , δ1 = δ2 = δ/3 and ε = δ

3 · 16δ2
1δ

2
2 = 16δ5

243 . Now, let l and
l1 be integers such that the outer verifier, Vouter, guaranteed by Lemma 3.8, is (l, l1)-
canonical and ε-good for L ∈ NP. Consider the (l, l1)-canonical inner verifier V2inner

working with parameter p = 64/109. Using Lemma 5.2 and Claim5.3, we conclude
that V2inner is (ρ, δ, δ)-good for ρ = 1− 45

218 + max(δ1, δ2).
Composing Vouter and V2inner we obtain a verifier, V2free, which by Theorem 3.12

has soundness error bounded above by 173
218 + max(δ1, δ2) + ε

16δ21δ
2
2

= s, as required.
Furthermore, V2free uses logarithmically many coins. We claim that V2free has query
complexity 2l + 2 and free-bit complexity 2. The claim is obvious in case V2inner

performs the Projection test. Otherwise, V2inner performs a Linearity Test with pa-
rameters f1 and f2 and an enhanced RMB Tests with the same parameters. Clearly,
the answers on f1 and f2 determine the acceptable (by Linearity Test) answer on
f1 + f2. The key observation is that the former two answers also determine all 2l

acceptable answers in the enhanced RMB test (i.e., for every f ∈ Fl, the answer on
f ′1 · f + f2 should equal the answer on f2, where f ′1 = f1 if the answer on f1 is zero
and f ′1 = f1 + 1̄ otherwise).

By repeating the above proof system three times, we obtain

Corollary 5.5. NP ⊆ FPCP1,1/2[log, 6]. Furthermore, there is a constant q
such that

NP ⊆ PCP1,1/2[coins = log ; free = 6 ; query = q] .

Proof. There exists ε > 0 such that
(

173
218 + ε

)3 ≤ 1
2 .

5.2. Hardness of vertex cover. Refer to Section 2.4 for the definition of the
MinVC problem and the associated gap problem Gap-MinVCc,s, and to Section 2.4.3
for status and previous work.

Going from Free bits to VC. Instead of reducing from Max3SAT, we first use
Theorem 5.4 to get gaps in Clique size, and then apply the standard reduction.

Proposition 5.6. FPCPc,s[log, f] ≤KD Gap-MinVCc′,s′ for s′ = 1 − 2−fc and
c′

s′ = 1 + c−s
2f−c .

Proof. The FGLSS reduction says that FPCPc,s[log, f] ≤KD Gap-MaxCliquec′′,s′′
where c′′ = 2−f ·c and s′′ = 2−f ·s. (See Section 2.4 for definition of Gap-MaxClique.)
Now we apply the standard Karp reduction (of MaxClique to MinVC) which maps
a graph G to its complement G, noting that MinVC(G) = 1 −MaxClique(G). Thus
Gap-MaxCliquec′′,s′′ ≤KD Gap-MinVC1−s′′,1−c′′ . Now set c′ = 1 − s′′ and s′ = 1 − c′′
and note

c′

s′
=

1− s′′

1− c′′
=

1− s2−f

1− c2−f
= 1 +

c− s
2f − c

.

This completes the proof.

Our results. We obtain the first explicit and reasonable constant factor non-
approximability result for MinVC. A consequence of the following theorem is that,

62 M. BELLARE, O. GOLDREICH, AND M. SUDAN

assuming P 6= NP there is no polynomial time algorithm to approximate MinVC
within a factor of 1.0688.

Theorem 5.7. Gap-MinVCc,s is NP-complete for some c, s satisfying c/s ≥
1.0688 > 16/15. Moreover s = 3/4.

Proof. Follows immediately from Proposition 5.6 and Theorem 5.4. Namely, for
any s′ > 173/218, NP ⊆ FPCP1,s′ [log, 2] ≤KD Gap-MinVCc,s for s = 1−2−2 = 3

4 and
c
s = 1 + 1−s′

22−1 = 1 + 1−s′
3 . Thus, cs = 1 + 15

218 −
ε
3 > 1.068807− ε

3 , where ε def= s′ − 173
218 .

We remark that a special case of Proposition 5.6 in which the statement is restricted
to f = 0 would have sufficed for proving the above theorem. The reason being
that we could have applied Proposition 11.8 to Theorem 5.4 and obtained NP ⊆
FPCP1/4,s/4[log, 0], for s = 0.7936, which by the special case of Proposition 5.6 is
reducible to Gap-MinVCc′,s′ with s′ = 1− 1

4 = 3
4 and c′

s′ = 1+ (1/4)−(s/4)
1−(1/4) = 1+ 1−s

3 (as
above). Interestingly, the special case of Proposition 5.6 can be “reversed”: namely,
Gap-MinVCc′,s′ is reducible to FPCPc,s[log, 0] with s = 1 − c′, c = 1 − s′ and c

s =
1−s′
1−c′ (which reverses c′

s′ = 1−s
1−c = 1 + c−s

1−c). The key fact in proving this “reverse
reduction” is Corollary 8.5 which asserts that Gap-MaxCliquec,s ≤KD FPCPc,s[log, 0].
However, we do not know if it is possible to “reverse” the other step in the alternative
proof; namely, whether FPCPc,s[log, 0] is reducible to FPCP4c,4s[log, 2] (our reverse
transformation is weaker – see Proposition 11.6).

6. Minimizing the number of queries for soundness 0.5. The problem we
consider here is to minimize the values of q (and qav) for which we can construct
PCPs for NP using q queries in the worst case (and qav on the average) to achieve a
soundness error of 1/2. We allow only logarithmic randomness. See Section 2.2.3 for
description of past records.

Sources of our improvements. The principal part of our improvement comes
from the use of the new long code based inner verifier, the atomic tests and their
analysis in Section 3.5, and the new idea of folding. By repeating the proof system
of Theorem 4.5 five times, we obtain that Eq. (1) holds for q = 15. (Note that
5 = min{i ∈ N : 0.85i < 0.5}.) A straightforward implementation of the recycling
technique of [21] yields that Eq. (1) holds for q = 12 and qav = 11.74. Using, a
more careful implementation of this technique, we reduce the query complexity by an
additional bit.

6.1. The PCP inner verifier. Our result is based on the construction of the
(l, l1)-canonical inner verifier VPCPinner depicted in Figure 14. In addition to its stan-
dard inputs h, σ it takes parameters p1, p2, p3 ≥ 0 so that p1 + p2 + p3 = 1. The inner
verifier VPCPinner combines the atomic tests in three different ways.
(1) Some tests are performed independently (i.e., the main steps in Figure 14);
(2) Some tests are performed while re-using some queries (i.e., the tests in Step (2)

re-use f3);
(3) Some tests are performed in a mutual exclusive manner (i.e., the tests in Step (3));
As in previous sections, the tests are executed on the function A(h,0),(1̄,1) to which
the verifier has an effective oracle access given his access to A. By inspection it is
clear that the total number of accesses to the oracles for A and A1 is 3 + 5 + 3 = 11
(whereas the free-bit complexity is 2 + 3 + 2 = 7). We now examine the goodness

PCP – TOWARDS TIGHT RESULTS 63

The PCP inner verifier. This (l, l1)-canonical inner verifier is given func-
tions h ∈ Fl and σ: Σl → Σl1 , and has access to oracles for A: Fl → Σ and
A1: Fl1 → Σ. In addition it takes three non-negative parameters p1, p2 and
p3 which sum-up to 1.

Pick functions f1, . . . , f8
R← Fl and g1, g2

R← Fl1 .

Step 1: Linearity Test
LinTest(A(h,0),(1̄,1); f1, f2).

Step 2: Combined RMB and Projection Test
MBTest(A(h,0),(1̄,1); f3, f4, f5).
ProjTestσ(A(h,0),(1̄,1), A1; f3, g1).

Step 3: Invoking VSNPinner with parameters p1, p2, p3.
Pick p R← [0, 1].
Case p ≤ p1 : LinTest(A(h,0),(1̄,1); f6, f7).
Case p1 < p ≤ p1 + p2 : MBTest(A(h,0),(1̄,1); f6, f7, f8).
Case p1 + p2 < p : ProjTestσ(A(h,0),(1̄,1), A1; f6, g2).

Accept iff all the above tests accept.
Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄) or A(f + h+ 1̄).

Fig. 14. The PCP inner verifier VPCPinner

of VPCPinner. Recall the definitions of the functions Γlin(x) (from Lemma 3.15) and
ΓRMB(x) = 3

8 (1− 2x) (from Lemma 3.19).

Lemma 6.1. (soundness of VPCPinner): For any 0 < δ1, δ2 < 0.1 and any
l, l1, p1, p2 and p3, satisfy p1 + p2 + p3 = 1 and 5p1 = 2p2, the (l, l1)-canonical inner
verifier VPCPinner is (ρ, δ1, δ2)-good, where 1−ρ is the minimum of the following three
quantities
(1) 1

2 + p1
10 − δ1;

(2) 1− (11/14)3 − p3
1−p3 > 0.51494168− p3

1−p3 ;

(3) min{ 1
2 + p3

20 − δ2 , 1− (0.55218507 + δ2) · (1− 45
128p1)}

Furthermore, if p1 > 10δ1, p3 > 20δ2 and p3 ≤ 0.01 then 1− ρ > 1
2 .

Proof. We split the analysis into several cases based on the value of

x = Dist(A(h,0),(1̄,1),Lin) .

Case 1: x ≥ 1
2 − δ1.

Lemma 3.15 implies that LinPass(A(h,0),(1̄,1)) ≤ 1 − Γlin(x) ≤ 1 − x ≤ 1
2 + δ1.

Thus, in this case

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ1

def= (1− p1) ·
(

1
2

+ δ1

)
+ p1 ·

(
1
2

+ δ1

)2

<
1
2

+ δ1 −
p1

10
(The last inequality is due to δ1 < 0.1.) Using p1 > 10δ1 we get ρ1 < 1/2.

Case 2: x < 1
2 − δ1.

64 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Let Ã: Fl → Σ be a linear function such that Dist(A(h,0),(1̄,1), Ã) = x. The proof
splits into two subcases.

Case 2.1: Ã does not respect the monomial basis.
In this case, by Lemmas 3.15 and 3.19 we have

ACC [V A,A1
PCPinner(σ, h)] ≤ (1− Γlin(x)) · (1− ΓRMB(x)) · (1− p1Γlin(x)− p2ΓRMB(x))

< (1− Γlin(x)) · (1− ΓRMB(x))

·
(

1− p1

p1 + p2
· Γlin(x)− p2

p1 + p2
· ΓRMB(x) +

p3

1− p3

)
< α · β · [qα+ (1− q)β] +

p3

1− p3

where q def= p1
p1+p2

, α = 1 − Γlin(x) and β = 1 − ΓRMB(x). Using p · x + (1 − p) · y ≥
xp · y1−p, we show that α · β · [qα+ (1− q)β] ≤ [1+q

3 α+ 2−q
3 β]3. Specifically,[

1 + q

3
α+

2− q
3

β

]3

=
[

2
3
· (1

2
α+

1
2
β) +

1
3
· (qα+ (1− q)β)

]3

≥
(

1
2
α+

1
2
β

) 2
3 ·3

· (qα+ (1− q)β)
1
3 ·3

=
[

1
2
· α+

1
2
· β
]2

· (qα+ (1− q)β)

≥ α · β · (qα+ (1− q)β)

Combining the above with Claim 4.2 (i.e., the lower bound on T2), we obtain (for
every x < 1/2)

ACC [V A,A1
PCPinner(σ, h)] <

[
1− 1 + q

3
· Γlin(x)− 2− q

3
· ΓRMB(x)

]3

+
p3

1− p3

≤
[
1−min

(
1 + q

6
,

2− q
8

)]3

+
p3

1− p3

Observe that min(1+q
6 , 2−q

8) is maximized at q = 2/7 where its value is 3/14. Indeed
this value of q is consistent with p1 = 2

7 · (p1 + p2) and so, in this case, we get

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ2

def=
[

11
14

]3

+
p3

1− p3
< 0.48505832 +

p3

1− p3

Using p3 ≤ 0.01 we get ρ2 < 1/2.
Case 2.2: Ã respects the monomial basis.
By Proposition 3.2, Ã is an evaluation operator. So there exists a ∈ Σl such that

Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let a1 = σ(a). The proof splits into two
further sub-cases.

Case 2.2.1: d
def= Dist(A1, Ea1) ≥ 1/2− δ2.

By Lemma 3.21 we have

ProjPassσ(A(h,0),(1̄,1), A1) ≤ 1− d · (1− 2x) <
1
2

+ x+ δ2 .

Letting ΓPRJ(x) def= 1
2 − x− δ2, we get in this case

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ3

def= (1−Γlin(x))·(1−ΓPRJ(x))·(1−p1Γlin(x)−p3ΓPRJ(x))

PCP – TOWARDS TIGHT RESULTS 65

We upper bound ρ3 by considering three sub-cases (corresponding to the segments of
Γlin).

Case 2.2.1.1: x ≤ 1/4.
In this case we use Γlin(x) ≥ 3x(1− 2x) and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p3ΓPRJ(x))

< (1− 3x(1− 2x)) · (1
2

+ x+ δ2) · (1− p3

10
)

<
1
2
·
[
1− x+ 12x3

]
·
[
1− p3

10

]
+ δ2

≤ 1
2
·
[
1− p3

10

]
+ δ2

where the last inequality uses the fact that the function x − 12x3 is non-negative in
the interval [0, 1/4]. Using p3 > 20δ2 we obtain ρ3 < 1/2.

Case 2.2.1.2: x ≥ 1/4 and x ≤ 45/125.
In this case we use Γlin(x) ≥ 45/128 = Γlin(45/128) and ΓPRJ(x) ≥ ΓPRJ(45/128)

and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p1Γlin(x))

≤ (1− Γlin(45/128)) · (1− ΓPRJ(45/128)) · (1− p1Γlin(45/128))

<
83
128
·
(

109
128

+ δ2

)
·
(

1− p1
45
128

)
< (0.55218507 + δ2) ·

(
1− p1

45
128

)
Using δ2 < p3

10 < 0.001 and p1 ≥ 2
7 ·0.99 > 0.28, we obtain ρ3 < 0.5532 ·0.902 < 0.499.

Case 2.2.1.3: x ≥ 45/128.
In this case we use Γlin(x) ≥ x ≥ 45/128 and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p1Γlin(x))

< (1− x) · (1
2

+ x+ δ2) · (1− p1
45
128

)

The latter expression decreases in the interval [45
128 ,

1
2] and is hence maximized at

x = 45/128. Thus we obtain the same expression as in Case 2.2.1.2, and the bound
on ρ3 follows identically.

We conclude that in Case (2.2.1) we have

ρ3 < max
[

1
2
− p3

20
+ δ2 , (0.55218507 + δ2) · (1− p1

45
128

)
]

and under the hypothesis regarding p1, p3 and δ2, we always have ρ3 < 0.5.
Case 2.2.2: Else, we have x = Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 and Dist(A1, Ea1) <

1/2 − δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy the properties required in
conditions (2.1) and (2.2) of Definition 3.9.

Let ρ def= max{ρ1, ρ2, ρ3}. We conclude that the only case which allows

ACC [V A,A1
PCPinner(σ, h)] > ρ

is Case (2.2.2) which also satisfies conditions (2.1) and (2.2) of Definition 3.9. Thus,
VPCPinner satisfies condition (2) of Definition 3.9. Clearly, VPCPinner also satisfies
condition (1) of Definition 3.9, and thus the lemma follows.

66 M. BELLARE, O. GOLDREICH, AND M. SUDAN

6.2. The new proof system. Combining the above inner verifier with an ade-
quate outer verifier, we obtain a pcp system for NP with query complexity 11.

Theorem 6.2. NP = PCP1,1/2[coins = log ; query = 11 ; queryav = 10.89 ; free =
7].

Proof. We consider a canonical (l, l1)-inner verifier VPCPinner with parameters
p3 = 0.001, p1 = 2

7 · 0.999 and p2 = 5
7 · 0.999. By Lemma 6.1, VPCPinner is (ρ, δ1, δ2)-

good for δ1 = δ2 = 0.00001 and ρ = 0.49999. We now choose an appropriate outer
verifier. Let ε = 16 · (0.5 − ρ)δ2

1δ
2
2 . Lemma 3.8 provides us with l and l1 such that

an ε-good (l, l1)-canonical outer verifier Vouter with randomness O(log n) exists. Let
V = 〈Vouter, VPCPinner〉 be the composition of Vouter and VPCPinner according to the
definitions in Section 3.4. This verifier has randomness O(log n). Apply Theorem 3.12
to see that V has completeness parameter 1 and soundness parameter ρ+ε/(16δ2

1δ
2
2) =

1/2. The query (and free-bit) complexity of V is the same as that of VPCPinner above
(i.e., 11 and 7, respectively).

To obtain the bound on the average query complexity, we observe that we can af-
ford not to perform the RMB test with some small probability. Specifically, Case (2.1)
in the proof of Lemma 6.1, which is the only case where the RMB test is used, yields
error of 0.48505832 + p3

1−p3 . Thus, if we modify VPCPinner so that, whenever the RMB
test is invoked it is performed only with probability 0.973, we get that Case (2.1) de-
tects violation with probability at least (1−0.48505832−0.0010011) ·0.973 > 0.50006.
Consequently, the modified inner verifier errs with probability bounded away from 1/2
and so does the composed verifier. The modification decreases the average query com-
plexity by (1− 0.973) · (2 + p2 · 3) > 0.027 · 4.12 > 0.11. (The reduction is both from
Step (2) and the second case in Step (3).) The theorem follows.

7. Amortized free-bits and MaxClique hardness.

7.1. The iterated tests. The “iterated tests” will be used in the next section to
derive a proof system for NP having amortized free-bit complexity ≈ 2. Intuitively,
we will be running each of the atomic tests many times, but, to keep the free-bit
count low, these will not be independent repetitions. Rather, following [23], we will
run about 2O(m) copies of each test in a way which is pairwise, or “almost” pairwise
independent, to lower the error probability to O(2−m). This will be done using 2m
free-bits. Specifically, we will select uniformly m functions in Fl (and m functions
in Fl1) and invoke the atomic tests with functions resulting from all possible linear
combinations of the selected functions.

7.1.1. Linearity and randomness. We begin with some observations relating
stochastic and linear independence. Note that Lm is a sub-vector-space of Fm, and
in particular a vector space over Σ in its own right. So we can discuss the linear
independence of functions in Lm. We say that ~L = (L1, . . . , Lk) ∈ Lkm is linearly
independent if L1, . . . , Lk are linearly independent. Furthermore we say that ~L1 =
(L1,1, . . . , L1,k) and ~L2 = (L2,1, . . . , L2,k) are mutually linearly independent if the 2k
functions L1,1, L2,1, . . . , L1,k, L2,k are linearly independent.

Lemma 7.1. For ~L = (L1, . . . , Lk) ∈ Lkm let J~L: Fml → Fkl be defined by J~L(~f) =
(L1◦~f, . . . , Lk◦~f), for ~f = (f1, ..., fm). Fix ~L and consider the probability space defined
by having f1, ..., fm be uniformly and independently distributed over Fl. Regard the
J~L’s as random variables over the above probability space. Then
(1) If ~L is linearly independent then J~L is uniformly distributed in Fkl .

PCP – TOWARDS TIGHT RESULTS 67

(2) If ~L1, ~L2 are mutually linearly independent then J~L1
and J~L2

are independently
distributed.

The proof of this lemma is quite standard and thus omitted: It amounts to saying
that linearly independent combinations of stochastically independent random vari-
ables result in stochastically independent random variables.

The analysis of the Iterated Projection test (see Figure 15) can be done rela-
tively straightforwardly, given the above, because the invoked projection test uses a
single linear combination of each sequence of random functions, rather than several
such combinations (as in the other iterated tests). Thus we begin with the iterated
projection tests. The analysis of the other iterated tests, where the atomic tests are
invoked on two/three linear combinations of the same sequence of random function,
require slightly more care. The corresponding lemmas could have been proven using
the notion of “weak pairwise independence” introduced in [23]. However, we present
here an alternative approach.

7.1.2. Iterated projection test. The iterated projection test described in Fig-
ure 15 takes as input vectors ~f,~g ∈ Fml and also a linear function L ∈ Lm. Note that
f = L ◦ ~f is in Fl, and g = L ◦ ~g is in Fl1 . The test is just the atomic projection test
on f and g. The following lemma says that if the passing probability ProjPassmA (),
representing 2m invocations of the atomic projection test, is even slightly significant
and if A is close to Ea, then A1 is close to the encoding of the projection of a.

Lemma 7.2. There is a constant c3 such that the following is true. Let σ: Σl →
Σl1 be a function. Let a ∈ Σl be such that Dist(Ea, A) ≤ 1/4, and let a1 = σ(a) ∈ Σl1 .
If ProjPassmσ (A,A1) ≥ c3 · 2−m then Dist(Ea1 , A1) ≤ 0.1.

Proof. The proof is similar to that of [23, Lemma 3.5]. Let ε1 = Dist(A1, Ea1) and
assume it is at least 0.1. We show that there is a constant c3 such that ProjPassmh (A) <
c3 · 2−m.

Let N = |L∗m| = 2m − 1. For L ∈ L∗m let XL: Fml ×Fml1 → Σ be defined by

XL(~f,~g) def= ProjTestmσ (A,A1; ~f,~g, L) = ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g) .

Regard it as a random variable over the uniform distribution on Fml × Fml1 . Let
X =

∑
L∈L∗m

XL. It suffices to show that Pr [X = 0] ≤ O(1/N).
Lemma 7.1 implies that {XL}L∈L∗m are pairwise independent, identically dis-

tributed random variables. Let L ∈ L∗m and let p = E[XL]. Again using Lemma 7.1
we have

p = Pr
~f
R←Fm

l
; ~g

R←Fm
l1

[
ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g) = 1

]
= Pr

f
R←Fl ; g

R←Fl1
[ProjTestσ(A,A1; f, g) = 1] .

But by Lemma 3.21, p is at least ε1(1− 2ε) ≥ 0.05, since ε def= Dist(Ea, A) ≤ 1/4. We
can conclude by applying Chebyshev’s inequality. Namely,

Pr [X = 0] ≤ Pr [|X −Np| ≥ Np] ≤ Np

(Np)2
≤ 20

N

as desired.

7.1.3. Technical claim. For analyzing the other two tests we will use the fol-
lowing simple claim.

68 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The Iterated Tests. Here A: Fl → Σ and A1: Fl1 → Σ are the objects
being tested. The tests also take additional inputs or parameters: below
~f ∈ Fml ; ~g ∈ Fml1 ; L,L1, L2, L3 ∈ Lm; and σ: Σl → Σl1 . The tests are
specified in terms of the atomic tests of Figure 8.

LinTestm(A; ~f, L1, L2) = LinTest(A;L1 ◦ ~f, L2 ◦ ~f).

MBTestm(A; ~f, L1, L2, L3) = MBTest(A;L1 ◦ ~f, L2 ◦ ~f, L3 ◦ ~f).

ProjTestmσ (A,A1; ~f,~g, L) = ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g).

The Passing Probabilities. These are the probabilities we are interested
in:

LinPassm(A)

= Pr
~f
R←Fm

l

[
∀ L1, L2 ∈ Lm : LinTestm(A; ~f, L1, L2) = 0

]
MBPassm(A)

= Pr
~f
R←Fm

l

[
∀ L1, L2, L3 ∈ Lm : MBTestm(A; ~f, L1, L2, L3) = 0

]
ProjPassmσ (A,A1)

= Pr
~f
R←Fm

l
; ~g

R←Fm
l1

[
∀ L ∈ Lm : ProjTestmσ (A,A1; ~f,~g, L) = 0

]

Fig. 15. The iterated tests and their passing probabilities.

Claim 7.3. Let k ≥ 1 and N = 2m. Then Lkm contains a subset S of cardinality
N

22k such that every ~L1 6= ~L2 ∈ S are mutually linearly independent.

Proof. Let ~L ∈ Lkm be linearly independent. Then, the probability that L chosen
uniformly in Lm is linearly independent of ~L is 1− 2k

N . Thus, the probability that a
uniformly chosen ~L′ ∈ Lkm is mutually linearly independent of ~L is greater than 1 −∑k
i=1

2k+i−1

N > 1− 22k

N . Now, consider a graph with vertex set Lkm and edges connecting
pairs of mutually linearly independent sequences (i.e., ~L1 and ~L2 are connected if and
only they are mutually linearly independent). This graph has Nk vertices and every
vertex which is linearly independent has degree greater than (1− 22k

N)·Nk. Clearly this
graph has a clique of size N

22k (e.g., consider a greedy algorithm which picks a vertex
of maximal degree among all vertices connected to the previously selected vertices).
Noting that a clique corresponds to a set of mutually linear independent sequences,
we are done.

7.1.4. Iterated linearity test. The iterated linearity test described in Figure 15
takes as input a vector ~f ∈ Fml and also linear functions L1, L2 ∈ Lm. Note that
f1 = L1 ◦ ~f and f2 = L2 ◦ ~f are in Fl. The test is just the atomic linearity test on
these inputs. The following lemma says that if the passing probability is even slightly
significant, then A is almost linear.

Lemma 7.4. There is a constant c1 such that if LinPassm(A) ≥ c1 · 2−m then
Dist(A,Lin) ≤ 0.1.

PCP – TOWARDS TIGHT RESULTS 69

Proof. Assume that ε def= Dist(A,Lin) ≥ 0.1. We show that there is a constant
c1 such that LinPassm(A) < c1 · 2−m. For ~L = (L1, L2) ∈ L2

m let X~L: Fml → Σ be
defined by

X~L(~f) def= LinTestm(A; ~f, L1, L2) = LinTest(A;L1 ◦ ~f, L2 ◦ ~f) .

Regard it as a random variable over the uniform distribution on Fml . Let S ⊂ L2
m

be a set as guaranteed by Claim 7.3 and X =
∑

~L∈S X~L. It suffices to show that
Pr [X = 0] ≤ O(2−m). (Thus our analysis of LinPassm(A) is based only on a small
fraction of all possible invocations of the iterated linear test; yet, this small fraction
corresponds to a sufficiently large number of invocations.)

Using Lemma 7.1, it follows that the random variables {X~L}~L∈S are pairwise
independent and that for every ~L ∈ S

p
def= Pr

~f
R←Fm

l

[
X~L(~f) = 1

]
= Pr

f1,f2
R←Fl

[LinTest(A; f1, f2) = 1] .

By Lemma 3.15, p ≥ Γlin(ε) and so p ≥ 3ε− 6ε2 if ε ≤ 1/4 and p ≥ 45/128 otherwise.
In either case, for ε ≥ 0.1, we get p > 0.2. Now by Chebyshev’s inequality we have

Pr [X = 0] ≤ Pr [|X −N ′p| ≥ N ′p] ≤ 1
N ′p

<
5
N ′

where N ′ def= |S| = 2m/22·2 = 2m/16. The lemma follows.

7.1.5. Iterated RMB test. The iterated respect of monomial basis test in
Figure 15 takes an input ~f and also three linear functions L1, L2, L3 ∈ Lm. For sim-
plicity of exposition, we assume that A is folded over (1̄, 1). (This assumption is justi-
fied by our usage of the test – see next subsection.) If the probability MBPassm(A) is
significant, we can conclude that the linear function close to A respects the monomial
basis.

Lemma 7.5. There is a constant c2 such that the following is true. Let A: Fl → Σ
so that A(f + 1̄) = A(f) + 1, for every f ∈ Fl. Let ε ≤ 0.1 so that A is ε-close to
a linear function Ã and suppose that MBPassm(A) ≥ c2 · 2−m. Then Ã respects the
monomial basis.

Proof. Assume that Ã is linear but does not respect the monomial basis. We will
show that there is a constant c2 such that MBPassm(A) < c2 · 2−m.

For ~L = (L1, L2, L3) ∈ L3
m let X~L: Fml → Σ be defined by

X~L(~f) def= MBTestm(A; ~f, L1, L2, L3) = MBTest(A;L1 ◦ ~f, L2 ◦ ~f, L3 ◦ ~f) .

Regard it as a random variable over the uniform distribution on Fml . Again, let
S ⊂ L3

m be a set as guaranteed by Claim 7.3 (in this case |S| = 2m/22·3), and
X =

∑
~L∈S X~L. It suffices to show that Pr [X = 0] ≤ O(2−m).

Using Lemma 7.1, it follows that the random variables {X~L}~L∈S are pairwise
independent and that for every ~L ∈ S

p
def= Pr

~f
R←Fm

l

[
X~L(~f) = 1

]
= Pr

f1,f2,f3
R←Fl

[MBTest(A; f1, f2, f3) = 1] .

By Lemma 3.19, p ≥ 3/8− 7ε/4 + 5ε2/2− ε3. Using ε ≤ 0.1, it follows that p > 0.2.
Using Chebyshev’s inequality, as in the previous proof, we are done.

Remark 7.6. For general A’s (which are not folded over (1̄, 1)), a similar result
can be proven by augmenting the iterated RMB test so that on input A, ~f and
~L = (L1, L2, L3) it also checks if A((L1 ◦ ~f) + 1̄) = A(L1 ◦ ~f) + 1.

70 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The free inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 , the
verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. It also takes
an integer parameter m.

Random choices: ~f
R← Fml ; ~g R← Fml1

∀ L1, L2 ∈ Lm : LinTestm(A(h,0),(1̄,1); ~f, L1, L2)
∀ L1, L2, L3 ∈ Lm : MBTestm(A(h,0),(1̄,1); ~f, L1, L2, L3)
∀L ∈ Lm : ProjTestmσ (A(h,0),(1̄,1), A1; ~f,~g, L)
∀ L1, L2 ∈ Lm : LinTestm(A1;~g, L1, L2)

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄) or A(f + h+ 1̄).

Fig. 16. The free inner verifier Vfree-in

7.1.6. Putting some things together. The last two lemmas above allow us to
conclude that if A(h,0),(1̄,1) passes the first two tests with any significant probability
then A(h,0),(1̄,1) is close to some evaluation operator Ea so that h(a) = 0. Thus, again,
there is no need for a “circuit test”.

Corollary 7.7. There is a constant c such that the following is true. Let
A: Fl → Σ, and suppose LinPassm(A(h,0),(1̄,1)) ≥ c·2−m and MBPassm(A(h,0),(1̄,1)) ≥
c · 2−m. Then there is a string a ∈ Σl such that Dist(Ea, A(h,0),(1̄,1)) ≤ 0.1 and
h(a) = 0.

Proof. Let c be the larger of the constants from Lemmas 7.4 and 7.5. By the first
lemma there is a linear Ã such that Dist(A(h,0),(1̄,1), Ã) < 0.1. Now the second lemma
implies that Ã respects the monomial basis (using the fact that A(h,0),(1̄,1)(f + 1̄) =
A(h,0),(1̄,1)(f)+1 for all f ’s). So Proposition 3.2 says that Ã is an evaluation function.
Finally, by Proposition 3.6, we have h(a) = 0.

7.2. NP in amortized free-bit complexity 2. Sources of our improve-
ments We adopt the basic framework of the construction of proof systems with low
free-bit complexity as presented in [23]. Our improvement comes from the use of
the new long code instead of the Hadamard code as a basis for the construction of
inner verifiers. This allows us to save one bit in the amortized free-bit complexity.
The reason being that the long code contains explicitly all functions of the encoded
string whereas the Hadamard code contains only linear combinations of the bits of
the string. Typically, we need to check that the verifier accepts a string and this
condition is unlikely to be expressed by a linear combination of the bits of the string.
Thus, one needs to keep also the linear combinations of all two-bit products and us-
ing these extra combinations (via self-correcting) increases the amortized free-bit by
one. Instead, as seen above, the long code allows us to directly handle any function.
The fact that we take linear combinations of these functions should not confuse the
reader; these are linear combinations of random functions rather than being linear
combinations of random linear functions (as in [23]).

Our construction of a proof systems with amortized free-bit complexity of two

PCP – TOWARDS TIGHT RESULTS 71

bits is obtained by composing the (l, l1)-canonical outer verifier of Lemma 3.8 with
a (l, l1)-canonical inner verifier, denoted Vfree-in, which is depicted in Figure 16. The
inner verifier Vfree-in consists of invoking the three iterated tests of Figure 15. In
addition, Vfree-in also applies the linearity test to the oracle A1. This is not done
in order to improve the rejection probability of Vfree-in (in case the oracles A and
A1 are far from being fine), but rather in order to decrease the number of accepting
configurations (and consequently the free-bit complexity). We also remark that Vfree-in
invokes the iterated tests while providing them with access to a double folding of A
(i.e., A(h,0),(1̄,1)) rather than to A itself. This eliminates the need for checking that A
encodes a string which evaluates to zero under h and simplifies the iterated RMB test
(see remark at the end of subsection 7.1.5). However, unlike in previous subsections,
these simplifications do not buy us anything significant (here), since the additional
testing could have been done without any additional cost in free-bits.

Lemma 7.8. There exists a constant c such that the following is true. Let
l, l1,m be integers. Then the (l, l1)-canonical inner verifier Vfree-in with parameter
m is (ρ, δ1, δ2)-good, where ρ = c · 2−m and δi = 0.4, for i = 1, 2.

Proof. Here the analysis can be less careful than in analogous statements such as
in Lemmas 4.1 and 5.2. Using Corollary 7.7, with respect to the oracle A(h,0),(1̄,1), we
conclude that if A(h,0),(1̄,1) passed both the iterated Linearity and RMB Tests with
probability at least c · 2−m then there exists a string a ∈ Σl such that

Dist(Ea, A(h,0),(1̄,1)) ≤ 0.1 =
1
2
− δ1 < 1/4

and h(a) = 0. Using Lemma 7.2, we conclude that if (A(h,0),(1̄,1), A1) passed the
iterated Projection Test, with probability at least c3 · 2−m, then

Dist(Eσ(a), A1) < 0.1 =
1
2
− δ2 .

Setting ρ = c′ · 2−m, where c′ = max{c, c3}, we conclude that Vfree-in satisfies condi-
tion (2) of Definition 3.9. Clearly, Vfree-in also satisfies condition (1) and the lemma
follows.

Proposition 7.9. Let l, l1,m be integers. Then the (l, l1)-canonical inner verifier
Vfree-in with parameter m uses 2m free-bits.

Proof. We consider only accepting computations of Vfree-in. We start by observ-
ing that all oracle values obtained from A, during the iterated Linearity Test (on
A(h,0),(1̄,1)), are determined by the values of A in locations f ′1, f

′
2, ..., f

′
m, where each

f ′i is one of the four functions fi, fi+h, fi+1̄ and fi+h+1̄. Likewise, all oracle values
obtained from A, during the iterated RMB Test, are determined by the values of A
in these locations f ′1, f

′
2, ..., f

′
m. Finally, all oracle values obtained from A, during the

iterated Projection Test, are determined by the values of A1 in locations L ◦~g (for all
L’s) and the values of A in the locations f ′1, f

′
2, ..., f

′
m.

Now we use the fact that Vfree-in applies an iterated Linearity Test to the oracle
A1. It follows that all oracle values obtained from A1, in accepting computations of
Vfree-in, are determined by the values of A1 in locations g1, g2, ..., gm.

We conclude that, in accepting computations of Vfree-in, all values obtained from
the oracles are determined by 2m bits (i.e., A(f ′1), ..., A(f ′m) and A1(g1), ..., A1(gm)).

Composing the canonical outer verifier of Lemma 3.8 and the canonical inner
verifier Vfree-in, we get the following

72 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Theorem 7.10. For any ε > 0 it is the case that NP ⊆ FPCP[log, 2 + ε].
Proof. Given an NP language L and an integer m (see below), we use Lemma 3.8

to construct a 2−m-good outer verifier, denoted Vouter, for L. Recall that this outer
verifier uses logarithmic randomness (actually the randomness depends linearity on
m which is a constant). Next, compose Vouter with the (c · 2−m, 0.4, 0.4)-good inner
verifier, Vfree-in, guaranteed by Lemma 7.8, where Vfree-in uses m as its integer pa-
rameter. The composed verifier has free-bit complexity 2m (as inherited from Vfree-in
by Proposition 7.9). By Theorem 3.12 the soundness error of the composed verifier is
at most c ·2−m+2−m. Selecting m to be sufficiently large (i.e., m = 2+ε

ε · log2(c+1)),
the theorem follows.

7.3. Hardness of MaxClique. See Section 2.4 for definitions of the MaxClique
and ChromNum problems and their associated gap problems, and to Section 2.4.3 for
a description of previous work. Using the FGLSS-transformation, we get

Theorem 7.11. For any ε > 0
(1) NP ≤KR Gap-MaxCliquec,s for s(N) = N ε/N and c(N) = N1/3/N .

(2) NP ≤KD Gap-MaxCliquec,s for s(N) = N ε/N and c(N) = N1/4/N .
Proof. For Part (1) we use Corollary 11.3 (below), with r = O(log n) and k =

r
ε . We get that NP is randomly reducible to a pcp system with randomness r +
k + O(1), free-bit complexity (2 + ε)k and error probability 2−k. The FGLSS-graph
corresponding to the resulting pcp system has size N = 2(r+k+O(1))+(2+ε)k and a gap
in clique size of factor 2k, which can be rewritten as N1/(1+2+2ε). The clique size in
case of input not in the language is 2r which can be rewritten as N ε. Substituting ε
for ε/2, the claim of Part (1) follows. For Part (2) we use Corollary 11.5, and get a
pcp system for NP with randomness r+(2+ε)k, free-bit complexity (2+ε)k and error
probability 2−k. Using the FGLSS-construction on this system, the claim of Part (2)
follows.

Combining the above with a recent reduction of Fürer [45], we get

Theorem 7.12. For any ε > 0
(1) NP ≤KR Gap-ChromNumc,s for c(N)/s(N) = N

1
5−ε.

(2) NP ≤KD Gap-ChromNumc,s for c(N)/s(N) = N
1
7−ε.

Part II: Proofs and Approximation: Potential and Limitations

8. The reverse connection and its consequences. Feige et al. [40] describe
a procedure which takes a verifier V , and an input x and constructs a graph, which we
denote GV (x), whose vertices correspond to possible accepting transcripts in V ’s com-
putation and edges corresponding to consistent/non-conflicting computations. They
then show the following connection between the maximum (over all possible oracles)
acceptance probability of the verifier and the clique size in the graph. Recall that
ACC [V (x)] = maxπ PrR [V π(x;R) = 0] is the maximum accepting probability. Also
recall that MaxClique(G) is the maximum clique size.

Theorem 8.1. ([40]) If, on input x, a verifier V tosses r coins then the following
relationship holds:

ACC [V (x)] =
MaxClique(GV (x))

2r
.

PCP – TOWARDS TIGHT RESULTS 73

In this section we essentially show an inverse of their construction.

8.1. The Clique-Gap Verifier. We stress that by the term graph we mean an
undirected simple graph (i.e., no self-loops or parallel edges).

Theorem 8.2. (Clique verifier of ordinary graphs): There exists a verifier, de-
noted W , of logarithmic randomness-complexity, logarithmic query-length and zero
free-bit complexity, that, on input an N -node graph G, satisfies

ACC [W (G)] =
MaxClique(G)

N
.

Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable.
Lastly, given a proof/oracle π we can construct in polynomial-time a clique of size pN
in G, where p is the probability that W accepts G with oracle access to π.

Proof. On input a graph G on N nodes, the verifier W works with proofs of length(
N
2

)
− |E(G)|. The proof π is indexed by the edges in G (i.e., non-edges in G). For

clarity we assume that the binary value π({u, v}) is either u or v. This is merely a
matter of encoding (i.e., consider a 1-1 mapping of the standard set of binary values,
{0, 1}, to the set {u, v}). On input G and access to oracle π, the verifier W acts as
follows:

Picks uniformly a vertex u in the vertex set of G.
For every {u, v} ∈ E(G), the verifier W queries the oracle at {u, v} and rejects
if π({u, v}) 6= u.
If the verifier did not reject by now (i.e., all queries were answered by u), it
accepts.

Properties of W . Clearly, W tosses log2N coins. Also, once W picks a vertex u,
the only pattern it may accepts is (u, u, . . . , u). Thus the free-bit complexity of W is
0. To analyze the probability that W accepts the input G, when given the best oracle
access, we first prove the following:

Claim. The graphs GW (G) and G are isomorphic.
Proof. The proof is straightforward. One needs first to choose an encoding of

accepting transcripts of the computation of W on input G. We choose to use the “full
transcript” in which the random coins as well as the entire sequence of queries and
answers is specified. Thus, a generic accepting transcript has the form

Tu
def= (u, ({u, v1}, u), ..., ({u, vd}, u))

where u is the random vertex selected by the verifier and {v1, ..., vd} the set of non-
neighbors of u. We stress that Tu is the only accepting transcript in which the verifier
has selected the vertex u. Also, for each vertex u, the transcript Tu is accepting.
Thus, we may consider the 1-1 mapping, φ, that maps Tu to u. We claim that φ is
an isomorphism between GW (G) and G.

Suppose that Tu and Tv are adjacent in GW (G). Then, by definition of the
FGLSS graph, these transcripts are consistent. It follows that the same query can not
appear in both (accepting) transcripts (otherwise it would have been given conflicting
answers). By definition of W we conclude that (u, v) is not a non-edge; namely,
(φ(Tu), φ(Tv)) = (u, v) ∈ E(G). Suppose, on the other hand, that (u, v) ∈ E(G). It
follows that the query {u, v} does not appear in either Tu or Tv. Since no other query

74 M. BELLARE, O. GOLDREICH, AND M. SUDAN

may appear in both transcripts, we conclude that the transcripts are consistent and
thus Tu and Tv are adjacent in GG(W). 2

By Theorem 8.1 it now follows that the probability that W accepts on input G,
given the best oracle, is MaxClique(GW (G))/N which by the above equals

MaxClique(G)/N .

Furthermore, given a proof π which makes W accept G with probability p, the accept-
ing random strings of W constitute a clique of size pN in GW (G). These accepting
random strings can be found in polynomial-time and they encode vertices of G (which
form a clique in G).

We now generalize the above construction to get verifiers which indicate the existence
of large cliques in layered graphs. An (L,M,N)-layered graph is an N -vertex graph in
which the vertices are arranged in L layers so that there are no edges between vertices
in the same layer and there are at most M vertices in each layer. We use a convention
by which, whenever a layered graph is given to some algorithm, a partition into layers
is given along with it (i.e., is implicit in the encoding of the graph).

Theorem 8.3. (Clique verifier for layered graphs): There exists a verifier, de-
noted W , of logarithmic randomness-complexity and logarithmic query-length that, on
input an (L,M,N)-layered graph G has free-bit complexity log2M , average free-bit
complexity log2(N/L) and satisfies

ACC [W (G)] = MaxClique(G)/L .

Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable.
Lastly, given a proof/oracle π we can construct in polynomial-time a clique of size pL
in G, where p is the probability that W accepts G with oracle access to π.

Proof. On input a (L,M,N)-layered graph G, the verifier W works with proofs
consisting of two parts. The first part assigns every layer (i.e., every integer i ∈ [L])
a vertex in the layer (i.e., again we use a redundant encoding by which the answers
are vertex names rather then an index between 1 and the number of vertices in the
layer). The second part assigns pairs of non-adjacent (in G) vertices, a binary value,
which again is represented as one of the two vertices. On input G and access to oracle
π, the verifier W acts as follows:

Picks uniformly a layer i in {1, ..., L}.
Queries π at i and obtains as answer a vertex u. If u is not in the ith layer of G
then the verifier rejects. (Otherwise, it continues as follows.)
For every {u, v} ∈ E(G), the verifier W queries the oracle at {u, v} and rejects
if π({u, v}) 6= u.
(Actually, it is not needed to query the oracle on pairs of vertices belonging to
the same layer.)
If the verifier did not reject by now (i.e., all queries were answered by u), it
accepts.

Properties of W . Here W tosses log2 L coins. Once the first query of W is
answered, specifying a vertex u, the only pattern it may accept in the remaining
queries is (u, u, . . . , u). Thus, the free-bit complexity of W is log2M , accounting for
the first query which may be answered arbitrarily in {1, ...,m}, where m ≤ M is the
number of vertices in the chosen layer. The average free-bit complexity is log2(N/L)

PCP – TOWARDS TIGHT RESULTS 75

(as N/L is the average number of vertices in a layer of the graph G). Again, we can
prove that GW (G) = G and the theorem follows.

Proof. Here, the accepting transcripts of W , on input G, correspond to a choice
of a layer, i, and a vertex in the ith layer (since once a vertex is specified by the first
answer there is only one accepting way to answer the other queries). Thus, a generic
accepting transcript has the form

Tu
def= (i, (i, u), ({u, v1}, u), ..., ({u, vd}, u))

where i is the layer selected by the verifier, u is a vertex in the ith layer of G and
{v1, ..., vd} the set of non-neighbors of u. Again, Tu is the only accepting transcript
in which the verifier has selected the vertex u, and for each vertex u, the transcript
Tu is accepting. Again, we consider the 1-1 mapping, φ, that maps Tu to u, and show
that it is an isomorphism between GW (G) and G.

Suppose that Tu and Tv are adjacent in GG(W). Then, by definition of the FGLSS
graph, these transcripts are consistent. We first note that u and v cannot appear in
the same layer of G (otherwise the first query in the transcript would yield conflicting
answers). Again, the same two-vertex query can not appear in both (accepting)
transcripts, and we conclude that (φ(Tu), φ(Tv)) = (u, v) ∈ E(G). Suppose, on the
other hand, that (u, v) ∈ E(G). Clearly, u and v belong to different layers and as
before the query (u, v) does not appear in either Tu or Tv. Since no other two-vertex
query may appear in both transcripts, we conclude that the transcripts are consistent
and thus Tu and Tv are adjacent in GG(W). 2

The theorem follows as before.

Remark 8.4. The clique verifier W is adaptive: the answer to its first query
determines (all) the other queries. We wonder if it is possible to construct a non-
adaptive clique verifier with properties as claimed in Theorem 8.3.

8.2. Reversing the FGLSS reduction. We are interested in problems ex-
hibiting a gap in Max-Clique size between positive and negative instances. Recall
that MaxClique(G) = MaxClique(G)/N is the fraction of nodes in a maximum clique
of N -node graph G. Also recall from Section 2.4 that the Gap-MaxCliquec,s promise
problem is (A,B) where A is the set of all graphs G with MaxClique(G) ≥ c(N), and
B is the set of all graphs G with MaxClique(G) < s(N). The gap of this problem is
defined to be c/s. As a direct consequence of Theorem 8.2, we get

Corollary 8.5. For all functions c, s: Z+ → [0, 1] we have Gap-MaxCliquec,s ∈
FPCPc,s[log, 0,poly]. The above corollary transforms the gap in the promise problem
into a gap in a pcp system. However, the accepting probabilities in this pcp system
are very low (also on yes-instances). Below, we use Theorem 8.3 to obtain pcp systems
with perfect (resp., almost-perfect) completeness for this promise problem. We start
by presenting two randomized reductions of the promise problem to a layer version.
Alternative methods are presented in Section 11 (cf., Theorem 11.6).

Proposition 8.6. (Layering the clique promise problem):
(1) (Obtaining a perfect layering): There exists a polynomial-time randomized trans-

formation, T , of graphs into layered graphs so that, on input a graph G, integers
C and L, the transformation outputs a subgraph H = T (G,C,L) of G in L layers
such that if MaxClique(G) ≥ C then

Pr [MaxClique(H) < L] < L · 2− C
2L

76 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Furthermore, with probability 1 − L · 2−N/3L, no layer of H contains more than
2 · NL nodes.

(2) (Using logarithmic randomness): There exists a polynomial-time randomized trans-
formation, T , of graphs into layered graphs so that, on input a graph G, integers
C and L, the transformation outputs a subgraph H = T (G,C,L) of G in L layers
such that if MaxClique(G) ≥ C then

Pr [MaxClique(H) ≤ (1− ε) · L] <
L

εC

for every ε ∈ [0, 1]. Furthermore, the transformation uses logarithmically many
coins. Also, with probability 1− L

εN , at most εL layers of H contains more than
2 · NL nodes.

Proof. The first transformation consists of assigning to each vertex of G a ran-
domly chosen layer of H. Namely, we construct the graph H which is a subgraph of
G by uniformly selecting for each vertex v a layer l(v) ∈ [L] and copying only the
edges of G which connect vertices placed in different layers (of H). The construction
can be carried out in random polynomial-time and we show that if the original graph
has a clique of size C then with high probability the resulting graph has a clique of
size L, provided L� C

2 log2 L.
Claim 1. Suppose that G has a clique of size C, denoted S. Then, the probability

that all vertices in S were placed in less than L layers is at most L · 2− C
2L .

Proof. We start by bounding, for each i, the probability that no vertex of S is
placed in the ith layer. For each v ∈ S, we introduce the 0-1 random variable ζv so
that ζv = 1 if v is placed in the ith layer (i.e., l(v) = i) and ζv = 0 otherwise. Let
t

def= C/L. Then, E[
∑
v∈S ζv] = t. Using a multiplicative Chernoff bound [75], we get

Pr [∀v ∈ S : l(v) 6= i] = Pr

[∑
v∈S

ζv = 0

]
< 2−

t
2

Call the ith layer bad if no vertex of S is placed in it. By the above, the probability
that there exists a bad layer is smaller than L · 2−t/2, and the claim follows. 2

It is left to bound the probability that a particular layer contains more than twice
the expected number of vertices. Using again a multiplicative Chernoff bound, this
probability is at most 2−N/3L and the first part of the proposition follows.

The second transformation consists of selecting randomly a Universal2 Hashing
function (a.k.a., pairwise independent hash function) mapping the vertices of the
graph G into the layer-set [L]. Namely, suppose that the function h was chosen, then
we construct the graph H which is a subgraph of G by placing a vertex v (of G) in
layer h(v) of H, and copying only the edges of G which connect vertices placed in
different layers (of H). The construction can be carried out in polynomial-time using
only logarithmic randomness (for the selection of the hashing function). We show that
if the original graph has a clique of size C then with high probability the resulting
graph has a clique of size almost L, provided L� C.

Claim 2. Suppose that G has a clique of size C, denoted S. Then, the probability
that all vertices in S were placed in less than (1− ε) · L layers is at most L

εC .
Proof. Again, we bound, for each i, the probability that no vertex of S is placed

in the ith layer. For each v ∈ S, we introduce the 0-1 random variable ζv so that
ζv = 1 if h(v) = i and ζv = 0 otherwise. Let t def= C/L and ζ

def=
∑
v∈S ζv. Then,

PCP – TOWARDS TIGHT RESULTS 77

E[ζ] = t (which is greater than 1, otherwise the claim holds vacuously). Using the
pairwise independence of h and Chebyshev’s inequality, we get

Pr [∀v ∈ S : h(v) 6= i] = Pr [ζ = 0]

≤
Var[

∑
v∈S ζv]
t2

<
C/L

t2
=

1
t

Call the ith layer bad if no vertex of S is placed in it. By the above, the expected
number of bad layers is smaller than L · 1

t , so by Markov inequality the probability
that more than εL layers are bad is at most 1/εt. The claim follows. 2

Again, it is left to bound the probability that a particular layer contains more
than M

def= 2N/L. Using Chebyshev’s inequality again, this probability is at most
L/N . Thus, the expected number of layers having more than M vertices is at most
L2/N and it follows that the probability that εL layers contain more than M vertices
each is at most L2/N

εL = L
εN . The second part of the proposition follows.

Combining Theorem 8.3 and Proposition 8.6, we obtain the following. (Refer to
Section 2.3 for what it means for a promise problem to reduce to a complexity class.)

Proposition 8.7. (Reversing the FGLSS-reduction, general form:) For any
polynomial-time computable, positive functions c, s, ε: Z+ → [0, 1] we have
(1) (Randomized reduction to a pcp with perfect completeness):

Gap-MaxCliquec,s ≤KR FPCP1,s′ [log, f ′]

where f ′(N) def= log2(1/c(N)) + log2 log2N + 2 and s′(N) def= 2 log2N ·
s(N)
c(N) .

(2) (A pcp with almost-perfect completeness):

Gap-MaxCliquec,s ∈ FPCP1−4ε,s′ [log, f ′]

where f ′(N) def= 1 + log2(1/c(N)) + 2 log2(1/ε(N)) and s′(N) def= 1
ε(N)2 ·

s(N)
c(N) .

Proof. For the second part, we construct a verifier for the promise problem as
follows. On input an N -vertex graph G, the verifier computes C def= N ·c(N), ε def= ε(N)
and L

def= ε2C. It invokes the second transformation of Proposition 8.6, obtaining a
(L,N,N)-layered graph H = T (G,C,L). (We stress that this transformation requires
only logarithmically many coin tosses.) Next, the verifier modifies H into H ′ by
omitting (the minimum number of) vertices so that no layer of H ′ has more than
2N/L vertices. Finally, the verifier invokes the clique-verifier W of Theorem 8.3 on
input H ′.

The free-bit complexity of the verifier constructed above is log2(2N/L) = 1 +
log2(1/c(N)) + 2 log2(1/ε(N)). Suppose that G is a no-instance of the promise prob-
lem. Using MaxClique(H ′) ≤ MaxClique(G) and Theorem 8.3, it follows that the

constructed verifier accepts G with probability at most MaxClique(H′)
L ≤ s(N)

ε2(N)·c(N) .
Suppose, on the other hand, that G is a yes-instance of the promise problem. Then,
with probability at least 1− L

εC = 1− ε we have MaxClique(H) ≥ (1− ε) ·L, and with
probability at least 1 − L

εN > 1 − ε we have MaxClique(H ′) ≥ MaxClique(H) − εL.
Thus, with probability at least 1− 2ε, we have MaxClique(H ′) ≥ (1− 2ε) · L. It fol-
lows that the constructed verifier, when given oracle access to an appropriate proof,
accepts G with probability at least 1− 4ε.

78 M. BELLARE, O. GOLDREICH, AND M. SUDAN

For the first part, we define a promise problem which refers to gaps in cliques of
layered graphs. Specifically,

Definition. For any function ` : Z+ → Z+ and s : Z+ → [0, 1], we define the
promise problem Gap−LG`,s be the pair (A,B), where–
(1) A is the set of all (`(N), 2N

`(N) , N)-layered graphs G with MaxClique(G) = `(N),
and

(2) B is the set of all (`(N), 2N
`(N) , N)-layered graphs G with MaxClique(G) < s(N) ·

`(N).
The gap of this problem is defined to be 1/s.

Using the first transformation of Proposition 8.6, we obtain Gap-MaxCliquec,s ≤KR
Gap−LG`,s′ , where `(N) = c(N)·N

2 log2N
and s′(N) = s(N)·N

`(N) = 2 log2N ·
s(N)
c(n) . On the

other hand, Theorem 8.3 asserts that Gap−LG`,s′ ∈ FPCP1,s′ [log, f ′], where f ′(N) def=
log2(2N/`(N)). Observing that f ′(N) = 1+log2

2 log2N
c(N) (which equals log2(1/c(N))+

log2 log2N + 2), the proposition follows.

Each of the two parts of Proposition 8.7 shows that the well-known method of obtain-
ing clique-approximation results from efficient pcp systems (cf., [40, 25, 86, 41, 23])
is “complete” in the sense that if clique-approximation can be shown NP-hard then
this can be done via this method. The precise statement is given in Theorems 8.10
and 8.11 (below). As a preparatory step, we first provide an easier-to-use form of
the above proposition. The restriction that f be a constant is only for notational
simplicity (as otherwise, given f as a function of N = ‖G‖, one needs to repharse it
as a function of n = |x|).

Proposition 8.8. (Reversing the FGLSS-reduction, easy to use form:) Let f > 0
be a constant and c, s: Z+ → [0, 1] be polynomial-time computable so that

c(N)
s(N)

≥ N
1

1+f

Then, for every ε > 0,
(1) (Randomized reduction to a pcp with perfect completeness):

Gap-MaxCliquec,s ≤KR FPCP[log, f + ε]

(2) (A pcp with almost-perfect completeness):

Gap-MaxCliquec,s ∈ FPCP1−o(1)[log, f + ε]

Proof. We merely invoke Proposition 8.7, and calculate the amortized free-bit
complexity of the resulting verifier. We may assume that s(N) ≥ 1/N . Thus (using
c(N)/s(N) ≥ N

1
1+f), we have c(N) ≥ N

1
1+f /N = N

−f
1+f and 1/c(N) ≤ N

f
1+f .

For Part 1, we let α(N) def= 2 log2N , and set f ′(N) def= log2(1/c(N)) + log2 α(N)
and s′(N) def= α(N) · s(N)

c(N) . By invoking Proposition 8.7 (Part 1) we find that

Gap-MaxCliquec,s ≤KR FPCP1,s′ [log, f ′] ,

and
Gap-MaxCliquec,s ≤KR FPCP[log, f ′]

for f ′ = f ′

log(1/s′) , follows. It now remains to argue that for any ε > 0, f ′ ≤ f + ε.

Using the lower bounds on c(N) and c(N)/s(N), we obtain f ′(N) ≤ f
1+f log2N+

log2 α(N) and log(1/s′(N)) ≥ 1
1+f · log2N − log2 α(N). Selecting a sufficiently small

PCP – TOWARDS TIGHT RESULTS 79

δ > 0 and using log2 α(N) < δ · log2N , we get

f ′ ≤
f

1+f log2N + log2 α(N)
1

1+f log2N − log2 α(N)

<

f
1+f + δ

1
1+f − δ

and so Part 1 follows. For Part 2, we let α be a slowly decreasing function s.t. α(N) =
o(1) but log2(1/α(N)) = o(logN). We set f ′(N) def= log2(1/c(N)) + 2 log2(1/α(N))
and s′(N) def= 1

α(N)2 ·
s(N)
c(N) . By invoking Proposition 8.7 (Part 2) we get Gap-MaxCliquec,s ∈

FPCP1−α,s′ [log, f ′]. Since α(N) = o(1), we conclude that

Gap-MaxCliquec,s ∈ FPCP1−o(1)[log, f ′]

for f ′ = f ′

log2(1/s′) . Again, it remains to argue that for any ε > 0, f ′ ≤ f+ε. Using the

lower bound on c(N) and c(N)/s(N), we obtain f ′(N) ≤ f
1+f log2N − 2 log2 α(N)

and log2(1/s′(N)) = 2 log2 α(N) + 1
1+f log2N . Selecting a sufficiently small δ > 0

and using log2(1/α(N)) < δ · log2N , we get

f ′ ≤
f

1+f log2N + 2 log2(1/α(N))
1

1+f log2N − 2 log2(1/α(N))

<

f
1+f + δ

1
1+f − δ

and Part 2 follows.

8.3. Main Consequences. Let us first state the FGLSS-reduction.

Theorem 8.9. (The FGLSS-reduction, revisited:) Let f > 0 be a constant and
c, s: Z+ → [0, 1]. Then, for every ε > 0,

FPCP1−o(1)[log, f] ≤KR Gap-MaxCliquec,s

where c(N)/s(N) ≥ N1/(1+f+ε). Furthermore, in case the proof system is of perfect
completeness, we have c(N) = N−f/(1+f+ε) and s(N) = N−(1+f)/(1+f+ε).

Proof. We first amplify the gap of the pcp-verifier (cf., Corollary 11.3) and then by
apply the bare FGLSS-reduction (see Theorem 8.1 and [40]) to the amplified verifier.
Specifically, for any problem Π in FPCP[log, f], we first obtain Π ≤KR FPCP1,2−t [(1+
ε) · t, f · t], where t(n) = γ log2 n (with the constant γ determined by the constant
ε > 0). The FGLSS-reduction now yields a graph of size N def= 2(1+ε+f)·t(n) with gap
2t(n) (which can be written as N

1
1+ε+f). Specifically, the clique size for a yes-instance

(resp., no-instance) is at least 2(1+ε)·t(n) = N
1+ε

1+ε+f (resp., at most 2ε·t(n) = N
ε

1+ε+f).
A similar procedure may be applied for any Π in FPCP1−o(1)[log, f]. Specifically,

by definition, for some function m, Π ∈ FPCPc,2−m·c[log,m · f], for c(n) = 1 −
o(1) (but we are not going to use the bound on c). Using Proposition 11.1 and
Proposition 11.2 (Part 2), we first obtain Π ≤KR FPCPc′,2−t·c′ [(1 + ε) · t, f · t], where
c′(n) = c(n)t(n)/m(n) and t(n) = γ log2 n (with the constant γ determined by the
constant ε > 0). The FGLSS-reduction now yields a graph of size N def= 2(1+ε+f)·t(n)

with gap 2t(n) as above.

80 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Interestingly, the gap (for MaxClique) created by FGLSS-reduction is independent of
the location of the gap in the pcp system. The main result of this section is –

Theorem 8.10. Let f be a constant. Then the following statements are equiva-
lent:
(1) For all ε > 0 it is the case that NP reduces to Gap-MaxCliquec,s with gap

c(N)/s(N) = N1/(1+f+ε).
(2) For all ε > 0 it is the case that NP reduces to FPCP[log, f + ε].
In both items the reduction is randomized. Furthermore the equivalence holds both for
Karp and for Cook reductions.

Proof. The direction (2) ⇒ (1) follows again by Theorem 8.9. The reverse direc-
tion follows by Part 1 of Proposition 8.8.

An alternative statement is provided by the following theorem. Here the second
item (existence of pcp systems with certain parameters) is weaker than in the previous
theorem, but this allows the (1) ⇒ (2) direction to be proven via a deterministic
reduction (instead of the randomized reduction used in the analogous proof above).
Recall that FPCP1−o(1)[·, f] is the class of problems having a proof system with
almost-perfect completeness (i.e., c = 1− o(1)) and amortized free-bit complexity f .

Theorem 8.11. Let f be a constant. Then the following statements are equiva-
lent:
(1) For all ε > 0 it is the case that NP reduces to Gap-MaxCliquec,s with gap

c(N)/s(N) = N1/(1+f+ε).
(2) For all ε > 0 it is the case that NP reduces to FPCP1−o(1)[log, f + ε].
In both items the reduction is randomized and the equivalence holds both for Karp
and for Cook reductions. Furthermore, if Item (1) holds with respect to determinis-
tic reductions so does Item (2). Thus, if Item (1) holds with a deterministic Karp
reduction then NP ⊆ FPCP1−o(1)[log, f + ε].

Proof. The direction (2) ⇒ (1) follows by applying Theorem 8.9. The reverse
direction follows by Part 2 of Proposition 8.8.

8.4. More Consequences. The equivalence between clique and FPCP described
above turns out be a useful tool in the study of the hardness of the clique and chro-
matic number problems. Here we describe some applications. The first application
is merely a rephrasing of the known reductions from the Max Clique problem to the
Chromatic number problem in a simpler and more convenient way. The remaining
applications use the fact that the equivalence between FPCP and Max Clique allows
us to easily shift gaps, in the Max Clique problem, from one place to another. Loosely
speaking, these applications use the fact that the complexity of the promise problem
Gap-MaxCliquec,s remains unchanged when changing the parameters c and s so the
log2 c(N)
log2 s(N) remains invariant. We stress that the ratio c(N)

s(N) does not remain invariant.

Rephrasing reductions from Max Clique to Chromatic Number. Starting
with the work of Lund and Yannakakis [71], there have been several works on showing
the hardness of approximating the Chromatic number, which reduce the Max Clique
problem to the Chromatic number problem: see Section 2.4.3 for a description. Yet
none of these results could be stated cleanly in terms of a reduction from Max Clique
to Chromatic Number without loss of efficiency - i.e., the theorems could not be
stated as saying “If approximating Max Clique to within a factor of Nα is NP-hard,

PCP – TOWARDS TIGHT RESULTS 81

then approximating Chromatic Number to within a factor of Nh(α) is NP-hard.” The
reason for the lack of such a statement is that these reductions use the structure of the
graph produced by applying an FGLSS-reduction to a FPCP result, and are hence
really reductions from FPCP to Chromatic Number rather than reductions from Max
Clique to Chromatic Number. However now we know that FPCP and Max Clique
are equivalent, so we can go back and rephrase the old statements. Thus results of
[71, 66, 23, 45] can be summarized as:

For every α, ε, γ > 0,

Gap-MaxCliqueNα−1,Nε−1 ≤KR Gap-ChromNumN−(ε+γ),N−h(α) ,

where
(1) h(α) = min{ 1

6 ,
α

5−4α} [71].

(2) h(α) = min{ 1
11 ,

α
5+α} [66].

(3) h(α) = min{ 1
4 ,

α
3−2α} [23].

(4) h(α) = min{ 1
3 ,

α
2−α} [45].

We note that it is an open problem whether one can get a reduction in which h(α)→ 1
as α → 1. We also note that Fürer’s reduction is randomized while the rest are
deterministic.

Reductions among Max Clique Problems. Next we present an invariance of the
Gap Clique problem with respect to shifting of the gaps. The following result has also
been independently observed by Feige [37], where he uses a randomized graph product
to show the result. Our description uses the properties of fpcp and its equivalence to
clique approximation.

Theorem 8.12. Let k, ε1, ε2 be real numbers such that k ≥ 1 and 0 ≤ ε1 < ε2 ≤ 1.
Then the following hold:
(1) Gap-MaxCliqueN−ε2 ,N−kε2 ≤KD Gap-MaxCliqueN−ε1 ,N−kε1 . (Deterministic red-

uction.)
(2) Gap-MaxCliqueN−ε1 ,N−kε1 ≤KR Gap-MaxClique 1

2 ·N−ε2 ,2·N−kε2
.

Proof. Part (1) is proved via a well-known graph theoretic trick. Let G be an
instance of Gap-MaxCliqueN−ε2 ,N−kε2 with N nodes. We take the graph-product of
G with a complete graph on m nodes, to get a graph H on M = mN nodes. (By a
graph-product of two graphs G1(V1, E1) and G2(V2, E2) we mean a graph with vertex
set V1 × V2 where vertices (u1, u2) and (v1, v2) are connected iff (ui, vi) ∈ Ei for both
i = 1, 2.) We choose m so that if G has a clique of size N1−ε2 , then H has a clique of

size M1−ε1 . Specifically, setting m = N
ε2−ε1
ε1 , the requirement is satisfied (as a clique

of size N1−ε2 in G yields a clique of size m ·N1−ε2 = N
ε2−ε1
ε1

+1−ε2 = M
ε1
ε2
· ε2(1−ε1)

ε1 in
H.) Under this choice of m we will show that if G has no cliques of size N1−kε2 then
H has no cliques of size M1−kε1 . This will complete the proof of part (1).

Suppose H has a clique of size M1−ε1 . Then, by construction, G must have a
clique of size

M1−ε1

m
=

N1−ε1

mε1
= N1−ε1−

ε2−ε1
ε1
·ε1

and the claim follows.

For part (2) we use the equivalence between FPCP and gaps in MaxClique and
apply amplification properties of FPCP. Let c(N) = N−ε1 and s(N) = N−kε1 . Then,

82 M. BELLARE, O. GOLDREICH, AND M. SUDAN

using Corollary 8.5 (for line 1 below), Proposition 11.1 (for line 2) and Part (2) of
Proposition 11.2 (for line 3), we get

Gap-MaxCliqueN−ε1 ,N−kε1

∈ FPCPc,s[log2N, 0, N
2]

⊆ FPCPct,st [t · log2N, 0, N
2] (for any integer constant t ≥ 1.)

≤KR FPCP 1
2 ·ct,2·st

[log2(N2/st), 0, N2]

The choice of the integer t will be determined later.
Now, we go back to the clique-gap promised problem. Applying the FGLSS-

reduction to the pcp class FPCP 1
2 ·ct,2·st

[log2(N2/st), 0, N2] we obtain an instance

of Gap-MaxClique 1
2N
−ε1t,2N−kε1t on an M -vertex graph, where M = N2

st = N2+kε1t.
To clarify the last assertion and the rest of the proof, we introduce the notation
Gap-MaxCliqueα(N),β(N)(N) which makes explicit the size parameter to which the

promise problem refers. Thus, letting γ def= t
2+tkε1

, we have obtained

Gap-MaxCliqueN−ε1 ,N−kε1 (N) ≤KR Gap-MaxClique 1
2M
−γε1 ,2M−k·γε1 (M)

(with M polynomial in N). Now, part (2) follows by setting t so that γ = t
2+tkε1

≥ ε2
ε1

and t = d 2ε2
(1−kε2)ε1

e will do. (Actually, we get Gap-MaxCliqueN−ε1 ,N−kε1 (N) ≤KR
Gap-MaxClique 1

2M
−ε′

2 ,2M
−kε′

2
(M), for ε′2 ≥ ε2, but this can be corrected by invoking

item (1).)

The following theorem was first shown by Blum [26], using the technique of random-
ized graph products. It essentially uses the gap-shifting idea to show that a seemingly
very weak approximator to the clique (say, N1−ε-approximation algorithm for some
ε > 0), can be used to obtain a very good approximator to the clique number in
graphs which are guaranteed to have very large cliques. In particular, using such an
algorithm, if a graph has a clique of size N

k , then a clique of size N

k
1
ε

can be found in
such a graph in polynomial time. As observed by Blum, this can be translated into
significantly better algorithms for approximate coloring of a three colorable graph
than known currently (see Item (1) in Corollary 8.15 below). Here we derive the the-
orem using FPCP and the gap-shifting techniques. The parameters are generalized so
as to be able to conclude, say, that even if we have a N

2
√

log2 N
-approximation (for Max

Clique), then we can obtain non-trivially good algorithms for 3-coloring (see Item (2)
in Corollary 8.15).

Theorem 8.13. Let α ∈ [0, 1], β ∈ [0, 1/2) and k > 1. Define ε : Z+ → R+,
c ∈ R+ and g : Z+ → R+ so that

ε(N) =
α

logβ2 N

c =
2

log2 k

and log2 g(N) =
(
cβ log2 k

α

)1/(1−β)

logβ/(1−β)
2 N.

Then there is a randomized poly(N2+c log2 g(N))-time reduction of instances of

Gap-MaxClique1/k,1/g

PCP – TOWARDS TIGHT RESULTS 83

to M -vertex instances of

Gap-MaxClique 1
2M
−ε(M),2M−1+ε(M) .

Remark 8.14. Observe that g(N) = No(1). Also, for β = 0 we have ε(N) = α

and g(N) = k
1
α . Thus, the theorem states that given a 1

4M
1−2α approximator for

clique one can solve Gap-MaxClique1/k,1/k′ in polynomial-time, where k′ = k1/α.

Proof. As usual we first reduce Gap-MaxClique to FPCP and then amplify.

Gap-MaxClique1/k,1/g

∈ FPCP1/k,1/g[log2N, 0, N
2]

⊆ FPCP(1/k)t,(1/g)t [t log2N, 0, N
2] (for any function t : Z+ → Z+.)

≤KR FPCP 1
2 (1/k)t,2(1/g)t [log2N

2gt, 0, N2]

We now show that by setting t = c log2N and using the FGLSS-reduction, the
above reduces in poly(M)-time to Gap-MaxClique 1

2M
−ε,2M−ε+1 in an M vertex graph,

where M = N2g(N)t.
In case the graph is a no-instance the size of the clique is most 2(1/g(N))t ·M =

2N2. In the case the graph is a yes-instance then the clique size is at least 1
2 (1/k)t ·M .

Thus it suffices to show that 2N2 ≤ 2M ε(M) and 2kt ≤ 2M ε(M), respectively. Taking
logs in both cases it suffices to show that

2 log2N ≤ ε(M) log2M(12)

t log2 k ≤ ε(M) log2M(13)

We first lower bound the right hand side of both equations.

ε(M) log2M = α log1−β
2 M

≥ α log1−β
2 (g(N)t)

≥ αt1−β log1−β
2 g(N)

= α · (c log2N)1−β ·
(
cβ

log2 k

α
logβ2 N

)
= c log2N log2 k

Inequality (12) now follows from the fact that and c log2 k = 2. Inequality (13) follows
from the fact that t = c log2N .

The following result was derived as a corollary by Blum [26] and shows the application
of the above theorem to coloring graphs with low-chromatic number with relatively
small number of colors. We warn the reader that the corollary does not follow directly
from the above theorem; this is because it uses a Levin-reduction9 from the search
version of chromatic number to the search version of the clique problem. However, it
is possible to define search versions of all the gap problems above appropriately and
verify that all the reductions work for the search problems as well (i.e., they are in
fact Levin-reductions). Thus the following can be derived as a corollary to the above.

Corollary 8.15. Let k <∞.

9 A Levin-reduction is a polynomial-time many-to-one reduction which is augmented by corre-
sponding polynomial-time witness transformations.

84 M. BELLARE, O. GOLDREICH, AND M. SUDAN

(1) For ε > 0, given an N1−ε approximator to the clique, one can color any k-
colorable graph on M nodes with O(k1/ε logM) colors in polynomial time.

(2) For ε(N) = ω((logN)−1/2), given an N1−ε(N) approximator to the clique, one
can color any k-colorable graph on M nodes with Mo(1)-colors in time MO(logM).

9. On the Limitations of Some Common Approaches. In this section
we provide lower bounds on the free-bit complexity of two tasks which are central
to all existing (“low-complexity”) probabilistically checkable proofs. Specifically, we
consider the task of checking that a string (given by oracle access) is “close” to a valid
codeword and the task of checking that one oracle is an encoding of a projection of
a string encoded by a second oracle. Here a string is considered close to the code if
its distance from some codeword is less than half the distance of the code. Loosely
speaking, we show that each of these tasks has amortized free-bit complexity of at least
one (and this is tight by the codes and tests presented in Section 7). Furthermore, we
show that the amortized free-bit complexity of performing both tasks (with respect
to the same given oracles) is at least two (and also this is tight by Section 7).

Our original motivation in proving these lower bounds was to indicate that a
paradigm shift is required in order to improve over our PCP systems of amortized
free-bit complexity 2 (for NP). In retrospect, the paradigm shifts have amounted to
the relaxation of the codeword test in [55] and to the relaxation of the projection
test in [56]. Thus, our lower bounds may be considered as a justification for these
(somewhat unnatural) relaxations.

In particular, the lower bound on the complexity of the codeword test relies on
the particular interpretation of ‘closeness’ used above (i.e., being at distance less
than half the distance of the code). This requirement is not essential as can be seen in
Section 3.4, where we show that also relaxed codeword tests, in which closeness means
approximately the distance of the code, suffice. H̊astad’s relaxation of the codeword
test is different, yet it also suffices for the purpose of constructing PCP systems of
amortized free-bit complexity 1 (for NP) [55]. The lower bound on the complexity
of the projection test seems more robust. Yet, as shown by H̊astad in [56], the
projection requirements can be by-passed as well, yielding pcp systems of amortized
free-bit complexity tending to 0.

9.1. The tasks. Our definitions of the various tasks/tests are quite minimal
and do not necessarily suffice for PCP applications. However, as we are proving lower
bounds this only makes our results stronger.

Loosely speaking, the first task consists of testing that an oracle encodes a valid
codeword, or is “close” to a valid codeword, with respect to an error-correcting code
of non-trivial distance (i.e., distance greater than 1). The condition regarding the
distance of the code is essential since the task is easy with respect to the identity map
(which is a code of distance 1). We remark that testing “closeness” to codewords
with respect to codes of large distance is essential in all known pcp constructions
[12, 40, 9, 8, 21, 41, 23].

The absolute distance between two words w, u ∈ {0, 1}n, denoted ∆(w, u), is the
number of bits on which w and u disagree. We say that the code E : {0, 1}∗ 7→ {0, 1}∗
has absolute distance d if for every m and every x 6= y ∈ {0, 1}m the absolute distance
between E(x) and E(y) is at least d(m). The absolute distance between a word w
and a code E, denoted ∆E(w), is defined as the minimum absolute distance between
w and a codeword of E.

Definition 9.1. (Codeword test): Let E : {0, 1}m → {0, 1}n be a code of

PCP – TOWARDS TIGHT RESULTS 85

absolute distance d > 1. A codeword test (with respect to E) is an oracle machine,
T , such that TE(a)(R) accepts for all a,R. The error probability of T is defined as
the maximum accepting probability of T over oracles A of absolute distance at least
bd/2c from the code E; namely,

max
A∈{0,1}n s.t. ∆E(A)≥bd/2c

{
PrR

[
TA(R) accepts

]}
(Nothing is required with respect to non-codewords which are “close” to the code.)

The second task is defined with respect to a “projection function” π and a pair of
codes, E1 and E2. Loosely speaking, the task consists of checking if the string E1-
encoded by the first oracle is mapped by π to the string that is E2-encoded by the
second oracle.

Definition 9.2. (projection test): Let E1: {0, 1}m → {0, 1}n and E2: {0, 1}k →
{0, 1}n′ be two codes and let π : {0, 1}m → {0, 1}k be a function. A projection test
(with respect to the above) is a two-oracle machine, T , such that TE1(a),E2(π(a))(R)
accepts for all a,R. The error probability of T is defined as the maximum accepting
probability of T over oracles pairs (E1(a), E2(b)) where b 6= π(a); namely,

max
a,b s.t. π(a)6=b

{
PrR

[
TE1(a),E2(b)(R) accepts

]}
(Nothing is required with respect to non-codewords.)

Finally, we consider a test T which combines the two tests above; namely, T takes
two oracles A and B and performs a codeword test on A and a projection test on the
pair (A,B).

Definition 9.3. (combined test): Let E1: {0, 1}m → {0, 1}n be a code of
absolute distance d > 1 and E2: {0, 1}k → {0, 1}n′ be two codes and let π : {0, 1}m →
{0, 1}k be a function. A combined test for (E1, E2, π) is a two-oracle machine T
such that TE1(a),E2(π(a))(R) accepts on all a,R. The error probability of T is defined
as the maximum accepting probability of T over oracles pairs (A,B) where either
∆E1(A) ≥ bd/2c or A = E1(a), B = E2(b) but π(a) 6= b; namely,

max
(A,B)∈S

{
PrR

[
TA,B(R) accepts

]}
.

where S def=

{(A,B) : (∆E1(A) ≥ bd/2c) or (∃a, b s.t. A = E1(a) and B = E2(b) and π(a) 6= b)} .

(Nothing is required with respect to non-codeword pairs, (A,B), which are “close” to
some pair (E1(a), E2(b)) with π(a) 6= b.)

Conventions and Notations. The pattern of test T on access to oracle A (resp.,
oracles A and B) when using coin-sequence R consists of (R and) the sequence of
queries and answers made by T . Namely, this pattern, denoted patternT (A;R)} (resp.,
patternT (A,B;R)}), is defined as the sequence (R, q1, a1, ..., qt, at) where qi is the ith

query made by T on coin-sequence R and after receiving the answers a1, ..., ai−1.
We include the queries in the pattern for sake of clarity (but they can be easily
reconstructed from the coin-sequence and the answers). In case T uses two oracles,
we may assume that the queries specify to which oracle they are addressed. For
simplicity, we assume in the rest of this subsection that the test has access to one
oracle, denoted A.

86 M. BELLARE, O. GOLDREICH, AND M. SUDAN

The set AccT (R) is defined to be the set of accepting patterns of T on coin-
sequence R. Clearly,

AccT (R) = {patternT (A;R) : TA(R) accepts}
Recall that T is said to have free-bit complexity f if for each possible coin-sequence
R it holds that |AccT (R)| ≤ 2f . We say that T has average free-bit complexity fav

if ER [|AccT (R)|] ≤ 2fav , when the expectation is taken uniformly over all possible
coin-sequences. The amortized free-bit complexity of a test is defined as fav

log2(1/ε) ,
where fav is the average free-bit complexity of the test and ε is its error probability.

9.2. Lower Bound for the Codeword Test. Proposition 9.4. For any
code of absolute distance greater than 1, the Codeword Test has amortized free-bit
complexity of at least 1− o(1).

The amortization in the above proposition is to be understood as taking place on a
fixed number of free-bits whereas the length of the oracle grows. Actually, we can allow
both the oracle-length and the free-bit count to grow, provided that the logarithm of
the number of codewords grows faster than the free-bit complexity. Alternatively, we
can consider a fixed oracle length and a fix bound on the number of free-bits. Actually,
this is done in the following technical lemma from which the above proposition follows.

Lemma 9.5. Let E : {0, 1}m 7→ {0, 1}n be a code of absolute distance d > 1,
and let T be a codeword test with respect to E having average free-bit complexity fav.
Then, T has error probability at least max(2 − 2fav , 1

F −
1
M), where F = 2fav and

M = 2m.

In particular, if fav = 0 then the error is 1, and for fav ≥ 1 the error is at least 1
F −

1
M .

Proof. Fix an arbitrary coin-sequence R, and let FR denote the cardinality of the
set AccT (R).

Let a1, a2 be selected independently and uniformly in {0, 1}m, and consider the
codewords E(a1) and E(a2). With probability 1

M we have a1 = a2 and otherwise
∆(E(a1), E(a2)) ≥ d. From a1 and a2, we construct an oracle A(a1, a2) as follows: If
a1 = a2, then A = E(a1). Otherwise, we construct A(a1, a2) so that it agrees with
the value of the bits of both E(ai)’s whenever they are the same and is at distance
dd/2e from E(a1). This can be done as follows: let S be the set of positions on which
E(a1) and E2(a2) disagree and let S′ be a subset of S of cardinality dd/2e. Then
A(a1, a2) equals E(a1) on all positions not in S′ (and equals E(a2) on the positions
in S′).

We claim that, when a1 6= a2, the oracle A def= A(a1, a2) is at distance at least
bd/2c from the code (i.e., ∆E(A) ≥ bd/2c). This can be proved as follows: Consider
any a ∈ {0, 1}m and observe that by the triangle inequality

∆(A,E(a)) ≥ ∆(E(a1), E(a))−∆(E(a1), A) ≥ d− dd/2e = bd/2c
We now claim that

Pra1,a2

[
TA(a1,a2)(R) accepts

]
≥ 1
FR

where the probability is taken uniformly over all possible choices of a1, a2 ∈ {0, 1}m.
The key observation is that if patternT (E(a1);R) equals patternT (E(a2);R), then
patternT (A(a1, a2);R) will be equal to patternT (E(a1);R) (since no query of T (R)
falls in the set S – defined above). Thus, since TE(a1)(R) accepts, TA(a1,a2)(R)
must accept too. This suggests to lower bound the probability that TA(a1,a2)(R)

PCP – TOWARDS TIGHT RESULTS 87

accepts by the probability that patternT (E(a1);R) = patternT (E(a2);R). Consider an
enumeration, α1, ..., αFR , of the patterns in AccT (R) and denote by pi the probability
that patternT (E(a);R) equals the ith pattern in this enumeration, when a is uniformly
selected in {0, 1}m (i.e., pi

def= Pra [patternT (E(a);R) = αi]). Thus, when a1 and a2

are picked at random, the probability that patternT (E(a1);R) = patternT (E(a2);R) is∑FR
i=1 p

2
i . Subject to the condition

∑
i pi = 1, the quantity

∑FR
i=1 p

2
i is lower bounded

by 1
FR

(with an equality occurring when the pi’s are equal).
The following observations now bound the error of T :

Pra1,a2

[
TA(a1,a2)(R) accepts and a1 6= a2

]
≥ Pra1,a2

[
TA(a1,a2)(R) accepts

]
− Pra1,a2 [a1 = a2]

≥ 1
FR
− 1
M

All the above holds for any coin-sequence R. Now, we let R be uniformly chosen and
get

PrR,a1,a2

[
TA(a1,a2)(R) accepts and a1 6= a2

]
≥ ER

[
1
FR

]
− 1
M

≥ 1
F
− 1
M

(The last inequality follows by Jensen’s inequality.) Thus there must exist oracles a1

and a2 with a1 6= a2 such that

PrR
[
TA(a1,a2)(R) accepts

]
≥ 1
F
− 1
M

But the oracle A(a1, a2) above satisfies ∆E(A(a1, a2)) ≥ bd/2c implying that the error
of T is at least 1

F −
1
M .

To prove that the error is at least 2 − 2fav , we observe that if FR = 1 for some
coin-sequence R then patternT (E(a1);R) = patternT (E(a2);R), for every two a1, a2 ∈
{0, 1}m. It follows that, for every a1 6= a2, given access to the oracle A(a1, a2) and
using coin-sequence R, the test T accepts (and is wrong in doing so). Thus, for every
a1 6= a2,

PrR
[
TA(a1,a2)(R) accepts

]
≥ PrR [FR = 1] = 1− PrR [FR > 1]

and the error bound follows by using PrR [FR − 1 > 0] ≤ ER [FR − 1] = F − 1.

Proof. [Proposition 9.4] Let T be a test for the code E : {0, 1}∗ → {0, 1}∗ so
that E maps m-bit strings into n(m)-bit strings. Suppose that T has average free-bit
complexity f(m) and error ε(m), as a function of m (the length of strings encoded
by the oracle). We first assume that f(m) ≥ 1. Using Lemma 9.5 (and letting
ρ(m) def= 2f(m)−m), we lower bound the amortized free-bit complexity of T as follows

f(m)
log2(1/ε(m))

≥ f(m)
− log2(1

2f(m) − 1
2m)

=
f(m)

f(m)− log2(1− ρ(m))

>
f(m)

f(m) + ρ(m)

88 M. BELLARE, O. GOLDREICH, AND M. SUDAN

> 1− ρ(m)

(For the last inequality, we have assumed f(m) ≥ 1.) Thus, for this case, the propo-
sition follows by our convention that the number of codewords (denoted 2m) grows
faster than exponential in the free-bit complexity f(m) (i.e., ρ(m) = 2f(m)

2m → 0
with n → ∞). Finally, we need to address the case in which f(m) ≥ 1 does not
hold. We consider two sub-cases. In the first sub-case, we assume that f(m) → 0
for some subsequence of the m’s. For these m’s, we use Lemma 9.4’s assertion that
ε(m) ≥ 2− 2f(m). Setting g(m) def= 2f(m) − 1, we lower bound the amortized free-bit
complexity by

f(m)
log2(1/ε(m))

≥ log2(1 + g(m))
− log2(1− g(m))

→ g(m)
g(m)

For the other sub-case, we have f(m) ≥ t, for some constant t > 0. Applying
T for t times we get a test T ′ with average free-bit complexity t · f(m) ≥ 1 and
error ε′(m) = ε(m)t, which maintains the amortized free-bit complexity of T (since

f(m)
− log2 ε(m) = t·f(m)

− log2 ε
′(m)). Applying the above analysis to T ′, the proposition follows.

9.3. Lower Bound for the Projection Test. A projection function is a func-
tion π : {0, 1}∗ 7→ {0, 1}∗ having the property that for every m there exists a k so
that π maps {0, 1}m onto {0, 1}k.

Proposition 9.6. For any pair of codes used in the two oracles and any projec-
tion function, the Projection Test has amortized free-bit complexity of at least 1−o(1).

Again, the proposition is proved by a technical lemma. Actually, the lemma refers to
any function π : {0, 1}m 7→ {0, 1}k and its conclusion depends on the cardinality of
the range of π (which in case of a projection function equals 2k). Abusing notations
we let π(S) def= {π(a) : a∈S}.

Lemma 9.7. Let E1 : {0, 1}m 7→ {0, 1}n, E2 : {0, 1}k 7→ {0, 1}n′ and π :
{0, 1}m 7→ {0, 1}k be as in Definition 9.2, and T be a projection test with respect
to them having average free-bit complexity fav. Then, T has error probability at least
1
F −

1
K , where K = |π({0, 1}m)| and F = 2fav . Furthermore, if K > 1 then T has

error probability at least 2− 2fav .

Proof. Fixing an arbitrary coin-sequence R, let FR
def= |{AccT (R)}|. We consider

the behavior of the test T when given oracle access to a pair of randomly and inde-
pendently selected codewords. Specifically, let S ⊂ {0, 1}m be a set of K strings such
that for every b ∈ π({0, 1}m) there exists an a ∈ S satisfying π(a) = b. We consider
the behavior of T when given access to the oracles E1(a) and E2(π(a′)), where a
and a′ are independently and uniformly selected in S. With probability 1

K , we have
π(a) = π(a′). On the other hand we claim that, given access to such pair of random
oracles, T accepts with probability at least 1

FR
. Once the claim is proven, the lemma

follows (as in the proof of the previous lemma).
Consider the set of all FR possible accepting patterns of T on access to oracles,

E1(a) and E2(π(a)), where a ∈ S. Each such pattern consists of a pair (α, β), where α
(resp., β) denotes the transcript of the test’s interaction with E1(a) (resp., E2(π(a))).

PCP – TOWARDS TIGHT RESULTS 89

Enumerating all possible FR patterns, we denote by pi the probability that the ith

pattern occurs, when T is given access to the oracle-pair (E1(a), E2(π(a)) where a is
uniformly selected in S. Namely,

pi
def= Pra∈S [patternT (E1(a), E2(π(a));R) = (αi, βi)]

where (αi, βi) is the ith accepting pattern for T (R). Clearly,

Pra,a′∈S [patternT (E1(a), E2(π(a));R) = patternT (E1(a′), E2(π(a′));R) = (αi, βi)] = p2
i

(14)
We now claim that the probability that a pair of independently chosen random oracles
(i.e., (E1(a), E2(b)) selected by uniformly selecting a, a′ ∈ S and setting b = π(a′))
leads to the ith pattern is at least p2

i ; namely,

Pra,a′∈S [patternT (E1(a), E2(π(a′));R) = (αi, βi)] ≥ p2
i(15)

Eq. (15) is proven by a cut-and-paste argument: Suppose

p
def= patternT (E1(a), E2(π(a));R) = p′

def= patternT (E1(a′), E2(π(a′));R)

and consider a computation of TE1(a),E2(π(a′))(R). Proceeding by induction, and
assuming that the first t queries are answered as in p, we conclude that the t + 1st

query (in our “mixed” computation) is identical to the t + 1st query in p = p′. If
this query is directed to the fist oracle then it is answered by E1(a) (as in p) and
otherwise it is answered by E2(π(a′)) (as in p′). In both cases the answer matches
the t + 1st answer in p = p′. We conclude that whenever p = p′, the computation of
TE1(a),E2(π(a′))(R) encounters the same pattern (p). Thus, the probability that the
computation of TE1(a),E2(π(a′))(R) encounters the ith pattern is lower bounded by the
expression in Eq. (14), and Eq. (15) follows. (We remark that for non-adaptive tests,
the probability that the ith pattern is encountered equals

∑FR
i=1 p

′
ip
′′
i , where p′i (resp.,

p′′i) is the sum of all pj ’s satisfying αj = αi (resp., βj = βi). Actually, the same holds
for any test which selects its queries for each oracle independently of answers obtained
from the other oracle.)

Using Eq. (15), we get

Pra,a′∈S [patternT (E1(a), E2(π(a′));R) ∈ AccT (R)] ≥
FR∑
i=1

p2
i

≥ 1
FR

and the main part of the lemma follows. Again, the furthermore part follows by
observing for FR = 1, patternT (E1(a), E2(π(a));R) = patternT (E1(a′), E2(π(a′));R),
for every two a, a′ ∈ {0, 1}m. Again, this implies that, for every a1 6= a2, given access
to the oracle-pair (E1(a), E2(π(a′))) and using coin-sequence R, the test T (wrongly)
accepts.

9.4. Lower Bound for the Combined Test. Proposition 9.8. For any pair
of codes used in the two oracles, so that the first code has absolute distance greater
than 1, and for any projection function, the Combined Test has amortized free-bit
complexity of at least 2− o(1).

Again, the proposition is proved by a technical lemma. Loosely speaking, the lemma
asserts that a combined test of free-bit complexity 2f must have error probability
at least 1

8 · 2
−f . The lower bound extends to the case where 2f is a bound on the

90 M. BELLARE, O. GOLDREICH, AND M. SUDAN

average free-bit complexity; the error probability in this case can be lower bounded
by 3

64 · 2
−f – see details below. It follows that the amortized free-bit complexity of

such a test must be at least 2f
f+5 ≈ 2 (for large f ’s). The restriction to large f ’s does

not really weaken the result. Suppose on the contrary that there exists a test with
amortized free-bit complexity fam. Then, for any sufficient large t, we can obtain a
test with free-bit complexity 2f def= t·fam and error 2−t. By the above t·fam

t ≥ 2f
f+5 ≈ 2

(as f is now large).

Lemma 9.9. Let E1 : {0, 1}m 7→ {0, 1}n be a code of absolute distance greater than
1, E2 : {0, 1}k 7→ {0, 1}n′ , and π : {0, 1}m 7→ {0, 1}k be a projection function. Suppose
that T is a combined codeword and projection test with respect to the above having free-
bit complexity 2f . Then, T has error probability at least 1

8F −
1

2K −
1

4M , where K = 2k,
F = 2f , and M is the minimum, over all b ∈ {0, 1}k, of the number of a ∈ {0, 1}m

projected by π to b (i.e., M def= minb∈{0,1}k{|{a : π(a)=b}|}). Furthermore, if 2f < 1
and max{M,K} > 1 then T has error probability 1.

Proof. The “furthermore” part follows immediately by any of the furthermore
parts of Lemma 9.5 or Lemma 9.7 (as 22f must be an integer and so 2f < 1 implies
f = 0). The proof of the main part of the lemma uses both strategies employed in the
proofs of Lemmas 9.5 and 9.7. We consider two cases. The first case is that for some
E2(b), half of the possible (coin-sequences) R’s have at most F accepting patterns
with respect to the coin-sequence R and second oracle B = E2(b). In this case we
employ the strategy used in the proof of Lemma 9.5, restricted to oracles constructed
by combining two uniformly selected codewords E1(ai)’s satisfying π(ai) = b. The
second case is that for every b ∈ {0, 1}k, for half of the possible (coin-sequences) R’s,
the number of accepting patterns with respect to the coin-sequence R and second
oracle B = E2(b) is at least F . In this case we show that many possible B’s must fit
into fewer than F 2

F accepting patterns and we may employ the strategy used in the
proof of Lemma 9.7. Details follow.

In the sequel δ ∈ [0, 1] is a constant to be determined later. (In the above
motivating discussion we have used δ = 1

2 but a better bound follows by letting δ be
larger.)

Case 1: there exists b ∈ {0, 1}k so that for at least (1 − δ) fraction of the possible
(coin-sequences) R’s, hereafter called good, the number of accepting patterns with
respect to the coin-sequence R and second oracle (fixed to) B = E2(b) is at most F .

Fixing this b, we consider M possible a’s satisfying π(a) = b. Employing the
argument of Lemma 9.5, we get that for each of these good R’s, a random oracle
A (constructed using two uniformly chosen a’s as above) is wrongly accepted with
probability at least 1

F −
1
M . By an averaging argument, it follows that there exists a

pair of oracles (A,B) on which T errs with probability at least

(1− δ) ·
(

1
F
− 1
M

)
(16)

Case 2: for every b ∈ {0, 1}k, for at least a δ fraction of the possible (coin-sequences)
R’s, the number of accepting patterns with respect to the coin-sequence R and second
oracle B = E2(b) is at least F .

Let γ < δ be a parameter to be determined later. By a counting argument,
for at least a δ−γ

1−γ fraction of the possible R’s, hereafter called good, there exists a
set, denoted ΠR, of at least γ · 2k possible b ∈ {0, 1}k so that there are at least F

PCP – TOWARDS TIGHT RESULTS 91

accepting patterns which are consistent with coin-sequence R and second oracle fixed
to B = E2(b). (Namely, let g denote the fraction of good R’s. Then g+ (1− g) ·γ ≥ δ
and g ≥ δ−γ

1−γ follows.)
Let S ⊂ {0, 1}m be a set of 2k strings, defined as in the proof of Lemma 9.7, so

that π maps S onto {0, 1}k. Fixing a good coin-sequence R, we adapt the strategy
used in the proof of Lemma 9.7 as follows. We consider a set SR ⊆ S of |ΠR| strings
so that π maps SR onto ΠR, and enumerate the accepting patterns which occur when
the test, using coins R, is given access to a oracle-pair (E1(a), E2(π(a))), where a
is uniformly chosen in SR. We first claim that there are at most F such patterns.
Namely,
Claim: For any good R, |{patternT (E1(a), E2(π(a));R) : a ∈ SR}| ≤ F .
Proof: By definition of ΠR, for each b ∈ ΠR, there are at least F accepting patterns
consistent with the coin-sequence R and the second oracle E2(b) (and out of them
only one fits the first oracle E1(a) where a ∈ SR and π(a) = b). By a cut-and-paste
argument, if (R,α, β) and (R,α′, β) are accepting patterns for second-oracle E2(b)
and if (R,α, β) is an accepting pattern for second-oracle E2(b′) then (R,α′, β) is also
an accepting pattern for second-oracle E2(b′). It follows that the accepting patterns of
two E2(b)’s either collide or do not intersect. Thus, the number of accepting patterns
for the various (E1(a), E2(π(a)))’s, where a ∈ SR, is at most F 2

F = F and the claim
follows. 2

Now we consider what happens if one selects independently and uniformly a, a′ ∈
S. Following the proof of Lemma 9.7, with probability 1

K , we have π(a) = π(a′) (and
otherwise π(a) 6= π(a′)). On the other hand, given access to such pair of random
oracles, the test accepts with probability at least γ2 · 1

F . (The γ2 factor is due to the
probability that a, a′ ∈ SR, whereas the 1

F factor corresponds to the analysis which
supposes that a and a′ are uniformly selected in SR).

The above analysis holds for any good coin-sequence R. Using the lower bound on
the fraction of good R’s, it follows that for a δ−γ

1−γ fraction of the R’s, the probability
that the test errs, on coin-sequence R when given access to a random pair of oracles
(selected as above), is at least γ2

F −
1
K . By an averaging argument, there exists a pair

of oracles for which the test errs with probability
δ − γ
1− γ

·
(
γ2

F
− 1
K

)
(17)

Setting δ = 3
4 and γ = 1

2 we lower bound the expressions in Eq. (16) and (17) by
1

4F −
1

4M and 1
8F −

1
2K , respectively, and the lemma follows.

To prove a bound for the case of average free-bit complexity 2f , we first apply
Markov’s Inequality and conclude that all but an ε fraction of the coin-sequences
have at most G2 def= F 2

ε accepting patterns (in which this fixed coin-sequence ap-
pears). (We can use any 0<ε<1.) We then consider only those coin sequences (and
apply the same argument as above to each of them). The averaging argument at the
end of the above proof then yields that there exists an oracle-pair on which T errs
on at least a 1

8G −
1

2K −
1

4M fraction of these coin-sequences. It follows that this
oracle makes T err with probability at least (1 − ε) · (1

8G −
1

2K −
1

4M) (which equals
(1− ε) · (

√
ε

8F −
1

2K −
1

4M)). Using ε = 1
4 , we get a lower bound of 3

64F −
3

8K −
3

16M .

Part III: PCP: Properties and Transformations

92 M. BELLARE, O. GOLDREICH, AND M. SUDAN

10. The Complexity of PCP and FPCP. In this section we present several
results regarding the complexity of languages acceptable by probabilistically checkable
proofs having, respectively, small query complexity, small amortized-query complex-
ity and small free-bit complexity. Thus, in the current section, notations such as
PCPc,s[r, q] stand for classes of languages. The results can be extended to classes of
promise problems having such probabilistically checkable proofs.

In this section, MIPc,s[r, p] denotes the class of languages accepted by a (one-
round) p-prover interactive proof system in which r is the randomness complexity, c is
a lower bound on the probability of accepting yes-instances and s is an upper bound on
the probability of accepting no-instances. The corresponding class for probabilistically
checkable proofs is PCPc,s[r, q], where q denotes the number of queries. In both classes
only binary queries are allowed (indeed this is less standard for MIP).

10.1. MIP versus PCP. The first part of the following lemma is folklore and
is stated here for sake of completeness.

Lemma 10.1. For all admissible functions c, s, r, p.
(1) MIPc,s[r, p] ⊆ PCPc,s[r, p].
(2) MIPc,s[r, p] ⊆ MIPc,2s[r, p− 1].

Proof. Part (1) follows from the definition of PCP and MIP. Part (2) is shown
as follows. Let V be an (r, p)-restricted MIP verifier. We define V ′ – an (r, p − 1)-
restricted verifier who on input x behaves as follows:

• V ′ tosses coins c for V .

• V ′ refers the first p−1 queries of V to the corresponding p−1 provers obtaining
answers (bits) a1, . . . , ap−1, respectively.

• V ′ accepts if and only if there exists ap ∈ {0, 1} such that V would accept
answers a1, . . . , ap on input x and random string c.

Suppose that provers P1, . . . , Pp convince V to accept x with probability δ. Then,
the provers P1, . . . , Pp−1 convince V ′ to accept x with probability at least δ (be-
cause if V (x) accepts the transcript (c, a1, ..., ap) then V ′(x) will accept the transcript
(c, a1, ..., ap−1)). This justifies the bound on the completeness probability of V ′. Sup-
pose, on the other hand, that provers P1, . . . , Pp−1 cause V ′ to accept x with proba-
bility δ. Consider a uniformly selected strategy for another prover, denoted Pp (i.e.,
choose a random response for every question). Then, the probability that provers
P1, . . . , Pp cause V to accept input x is at least 1

2 · δ (because if V ′(x) accepts the
transcript (c, a1, ..., ap−1) then there exists a value ap ∈ {0, 1} so that V (x) will accept
the transcript (c, a1, ..., ap) and with probability one half Pp answer equals this ap).
This justifies the bound on the soundness probability of V ′.

Containments of PCP systems in MIP systems are more problematic. The reader
is referred to a paper by Ta-Shma [83]. That paper also contains a proof of the
following result due to Bellare, Goldreich and Safra:

PCPc,s(log, q) ⊆ MIPc,qq·s(log, q)

Here we only consider the non-adaptive case, and obtain a different bound on the
soundness parameter:

Proposition 10.2. Suppose L ∈ PCPc,s(r, q) with a non-adaptive verifier. Then
L ∈ MIPc′,s′(r + O(log q), q), where c′ = c + p · (1 − c), s′ = s + p · (1 − s) for any
p ≥ bq/2c/(1 + bq/2c).

PCP – TOWARDS TIGHT RESULTS 93

For q = 3, we may set p = 0.5 and obtain c′ = (c+ 1)/2 and s′ = (s+ 1)/2.
Proof. We start with a non-adaptive PCP verifier of q queries and construct a

q-prover system as follows. First we uniformly select coin tosses for the PCP verifier,
which defines q queries (here is where we use non-adaptivity). Next,
• With probability p we select a query uniformly among these q queries, and

forward it to all q provers. We accept iff all provers answer in the same manner.
• With probability 1 − p we simulate the PCP system as follows. We uniformly

select i ∈ [q] and refer the jth query of the verifier to the (i + j)th prover. We
accept iff the PCP verifier would have accepted

Clearly, by setting all MIP-provers to equal the good oracle (of the PCP system),
inputs in the language are accepted with probability at least p · 1 + (1 − p) · c =
c+ p · (1− c).

We now bound the acceptance probability of the MIP system for an input not in
the language. Fix an arbitrary sequence of MIP-provers. Let δ denote the probability,
taken over the queries selected by the PCP-verifier as above, that the MIP-provers
differ on a random query. Define an oracle so that on each query it equals the majority
of the prover’s answers (ties, in case of even q are broken arbitrarily). Then, the
probability that the MIP system accepts is bounded above by

p · (1− δ) + (1− p) · (s+ bq/2c · δ)(18)

To justify the second term consider the simulation of the PCP system (which takes
place with probability 1− p). In case the answers given by all MIP-provers equal the
corresponding answers of the PCP-oracle (defined above), we bound the acceptance
probability by soundness of the PCP system. Otherwise, there must be a query
on which the relevant MIP-prover differs from the PCP-oracle. For each query this
happens with probability at most bq/2cq (as, by definition, only a minority of provers
differ from the oracle). Using the Union Bound, Eq. (18) follows. Using the definition
of p, we have

p · (1− δ) + (1− p) · (s+ bq/2c · δ) = p+ (1− p) · s− δ · (p− (1− p) · bq/2c)
≤ s+ p · (1− s)

and the proposition follows.

10.2. Query complexity and amortized query complexity. The following
proposition explores the limitations of probabilistically checkable proof systems which
use logarithmic randomness and upto three queries. Some of the qualitative assertions
are well-known; for example, when considering perfect completeness, 3 queries are the
minimum needed (and sufficient [8]) to get above P.

Proposition 10.3. (PCP systems with logarithmic randomness and at most 3
queries):
(1) (PCP with 1 query is weak): For all admissible functions s, c : Z+ → [0, 1], so

that s is strictly smaller than c, PCPc,s[log, 1] = P.
(2) (One-sided error pcp with 2 queries is weak): For all admissible functions s :
Z+ → [0, 1] strictly less than 1, PCP1,s[log, 2] = P.

(3) (Two-sided error pcp with 2 queries is not weak): There exists 0 < s < c < 1 so
that PCPc,s[log, 2] = NP. Furthermore, this holds for some c > 0.9 and s < 73

74c.
(4) (One-sided error pcp with 3 queries is not weak): PCP1,0.85+ε[log, 3] = NP,

∀ε > 0.

94 M. BELLARE, O. GOLDREICH, AND M. SUDAN

(5) (One-sided error pcp with 3 queries is not very strong): ∀s < 0.18, PCP1,s[log, 3] =
P. Furthermore, ∀s ≤ 0.299, naPCP1,s[log, 3] = P, where naPCP is a restriction
of PCP in which the verifier is required to be non-adaptive.

We remark that PCP1,0.8999[log, 3] = NP with a non-adaptive verifier was presented in
an earlier version of this paper [20]. Using Proposition 10.2, we have MIP1,0.95[log, 3] =
NP.

Proof. [Proposition 10.3, Part (1)] An oracle π maximizing the acceptance proba-
bility can be constructed by scanning all possible random pads (random strings) and
setting π(q) so that it “satisfies” the majority of random-pads for which the verifier
makes query q.

Proof. [Proposition 10.3, Part (2)] The folklore proof commonly deals only with
the non-adaptive case. In general, the verifier V , demonstrating that L ∈ PCP1,s[log, 2],
may be adaptive. We assume, without loss of generality, that V always makes at least
one query. Thus, after making the first query, V decides whether to accept, reject or
make an additional query and accept only a specific answer for it. Thus, the computa-
tion of V on input x, random pad c and access to a generic oracle can be captured by
two Horn clauses, each corresponding to a different answer-value for the first query.
Specifically, suppose that V queries the oracle at location i and upon receiving value
σ accepts iff location j have value τ . Then, we write the Horn clause πσi → πτj . (In
case V always accepts (resp., rejects) after obtaining value σ from oracle location i,
we write the clause πσi → T (resp., πσi → F).) In addition, for every i, we write the
Horn clauses π0

i → (¬π1
i) and (¬π0

i) → π1
i . Thus, the computation of V on input

x and access to a generic oracle can be captured by a Horn formula, denoted φx, in
which Horn clauses correspond to the various (polynomially many) possible (random-
pad,first-answer) pairs. Furthermore, φx can be constructed in polynomial-time given
x (and V). Using a (polynomial-time) decision procedure for satisfiability of Horn
Formulae, we are done. (Alternatively, we can use the linear-time decision procedure
for 2-SAT due to Even et. al. [35].)

Proof. [Proposition 10.3, Part (4)] To see that PCP1,s[log,poly] ⊆ NP, for every
s < 1, consider a non-deterministic machine which tries to guess an oracle which makes
the verifier (of the above system) always accept. The other direction (of Part (4)) is
shown in Theorem 4.5.

Proof. [Proposition 10.3, Part (3)] To see that PCPc,s[log,poly] ⊆ NP, for every
s < c, consider a non-deterministic machine which tries to guess an oracle which
makes the verifier accept with probability at least c. The NP ⊆ PCPc,s[log, 2] re-
sult follows from the hardness of approximating Max2SAT. Specifically, suppose that
L ≤KD Gap-2SATc,s. Then we can present a PCPc,s[log, 2] system for L as follows.
On input x, the verifier in this system performs the reduction (of L to the promise
problem) obtaining a 2CNF formula φx. Next it uniformly selects a clause of φx and
queries the oracle for the values of the variables in this clause (accepting accordingly).
Using Theorem 4.6 (Part 3), NP ≤KD Gap-2SATc,s for some c > 0.9 and s < 73

74 · c,
and NP ⊆ PCPc,s[log, 2] follows.

Remark 10.4. The ratio c/s has been subsequently increased to (10/9)− ε, for
any ε > 0 (cf., [84, 57]).

Proof. [Proposition 10.3, Part (5)] The result for general verifiers follows from
Lemma 4.11 and the fact that MaxSAT can be approximated to within a 0.795 =

PCP – TOWARDS TIGHT RESULTS 95

0.75+ 0.18
4 factor in polynomial-time (cf., [84]). The (tedious) proof of the non-adaptive

case can be found in earlier versions of this paper [20]. The paper of Trevisan et. al. [84]
contains a stronger result which holds for all verifiers; that is, PCP1,0.367[log, 3] = P.

The latter result (i.e., PCP1,0.367[log, 3] = P) is weaker than what can be proven for
MIP proof systems (see next corollary). This contrast may provide a testing ground
to separate PCP from MIP, a question raised by [21].

Corollary 10.5. For s < 1/2, MIP1,s[coins = log, provers = 3] = P.
Proof. Combining (the two parts of) Lemma 10.1 and (Part 2 of) Proposition 10.3,

we have MIP1,s[log, 3] ⊆ MIP1,2s[log, 2] ⊆ PCP1,2s[log, 2] ⊆ P.

A general result which relates the query complexity of a probabilistically checkable
proof system and the ratio between the acceptance probabilities of yes-instances and
no-instances, follows –

Lemma 10.6. For all admissible functions c, s, q, r, l such that c
s > 2q,

PCPc,s[r, q] ⊆ RTIME
(

poly
(

n

c− 2qs

))
Furthermore, PCPc,s[r, q] ⊆ PSPACE, and if r and q are both logarithmically bounded
then PCPc,s[r, q] = P.

Proof. Let L ∈ PCPc,s[r, q] and V be a verifier demonstrating this fact. Observe
that for x ∈ L, the probability that V accepts x, given access to a random oracle,
is at least c

2q . On the other hand, for x 6∈ L, the probability that V accepts x,
given access to any oracle, is at most s < c

2q . Thus, we can decide if x is in L
by simulating the execution of V with access to a random oracle and estimating the
acceptance probability, over V ’s random choices and all possible oracles. In particular,
we can estimate this probability upto an ε

def= 1
2 · (s −

c
2q) additive term, with very

high probability, by taking poly(1/ε) samples. Alternatively, we can compute this
probability in polynomial-space. Finally, in case r and q are both logarithmically
bounded, we can (exactly) compute the probability that V accepts x, given access to
a random oracle. To this end we loop through all possible random-pads for V and for
each pad consider all possibilities of setting the oracle bits examined by V . Thus, for
s < c

2q , we get a deterministic polynomial-time decision procedure.

The last assertion in the above lemma (i.e., PCPc,s[log, q] = P for c
s > 2q) cannot be

strengthen by omitting the (logarithmic) bound on q since NP = PCP1,0[0,poly]. On
the other hand, recalling the definition of PCP we immediately get

Corollary 10.7. Let ε : Z+ → [0, 1] be an admissible function strictly greater
than 0. Then, for every admissible function c : Z+ → [0, 1],

PCPc[log, 1− ε] = P

In particular, this holds for c = 1.
Proof. L ∈ PCPc[log, 1− ε] implies that for some logarithmically bounded func-

tion m, we have L ∈ PCPc,2−m·c[log, (1− ε) ·m] and the corollary follows.

PCP with super-logarithmic randomness. The above results are focused on pcp
systems with logarithmic randomness. Proof systems with unrestricted randomness
(as considered in the next proposition) may also provide some indication to the effect
of very low query complexity. The results we obtain are somewhat analogous to those

96 M. BELLARE, O. GOLDREICH, AND M. SUDAN

of Proposition 10.3. Recall that PCP1, 12
[poly,poly] equals NEXPT (Non-deterministic

exponential time) [11]. Thus, the power of pcp systems with polynomial randomness
has to be compared against NEXPT.

Proposition 10.8. (general PCP systems with at most 3 queries):

(1) (PCP with 1 query is relatively very weak): For all admissible functions s, c :
Z+ → [0, 1], so that c(n)− s(n) is non-negligible10

PCPc,s[poly, 1] ⊆ AM

where AM is the class of languages having one-round Arthur-Merlin proof systems
(cf., [10]).

(2) (One-sided error pcp with 2 queries is relatively weak): For all admissible func-
tions s : Z+ → [0, 1] strictly less than 1, PCP1,s[poly, 2] ⊆ PSPACE.

(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists
0 < s < c < 1 so that PCPc,s[poly, 2] = NEXPT.

(4) (One-sided error pcp with 3 queries is not weak): PCP1,0.85+ε[poly, 3] = NEXPT,
∀ε > 0.

(5) (One-sided error pcp with 3 queries is not very strong): ∀s < 1
8 , PCP1,s[poly, 3] =

PSPACE. Furthermore, ∀s ≤ 0.299, naPCP1,s[poly, 3] = PSPACE.

The first part of the proposition may be hard to improve since, as indicated in
Proposition 10.9 Part (6), Graph Non-Isomorphism is in PCP1, 12

[poly, 1].

Proof. [Proposition 10.8, Part (1)] We first observe that a 1-query pcp system
is actually a one-round interactive proof system (cf., [53]). (The completeness and
soundness bounds are as in the pcp system.) Using well-known transformations we
obtain the claimed result. Specifically, we first reduce the error of the interactive proof
by parallel repetition, next transform it into an Arthur-Merlin interactive proof [54],
and finally transform it into an Arthur-Merlin interactive proof of perfect completeness
[46]. We stress that all the transformations maintain the number of rounds upto a
constant and that the constant-round Arthur-Merlin hierarchy collapses to one-round
[10].

Proof. [Proposition 10.8, Parts (3) and (4)] For these parts we observe that the
proof systems used in the corresponding parts of the proof of Proposition 10.3, do
“scale-up”. Specifically, it is easy to see that the outer verifier used for all proof
systems in this paper does scale-up, yielding a canonical outer verifier of randomness
complexity O(log(T (n)) for any language in Ntime(T (n)), provided n < T (n) <
2poly(n). Furthermore, all inner-verifiers used in the paper operate on constant sized
oracles and so the composed verifier maintains the time and randomness complexities
of the outer verifier. In particular, the verifier used for establishing Theorem 4.5 can
be scaled-up to yield Part (4). The same holds for the verifier used for establishing
Part (3) of Proposition 10.3. (Note that although the exposition of the proof in
Proposition 10.3 is in terms of reducing NP to Max2SAT, what actually happens is
that the verifier used to establish the NP-hardness of Max2SAT (cf., Section 4.2) is
implemented by a verifier which makes only two queries (out of a constant number of
possibilities).)

10 A function f : Z+ → Z+ is called non-negligible if there exists a positive polynomial p so that
∀n : f(n) > 1

p(n)
.

PCP – TOWARDS TIGHT RESULTS 97

Proof. [Proposition 10.8, Part (2)] Following the strategy of the proof of the
analogous part in Proposition 10.3, we obtain a polynomial-space reduction of L ∈
PCP1,s[poly, 2] to the set of satisfiable 2-Horn formulae (i.e., Horn formulae in which
each clause has at most 2 literals). Namely, on input x, the reduction uses space
poly(|x|) and produces a Horn formula φx (of size exponential in |x|) so that x ∈ L
iff φx is satisfiable. Using a poly-logarithmic decision procedure for satisfiability of
2-Horn formulae11, we can decide if φx is satisfiable using poly(|x|)-space.

Proof. [Proposition 10.8, Part (5)] The result for non-adaptive verifiers follows
from Part (2) by using the same strategy as in the analogous proof in Proposition 10.3.
The result for general verifiers follows by the Furthermore-part of Lemma 10.6 (i.e.,
PCPc,s[poly, q] = PSPACE for c

s > 2q).

10.3. Free-bit complexity. The class FPCPc,s[r, f] is defined analogously to
the class PCPc,s[r, q], except that we consider the free-bit complexity (denoted f)
instead of the query complexity (denoted q). The following proposition demonstrates
the limitations of probabilistically checkable proof systems with free-bit complexity
bounded by 1. We do not believe that similar limitations hold for amortized free-bit
complexity.12

The first three items refer to proof systems with logarithmic randomness. The sec-
ond item shows that such systems with perfect completenss and free-bit complexity 1
only exists for P (and are hence weak). In contrast, the first item shows the crucial
role of perfect completeness in the former negative result: Specifically, proof systems
with two-sided error (non-perfect completeness) having free-bit complexity zero suf-
fice for NP. The third item asserts that the second item cannot be strengthened
with respect to increasing the free-bit complexity. Proof systems with unrestricted
randomness (as considered in the last 3 items) may also provide some indication to
the effect of very low free-bit complexity. The last item can be viewed as (weak)
evidence that the result in the fourth item cannot be “drastically improved” (e.g., to
yield FPCP1,s[poly, 0] ⊆ BPP).

We make essential use of the ability to efficiently generate accepting computations,
and the results may not hold otherwise.13

Proposition 10.9. (PCP systems with low free-bit complexity): Let s : Z+ →
[0, 1] be an admissible function strictly smaller than 1. Then,

(1) (PCP with logarithmic randomness and 0 free-bit):

11 For example, consider the following procedure. Given a 2-Horn formula, we construct a directed
graph in which the vertices are the literals of the formula and there is an directed edge from literal
x to literal y if the formula contains the clause x → y. One can easily verify that the formula is
not satisfied iff there exists a variable for which every truth assignment yields a contradiction (i.e.,
“forcing paths” to contradicting values – cf., [35]). Thus, a non-deterministic logspace machine can
guess this variable and check that both possible truth assignments (to it) yield contradictions. The
latter checking reduces to guessing the variable for which a conflicting assignment is implied and
verifying the conflict via s-t directed connectivity. Since the latter task is in NL, we are done.
(Actually, 2SAT is complete for coNL; see [60].)

12 The conjecture was stated for systems with perfect completeness, and has been subsequently
proven by H̊astad [56] (who proved that NP = FPCP1[log, ε], for every ε > 0). For systems with
two-sided error probability, we knew that they can recognize NP languages using zero free-bits – see
below.

13 We note, however, that the more relaxed notion of free-bits may be less relevant to proving
hardness of approximation results.

98 M. BELLARE, O. GOLDREICH, AND M. SUDAN

(1.1) There exists s < 0.794 so that

NP ⊆ FPCP 1
4 ,
s
4
[log, 0] .

Thus, NP = FPCP 1
4
[log, 0].

(1.2) For every ε > 0, NP ⊆ FPCP1−ε,1− 16
15 ·ε

[log, 0].

(1.3) For every ε > 0, FPCP1−ε,1−2·ε[log, 0] ⊆ P.
(2) (Limitations of PCP with logarithmic randomness and 1 free-bit):

FPCP1,s[log, 1] = P. Also, FPCP1,1−(1/ poly)[coins = poly ; free = 1 ; pflen =
poly] ⊆ BPP.

(3) (“Tightness” of Item 2): There exists s < 0.794 so that
(3.1) NP ⊆ FPCP1,s[log, 2];
(3.2) NP ⊆ FPCP1, 1+s2

[log, f] where f = log2 3 (i.e., 2f = 3);

(3.3) NP ⊆ FPCP 1
2 ,
s
2
[log, 1].

(4) (General pcp with 0 free-bit): FPCP1,s[poly, 0] ⊆ coNP.
(5) (general pcp with 1 free-bit): FPCP1,s[poly, 1] ⊆ PSPACE.
(6) (Examples for pcp with 0 free-bit): Graph Non-Isomorphism, GNI, has a PCP

system with perfect completeness and soundness bound 1
2 , in which the verifier

makes a single query and this query is free. Namely,

GNI ∈ FPCP1, 12
[coins = poly ; free = 0 ; query = 1]

The same holds for QNR (“Quadratic Non-Residuosity” (cf., [53])) the set of in-
teger pairs (x,N) so that x is a quadratic non-residue modulo N .

Proof. [Proposition 10.9, Part (3)] The first claim of Part 3 is justified by Theo-
rem 5.4. Applying Proposition 11.9 to this verifier (which indeed satisfies the condition
of this proposition), yields the second claim of Part 3. Applying Proposition 11.8 to
the same verifier (with k = 1 < f = 2), the third claim of Part 3 follows.

Proof. [Proposition 10.9, Part (1)] Applying Proposition 11.8 (with k = f =
2) to the the verifier of Theorem 5.4, the first claim of Part 1 follows. To prove
the second claim, we apply Proposition 11.10 to the first claim and obtain NP ⊆
FPCP1−δ·(1−0.25),1−δ·(1−0.2)[log, 0] (which holds for any δ). Substituting δ = 4

3ε, the
second claim follows.

The last claim follow by the relationship between the Minimum Vertex Cover
problem and the class FPCPc,s[log, 0] – see proof of Proposition 5.6. Specifically, con-
sider the FGLSS reduction/graph of a proof system witnessing L ∈ FPCP1−ε,1−2ε[log, 0]
(actually consider the complement graph where one asks about the size of the inde-
pendent set). Then, for each x ∈ L this graph has a vertex cover of density at most ε,
whereas for x 6∈ L this graph has no vertex cover of density 2ε. Using Gavril’s approx-
imation algorithm (cf. [48]), these two cases are distinguishable in polynomial-time
and so the third claim follows.

Proof. [Proposition 10.9, Part (4)] Let L ∈ PCP1,s[poly, 0] and V be a verif-
ier demonstrating this fact. By definition, for every possible sequence of coin tosses
for V , there exists at most one accepting configuration (of oracle answers to the
queries made by V). Furthermore, by definition, this accepting configuration (if it
exists) can be generated in polynomial time, from the coin-sequence. Following is a
non-deterministic procedure that accepts L. It starts by guessing two sequences of
coin tosses for V , generating the corresponding accepting configurations and checking

PCP – TOWARDS TIGHT RESULTS 99

whether they are consistent. (The input is accepted by this non-deterministic pro-
cedure iff the two coin-sequences guessed yield conflicting configurations.) Clearly,
if x ∈ L then, for all possible pairs of coin-sequences, accepting configurations exist
and are consistent (since an oracle which always makes V accept x does exist). Thus,
x ∈ L is never accepted by the non-deterministic procedure. On the other hand, if all
pairs of coin-sequences yield accepting and mutually consistent configurations then
an oracle which always makes V accept x emerges. Thus, for every x 6∈ L there exists
a guess which makes the non-deterministic procedure accept x.

Proof. [Proposition 10.9, Parts (2) and (5)] Here we consider proofs with free-
bit complexity 1. Thus, for each possible sequence of coin tosses, there exist at
most two accepting configurations (which again can be efficiently found given the
coin-sequence). We refer to these two possible accepting configuration as to the 1-
configuration and the 2-configuration of the coin-sequence. In case a specific coin-
sequence has less than two accepting configurations, we introduce dummy configu-
rations so that now each coin-sequence has two associated configurations. Given an
input x to such a pcp system, we consider the following 2CNF formula representing all
possible computations of the verifier with a generic oracle. For each possible sequence
of coin tosses, c, we introduce a pair of Boolean variables, π1

c and π2
c , representing

which of the two associated configurations is encountered (e.g., π1
c = T means that

the 1-configuration is encountered). To enforce that a single accepting configuration
is encountered we introduce the clauses (π1

c ∨ π2
c) and ((¬π1

c) ∨ (¬π2
c)). In addition,

in case the σ-configuration of c is not accepting (but rather a dummy configuration)
we introduce the clause (¬πσc) thus “disallowing” a computation in which it is en-
countered. Finally, for each pair of coin-sequences we introduce clauses disallowing
inconsistencies. Namely, suppose that the σ-configuration of c is inconsistent with the
τ -configuration of c′, then we introduce the clause ((¬πσc)∨ (¬πτc′)), which is logically
equivalent to ¬(πσc ∧ πτc′). The resulting 2CNF formula, φx, is satisfiable if and only
if there exists an oracle which causes V to accept x with probability 1. Thus, given
x, we need to test if φx is satisfiable. We consider two cases.
(1) In case V uses logarithmically many coins, the 2CNF formula φx can be generated

from x in polynomial-time. Using a polynomial-time decision procedure for satis-
fiability of 2CNF formulae, we conclude that FPCP1,s[log, 1] = P. Furthermore,
using Proposition 11.2, we can randomly reduce

FPCP1,1−(1/ poly)[poly, free = 1, pflen = poly]

to
FPCP1,1−(1/ poly)[log, free = 1] ,

and
FPCP1,1−(1/ poly)[poly, free = 1, pflen = poly] ⊆ BPP

follows. This establishes Part (2).
(2) In general (V may make polynomially many coin tosses), the 2CNF formula

φx may have exponential (in |x|) length. Yet, it can be generated from x in
polynomial-space. Using a poly-logarithmic-space decision procedure for satisfia-
bility of 2CNF formulae14, we can decide if φx is satisfiable using poly(|x|)-space.
Part (5) (i.e., FPCP1,s[poly, 1] ⊆ PSPACE) follows.

14 For example, note that 2CNF formulae can be written in Horn form and use the procedure
described in the proof of Proposition 10.8 Part (2).

100 M. BELLARE, O. GOLDREICH, AND M. SUDAN

Proof. [Proposition 10.9, Part (6)] We merely note that the interactive proof
presented in [52] for Graph Non-Isomorphism15 constitute a 1-query pcp system with
perfect completeness and soundness bound 1

2 . Furthermore, the query made by the
verify has a unique acceptable answer and thus the free-bit complexity of this system
is zero. The same holds for the interactive proof presented in [53] for Quadratic
Non-Residuosity QNR, which is actually the inspiration to the proof in [52].

10.4. Query complexity versus free-bit complexity. The following propo-
sition quantifies the intuition that not all queries are “undetermined” (i.e., that the
free-bit complexity is lower than the query complexity). Furthermore, as a corollary
we obtain that the amortized (average) free-bit complexity is at least 1 unit less than
the amortized query complexity.

Proposition 10.10. For admissible functions c, s, r, q such that r(n), q(n) =
O(log n).

PCPc,s[r, q] ⊆ PCPc,s[coins = r ; freeav = q − log2(1/s)](19)
Furthermore, for every admissible function t, PCPc,s[r, q] ⊆ FPCPc,(2t+1)·s[r, q − t].

Proof. Let L ∈ PCPc,s[r, q] and let V be the verifier demonstrating this. Fix an
input x ∈ Σn, and let r = r(n), q = q(n), s = s(n). For a random string R ∈ {0, 1}r,
let F xR denote the number of accepting patterns of V , i.e., F xR = |patternV (x;R)|. We
first claim that if ER [F xR] > 2q · s, then x ∈ L. This is true since a random oracle
π is accepted with probability at least ER [F xR · 2−q], and so if the claim were not to
hold we would have reached contradiction to the soundness condition (i.e., x 6∈ L is
accepted with probability strictly larger than s).

We now construct a verifier, denoted V ′, witnessing L ∈ FPCPav
c,s[r, q− log2(1/s)].

On input x, the verifier first computes ER [F xR] (by scanning all possible R’s and
generating all accepting patterns for each of them). If ER [F xR]) > 2q · s, then V ′

accepts x (without querying the oracle). Otherwise (i.e., if ER [F xR]) ≤ 2q · s), then V ′

simulates V and accepts if V accepts. It follows that the average free-bit complexity of
V ′ on input x equals the corresponding quantify for V , provided the latter is at most
q − log2(1/s), and equals zero otherwise. The first part of the proposition follows.

To establish the second part, for some t = t(n), we construct a verifier V ′′ which,
on input x, proceeds as follows. First, V ′′ computes q def= ER [F xR] and accepts if
q > s2q (just as V ′). In case q ≤ s2q, the new verifier proceeds differently: It
randomly selects R as V does and computes F xR. If F xR > 2q−t then V ′′ accepts and
otherwise it invokes V on input x and coins R. Clearly, this guarantees that the
free-bit complexity of V ′′ is at most q− t. To analyze the soundness of V ′′, note that
when ER [F xR] ≤ s2q, it follows that PrR [F xR > 2q−t] ≤ 2t · s (Markov Inequality).
Thus, the soundness error of V ′′ is at most s+ 2ts and the second part follows.

By computing the amortized average free-bit complexity of the class of languages in
the right hand side of Eq. (19) above, we obtain the following consequence.

Corollary 10.11. For admissible functions c, r, q with r(n), q(n) = O(log n),

PCPc[r, q] ⊆ FPCP
av

c [r, q − 1].

15 On input a pair of graphs, G0 and G1, the verifier uniformly selects i ∈ {0, 1} and generates a
random isomorphic copy of Gi, denoted H. This graph H is the single query made by the verifier,
which accepts if and only if the answer equals i.

PCP – TOWARDS TIGHT RESULTS 101

where FPCP
av

· [·, f] denotes a class analogous to FPCP·[·, f] in which average free-
bit complexity is measured instead of (worst-case) free-bit complexity.

Proof. For some function m, we have

PCPc[r, q] ⊆ PCPc,c·2−m [r, qm] ⊆ FPCPav
c,c·2−m [r, qm−m] ⊆ FPCP

av

c [r, q − 1].

where the second inclusion is due to Eq. (19).

The above corollary clinches the argument that the amortized query complexity is
incapable of capturing the approximability of the clique function. Previously we had
argued thus based on the assumption that the clique number may be hard to approxi-
mate to within N

1
2 (i.e., establishing such a clique NP-hardness would require showing

that NP ⊆ PCP[log, 1−ε], for every ε > 0, which is impossible16 as we’ve shown that
PCP[log, 1− ε] ⊆ P). Now, we can remove this assumption also.17 Suppose that, for
some g (e.g., g = 3

2), MaxClique is NP-hard to approximate to within a N1/(1+g) fac-
tor, but it can be approximated to within a N1/(1+g−δ) factor in polynomial-time, for
every δ > 0 (actually, it suffices to postulate that MaxClique can be approximated to
within a N1/g factor in polynomial-time). Furthermore, supposed that the hardness
result is demonstrated by showing that NP ⊆ PCP[log, g− ε], for every ε > 0. Then,
using the above corollary, we get NP ⊆ FPCP

av
[log, g − 1− ε], for every ε > 0, and

an NP-hardness result of clique approximation18 upto a N1/(1+(g−1−ε)+ε) = N1/g fol-
lows, in contradiction to our hypothesis that such approximations could be achieved in
polynomial time. To summarize, attempts to establish the factor N1/(g+1) for which
it is NP-hard to approximate MaxClique via amortized query complexity will always
fall at least one unit away from the truth; whereas amortized free-bit complexity will
yield the right answer.

11. Transformations of FPCP Systems. We present several useful transfor-
mations which can be applied to pcp systems. These fall into two main categories:

(1) Transformations which amplify the (completeness versus soundness) gap of the
proof system, while preserving (or almost preserving) its amortized free-bit com-
plexity.

(2) Transformations which move the gap location (or, equivalently, the complete-
ness parameter). The gap itself is almost preserved but the moving it changes
the free-bit complexity (and thus the amortized free bit complexity is not pre-
served). Specifically, moving the gap ‘up’ requires increasing the free-bit com-
plexity, whereas moving the gap ‘down’ allows to decrease the free-bit complexity.

Most of these transformations are analogous to transformations which can be applied
to graphs with respect to the Max-Clique approximation problem. In view of the
relation between FPCP and the clique promise problem (shown in Section 8), this
analogy is hardly surprising.

In this section, we use a more extensive FPCP notation which refers to promise
problems (rather than to languages) and introduce an additional parameter – the
proof length. Specifically, FPCPc,s[r, f, l] refers to randomness complexity r, free-bit
complexity f and proof-length l.

16 The entire discussion assumes P 6= NP. The discussion is anyhow moot otherwise.
17 In retrospect, there is no reason to remove this assumption as it has been proven to hold in [56].

However, this was not known at the time the current work was done.
18 Here we use the observation that the FGLSS-reduction works also for amortized average free-bit

complexity.

102 M. BELLARE, O. GOLDREICH, AND M. SUDAN

11.1. Gap amplifications maintaining amortized free-bit complexity.
We start by stating the simple fact that the ratio between the completeness and
soundness bounds (also referred to as gap) is amplified (i.e., raise to the power k)
when one repeats the pcp system (k times). Note, however, that if the original sys-
tem is not perfectly complete then the completeness bound in the resulting system
gets decreased.

Proposition 11.1. (simple gap amplification): For all c, s : Z+ → [0, 1] and
k : Z+ → Z+,

FPCPc,s[r, f, l] ⊆ FPCPck,sk [kr, kf, l].

Proof. Let (Y,N) ∈ FPCPc,s[r, f, l] and let V be a verifier witnessing this with
query complexity q : Z+ → Z+. Given k : Z+ → Z+, we define a verifier V (k) as
follows: On input x ∈ {0, 1}n, let r = r(n), k = k(n), f = f(n), l = l(n) and q = q(n).
• V (k) picks k random strings c(1), . . . , c(k) uniformly and independently in {0, 1}r.
• For i = 1 to k, verifier V (k) simulates the actions of V on input x and random

string c(i). Verifier V (k) accepts if V accepts on each of these k instances.
Clearly, V (k) tosses kr coins and examines the l-bit long oracle in at most kq bits,
where at most kf of these are free. For every x, if the probability that V accepts x,
given access to oracle π, is p then the probability that V (k) accepts x, given access to
π is exactly pk. Thus, (Y,N) ∈ FPCPck,sk [kr, kf, l], and oracles can be transformed
(by identity) from one pcp system to the other.

Next, we show that in some sense the randomness-complexity of a proof system need
not be higher than logarithmic in the length of the proofs/oracles employed. Specifi-
cally, we show how to randomly reduce languages proven by the first kind of systems
into languages proven by the second kind. Thus, whenever one is interested in the
computational complexity of languages proven via pcp systems, one may assume that
the system is of the second type. Recall that ≤KR denotes a randomized Karp red-
uction.

Proposition 11.2. (reducing randomness): There exists a constant γ > 0 so
that
(1) (for perfect completeness): For every two admissible functions s, ε : Z+ → [0, 1],

FPCP1,s[r, f, l] ≤KR FPCP1,s′ [r′, f, l]

where s′ = (1 + ε) · s and r′ = γ + log2(l/ε2s).
(2) (for two-sided error): For every four admissible functions c, s, ε1, ε2 : Z+ → [0, 1],

FPCPc,s[r, f, l] ≤KR FPCPc′,s′ [r′, f, l]

where c′ = 1− (1 + ε1) · (1− c) ≥ c− ε1, s′ = (1 + ε2) · s
and r′ = γ + max{− log2(ε21(1− c)) , log2(l)− log2(ε22s)}.
Proof. The proof is reminiscent of Adleman’s proof that RP ⊆ P/ poly [1].

Suppose we are given a pcp system for which we want to reduce the randomness
complexity. The idea is that it suffices to choose the random pad for the verifier
out of a relatively small set of possibilities (instead than from all 2r possibilities).
Furthermore, most small sets (i.e., sets of size linear in l) are good for this purpose.
This suggest randomly mapping an input x for the original pcp system into an input
(x,R) for the new system, where R is a random set of m = O(l) possible random-pads
for the original system. The new verifier will select a random-pad uniformly in R, thus

PCP – TOWARDS TIGHT RESULTS 103

using only log2 |R| random coins, and run the original verifier using this random-pad.
Details follow.

We start with the simpler case stated in Part (1). Let (Y,N) ∈ FPCP1,s[r, f, l]
and V be a verifier demonstrating this fact. The random reduction maps x ∈ {0, 1}n

to (x,R), where R is a uniformly chosen m-multi-subset of {0, 1}r for l def= l(n),
r

def= r(n), s def= s(n), ε def= ε(n) and m
def= γl

ε2s . (The constant γ is chosen to make the
Chernoff bound, used below, hold.) On input (x,R), the new verifier V ′ uniformly
selects c ∈ R and invokes V with input x and random-pad c. Clearly, the complexities
of V ′ are as claimed above. Also, assuming that V always accepts x, when given access
to an oracle π then, for every possible pair (x,R) to which x is mapped, V ′ always
accepts (x,R) when given access to the oracle π. It remains to upper bound, for each
x 6∈ L and most R’s, the probability that V ′ accepts (x,R) when given access to an
arbitrary oracle.

Fixing any x 6∈ L and any oracle π, we bound the probability that V ′, give access
to π, accepts (x,R) for most R’s. A set R is called bad for x with respect to π if for
more than a s′ fraction of the c ∈ R the verifier V accepts x when given access to
π and random-pad c. Let R = (r(1), ..., r(m)) be a uniformly selected multi-set. For
every i ∈ [m] (a possible random choice of V ′), we define a 0-1 random variable ζi
so that it is 1 iff V on random-pad r(i) and access to oracle π accepts the input x.
Clearly, the ζi’s are mutually independent and each equals 1 with probability δ ≤ s.
Using a multiplicative Chernoff Bound (cf. [75, Theorem 4.3]), the probability that a
random R is bad (for x w.r.t. π) is bounded by

Pr

[
m∑
i=1

ζi ≥ (1 + ε) ·ms

]
< 2−Ω(ε2·ms)

Thus, by the choice of m, the probability that a random R is bad for x, with respect
to any fixed oracle, is smaller than 1

4 · 2
−l. Since they are only 2l relevant oracles, the

first part of the proposition follows.
For the second part of the proposition, we repeat the same argument, except that

now we need to take care of the completeness bound in the resulting pcp system. This
is done similarly to the way we dealt with the soundness bound, except that we do
not need to consider all possible oracles – it suffices to consider the best oracle for any
x ∈ Y . When applying the multiplicative Chernoff bound it is important to note that,
since we are interested in the rejection-event, the relevant expectation is m · (1 − c)
(and not m · c). Thus, as long as m ≥ 2γ

ε21(1−c) , at least 3
4 of the possible sets R cause

V ′ to accept x ∈ Y with probability at least 1− (1 + ε1) · (1− c) = c− (1− c)ε1. The
second part of the proposition follows.

Combining Propositions 11.1 and 11.2, we obtain a randomized reduction of pcp
systems which yields the effect of Proposition 11.1 at much lower (and in fact mini-
mal) cost in the randomness complexity of the resulting pcp system. This reduction is
analogous to the well-known transformation of Berman and Schnitger [25]. The red-
uction (in either forms), plays a central role in deriving clique approximation results
via the FGLSS method: applying the FGLSS-reduction to proof systems obtained via
the second item (below), one derives graphs of size N def= 2(1+ε+f)·t with clique-gap
2t (which can be rewritten as N1/(1+f+ε)). For sake of simplicity, we only state the
case of perfect completeness.

Corollary 11.3. (probabilistic gap amplification at minimal randomness cost):

104 M. BELLARE, O. GOLDREICH, AND M. SUDAN

(1) (Combining the two propositions): For every admissible k : Z+ → Z+,

PCP1,1/2[coins = r ; query = q ; free = f ; pflen = l]

≤KR FPCP1,2−k+1 [r + log2 q +O(1) + k, kf, l] .

(2) (using amortized free-bit complexity): For every ε > 0, there exists a constant c
so that

FPCP[log, f, l] ≤KR FPCP1,2−t [(1 + ε) · t, f · t, l]
where t(n) = c log2 n.

Proof. Suppose that (Y,N) ∈ FPCP1,1/2[r, f, l]. Clearly, l ≤ 2r · q, where q(n) =
poly(n) is the query complexity of the verifier. Then, applying Proposition 11.1, we
get (Y,N) ∈ FPCP1,1/2k [kr, kf, 2r · q]. Applying Part (1) of Proposition 11.2, we
obtain (Y,N) ≤KR FPCP1, 1

2k−1
[r′, kf], where r′ = O(1) + log2(2rq/2−k) = O(1) + r+

k + log2 q. The first part of the corollary follows.
Suppose now that a language L has a proof system as in the hypothesis of the

second part. Then, there exists a logarithmically bounded function m so that L ∈
FPCP1,1/2m [r,mf, l], where r(n) ≤ α · log2 n and l(n) ≤ nβ for some constants α and
β. Invoking a similar argument (to the above), we get L ≤KR FPCP1, 1

2km−1
[r′, k ·mf],

where r′(n) = O(1) + km+ (α+ β) · log2 n. Now, setting k(n) so that k(n) ·m(n) ≥
α+β
ε · log2 n, and the corollary follows.

An alternative gap amplification procedure which does not employ randomized re-
ductions is presented below. This transformation increases the randomness complex-
ity of the pcp system more than the randomized reduction presented above (i.e.,
r′ ≈ O(r) + 2k rather than r′ ≈ r + k as in Item (1) of Corollary 11.3). The trans-
formation is used to obtain in-approximability results under the assumption P 6= NP
(rather than under NP 6⊆ BPP). Again, we only state the case of perfect completeness.

Proposition 11.4. (deterministic gap amplification at low randomness cost):
For every ε, s > 0 and every admissible function k :Z+→Z+

FPCP1,s[r, f, l] ⊆ FPCP1,sk [O(r) + (2 + ε) · k · log(1/s), (1 + ε) · kf, l].

Actually, the constant in the O-notation is min{1, 2+(4/ε)
log2(1/s)}.

We use random walks on expander graphs for error reduction (cf., [2, 30]). The value of
the constant multiplier of k log(1/s) in the randomness complexity of the resulting pcp
system, depends on the expander graph used. Specifically, using a degree d expander
graph with second eigenvalue λ yields a factor of log2 d

1+log2 λ
. Thus, it is essential to use

Ramanujan graphs [70] in order to obtain the claimed constant of 2 + ε.

Proof. [Proposition 11.4] For simplicity assume s = 1/2. The idea is to use
a “pseudorandom” sequence generated by a random walk on an expander graph in
order to get error reduction at moderate randomness cost. Specifically, we will use
a Ramanujan expander graph of constant degree d and second eigenvalue λ ≈ 2

√
d

(cf., [70]). The constant d will be determined so that d > 24+ 8
ε (and d < 26+ 8

ε). It is
well-known that a random walk of length t in an expander avoids a set of density ρ
with probability at most (ρ+ λ

d)t (cf., [2, 61]). Thus, as a preparation step, we reduce
the error probability of the pcp system to

p
def=

λ

d
=

2√
d

(20)

PCP – TOWARDS TIGHT RESULTS 105

This is done using the trivial reduction of Proposition 11.1. We derive a proof system
with error probability p, randomness complexity

r′
def= r · log2(1/p) = r · log2(

√
d/2) = O(r)(21)

and free-bit complexity

f ′
def= f · log2(1/p) = f · log2(

√
d/2)(22)

(In case we start with soundness error s, where s > p, the multiplier will be log1/s(1/p)
instead of log2(1/p).) Now we are ready to apply the expander walk technique. Using
an expander walk of length t, we transform the proof system into one in which the
randomness complexity is r′ + (t − 1) · log2 d, the free-bit complexity is tf ′ = tf ·
log2(

√
d/2) and the error probability is at most (2p)t = (4/

√
d)t = 2−k, where k def=

t · log2(
√
d/4). Using log2 d >

8
ε + 4, we can bound the randomness complexity by

r′ + t log2 d = r′ +
log2 d

1
2 · (log2 d)− 2

· k

< r′ + (2 + ε) · k
and the free-bit complexity by

tf · log2(
√
d/2) =

1
2 · (log2 d)− 1
1
2 · (log2 d)− 2

· kf

< (1 + ε) · kf
The proposition follows.

Using Proposition 11.4, we obtain the following corollary which is used in deriv-
ing clique in-approximability results under the P 6= NP assumption, via the FGLSS
method: applying the FGLSS-reduction to proof systems obtained via this corollary,
one derives graphs of size N def= 2(2+ε+f)·t with clique-gap 2t (which can be rewritten
as N1/(2+f+ε)).

Corollary 11.5. For every ε > 0 there exists a constant c so that

FPCP[log, f, l] ⊆ FPCP1,2−t [(2 + ε) · t, (1 + ε)f · t, l]
where t(n) = c log2 n.

11.2. Trading-off gap location and free-bit complexity. The following
transformation is analogous to the randomized layering procedure for the clique
promise problem (i.e., Proposition 8.6). The transformation increases the acceptance
probability bounds at the expense of increasing the free-bit complexity.

Proposition 11.6. (increasing acceptance probabilities and free-bit complexity):

(1) (using a randomized reduction which preserves the randomness of the proof sys-
tem): For all admissible functions c, s : Z+ → [0, 1], and r, f,m : Z+ → Z+,

FPCPc,s[r, f] ≤KR FPCPc′,s′ [r, f + log2m]

where c′ = 1−4(1−c)m and s′ = m ·s. In case c′ > 1−2−r, we have then c′ = 1.
(2) (inclusion which moderately increases the randomness of the proof system): For

all admissible functions c, s : Z+ → [0, 1], and r, f,m : Z+ → Z+,

FPCPc,s[r, f] ⊆ FPCPc′,s′ [r′, f + log2m]

• where if m ≤ 1/c then r′ = 2 ·max{r, logm}, c′ = m
2 · c and s′ = m · s;

106 M. BELLARE, O. GOLDREICH, AND M. SUDAN

• and otherwise (i.e., for m > 1/c), r′ = O(max{r, logm} + mc), c′ =
1− 2−Θ(mc) and s′ = m · s.

Proof. Suppose we are given a pcp system for which we want to increase the
acceptance probability bound in the completeness condition. The idea is to allow the
new verifier to select m random-pads for the original verifier and query the oracle
as to which pad to use. A straightforward implementation of this idea will increase
the randomness complexity of the verifier by a factor of m. Instead, we use two
alternative implementations, which yield the two parts of the proposition. In both
implementations the free-bit complexity increases by log2m and the soundness bound
increases by a factor of m.

The first implementation employs a technique introduced by Lautemann (in the
context of BPP) [68]. Using a randomized reduction, we supply the new verifier with
a sequence of m possible “shifts” that it may effect. The new verifier selects one
random-pad for the original verifier and generates m shifts of this pad. Now, the new
verifier queries the oracle as to which of these shifts it should use as a random-pad
for the original verifier. Details follow.

We first present a random reduction mapping x ∈ {0, 1}n to (x, S), where S is a
uniformly chosen m-multi-subset of {0, 1}r, for r def= r(n). On input (x, S), the new
verifier V ′ uniformly selects c ∈ {0, 1}r and queries the oracle on (x, c) receiving an
answer i ∈ [m]. Intuitively, V ′ asks which shift of the random-pad to use. Finally, V ′

invokes V with input x and random-pad c⊕si, where si is the ith string in S. Clearly,
the complexities of V ′ are as claimed above. Also, assuming that V accepts x with
probability δ, we get that, for every S, verifier V ′ accepts (x, S) with probability at
most m · δ. On the other hand suppose that, when given access to oracle π, verifier V
accepts x with probability δ. It follows that there exists a set R of δ2r random-pads
for V so that if V uses any c ∈ R (and queries oracle π) then it accepts x. Fixing any
c ∈ {0, 1}r, we ask what is the probability, for a uniformly chosen S = {si : i≤m},
that there exists an i ∈ [m] so that c ⊕ si ∈ R. Clearly, the answer is 1 − (1 − δ)m.
Thus, for uniformly chosen S ∈ ({0, 1}r)m and c ∈ {0, 1}r,

Pr [∃i ∈ [m] s.t. c⊕ si ∈ R] = 1− (1− δ)m

By Markov Inequality, with probability at least 3
4 , a uniformly chosen S = {si} has

the property that for at least 1 − 4 · (1 − δ)m of the c’s (in {0, 1}r) there exists an
i ∈ [m] so that c⊕ si ∈ R. Part (1) of the proposition follows.

To prove Part (2) of the proposition, we use an alternative implementation of the
above idea, which consists of letting the new verifier V ′ generate a “pseudorandom”
sequence of possible random-pads by itself. V ′ will then query the oracle as to which
random-pad to use, in the simulation of V , and complete its computation by invoking
V with the specified random-pad. To generate the “pseudorandom” sequence we
use the sampling procedure of [18]. Specifically, for m ≤ 1/c this merely amounts to
generating a pairwise independent sequence of uniformly distributed strings in {0, 1}r,
which can be done using randomness max{2r, 2 log2m}. Otherwise (i.e., for m > 1/c)
the construction of [18] amounts to generating Θ(cm) such related sequences, where
the sequences are related via a random walk on a constant degree expander. Part (2)
follows.

The following corollary exemplifies the usage of the above proposition. In case
c(n) = n−α and r(n) = O(log n), the gap is preserved (upto a logarithmic factor)
and the free-bit complexity increases by a log2 1/c additive term. Thus, the corol-
lary provides an alternative way of deriving the reverse-FGLSS transformation (say,

PCP – TOWARDS TIGHT RESULTS 107

Proposition 8.7) from the simple clique verifier of Theorem 8.2. Specifically, one may
apply the following corollary to the simple clique verifier of Theorem 8.2, instead
of combining the layered-graph verifier19 (of Theorem 8.3), and the graph-layering
process of Proposition 8.6.

Corollary 11.7. For all admissible r, f : Z+ → Z+, so that ∀n : r(n) ≥ 2,

FPCPc,s[r, f] ≤KR FPCP1,r· sc [r, f + log2 r + log2(1/c)]

(Compare to Item (1) of Proposition 8.7.)
We conclude this subsection with another transformation which is reminiscent to

an assertion made in Section 8. The following transformation has an opposite effect
than the previous one, reducing the free-bit complexity at the expense of lowering the
bounds on acceptance probability.

Proposition 11.8. (decreasing acceptance probabilities and free-bit complex-
ity): For all admissible functions c, s : Z+ → [0, 1], and r, f, k : Z+ → Z+ so that
k ≤ f , if L ∈ FPCPc,s[r, f] then L ∈ FPCP c

2k
, s
2k

[r + k, f − k]. Furthermore, in case
each random-pad in the original pcp system has at least 2k accepting configurations,
the average free-bit complexity of the resulting system is fav − k, where fav is the
average free-bit complexity of the original system.

Proof. Let V be a verifier satisfying the condition of the proposition. We construct
a new verifier V ′ that on input x ∈ {0, 1}n, setting r = r(n), k = k(n) and f = f(n),
acts as follows. Verifier V ′ uniformly selects a random-pad c ∈ {0, 1}r for V , and
generates all possible accepting configurations with respect to V (x) and random-pad
c. In case there are less than 2k accepting configurations we add dummy configurations
to reach the 2k count. We now partition the set of resulting configurations (which
are accepting and possibly also dummy) into 2k parts of about the same size (i.e.,
some parts may have one configuration more than others). Actually, if we only care
about average free-bit complexity then any partition of the accepting configurations
into 2k non-empty parts will do. The new verifier, V ′, uniformly selects i ∈ [2k] thus
specifying one of these parts, denoted Ai. Next, V ′ invokes V with random-pad c
and accepts if and only if the oracle’s answers form an accepting configuration which
is in Ai (i.e., resides in the selected portion of the accepting configurations). (We
stress that in case c has less than 2k accepting configurations and the selected Ai does
not contain any accepting configuration then V ′ rejects on coins (i, c).) Clearly, the
randomness complexity of the new verifier is r + k.

To analyze the other parameters of V ′, we fix any x ∈ {0, 1}n. For sake of
simplicity, we first assume that the number of accepting configurations of V for any
random-pad is a power of 2. Then the number of accepting configurations of V ′ for
any random-pad (c, i) ∈ {0, 1}r × [2k] is 2m−k, where 2m is the number of accepting
configurations of V on random-pad c. Thus, the free-bit complexity of V ′ is f − k.
Finally, we relate the acceptance probability of V ′ to that of V . This is done by
reformulating the execution of V ′ with oracle π as consisting of two steps. First V ′

invokes V with access to π. If V reaches a rejecting configuration then V ′ rejects
as well; otherwise (i.e., when V reaches an accepting configuration), V accepts with
probability 2−k (corresponding to uniformly selecting i ∈ [2k]). It follows that on
input x and access to oracle π, the verifier V ′ accepts with probability δ

2k
, where δ

denotes the probability that V accepts input x when given access to oracle π.

19 which generalizes the simple clique verifier

108 M. BELLARE, O. GOLDREICH, AND M. SUDAN

In general, our simplifying assumption that the number of accepting configura-
tions of V is a power of 2, may not hold and the analysis becomes slightly more
cumbersome. Firstly, the number of accepting configurations of V ′ for a random-pad
(c, i) is either dM/2ke or bM/2kc, where M is the number of accepting configurations
of V on random-pad c. Thus, in the worse-case the number of accepting configurations
for V ′ (on random-pad (c, i)) is dM/2ke and it follows that the free-bit complexity
of V ′ is log2d2f/2ke = f − k. Furthermore, the expected number of accepting con-
figurations (for a fixed c and uniformly chosen i ∈ [2k]) is exactly M/2k (even if
M < 2k). Thus, if the extra condition holds then the free-bit complexity of V ′ equals
fav − k. Finally, observe that the argument regarding the acceptance probabilities
remains unchanged (and actually it does not depend on the partition of the accepting
configurations into 2k non-empty parts). The proposition follows.

11.3. Other effects on acceptance probabilities and free-bit complex-
ity. Following is an alternative transformation which reduces the free-bit complexity.
However, unlike Proposition 11.8, the following does not decrease the acceptance pa-
rameters. Furthermore, the transformation increases the soundness parameter and so
does not preserve the gap (between the completeness and soundness parameters).

Proposition 11.9. (decreasing free-bit complexity without decreasing accep-
tance probabilities): Let c, s : Z+ → [0, 1] be admissible functions and r, f, k :
Z+ → Z+. Suppose L ∈ FPCPc,s[r, f] with a verifier for which the first k oracle-
answers for each random-pad allow at most 2f−k accepting configurations. Then
L ∈ FPCPc′,s′ [r+k, f ′], where c′ = 1− 1−c

2k
, s′ = 1− 1−s

2k
, and f ′ = log2(2f−k+2k−1).

The above can be further generalized; yet the current paper only utilizes the special
case in which c = 1 (specifically, in the proof of Part 3 in Proposition 10.9, we use
f = 2 and k = 1 obtaining f ′ = log2 3, c′ = 1 and s′ = 1+s

2).
Proof. The proof is similar to the proof of Proposition 11.8. Again, we consider

a verifier V as guaranteed by the hypothesis and let Ai be the set of (at most 2f−k)
accepting configurations which are consistent with the ith possibility of k oracle-
answers to the first k queries. Denote the ith possibility by αi (i.e., all configurations
in Ai start with αi). We construct a new verifier, V ′, which uniformly selects a
random-pad c for V and i ∈ [2k] (specifying a part Ai as above). The verifier V ′

makes the first k queries of V and if the answers differ from αi then V ′ halts and
accepts.20 Otherwise, V ′ continues the emulation of V and accepts iff V accepts.

Clearly, V ′ uses r+k coin-tosses. The accepting configurations of V ′ on random-
pad (c, i) are those in Ai as well as the “truncated V configurations” αj , for j 6= i.
Thus, there are at most 2f−k+2k−1 accepting configurations. Suppose V π(x) accepts
with probability p, then V ′ accepts input x with oracle access to π with probability
(1− 2−k) + 2−k · p = 1− 1−p

2k
. The proposition follows.

Finally, we present a simplified version of the above transformation. Here the ac-
ceptance probabilities are increased without affecting the free-bit complexity (either
way).

Proposition 11.10. (increasing acceptance probabilities while preserving free-
bit complexity): Let c, s, δ : Z+ → [0, 1] be admissible functions and r, f : Z+ → Z+.

20 In contrast, the verifier constructed in the proof of Proposition 11.8, rejects in case of such a
mismatch.

PCP – TOWARDS TIGHT RESULTS 109

Then
FPCPc,s[r, f] ⊆ FPCPc′,s′ [r + log(1/δ), f]

where c′ = 1− δ · (1− c) and s′ = 1− δ · (1− s).

Proof. Let V be a verifier for L ∈ FPCPc,s[r, f]. We construct a new verifier,
V ′, which with probability δ invokes V and otherwise accepts regardless of the input.
The proposition follows.

Acknowledgments. We thank Uri Feige, Johan H̊astad, Viggo Kann, Marcos
Kiwi and Luca Trevisan for carefully reading the previous versions of our work and
pointing out several flaws and improvements. We thank two (anonymous) referees for
their careful reading and many comments towards improving the presentation.

REFERENCES

[1] L. Adleman. Two theorems on random polynomial time. Proceedings of the 19th Symposium
on Foundations of Computer Science, IEEE, 1978, pp. 75–83.

[2] M. Ajtai, J. Komlos and E. Szemeredi. Deterministic Simulation in Logspace. Proceedings
of the 19th Annual Symposium on the Theory of Computing, ACM, 1987, pp. 132–140.

[3] N. Alon, U. Feige, A. Wigderson, D. Zuckerman. Derandomized Graph Products. Com-
putational Complexity, Vol. 5, No. 1, 1995, pp. 60–75.

[4] N. Alon, J. Spencer and P. Erdos. The Probabilistic Method. John Wiley and Sons, 1992.
[5] E. Amaldi and V. Kann. The complexity and approximability of finding maximum feasible

subsystems of linear relations. Theoretical Computer Science, Vol. 147, 1995, pp 181–210.
[6] S. Arora. Reductions, Codes, PCPs and Inapproximability. Proceedings of the 36th Sympo-

sium on Foundations of Computer Science, IEEE, 1995, pp. 404–413.
[7] S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximate optima in

lattices, codes and systems of linear equations. Journal of Computer and System Sciences,
Vol. 54, No. 2, 1997, pp. 317–331.

[8] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification and in-
tractability of approximation problems. Proceedings of the 33rd Symposium on Founda-
tions of Computer Science, IEEE, 1992, pp. 14–23.

[9] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. Pro-
ceedings of the 33rd Symposium on Foundations of Computer Science, IEEE, 1992, pp. 2–
13.

[10] L. Babai. Trading Group Theory for Randomness. Proceedings of the 17th Annual Symposium
on the Theory of Computing, ACM, 1985, pp. 421–429.

[11] L. Babai, L. Fortnow and C. Lund. Non-deterministic Exponential time has two-prover in-
teractive protocols. Computational Complexity, Vol. 1, 1991, pp. 3–40. (See also addendum
in Vol. 2, 1992, pp. 374.)

[12] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-
logarithmic time. Proceedings of the 23rd Annual Symposium on the Theory of Computing,
ACM, 1991, pp. 21–31.

[13] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, Vol. 2, 1981, pp. 198–201.

[14] R. Bar-Yehuda and S. Even. A local ratio theorem for approximating the weighted vertex
cover problem. In Analysis and Design of Algorithms for Combinatorial Problems, Vol. 25
of Annals of Discrete Math, Elsevier, 1985.

[15] R. Bar-Yehuda and S. Moran. On approximation problems related to the independent set
and vertex cover problems. Discrete Applied Mathematics, Vol. 9, 1984, pp. 1–10.

[16] M. Bellare. Interactive proofs and approximation: reductions from two provers in one round.
Proceedings of the Second Israel Symposium on Theory and Computing Systems, IEEE,
1993, pp. 266–274.

[17] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi and M. Sudan. Linearity testing in
characteristic two. IEEE Transactions on Information Theory Vol. 42, No. 6, November
1996, pp. 1781–1795.

[18] M. Bellare, O. Goldreich and S. Goldwasser. Randomness in interactive proofs. Compu-
tational Complexity, Vol. 3, No. 4, 1993, pp. 319–354.

110 M. BELLARE, O. GOLDREICH, AND M. SUDAN

[19] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability — To-
wards Tight Results. Extended abstract of this paper, Proceedings of the 36th Symposium
on Foundations of Computer Science, IEEE, 1995, pp. 422–431.

[20] M. Bellare, O. Goldreich and M. Sudan. Free Free Bits, PCPs and Non-Approximability
— Towards Tight Results. Preliminary versions of this paper. TR95-024 of ECCC, the Elec-
tronic Colloquium on Computational Complexity. May 1995 (revised Sept. 1995, Jan. 1996,
Dec. 96). See http://www.eccc.uni-trier.de/eccc/.

[21] M. Bellare, S. Goldwasser, C. Lund and A. Russell. Efficient probabilistically checkable
proofs and applications to approximation. Proceedings of the 25th Annual Symposium on
the Theory of Computing, ACM, 1993, pp. 294–304. (See also Errata sheet in Proceedings
of the 26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 820–820).

[22] M. Bellare and P. Rogaway. The complexity of approximating a quadratic program. Journal
of Mathematical Programming B, Vol. 69, No. 3, September 1995, pp. 429–441. Also in
Complexity of Numerical Optimization, Ed. P. M. Pardalos, World Scientific, 1993.

[23] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings of the 26th
Annual Symposium on the Theory of Computing, ACM, 1994, pp. 184–193.

[24] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover interactive proofs:
How to remove intractability assumptions. Proceedings of the 20th Annual Symposium
on the Theory of Computing, ACM, 1988, pp. 113–131.

[25] P. Berman and G. Schnitger. On the complexity of approximating the independent set
problem. Information and Computation, Vol. 96, 1992, pp. 77–94.

[26] A. Blum. Algorithms for approximate graph coloring. Ph. D Thesis, Dept. of Computer Science,
MIT, 1991.

[27] M. Blum, M. Luby and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, Vol. 47, 1993, pp. 549–595.

[28] R. Boppana and M. Haldórsson. Approximating maximum independent sets by excluding
subgraphs. BIT, Vol. 32, No. 2, 1992.

[29] J. Bruck and M. Naor. The hardness of decoding with preprocessing. IEEE Transactions on
Information Theory, Vol. 36, No. 2, 1990, pp. 381–385.

[30] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random
sources. Proceedings of the 30th Symposium on Foundations of Computer Science, IEEE,
1989, pp. 14–19.

[31] A. Condon. The complexity of the max word problem and the power of one-way interactive
proof systems. Computational Complexity, Vol. 3, 1993, pp. 292–305.

[32] S. Cook. The complexity of theorem-proving procedures. Proceedings of the 3rd Annual
Symposium on the Theory of Computing, ACM, 1971, pp. 151–158.

[33] P. Crescenzi and V. Kann. A compendium of NP optimization problems. Technical Report,
Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”, SI/RR-
95/02, 1995. The list is updated continuously. The latest version is available via http:

//www.nada.kth.se/˜viggo/problemlist/compendium.html.
[34] P. Crescenzi, R. Silvestri and L. Trevisan. To weight or not to weight: where is the

question? Proceedings of the Fourth Israel Symposium on Theory and Computing Systems,
IEEE, 1996.

[35] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM J. on Computing, Vol. 5, 1976, pp. 691–703.

[36] S. Even, A. Selman and Y. Yacobi. The complexity of promise problems with applications
to public-key cryptography. Information and Control, Vol. 2, 1984, 159–173.

[37] U. Feige. Randomized graph products, chromatic numbers, and the Lovász theta function.
Proceedings of the 27th Annual Symposium on the Theory of Computing, ACM, 1995,
pp. 635–640.

[38] U. Feige. Set Cover. A threshold of ln n for approximating set cover. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pages 314–318, 1996.

[39] U. Feige and M. Goemans. Approximating the value of two prover proof systems, with ap-
plication to Max-2SAT and Max-DICUT. Proceedings of the Third Israel Symposium on
Theory and Computing Systems, IEEE, 1995, pp. 182–189.

[40] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, Vol. 43, No. 2, 1996, pp. 268–292.

[41] U. Feige and J. Kilian. Two prover protocols – Low error at affordable rates. Proceedings of
the 26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 172–183.

[42] U. Feige and J. Kilian. Zero-knowledge and the chromatic number. Proceedings of the 11th
Annual Conference on Computational Complexity, IEEE, 1996.

[43] U. Feige and L. Lovász. Two-prover one round proof systems: Their power and their problems.

PCP – TOWARDS TIGHT RESULTS 111

Proceedings of the 24th Annual Symposium on the Theory of Computing, ACM, 1992,
pp. 733-744.

[44] L. Fortnow, J. Rompel and M. Sipser. On the power of multiprover interactive protocols.
Theoretical Computer Science, Vol. 134, No. 2, 1994, pp. 545–557.

[45] M. Fürer. Improved hardness results for approximating the chromatic number. Proceedings
of the 36th Symposium on Foundations of Computer Science, IEEE, 1995, pp. 414–421.

[46] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and
soundness in interactive proof systems. In Advances in Computing Research: a research
annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), 1989, pp. 429–442.

[47] M. Garey and D. Johnson. The complexity of near optimal graph coloring. Journal of the
ACM, Vol. 23, No. 1, 1976, pp. 43–49.

[48] M. Garey and D. Johnson. Computers and Intractability: A guide to the theory of NP-
completeness. W. H. Freeman and Company, 1979.

[49] M. Garey, D. Johnson and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, Vol. 1, 1976, pp. 237–267.

[50] M. Goemans and D. Williamson. New 3/4-approximation algorithms for the maximum satis-
fiablity problem. SIAM Journal on Discrete Mathematics, Vol. 7, No. 4, 1994, pp. 656–666.

[51] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, Vol. 42, No. 6,
1995, pp. 1115–1145.

[52] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity,
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, Vol. 38,
No. 1, July 1991, pp. 691–729.

[53] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proofs.
SIAM J. Computing, Vol 18, No. 1, 1989, pp. 186–208.

[54] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems.
Proceedings of the 18th Annual Symposium on the Theory of Computing, ACM, 1986,
pp. 59–68.

[55] J. Håstad. Testing of the long code and hardness for clique. Proceedings of the 28th Annual
Symposium on the Theory of Computing, ACM, 1996, pp. 11–19.

[56] J. Håstad. Clique is hard to approximate within n1−ε. Proceedings of the 37th Symposium
on Foundations of Computer Science, IEEE, 1996, pp. 627–636.

[57] J. Håstad. Getting optimal in-approximability results. Proceedings of the 29th Annual Sym-
posium on the Theory of Computing, ACM, 1997, pp. 1–10.

[58] D. Hochbaum. Efficient algorithms for the stable set, vertex cover and set packing problems.
Discrete Applied Mathematics, Vol 6, 1983, pp. 243–254.

[59] R. Impagliazzo and D. Zuckerman. How to recycle random bits. Proceedings of the 30th
Symposium on Foundations of Computer Science, IEEE, 1989, pp. 248–253.

[60] N. Jones, Y. Lien and W. Laaser. New problems complete for non-deterministic log space.
Math. Systems Theory, Vol. 10, 1976, pp. 1–17.

[61] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM, Vol. 42, No. 5,
1995, pp. 1091–1106.

[62] V. Kann, S. Khanna, J. Lagergren and A. Panconesi. On the hardness of approximating
MAX k-CUT and its dual. Technical Report of the Department of Numerical Analysis and
Computing Science, Royal Institute of Technology, Stockholm, TRITA-NA-P9505, 1995.

[63] D. Karger, R. Motwani and M. Sudan. Approximate graph coloring by semidefinite pro-
gramming. Proceedings of the 35th Symposium on Foundations of Computer Science,
IEEE, 1994, pp. 2–13.

[64] H. Karloff and U. Zwick. A 7/8-eps approximation algorithm for MAX 3SAT? To appear
in Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997.

[65] R. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations,
Miller and Thatcher (eds.), Plenum Press, New York, 1972.

[66] S. Khanna, N. Linial and S. Safra. On the hardness of approximating the chromatic number.
Proceedings of the Second Israel Symposium on Theory and Computing Systems, IEEE,
1993, pp. 250–260.

[67] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-time. Proceed-
ings of the 32nd Symposium on Foundations of Computer Science, IEEE, 1991, pp. 13–18.

[68] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, Vol. 17,
No. 4, 1983, pp. 215–217.

[69] L. Levin. Universal’ny̆ıe pereborny̆ıe zadachi (universal search problems : in russian). Problemy
Peredachi Informatsii, Vol. 9, No. 3, 1973, pp. 265–266.

[70] A. Lubotzky, R. Phillips and P. Sarnak. Explicit Expanders and the Ramanujan Conjec-

112 M. BELLARE, O. GOLDREICH, AND M. SUDAN

tures. Proceedings of the 18th Annual Symposium on the Theory of Computing, ACM,
1986, pp. 240–246.

[71] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, Vol. 41, No.5, 1994, pp. 960–981.

[72] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. Journal of the ACM, Vol. 39, No. 4, 1992, pp 859–868.

[73] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland, 1981.
[74] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the

vertex cover problem. Acta Informatica, Vol. 22, No. 1, 1985, pp. 115–123.
[75] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.
[76] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.

Journal of Computer and System Sciences, Vol. 43, 1991, pp. 425–440.
[77] E. Petrank. The Hardness of Approximations: Gap Location. TR–754, Department of Com-

puter Science, Technion – Israel Institute of Technology, 1992.
[78] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs. Proceedings of the

26th Annual Symposium on the Theory of Computing, ACM, 1994, pp. 194–203.
[79] R. Raz. A parallel repetition theorem. Proceedings of the 27th Annual Symposium on the

Theory of Computing, ACM, 1995, pp. 447–456.
[80] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the ACM, Vol. 23,

1976, pp. 555–565.
[81] A. Shamir. IP=PSPACE. Journal of the ACM, Vol. 39, No. 4, 1992, pp. 869–877.
[82] G. Tardos. Multi-prover encoding schemes and three prover proof systems. Journal of Com-

puter and System Sciences, Vol. 53, No. 2, October 1996, pp. 251–260.
[83] A. Ta-Shma. A Note on PCP vs. MIP. Information Processing Letters, Vol. 58, No. 3, 1996,

pp. 135–140.
[84] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson. Gadgets, approximation and linear

programming. Proceedings of the 37th Symposium on Foundations of Computer Science,
IEEE, 1996, pp. 617–626.

[85] M. Yannakakis, On the approximation of maximum satisfiability. Journal of Algorithms,
Vol. 17, 1994, pp. 475–502.

[86] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM J. on Comput-
ing, Vol. 25, No. 6, 1996, pp. 1293–1304.

A. The coding theory bound. We provide here the coding theory bound
used in the proof of Lemma 3.11. It is a slight extension of bounds in [73, Ch. 17]
which consider only vectors of weight exactly w rather than at most w. For sake
of completeness, we include a proof of this bound. In discussing binary vectors, the
weight is the number of ones in the vector and the distance between two vectors is
the number of places in which they disagree.

Lemma A.1. Let B = B(n, d, w) be the maximum number of binary vectors of
length n, each with weight at most w, and any two being distance at least d apart.
Then B ≤ (1 − 2β)/(4α2 − 2β), provided α2 > β/2, where α = (1/2) − (w/n) and
β = (1/2)− (d/n).

Proof. Consider an arbitrary sequence, v1, ..., vM , of n-vectors which are at mutual
distance at least n/2. Let us denote by vi,j the jth entry in the ith vector, by wi the
weight of the ith vector, and by w the average value of the wi’s. Define

S
def=

M∑
i=1

M∑
j=1

n∑
k=1

vi,kvj,k

Then, on one hand

S =
M∑
i=1

n∑
k=1

v2
i,k +

∑
1≤i 6=j≤M

n∑
k=1

vi,kvj,k

≤
∑
i

wi +
∑

1≤i 6=j≤M

wi + wj − d
2

PCP – TOWARDS TIGHT RESULTS 113

= Mw +M(M − 1) · (w − (d/2))

where the inequality follows from observing that, for i 6= j,

wi + wj = 2|{k : vi,k=vj,k=1}|+ |{k : vi,k 6= vj,k}|

≥ 2
n∑
k=1

vi,kvj,k + d

On the other hand S =
∑n
k=1 |{i : vi,k = 1}|2. This allows to lower bound S by the

minimum of
∑
k x

2
k subject to

∑
k xk = Mw. The minimum is obtained when all xk’s

are equal and yields

S ≥ n ·
(
Mw

n

)2

Confronting the two bounds, we get

M · w2

n
≤M · w − (M − 1) · (d/2)

which yields (w
2

n − w + d
2)M ≤ d

2 . Letting α = (1/2)− (w/n) and using

α2 ≥ α2 > β/2 ,

we get

M ≤ 1− 2β
4α2 − 2β

and the lemma follows by observing that the bound maximizes when α = α.

