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Abstract

Given a function f mapping n-variate inputs from a finite
field F into F , we consider the task of reconstructing a list
of all n-variate degree d polynomials which agree with f on a
tiny but non-negligible fraction, �, of the input space. We give a
randomized algorithm for solving this task which accessesf as a
black box and runs in time polynomial in 1� ; n and exponential ind, provided � is 
(pd=jF j). For the special case when d = 1,

we solve this problem for all � def= � � 1jF j > 0. In this case the

running time of our algorithm is bounded by a polynomial in 1� ; n
and exponential in d. Our algorithm generalizes a previously
known algorithm, due to Goldreich and Levin, that solves this
task for the case when F = GF(2) (and d = 1).

1 Introduction

We consider the following archetypal reconstruction problem:

Given: An oracle (black box) for an arbitrary function f :Fn ! F , a class of functions C, and a parameter �.
Output: A list of all functions g 2 C that agree with f on at
least � fraction of the inputs.

The reconstruction problem can be interpreted in several ways
within the framework of computational learning theory. First, it
falls into the paradigm of learning with persistent noise. Here
one assumes that the function f is derived from some function
in the class C by “adding” noise to it. Typical works in this
direction either tolerate only small amounts of noise [2, 38, 19,
37] (i.e., that the function is modified only at a small fraction of
all possible inputs) or assume that the noise is random [1, 24, 18,
23, 31, 13, 34] (i.e., that the decision of whether or not to modify
the function at any given input is made by a random process).
In contrast, we take the setting to an extreme, by considering a
very large amount of (possibly adversarially chosen) noise. In
particular, we consider situations in which the noise disturbs the
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A second interpretation of the reconstruction problem is
within the paradigm of “agnostic learning” introduced by
Kearns et. al. [21] (see also [27, 28, 22]). In the setting of ag-
nostic learning, the learner is to make no assumptions regarding
the natural phenomena underlying the input/output relationship
of the function, and the goal of the learner is to come up with a
simple explanation which best fits the examples. Therefore the
best explanation may account for only part of the phenomena.
In some situations, when the phenomena appears very irregular,
providing an explanation which fits only part of it is better than
nothing. Interestingly, Kearns et. al. did not consider the use of
queries (but rather examples drawn from an arbitrary distribu-
tion) as they were skeptical that queries could be of any help.
We show that queries do seem to help (see below).

Yet another interpretation of the reconstruction problem,
which generalizes the “agnostic learning” approach, is the fol-
lowing. Suppose that the natural phenomena can be explained
by several simple explanations which together cover most of the
input-output behavior but not all of it. Namely, suppose that
the function f agrees almost everywhere with one of a small
number of functions gi 2 C. In particular, assume that each gi
agrees with f on at least a � fraction of the inputs but that for
some (say 2�) fraction of the inputs f does not agree with any
of the gi’s. This setting is very related to the setting investigated
by Ar et. al. [3], except that their techniques require that the
fraction of inputs left unexplained by any gi be smaller than the
fraction of inputs on which each gi agrees with f . We believe
that our relaxation makes the setting more appealing and closer
in spirit to “agnostic learning”.

In this paper, we consider the special case of the reconstruc-
tion problem when the hypothesis class is the set of n-variate
polynomials of bounded total degree d � 1. The most interest-
ing aspect of our results is that they relate to very small values of
the parameter � (the fraction of inputs on which the hypothesis
has to fit the function f). Our main results are� An algorithm that given d, F and � = 
(pd=jF j), and

provided oracle access to an arbitrary function f : Fn!F , runs in time (n=�)O(d) and outputs a list including all
degree d polynomials which agree with f on � fraction
of the inputs.� An algorithm that given F and � > 0, and provided
oracle access to an arbitrary function f : Fn ! F , runs
in time poly(n=�) and outputs a list including all linear
functions (degree d = 1 polynomials) which agree withf on a � def= 1jF j + � fraction of the inputs.



We remark that any algorithm for the reconstruction problem
would need to output all the coefficients of such a polynomial,
requiring time at least

�n+dd �. Moreover the number of such
polynomials could grow as a function of 1� . Thus it seems rea-
sonable that the running time of such a reconstruction procedure
should grow as a polynomial function of 1� and

�nd�. Secondly,
for d < jF j, the value djF j seems a natural threshold for our
investigation since there are exponentially (in n) many degreed polynomials which are at distance � djF j from some func-
tions (see Appendix A). Finally, queries seem essential to our
learning algorithm since for the case F = GF (2) and d = 1
the problem reduces to the well-known problem of “learning
parity with noise” [18] which is commonly believed to be hard
when one is only allowed uniformly and independently chosen
examples [18, 7, 20]. (Actually, learning parity with noise is
considered hard even for random noise, whereas here the noise
is adversarial.) In the full version, we give evidence that the
problem may be hard with respect to d even in the case wheren = 1.

A special case of interest is when the function f is obtained
as a result of picking an arbitrary degree d polynomial p and

letting f agree with p on an arbitrary � = 
(q djF j ) fraction of

the inputs and be set at random otherwise.1 In this case, with
high probability, only one polynomial (i.e., p) agrees with f on
a � fraction of the inputs. Thus, in this case, the above algorithm
will output only the polynomial p.

A different perspective: Maximum-likelihood decoding of
error-correcting codes Maximum likelihood decoding is the
term applied to the task of computing the “nearest codeword”
from a specified error-correcting code to a given word (cf., [29]).
Consider the error-correcting code which encodes

�n+dd � ele-
ments ofF by first computing the polynomial obtained by using
these elements as the list of coefficients and then evaluating the
polynomial at all points in the field. Such codes are fairly well-
known — for instance, the Hadamard code is one such code
with F = GF(2) and d = 1, and the Reed-Solomon code lies
at the other extreme with n = 1, and jF j = O(d). One way to
interpret our results is as providing a code (over the alphabetF )
and a corresponding maximum-likelihood-decoder which works
when the error-rate approaches 1. We are not aware of any other
case where an approach other than brute force can be used to
perform maximum-likelihood decoding with the error-rate ap-
proaching 1. Furthermore, our decoding algorithm works
without examining the entire codeword. Our algorithms seem to
be non-trivial and have better running times than the brute force
algorithm (table lookup) for list-decoding.

1.1 Other Related Work

Polynomial interpolation When the noise rate is 0, our problem
is simply that of polynomial interpolation. In this case the1This is different from “random noise” as the set of corrupted inputs is
selected adversarially – only the values at these inputs are random.

problem is well analyzed and the reader is referred to [41], for
instance, for a history of the polynomial interpolation problem.

Self-Correction In the case when the noise rate is positive but
small, one approach used to solving the reconstruction problem
is to use self-correctors, introduced independently in [8] and
[26]. Self-correctors convert programs that are known to be
correct on a fraction � of inputs into programs that are correct on
each input. Self-correctors for values of � that are larger than3=4
have been constructed for several functions [8, 9, 26, 32]. Self-
correctors for f that are polynomial functions over a finite field
were found by [4; 26]. The fraction of errors they could correct
was improved to almost 1=4 independently by [14] and [10] and
then to almost 1=2 by [15] (using a solution for the univariate
case implicit in [5]). However, when the error is larger than12 (or, alternatively � < 1=2), the utility of the standard self-
correction approach seems to disappear, since there could be
more than one polynomial that agrees with the program on an� < 1=2 fraction of the inputs.

Linear Polynomials Goldreich and Levin [17] have solved
the reconstruction problem in the case where d = 1 and F =GF (2). Similar ideas are used by Kushilevitz and Mansour [23]
to learn boolean decision trees.

Reconstruction of polynomials under structured error mod-
els Ar et. al. [3] have considered the problem of reconstructing
a list of polynomials which together explain the input-output
relation of a given black-box. However, they have required that
the fraction of inputs left uncovered by any of the polynomials be
smaller than the fraction of inputs covered by any single polyno-
mial. An alternative way of viewing the work of Ar et. al. [3] is
as reconstructing the list of polynomials that agree with the f on� � fraction of the inputs, provided that the input-output relation
satisfies some (unknown) algebraic identities. No other polyno-
mial reconstructor seem to be known in the situation where the
error of the program is arbitrary and the error rate approaches 1
(or, alternatively, � approaches 0).

1.2 Rest of this paper

The rest of the paper is organized as follows. In Sec-
tions 2 and 3 we construct the algorithm for solving the poly-
nomial reconstruction problem. In Section 4 we analyze the
running time of this algorithm, modulo a lemma which bounds
the number of polynomials which can agree with a given func-
tion at � fraction of the inputs. In Section 5 we provide two
upper bounds, one for the case of general degree d and another
(tighter) one for the case of d = 1. In Section 6 we consider the
case where the output of the black box either agrees with a fixed
polynomial or is random. We conclude with some open issues
in Section 7.

2 Motivation to the algorithm

We are given oracle access to a function f : GF(q)n !GF(q) and need to find a polynomial (or actually all polynomi-



als) of degree d which agrees with f on an � = 1q + � fraction
of the inputs.

Linear Polynomials. Our starting point is the linear case
(i.e., d = 1); namely, we are looking for a polynomial of the
form p(x1; :::; xn) = Pni=1 cixi. In this case our algorithm
is a generalization of an algorithm due to Goldreich and Levin
[17]2. (The original algorithm is regained by setting q = 2.)
To proceed, we need the following definition: the i-prefix of a
linear polynomial p(x1; :::; xn) is the polynomial which results
by summing up all of the (degree 1) monomials in which only the
first i variables appear. The algorithm proceeds in n rounds, so
that in the ith round we find a list of candidates for the i-prefixes
of p.

The list of i-prefixes is generated by extending the list of(i � 1)-prefixes. The simple (and inefficient) way to perform
this extension is to first extend each (i�1)-prefix in all qpossible
ways and then to screen the resulting list of i-prefixes. A good
screening is the essence of the algorithm. It should guarantee
that the i-prefix of the correct solution p does pass and that
not too many other prefixes pass (as otherwise the algorithm
consumes too much time).

The screening is done by subjecting each candidate prefix,(c1; :::; ci), to the following test. We pick uniformly m =poly(n=�) sequences inGF(q)n�i, and for each such sequence,(si+1; :::; sn), we estimate the probabilitiesP (�) def= Prr1 ;:::;ri2GF(q) 24f(�r; �s) = iXj=1 cjrj + �35 (1)

(where �r; �s denotes the vector (r1; : : : ; ri; si+1; : : : ; sn)), for
all� 2 GF(q). � can be thought of as a guess for

Pnj=i+1 cjsj .
All these probabilities can be approximated simultaneously by
using a sample of poly(n=�) sequences (r1; :::; ri) (regardless
of q). We say that a candidate (c1; :::; ci) passes the test if for
at least one sequence of (si+1; :::; sn) there exists a � so that
the estimate for P (�) is greater than 1q + �2 (i.e., for randomly
chosen (si+1; :::; sn), test if there is a � that occurs often enough
in Equation 1). As shown in [17], the correct candidate passes
the test with overwhelming probability. On the other hand, as
shown in Section 5, at most O(1=�2) candidates (of a certain
length) may pass the test.

The above yields a poly(nq=�)-time algorithm. In order to
get rid of the q factor in running-time, we need to modify the pro-
cess by which candidates are formed. Instead of extending each(i� 1)-prefix, (c1; :::; ci�1), in q possible ways, we do the fol-

lowing. We pick uniformly s def= (si+1; :::; sn) 2 GF(g)n�i,r def= (r1; :::; ri�1) 2 GF(q)i�1 and r0; r00 2 GF(q). Note
that if p is a solution to the reconstruction problem for f then
for at least an �=2 fraction of the sequences (r; s), p satisfiesp(r; r; s) = f(r; r; s) for at least an �=2 fraction of the possibler’s. We may assume that 1=q < �=4 (since otherwise q < 4=�2We refer to the original algorithm as in [17], not to a simpler algorithm
which appears in later versions (cf., [25, 16]).

and we can afford to perform the simpler procedure above). De-
note by y the unknown value of the sum

Pnj=i+1 cjsj (where
these cj’s are the coefficient of the polynomial close to f) and
by x the coefficient we are looking for (i.e., the ith coefficientci). Then, with probability 
(�3), the following two equations
hold:r0x+ y = f(r1; :::; ri�1; r0; si+1; :::; sn)� i�1Xj=1 cjrjr00x+ y = f(r1; :::; ri�1; r00; si+1; :::; sn) � i�1Xj=1 cjrj
where r0 6= r00. Thus solving for xwe get the desired extension.
We emphasize that we do not know whether the equalities hold
or not, but rather solve assuming they hold and add the solution
to the list of candidates. In order to guarantee that the correct
prefix always appears in our candidate list, we repeat the above
extension poly(n=�) times for each (i� 1)-prefix. Extraneous
prefixes can be removed from the candidate list via the screening
process mentioned above. We have:

Theorem 1 Given oracle access to a function f and param-
eters �; k, our algorithm runs in poly(k�n� )-time and outputs,
with probability at least 1 � 2�k, a list containing all linear
polynomials which agree with f on at least a � = 1q + � fraction
of the inputs. Furthermore, the list does not contain polynomials
which agree with f on less than a 1q + �2 fraction of the inputs.

Higher Degree Polynomials. Dealing with polynomials of
degree d > 1 is more involved. Our plan is to first “isolate”
the terms/monomials of degree exactly d and find (candidates
for) their coefficients. We need the following definition, which
is a generalization of an i-prefix: the (d; i)-prefix of a degreed polynomial p(x1; :::; xn) is the polynomial which results by
summing up all the degree d monomials of p in which only the
variables x1; :::; xi appear.

Subtracting such a (d; i)-prefix for f leaves us with a problem
of degree d� 1. Thus, the main part of the algorithm is finding
the list of (d; i)-prefixes. This list is built analogously to the
above and so we need to show how to extend a list of (d; i� 1)-
prefixes into a list of (d; i)-prefixes. Suppose we get the (d; i�1)-prefix p which we want to extend. We select uniformly
a sequence (si+1; :::; sn) 2 GF(q)n�i, and d + 1 elementsr(1); :::; r(d+1) 2 GF(q). Now consider the functionsf (j)(x1; :::; xi�1) def= f(x1; :::; xi�1; r(j); si+1; :::; sn)�p(x1; :::; xi�1):
Suppose that f equals some degree d polynomial and that p is
indeed the (d; i � 1)-prefix of this polynomial. Then f (j) is
a polynomial of degree d � 1 (since all the degree d mono-
mials in the i � 1 variables have been canceled by p). Fur-
thermore, given f (1); :::; f (d+1), we can find (by interpolation)



the extension of p to a (d; i)-prefix. The last assertion de-
serves some elaboration. Consider the (d; i)-prefix of f , de-
noted p0 = p0(x1; :::; xi�1; xi). In each f (j) the monomials ofp0 which agree on the exponents of x1; :::; xi�1 are collapsed
together (since xi is instantiated and so monomials containing
different powers of xi are added together). However, using
the d + 1 collapsed values, we can retrieve the coefficients of
the different monomials (in p0). (Actually, we obtain a degreed polynomial in variables x1; :::; xi which matches each f (j)
when instantiating xi = r(j), but only the degree d monomials
in this polynomial correspond to p0 – as they are not affected by
the instantiation of xi+1; :::; xn.) To complete the high level
description of the procedure we need to get the polynomial rep-
resenting the f (j)’s. Since in reality we have only have access to
a (possibly highly noisy) oracle for the f (j)’s, we use the main
procedure for finding a list of candidates for these polynomials.
We point out that the recursive call is to a problem of degreed�1, which is lower than the degree we are currently handling.

The complete description of this algorithm can be found in
Section 3.

3 Algorithm for degree d > 1 polynomials

The following algorithm is given oracle access to a functionf : GF(q)n ! GF(q) and finds the list of all polynomials
of degree d in the variables x1; :::; xn, which agree with f on
at least a � fraction of the inputs. The algorithm utilizes two
subroutines.

The first subroutine, called Constants, merely returns the list
of all constants which agree with the function f on at least �
fraction of the inputs (it may also return other constants but not
ones which agree with f on less than �=2 of the inputs).

The main subroutine, called Extend, is given a polynomial p
consisting only of monomials of degree d in x1; :::; xi�1 and
returns a list of polynomials which “extend” it. Each such
polynomial consists only of monomials of degree d inx1; :::; xi,
and furthermore the monomials of degree d containing only the
variables x1; :::; xi�1 are exactly those in p. In other words, ifp0 is in the returned list thenp0(x1; :::; xi) = p(x1; :::; xi�1) + d�1Xj=0 pj(x1; :::; xi�1) � xd�ji
where pj consists only of monomials of degree j in x1; :::; xi�1.
Given a polynomial p, Extend does not return an arbitrary list of
admissible polynomials. Instead, it returns a list of polynomials
which seem to be good with respect to f . Extend is invoked
with a (d; i � 1)-prefix and returns a list of (d; i)-prefixes all
consistent with the input prefix. Furthermore, when invoked
with a (d; i � 1)-prefix of a polynomial p which agrees withf on at least a � fraction of the inputs, Extend returns a list
containing the (d; i)-prefix of p. Finally, the list returned by
Extend is never too long; its length is bounded above byNi;d;� =poly( n��(d=q) ) (see below).

Find-all-poly(f; �; n; d; q);
if d = 0 then return Constants(f; �; n; q).L0  f�g:
for i = 1 to n doLi  fg /* List of (d; i)-prefixes */
for every polynomial p 2 Li�1 doLi = Li [ Extend(f; �; p; i; n; d; q)L  fg.

for every polynomial p 2 Ln doL0  Find-all-poly(f � p; �;n; d� 1; q);L  L[ fp+ p0 : p0 2 L0g.
return(L);

NOTATIONS AND CONVENTIONS: We write p1 � p2 if p1 andp2 are identical polynomials. Below, we use the term a (d; i)-
strict-prefix to mean the difference between the (d; i)-prefix and
the (d; i � 1)-prefix. The notation f jai ;:::;an represents then-variate function f(x1; :::; xn) restricted by xj = aj (i.e.,f jai;:::;an(x1; :::; xi�1) def= f(x1; :::; xi�1; ai; :::; an)). The
parameter � (approximately the logarithm of the allowed error
probability of the algorithm) will be determined later. We also
postpone the determination of the parameter � (which governs
the “loss in agreement” introduced by the recursive calls).

The procedure Extend uses two procedures to be described
below. The first procedure, Comp-coeff, gets as (main) inputs a
sequence of d+ 1 polynomials, p(1); :::; p(d+1), each of degreed � 1 in the first i � 1 variables and a corresponding list ofd + 1 values, r(1); :::; r(d+1). Using interpolation, it returns a
polynomial, p, of degree d in the variables x1; :::; xi such thatpjr(j) � p(j) for all j = 1; :::; d+1. (For details see Lemma 7.)

The second procedure, Test-valid, is given oracle access to a
function f 0(x1; :::; xi) (= f jsi+1;:::;sn �p) and a degree d poly-
nomial p0(x1; :::; xi). It tests by the obvious sampling method
whether p0 agrees with f 0 on �0 = �2 fraction of inputs. The
correctness of the algorithm is shown in the following lemma.

Lemma 2 Suppose that Constants, Test-valid and Comp-coeff are
perfectly correct; that is,

(H1) Constants(f; �;n; q) returns each field element e, such
that f assumes the value e on at least a � fraction of the
inputs;

(H2) Test-valid(f 0; p0; �0; i; d; q) answers yes if and only if f 0
agrees with p0 on at least a �0 fraction of the inputs; and

(H3) Comp-coeff(p(1); :::; p(d+1); r(1); :::; r(d+1); i; d; q) re-
turns a polynomial, p, of degreed in the variablesx1; :::; xi
so that pjr(j) � p(j), for all j = 1; :::; d+ 1.



Extend(f; �; p; i; n; d; q). (additional parameters � and �)L0 fg.
repeat �(1��)� times /* main loop */

Pick si+1; : : : ; sn uniformly in GF(q).
Pick m def= �(1��)�� � (d+ 1) distinct elements r(1); : : : ; r(m), uniformly from GF(q).
for j = 1 to m dof (j)  f jr(j) ;si+1;:::;sn � p.L(j)  Find-all-poly(f (j); �2 � �; i; d� 1; q).
for every set fj1; : : : ; jd+1g � f1; : : : ;mg
for every (d+ 1)-tuple (p(j1); : : : ; p(jd+1)) with p(jk) 2 L(jk)p0  Comp-coeff(p(j1); : : : ; p(jd+1); r(j1); : : : ; r(jd+1); i; d; q).
if Test-valid(f jsi+1;:::;sn � p; p0; � � �; i; d; q) thenL0  L0 [ fp+ (d; i)-strict-prefix of p0g;

/* end of main loop */
return(L0).

Suppose that p� is a degree d polynomial which agrees with f
on at least an � > (d+1)�(1��)�2d�1�q fraction of the inputs. Then,

with probability at least 1� 2dn � 2�� , the list output by Find-
all-poly(f; �; n; d; q) contains the polynomial p�.

The lower bound on � is used for guaranteeing that in each
invocation of Extend (regardless of the depth of recursion) the
parameter m is not larger than the field size. This is required
in order to allow the selection of m different field elements (see
footnotes in the proof below).

Proof: The proof proceeds by induction on d. The case d = 0
follows by the hypothesis H1. The induction step uses the other
two hypotheses (i.e., H2 and H3). First, observe that (for the
next d in the induction) it suffices to show that the (d; n)-prefix
of p� (i.e., all degree d monomials) appears in the list Ln (since
the induction hypothesis will be used to reconstruct all lower
degree monomials of p�).

We show by induction on i that the (d; i)-prefix of p� appears
in the listLi. Here the base case (i = 0) holds vacuously and so
we consider the invocation of Extend(f; �; p; i;n; d; q), where p
is the (d; i � 1)-prefix of p� (i.e., by the induction hypothesisp 2 Li�1). Call a sequence s = (si+1; :::; sn) 2 GF (q)n�i�1
good if the function f js and the polynomial p�js agree on at least
an � � � fraction of the inputs. Clearly, at least a (1 � �) � �
fraction of the sequencesare good and so with probability at least1 � 2�� a good sequence s is selected in one of the iterations
of the main loop. Let us consider such an iteration and fix the
good sequence s for the rest of the proof.

We say that r 2 GF(q) is s-good if the function f jr;s and
the polynomial p�jr;s agree on at least an � � �� fraction of the

inputs. Clearly, at least (1 � �) � �� of the r’s are s-good and
so, with probability at leat 1 � 2�� , at least d + 1 of the m
“uniformly”3 chosen r(j)’s are s-good. Let us assume, without
loss of generality, that r(1); :::; r(d+1) are all s-good and fix
them too for the rest of the proof.

Let us denote the polynomial (p�jr(j) ;s) � p by p(j). We

first observe that p(j) is a degree d � 1 polynomial in the vari-
ables x1; :::; xi�1, since the only monomials of degree d inp�jr(j) ;s are those which have all variables in fx1; :::; xi�1g
and that all these monomials are cancelled out by p. Next,

we observe that f (j) def= (f jr(j) ;s) � p agrees with the poly-

nomial p(j) on at least an �2� fraction of the inputs. By the
induction hypothesis (for d � 1), the polynomial p(j) must be
in the list returned by Find-all-poly(f (j); �2�; i; d � 1; q) and
so p(j) 2 L(j). It remains to examine what happens when
Comp-coeff is invoked with the polynomials p(1); :::; p(d+1) and
the values r(1); :::; r(d+1). Let p0 denote the polynomial re-
turned in this invocation and recall that (by the hypothesis H3)p0jr(j) � p(j) for j = 1; :::; d+ 1. Using the definition ofp(j) we get p0(x1; :::; xi�1; r(j)) � [p�js(x1; :::; xi�1; r(j))�p(x1; :::; xi�1)] for j = 1; :::; d+1. Namely, these two degreed polynomials on i variables are identical for d+ 1 distinct4 in-
stantiations of the last variable and thus these two polynomials
are identical; namelyp0(x1; :::; xi�1; xi) � p�js(x1; :::; xi�1; xi)�p(x1; :::; xi�1)3Actually, the r(j)’s are selected uniformly among all m-tuples of distinct
elements.4Here is where we use the fact that the r(j)’s are distinct. Clearly, the
conclusion would not have held otherwise.



Next, we observe that the (d; i)-strict-prefix of p� equals the(d; i)-strict-prefix of p�js (actually, the corresponding (d; i)-
prefixes are identical). Thus, it follows that the (d; i)-strict-
prefix of p0 equals the (d; i)-strict-prefix of p� (equiv., of p��p)
and that p0 agrees with (f js) � p on at least an �� fraction of
the inputs. By the hypothesis H2 it follows that p0 will pass
Test-valid((f js)�p; p0; ��; i; d; q) and so the (d; i)-prefix of p�
(i.e., p+ p00 where p00 is the (d; i)-strict-prefix of p�) will be in
the list returned by Extend. The lemma follows.

4 Bounding the running time

In all our complexity estimates we assume that it is possible
to obtain the value of a function (be it a function given as oracle
or a polynomial represented explicitly) at a given point at unit
cost. Likewise, all standard field operations and algorithmic
conventions are implemented at unit cost. In addition, we need
to set the additional parameters for Extend: we set � = k +O(d log(knd=�)) and � = 1� (1=d). We stress that here d is
the degree-parameter in the initial/main invocation of algorithm
Find-all-Poly (rather than in the recursive calls).

Theorem 3 Given oracle access to a function f and parameters�; k and d, so that � = 
(maxf(d+1)3�log(knd)� 1q ;pd=qg),
algorithm Find-all-Poly runs in poly((k � nd=�)d+1)-time and
outputs, with probability at least 1 � 2�k, a list containing
all degree d polynomials which agree with f on at least an �
fraction of the inputs. Furthermore, the list does not contain
any polynomials which agree with f on less than an �2 fraction
of the inputs.

Using additional ideas it is possible to relax the condition on �.
Specifically, it suffices to have � = 
(pd=q). Furthermore, it is
also possible to improve the running-time. One important idea is
to randomize the problem so that most sequences and elements
are good in the sense used in the proof of Lemma 2 (above).
This is done by a uniformly selected linear transformation of the
original variables xi’s into new variables yi’s (i.e., each yi is a
linear combination of xi’s and vice versa). The theorem follows
from Lemma 2 (above) and the following four lemmas.

Lemma 4 Constants(f; �;n; q) can be implemented in timepoly(k=�) so that with probability at least 1 � 2�k the list
output by the subroutine contains all field elements which agree
with f on at least � fraction of the inputs and no field elements
which agree with f on less than �=2 fraction of the inputs.

We assume, without loss of generality, that Constants(f; �;n; q)
never returns more than 2=� field elements (as otherwise, in the
rare case this does not hold, we can halt with an error message).

Lemma 5 Test-valid(f 0; p0; �0; i; d; q) can be implemented in
time poly(k=�0) so that the following holds with probability at
least 1 � 2�k: If p0 agrees with f 0 on at least an �0 fraction
of the inputs then the test accepts and if p0 agrees with f 0 on at
most an �02 fraction then the test rejects.

Let us denote by Ni;d;� an upper bound on the number ofi-variate degree d polynomials which agree with a particu-
lar function on an � fraction of the inputs. (See a spe-
cific bound in Lemma 6.) We assume, without loss of gen-
erality, that the number of polynomials, p0, passing Test-

valid((f js)� p; p0; �=2; i; d; q) in a single iteration of the main
loop of Extend(f; �; p; i; n; d; q) is bounded above by Ni;d;�=2
(since, again, in the rare case this does not hold the algorithm
can be made to halt with an error message).

Lemma 6 For � > 1q +qd�1q we may set Ni;d;� = i�2�(d=q) .

Proof: Immediate by Theorem 10 Part (2).

Lemma 7 Comp-coeff(p(1); :::; p(d+1); r(1); :::; r(d+1);m; d;q) can be implemented in time
�m+dd � � poly(d).

Proof: Let p(j)(x1; :::; xm�1) = PI c(j)I Qi2I xi be de-
gree d � 1 polynomials, for j = 1; :::; d + 1; that is, theI’s are multisets of size at most d � 1 (of f1; :::;m � 1g).
We need to find a polynomial p(x1; :::; xm) of degree d so
that p(x1; :::; xm�1; r(j)) = p(j)(x1; :::; xm�1), for j =1; :::; d + 1. Let p(x1; :::; xm�1; xm) = PK cKQi2K xi,
where the K’s are multisets of size at most d (of f1; :::;mg). It
follows that for every multiset I � f1; :::;m� 1g we have, for
every j = 1; :::; d+ 1,c(j)I = jIj�dXt=0 cI[fmgt (r(j))t
where I [ fmgt denotes the multiset consisting of I and t
occurrences of m. Note that all c(j)I ’s and r(j)’s are known to
us and we are looking for the cI[fmgt’s. For each I we obtain
an ordinary interpolation problem (which is solvable by linear
algebra) and so the lemma follows.

Lemma 8 Set� = 1� 12d and suppose that � > 2pd=q. Then
the running-time of Find-all-Poly(f; �; n; d; q) is at most�nd�� �O(d)
Proof: omitted (see full version).

5 Counting: Worst Case

In this section we give a worst-case bound on the number of
polynomials which agree with a given function f on � fraction
of the points. In the case of linear polynomials our bound works
for any � > 1q , while in the general case our bound works only
for � that is large enough. We then present examples indicating
that our bound in the linear case is essentially tight. We have



evidence as to why the bound in the general degree case may
not have a simple improvement. Details of the latter will be
included in the final version.

Theorem 9 Let � > 0. For a function f : GF(q)l ! GF(q),
if f1; : : : ; fm : GF(q)l ! GF(q) are distinct linear functions
which satisfy8j 2 f1; : : : ;mg; Prx2GF(q)l [f(x) = fi(x)] � 1q + �;

thenm � �1� 1q�2 � 1�2
Proof: We first fix some notation. We use � to denoteq=(q � 1) and Q to denote ql. For i 2 f1; : : : ;mg andx 2 GF(q)l let �i(x) � 1 if fi(x) 6= f(x) and 0 otherwise.
For i 2 f1; : : : ;mg, t 2 GF(q) and x 2 GF(q)l let�(t)i (x) � 1 if fi(x) � f(x) = t and 0 otherwise. Let wi �jfx : fi(x) 6= f(x)gj and let w = Pmi=1 wim :

The fact that the fi’s are close to f implies that for all i,wi � (1� �� 1q ) �Q.
Our proof generalizes a proof due to S. Johnson (c.f.,

MacWilliams and Sloane [29]) for the case q = 2. The central
quantity used to boundm in their case can be generalized in one
of the two following ways:S �Xi;j;x�i(x)�j(x):S0 �Xi;j;xXt6=0 �(t)i (x)�(t)j (x):
The first sums over all i; j, the number of inputs for which fi
and fj both differ from f . The second sums over all i; j, the
number of inputs for which fi and fj both differ by the same
amount from f . (Notice that the two quantities are the same for
the case q = 2.) While neither one of the two quantities are
sufficient for our analysis, their sum provides good bounds.
Lower bound on S + S0: Let Nx = jfijfi(x) 6= f(x)gj and

let N (t)x = jfijfi(x) � f(x) = tgj. Then we can lower boundS as follows:S = Xi;j;x�i(x)�j(x) =Xx N2x � (mw)2Q :
The last inequality above follows from the fact that subject to the
condition

PxNx = mw, the sum ofNx’s squared is minimized
when all the Nx’s are equal.

Similarly we lower bound S0 as follows:S0 = Xi;j;xXt6=0 �(t)i (x)�(t)j (x) =Xx Xt6=0(N (t)x )2 � (mw)2(q � 1)Q

Thus by adding the two lower bounds above we obtain:S + S0 � (mw)2Q + (mw)2(q � 1)Q = �m2w2Q : (2)

Upper bound on S + S0: For the upper bound we define
the following quantities: For distinct i; j 2 f1; : : : ;mg andt1; t2 2 GF(q), letM (ij)t1t2 � jfxj�(t1)i (x) = �(t2)j (x) = 1gj:
Then we can express S and S0 as:S =Xi;j Xt1 6=0Xt2 6=0M (ij)t1t2 and S0 =Xi;j Xt6=0M (ij)tt :

We start by upper bounding the internal sum above for fixed
distinct pair i and j. By the fact that fi(x) = fj(x) for (at most)Q=q values of x, we haveXt6=0M (ij)tt � Q=q �M (ij)00 :
To bound the other term in the summation above we use
inclusion-exclusion as follows:Xt1 6=0Xt2 6=0M (ij)t1t2= Xt1 Xt2 M (ij)t1t2 �Xt1 M (ij)t10 �Xt2 M (ij)0t2 +M (ij)00= Q� (Q� wi) � (Q� wj) +M (ij)00= wi + wj � Q+M (ij)00 :

Combining the bounds above we have (for i 6= j)Xt1 6=0 Xt2 6=0M (ij)t1t2 +Xt6=0M (ij)tt� Q=q �M (ij)00 + wi +wj �Q+M (ij)00= wi +wj � Q� :
Also observe that if i = j, then the quantityPt1 6=0Pt2 6=0M (ii)t1t2 =Pt6=0M (ii)tt = wi.
We now combine the bounds above as follows:S + S0 = Xi 0@Xt1 6=0 Xt2 6=0M (ii)t1t2 +Xt6=0M (ij)tt 1A+Xi 6=j 0@Xt1 6=0Xt2 6=0M (ij)t1t2 +Xt6=0M (ij)tt 1A� Xi 2wi +Xi 6=j (wi + wj � Q� )



Simplifying the right hand side above, we get:S + S0 � 2m2w �m(m � 1)Q=�: (3)

Putting it together: By comparing the bounds (2) and (3), we
have 2m2w � m(m � 1)Q=� � m2w2Q � so m�=Q(w �Q=�)2 � Q=�. Substituting w � Q(1� 1q )� �Q = Q=���Q, we get m � ��� �2 = �1��2 ��1� 1q�2 :

For general d, we have the following theorem.

Theorem 10 Let � > 0 and f : GF(q)l ! GF(q). Sup-
pose f1; : : : ; fm : GF(q)l ! GF(q) are distinct polyno-
mials of degree at most d which satisfy 8j 2 f1; : : : ;mg,Prx2GF(q)l [f(x) = fi(x)] � �: Then the following bounds
hold:
1. If � �q2 + d4q �qdq � d2q then m < 2�+d=(2q) .

(For small dq the above expressions are approximated by� >p2d=q and m < 2=�, respectively.)

2. If � � 1+p(d�1)(q�1)q then m � (q�d)(q�1)q2 �1(��(1=q))2�(q�1)(d�1)=q2 .

(For small dq the above expressions are approximated by� > 1q + qd�1q and m < 1�2�((d+2��1)=q) , respec-

tively.)

Remark The above bounds apply in different situations and
yield different bounds on m. The first applies for larger values
of � and yields a bound which is O(1� ). The second bound
applies for smaller values of � and yields a bound which grows
as O( 1�2 ).
Proof: The bound in (1) is proven by a simple inclusion-
exclusion argument. Let m0 � m and let Q = ql. We count
the number of points x 2 GF(q)l that satisfy the property that
one of the first m0 polynomials agree with f on x. Namely, let�i(x) = 1 if fi(x) = f(x) and �i(x) = 0 otherwise. Then,
by inclusion-exclusion we getQ � jfx : 9i �i(x) = 1gj� m0Xi=1Xx �i(x)� X1�i<j�m0Xx �i(x)�j(x)� m0 � �Q��m02 � � jfx : f1(x) = f2(x)gj
Since two degree d polynomials f1 and f2 can agree on at mostdq �Q points [11, 36, 39], we get:m0�Q� m0(m0 � 1)2 � dQq � Q:

Consider the function g(y) def= (d=2q)�y2�(�+(d=2q))�y+1.
Then the above inequality says that g(m0) � 0, for every integerm0 � m. Let �1 and �2 be the roots of g. Then if we can show
that the roots are real and additionally satisfy j�1 � �2j � 1,
then we could upper bound m by minf�1; �2g. We now show
first that under the condition given on �, j�1 � �2j � 1. Then
we show that minf�1; �2g < 2�+(d=2q) . This will suffice to
prove (1).

Let � = d2q . Then g(y) = �m2 � (� + �)m + 1. The

roots, �1 and �2 are real, provided that � def= (� + �)2 � 4� is
positive which follows from a stronger requirement (see below).
Let�1 be the smaller root. To guarantee�2��1 � 1we require2p�2� � 1 which translates to � � �2 (and hence � > 0 as
required above). We need to show that(� + �)2 � 4� � �2
which occurs if � �p�2 + 4� � �. Plugging in the values of� and � we find that the last inequality is exactly as guaranteed
in the theorem statement. Lastly observe that:�1 = � + � �p(� + �)2 � 4�2�= � + �2� � "1��1� 4�(� + �)2�1=2#< � + �2� � �1� 1 + 4 �(� + �)2 �= 2� + �
The inequality follows by � > 0. Again by plugging in the
value of � and � we get the desired bound.

We sketch the proof of part (2). The proof is an extension of
the proof of Theorem 9. We define S and S0 as in Theorem 9.
Here w � (1 � �)Q = (1 � � � d=q)Q. The lower bound
found for S + S0 still applies i.e.,S + S0 � m2w2qQ � (q � 1) : (4)

The upper bound gets modified due to the fact that two poly-
nomials agree on at most dq fraction of the points (and not 1=q
fraction). This yields:S + S0 � 2m2w �m(m � 1)q � dq Q (5)

Thus we find thatm � q � dq � 1(wQ )2 qq�1 + q�dq � 2wQ ;
provided (wQ )2 qq�1 + q�dq � 2wQ � 0. Let g(x) def= qq�1x2 �2x + q�dq . We need to bound � so that g(1 � �) > 0. (For



d = 1 we have g(x) > 0 for all x 6= 1 � 1q indicating that
the bound holds for all � > 1=q.) For d > 1 the functiong(x) is positive provided that x < 1�p1�(q�d)=(q�1)q=(q�1) . Thus,� > 1q+ q�1q �qd�1q�1 suffices (which is the condition in Part (2)).

The corresponding bound is m � q�dq � 1g(1��) which, usingq�1q � g(x) = (x � q�1q )2 � q�1q2 � (d � 1), yields the bound

claimed in Part (2).

The following result shows that Theorem 9 is tight for � =O(1=q) (and d = 1), whereas Part (1) of Theorem 10 is tight
for � = �(1=pq) and d = 1.

Proposition 11 Given a prime p, and integers d; k > 1, let � =k=p. Then, there exists a function f : GF(p)! GF(p) and at

least m def= 15(k�1)�2 functions f1; : : : ; fm : GF(p)! GF(p)
such that for all i 2 f1; : : : ;mg, jfxjfi(x) = f(x)gj � �p.

Proof: We start by constructing a relation R � GF(p) �GF(p) such that jRj � p and there exist many linear functionsg1; : : : ; gm such that jR\f(x; gi(x))jx 2 GF(p)gj � k for alli. Later we show how to transform R and gi so that R becomes
a function which still agrees with each gi on k inputs.

Let l = bp=kc. The relation R simply consists of the pairs
in the square f(i; j)j0 � i < k; 0 � j < lg. Let G be the set of
all linear functions which agree with R in at least k places. We
show that G has size at least l2=2(k � 1). Given non-negative
integers a; b, s.t. a(k� 1)+ b < l, consider the linear functionga;b(x) = ax + b(modp). Then, ga;b(i) 2 f0; : : : ; l � 1g
for i 2 f0; : : : ; k � 1g. Thus, ga;b(i) intersects R in k places.
Lastly we observe that there are at least p(l + 1)=2 distinct
pairs (a; b) s.t. a(k � 1) + b < l. Fix a < l = bp=kc. Then
there are at least l � (k � 1)a possible values for b, so that

the total number of pairs becomes
P lk�1�1a=0 l � (k � 1)a =l2k�1 � (k � 1) � � lk�1�12 � > l22(k�1).

Now we convert the relation R into a function in two stages.
First we stretch the relation by a factor of l to get a new relationR0. Explicitly, R0 = f(li; j)j(i; j) 2 Rg. Given g(x) =ax + b 2 G, let g0(x) = (a � l�1)x + b, where l�1 is the
multiplicative inverse of l(modp). If g(i) = j, then g0(li) = j.
Thus if (i; g(i)) 2 R, then (li; g0(li)) 2 R0. Thus if we use G0
to denote the set of linear functions which agree with R0 in k
places, then g0 2 G0 if g 2 G. Moreover the map from g to g0 is
one-to-one, implying jG0j � jGj. (Actually the argument above
extends to show that jG0j = jGj.)

Last we introduce a slope toR0, so that it becomes a function.
Explicitly R00 = f(li + j; j)j(i; j) 2 Rg. Notice that for
any pair (i1; j1); (i1; j2) 2 R00, i1 6= i2 implying that R00
can be extended to a function f : GF(p) ! GF(p), which
satisfies if (i; j) 2 R00 then j = f(i). Now for every functiong0(x) = a0x+b0 2 G0, consider the function g00(x) = a00x+b00
where a00 = a0=(1 + a0) and b00 = b0=(1 + a0). Observe that ifg0(x) = y, then g00(x+ y) = y. Thus if g0 agrees with R0 in k

places, then g00 agrees with R00 and hence f in at least k places.
Again, if we use G00 to denote the set of linear functions which
agree with f in k places, then jG00j � jG0j.

Thus f : GF(p) ! GF(p) has at least l2=2(k � 1) linear
functions agreeing with it in k places. Expressing k as �p, we
have l > 1(1=p)+� , and the proposition follows (using (1=p) +� < 32 � �).

6 Counting: Random Case

In this section we present a bound on the number of polyno-
mials which can agree with a function f if f is chosen to look
like a polynomial p on some domain D and is chosen randomly
on other points. As a consequence we find that for functions
constructed in this manner the output of our reconstruction al-
gorithm will be a single polynomial — namely, p.

Theorem 12 Let � > 2(d+1)q . Suppose that D is an arbitrary
subset of density � in GF (q)n and p(x1; :::; xn) is a degree d
polynomial. Consider a function f selected as follows:
1. f agrees with p on D;

2. the value of f on each of the remaining points inGF (q)n �D is uniformly and independently chosen.
Then, with probability at least 1 � expf(nd log2 q) �(�=4)2qn�1g, the polynomial p is the only degree d polyno-
mial which agrees with f on at least an �=2 fraction of the
inputs.

7 Conclusions

The main feature controlling the running time of the recon-
struction algorithm described in this paper is the bound on the
number of polynomials which can agree with a given function
at � fraction of the places. Thus by improving any of the bounds
given here (or presenting similar bounds in other situations) one
can improve the running time of the algorithm presented (or ex-
tend it to other cases). The case of degree d polynomials with� � pd=q seems to be a prime candidate for analysis here.
We seem to have some evidence that this bound may grow as(1=�)d+1 for small enough �.

Lastly we speculate on the need for the exponential depen-
dence on d. In the full version we point out the NP-hardness of
a related univariate question which asks for the best polynomial
fitting a relation specified on O(d) points. The fact that this ev-
idence applies only to learning relations (rather than functions)
without queries makes this relatively weak. However when spe-
cialized to the univariate case, there is no known separation of
the “reconstruction” problem between the case on learning with
or without queries. (i.e., both are solvable, in time poly(d),
if error is bounded away from half.) Also we do not know of
instances where learning relations is harder than learning func-
tions. Thus all this accumulates to some feeling that maybe this
exponential dependence may be inherent.
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A Justifying the djF j Threshold

Proposition 13 Let q be a prime-power, d < q and � = dq �d�1q2 . Then, for every n-variate degree d polynomial, f , overGF(q), there are at least qn�1 degree d polynomials which
agree with f on at least a � fraction of the inputs.

Proof: It suffices to consider the all-zero function, denoted
by f . Consider the family of polynomials having the formQd�1i=1 (x1�i) �Pni=2 cixi, where c2; :::; cn 2 GF(q). Clearly,
each member of this family is a degree d polynomial and the
family contains qn�1 different polynomials. Now, each poly-
nomial in the family is zero on inputs (a1; :::; an) satisfying
either a1 2 f1; :::; (d� 1)g or

Pni=2 ciai = 0. Since at least ad�1q +(1� d�1q ) � 1q fraction of the inputs satisfy this condition,

the proposition follows.


