
Private Information Retrieval

Benny Chor�. Oded Goldreichy. Eyal Kushilevitzz. Madhu Sudanx.
ABSTRACT: We describe schemes that enable a user to access k repli-
cated copies of a database (k � 2) and privately retrieve information
stored in the database. This means that each individual database gets
no information on the identity of the item retrieved by the user.

For a single database, achieving this type of privacy requires com-
municating the whole database, or n bits (where n is the number of bits
in the database). Our schemes use the replication to gain substantial
saving. In particular, we have� A two database scheme with communication complexity ofO(n1=3).� A scheme for a constant number, k, of databases with commu-

nication complexity O(n1=k).� A scheme for 13 log2 n databases with polylogarithmic (in n)
communication complexity.

1 Introduction

Consider a user that makes a query in a database. A lot
of research was devoted to methods that protect the database
against a “curious” user. For example, methods that do not
allow a user to ask queries to a statistical database in a way that
enables him to reconstruct the value of particular entities (e.g.,
[2, 9, 10, 11, 18] and [19, Section 10.5]).

It may seem surprising at first glance that there are no methods
to protect the privacy of the user. For example, an investor that
queries the stock-market database, for the value of a certain
stock, may wish to keep private the identity of the stock he is
interested in. However, it is not difficult to prove that if the user
wants to keep its privacy then essentially the only thing he can
do is to ask for a copy of the whole database; clearly, this is an
undesirable solution.

The rapid development of distributed databases (see [8]) and
all kind of data-services (“information highways”) results in
many scenarios in which the same database is replicated in sev-
eral sites. This raises hope to get around the difficulty of achiev-
ing privacy in the single database scenario; it may be possible to
make queries to several databases such that from the answers the
desired information can be obtained, while from each query no
information is given as to the information the user is interested
in, hence its privacy is maintained.�C.S. Dept., Technion, Haifa, Israel. benny@cs.technion.ac.ilyC.S. and Appl. Math. Dept., Weizmann Institute of Science, Rehovot,
Israel. Supported by grant No. 92-00226 from the Israel–US Binational Science
Foundation (BSF), Jerusalem, Israel. oded@wisdom.weizmann.ac.ilzC.S. Dept., Technion, Haifa, Israel. eyalk@cs.technion.ac.ilxIBM T.J. Watson Research Center, U.S.A. madhu@watson.ibm.com

Before going any further let us make the problem more con-
crete. We view the database as a string x of length n. Identical
copies of this string are stored in k � 2 sites. The user has some
index i, and he is interested in obtaining the value of the bit xi.

We present various schemes that solve the retrieval problem
with significantly smaller communication complexity than the
obvious n-bit solution (i.e., asking for a copy of x). In particular
we obtain a two-database scheme with communication complex-
ity of O(n1=3), a k-database scheme with complexity O(n1=k)
(for constantk), and a (13 log2 n+1)-databases scheme with total

communication complexity 13(1+o(1))�log22 n�log2 log2(2n).
We remark that our schemes can be modified (with a small
penalty in the communication complexity) so as to guarantee a
higher degree of privacy: for t � k�1, knowing t of the queries
still gives no information as to what is the value of i that the user
is interested in. We also remark that some of our schemes are
based on exclusive-or (linear summations, or sum) queries; this
type of queries is very common and is actually implemented in
several “real-world” databases (see [9, 11, 19]).

Related Work

For the case case of k = 2 (i.e., two databases), a first indica-
tion that something better than the user asking for a copy ofx can
be done is given by a recent result of Pudlák and Rödl [16]. With
a complexity-theory motivation in mind they studied the follow-
ing question. There are three players: D1 that holds a string x
and an index j, D2 that holds the same string x and an index `,
andU that knows both j and `. The goal is forD1 andD2 to send
a single message each toU so that he will be able to compute the
bit xj+`modn. They show that this can be done using o(n) bits
(more precisely, O(n log2 log2 n= log2 n)). Using their proto-
col, a scheme which guarantees privacy to the user of a database
can be constructed as follows: The user chooses uniformly at
random a pair of indices j; ` such that j + ` = i mod n. He
sends j to the first database, ` to the second and the three of
them execute the protocol. This solves the problem with o(n)
bits while maintaining privacy.

Independently of our work, Babai, Kimmel, and Lokam [5]
studied a problem related to the one studied in [16] (where,
again, the motivation comes from complexity theory). When
viewed in our context their work provides a private information
retrieval scheme for the case of general k with total communica-
tion O(knH2(1=(k+1)). In particular for the case of k = 2 this
provides a scheme with O(nH2(1=3)) � O(n:92) communica-
tion. This is better than the scheme that can be derived from the
work of [16] but still not as good as the scheme provided in this

paper.
In [17, 1, 6, 7] the instance hiding problem is introduced and

studied. In this problem, a computationally bounded player U
that holds an instance i wishes to compute a known functionf on input i. The function f may be hard to compute, soU can query k computationally unbounded oracles to achieve
this task (each oracle can compute f(j) for any j). Still, the
player wants to keep its instance i hidden from the oracles. In a
sense, this problem can be viewed as if the oracles have a stringf(1)f(2) : : : f(n) and U wants to obtain the ith bit of this
string, which is the value f(i), while keeping i private. In this
sense the instance hiding model is related to the model of private
information retrieval. Some of the techniques used in [6, 7]
are relevant to our problem, especially the use of low degree
polynomials, introduced by Beaver and Feigenbaum [6], and
further developed by Beaver, Feigenbaum, Kilian and Rogaway
[7]. In particular, the scheme of [6] for 1 + log2 n databases is
essentially the one we use as our starting point in Subsection 4.1.
From the construction in [7] it is possible to derive a private
information retrieval scheme for k (constant) databases withO(n1=(k�1)) communication (see Remark 5.2 in [7]). In fact
the scheme shown here in Subsection 4.2 can be considered an
improved variant of their construction.

It should be emphasized that despite these similarities, there
are substantial differences between the models and between the
quality of the results. In our model the value n is considered a
feasible quantity, while in the instance hiding model n is expo-
nential in the length of the instance, so it is an infeasible quan-
tity. Consequently, the instance-hiding model is aimed towardspoly(jij)-time computations for U , allowing only solutions in
which the communication between the user and the databases is
poly-logarithmic in n. In contrast, the main thrust of our work
is the case with small number of databases (specifically, smaller
than log2 n). We do allow the user to perform n" time compu-
tation (where " > 0 is a constant), and in particular send and
receive messages longer than polylog(n).
Organization

In Section 2 we introduce notations and basic definitions.
In Section 3 we develop several schemes where every reply
is an exclusive-or of a subset of the database’s bits. In Sec-
tion 4 we introduce methods based on low degree polynomial
interpolation. Section 5 contains numeric results on the commu-
nication complexity for relevant numbers and sizes of databases.
Section 7 describes a generalization, which guarantees privacy
against coalitions of more than a single database. Conclusions
and open problems can be found in Section 8.

2 Preliminaries and Definitions

Throughout the paper we denote the user by U , the k
databases by DB1; : : : ;DBk, the identical data they hold
by x 2 f0; 1gn, and the bit in which U is interested byi 2 [m] 4= f1; 2; :::;mg.

PRIVACY: We want that for every databaseDB`, for every pos-
sible content of the database, x, and any two indices i and j the
database will not be able to distinguish between the case that
the user holds index i and the case that the user holds index j.
That is, the communication between the user and DB` should
be equally distributed, regardless of the index i. NOTATION FOR

SECTION 3: For a set S and an element a letS � a 4= � S [fag if a =2 SS n fag if a 2 S
NOTATION FOR SECTION 4: We use finite fields, denotedGF (q),
where q is a prime power. For notational simplicity, we denote
the q elements of GF (q) by 0; 1; :::; q�1. Whenever adding or
multiplying field elements it is understood that these operations
are the field’s operations.

3 The Linear-Summation Scheme

In this section we describe various schemes that are of the
“linear summation” type. In these schemes, the user sends
queries in the form of subsetsS � f1; : : : ; ng, and the database
replies with �j2Sxj.

3.1 A Basic Two-Databases Scheme

We start by describing a very simple scheme that allows
the user U to privately obtain the bit xi by receiving a single
bit from each of two databases. The user uniformly selects a
random set S � [n] (i.e., each index j 2 [n] is selected with
probability 1=2). The user sends S to DB1 and S � i to DB2.
Each of these databases, when receiving the message I � [n],
replies with a single bit which is the exclusive-or of the bits
with indices in I (i.e., DB1 replies with �j2Sxj whereasDB2
replies with �j2S�ixj). The user exclusive-ors the answers it
has received, thus retrieving the desired bit xi. Clearly, none
of the databases has obtained any information regarding which
index was desired by the user (as each of the databases obtains
a uniformly distributed subset of [n]).

Although the above scheme is less obvious than a solution in
which one database sends all n bits to the user, it is not superior
as far as the total amount of communication goes. Indeed each
database sent only a single bit, but the messages sent by the user
(specifying arbitrary subsets of [n]) are n bits long. Yet, this
simple scheme serves as a basis for more efficient ones.

3.2 A Multi-Database Scheme

In this subsection, we present a scheme for any number k � 2
of databases available. Later, in Section 4, we present a better
scheme for the case of largek (i.e., k > 4). However, the scheme
presented here, together with the covering codes method that we
present in the next subsection leads to the best upper bounds
we have for small values of k (the number of databases) and in
particular for the interesting case k = 2.

The scheme presented in this subsection allows the user to
obtain the desired bit by asking queries to k = 2d databases, for
anyd � 1, and requires total communication of2d �(d�n1=d+1).
The key idea is to associate [n]with the d-dimensional cube [`]d
and generalize the simple scheme of Subsection 3.1, which may
be viewed as the 1-dimensional case (i.e., d = 1). In the gener-
alization, each of the 2d databases is queried for the exclusive-or
of the bits in a uniformly distributed subcube. As in the basic
scheme, the different subcubes are related, and this allows to
retrieve the desired bit. The saving in communication comes
from the fact that subcubes can be described more succinctly
than general subsets.

We assume, without loss of generality that n = `d. We
embed x in a d-dimensional cube, associating each positionj 2 [n] with a d-tuple (j1; :::; jd) 2 [`]d, in the natural manner.
In particular, the index i of the desired bit is associated with a d-
tuple (i1; : : : ; id) 2 [`]d. It will also be convenient to associate
the k = 2d databases with strings in f0; 1gd. The scheme works
as follows.
1. U chooses uniformly and independently d random subsetsS01 ; S02 ; : : : ; S0d � [`]. Based on these subsets it defines

another d subsets of [`] by S11 = S01 � i1; S12 = S02 �i2; : : : ; S1d = S0d � id. These 2d subsets are paired
in the natural way; namely, (S01 ; S11); : : : ; (S0d ; S1d). To
each of the k = 2d databases U sends one subset per
pair, corresponding to the name of the database. Namely,
for every � = �1 � � ��d 2 f0; 1gd, the user sends the
subsets S�11 ; S�22 ; : : : ; S�dd to DB�.

2. Upon receiving the d subsets S�11 ; S�22 ; : : : ; S�dd , the
database (i.e.,DB�1����d) replies with the exclusive-or of
the subcube defined by these subsets. Namely,DB�1����d
replies with the bit

Lj12S�11 ;:::;jd2S�dd xj1;:::;jd .

3. The user exclusive-ors the k = 2d bits it has received.
The correctness of the above scheme can be easily verified. The
privacy of the above scheme follows by observing that each
database receives a sequence of d uniformly and independently
chosen subsets of [`]. Thus, the queries to each database are
distributed in the same way, for each possible value of i =(i1; : : : ; id).

The communication involved in the above scheme consists
of sending a sequence of d subsets in [`] to each database, and
receiving a single bit back. Hence the total communication
complexity is k � (d � ` + 1) = 2d � (1 + d � dpn). We note
that the communication in the present scheme is not balanced.
The user sends d � n1=d bits to each database, and receives a
single bit from each in response. Interestingly, the improvement
in Section 3.3 results by balancing the communication (in a way
specific to the above scheme). A generic balancing technique is
presented in Section 4.3.

3.3 The Covering Codes Scheme

In this subsection we describe a method based on covering
codes (from coding theory). This method (essentially) maintains

the total communication complexity of the schemes described in
the previous subsection but reduces the number of participating
databases. It is especially useful when the number of databases
(i.e., k) is small (i.e., k = 2 and k = 4).

We start with an example. For d = 3, the scheme of the
previous subsection consists of a user and 2d = 8 databases
whose names are associatedwith the binary strings of length d =3. The user sends a subcube defined by the sets (S�11 ; S�22 ; S�33)
to DB�1�2�3 which replies with the exclusive-or of the bits
residing in this subcube. Thus 3 3pn bits are sent from the user to
each database,which replies with a single bit. The key idea in the
improvement is thatDB000, which gets the query (S01 ; S02 ; S03),
can produce a relatively short string which contains the answer to
the query (S01 ; S02 ; S13), sent toDB001. Specifically, it knowsS01
and S02 and it also knows that S13 must be one of form S03�j, for
some j 2 f1; 2; :::; 3png. Thus DB000 can emulate DB001 by
sending the 3pn bits corresponding to the 3pn possible queries
which could have been sent to DB001. In the same fashion,DB000 can emulate both DB010 and DB100. Thus, by lettingDB000 emulate DB100, DB010 and DB001, and letting DB111
emulate DB011, DB101 and DB110, we get a scheme for two
databases with total communication complexity O(3pn). We
note that it is too expensive to let DB000 emulateDB011 as this
will require considering all (3pn)2 possibilities for (S12 ; S13).

In general, the above “emulation” method depends on the
ability to cover the strings in f0; 1gd by few d-bit long string,
where each string may cover itself and all strings at Hamming
distance 1 from it. In other words, we consider the problem
of covering f0; 1gd by balls of radius 1 (in the Hamming ge-
ometry). This is a well known problem in coding theory. A
covering code, Cd, with radius 1 for f0; 1gd is a collectionCd = fc1; c2; : : : ; ckg � f0; 1gd, such that the balls of radius1 around the codewords cover the space; namely,f0; 1gd � [cj2CdB(cj ; 1)
where B(c; 1) is the set of all d-bit long strings which differ
from c in at most one position.

Given a (radius 1) covering code,Cd = fc1; c2; : : : ; ckg (forf0; 1gd), we use the emulation method to derive a k-database
protocol of communication complexity O(d � k � n1=d). The
user, being interested in position i = (i1; :::; id), picks uni-
formly S01 ; S02 ; : : : ; S0d � [n1=d], and sets S11 = S01 � i1; S12 =S02 � i2; : : : ; S1d = S0d � id. The user sends to DBc (c 2 Cd)
the subcube corresponding to codeword c (i.e., (S�11 ; :::; S�dd)
where c = �1 � � ��d). Each DBc replies by emulating itself
(i.e., one bit) and the databases corresponding to the words cov-
ered by the codeword c (i.e., n1=d bits per each such database).
All these answers allow the user to compute the answer it would
have received in the protocol for 2d databases, and consequently
retrieve the desired bit. The privacy of the original 2d-databases
scheme is clearly preserved. As for the communication com-
plexity of the new protocol, we note that d � n1=d bits are sent
from U to each database and that the total number of bits sent
back is k + (2d � k) � n1=d (note that only the emulation of

dimension # codewords volume total
(databases) (lower) communication

(i.e., d) 2d (i.e., k) bound

3 8 2 2 12n1=3
4 16 4 4 28n1=4
5 32 7 6 60n1=5
6 64 12 10 124n1=6
7 128 16 16 224n1=7
8 256 32 29 480n1=8

Figure 1: Covering Codes and Protocols

databases corresponding to non-codewords requires n1=d bits
and that it suffices to emulate/cover each such database once1).
Thus, the total communication equals (dk+2d�k) �n1=d+k,
and we get

Theorem 1: Let d and k be integers so that there is a k-word

covering code (of radius 1) for f0; 1gd. Then there exists a private

information retrieval schemes for k databases, each holding n bits

of data, so that the communication complexity of the scheme isk + (2d + (d� 1)�k) � n1=d.

Clearly, k in the above theorem need not be greater than2d. On the other hand, k � 2dd+1 by the volume bound
(cf., [13]). The lower bound is not always attainable. The
construction given above, for d = 3, uses the fact thatf(0; 0; 0); (1; 1;1)g is a covering code with radius 1 of f0; 1g3.
For d = 4 there exist covering codes with four codewords (e.g.,f(0; 0; 0; 0); (1;1;1; 1); (1;0; 0; 0); (0;1; 1; 1)g) but not with
fewer codewords (due to the volume bound). In Figure 1 we list
the best known covering codes for d up to 8, the correspond-
ing volume bounds, and the communication complexity of the
resulting protocol (i.e., (2d + (d � 1)k) � n1=d, ignoring the
additive term of k). We note that all these covering codes are
optimal (minimum size) [14]. For d = 3 and d = 7, these are
Hamming Codes which are perfect codes (all balls are disjoint).

As one can see from this table, the improvement derived by
the emulation method (over the simpler method of Section 3.2
which requires 2d databases) is quite meaningful for small values
of d. Covering codes with larger radii (say 2 or 3) are also
applicable in principle. For example, a k word radius 2 covering
code of f0; 1gd would yield communication complexity k � d �n1=d + k � �d2� � n2=d. Reviewing the parameters of the best
codes [14], they turn out to be inferior for our purposes than the
radius 1 codes.

The results using the covering codes methods are most ap-
pealing for the cases of 2 and 4 databases. These cases are
summarized in the next corollary to Theorem 1.

Corollary 2: There are private information retrieval schemes forn bits data, with the following parameters:1Formally, we consider a fixed exact cover of f0;1gd by sets S(cj)’s so
that S(cj) � B(cj ;1), for every j = 1; :::; k.

� For two databases (i.e., k = 2), the communication com-
plexity is 12 3pn+ 2.� For four databases (i.e., k = 4), the communication com-

plexity is 28 4pn+ 4.

4 The Polynomial Interpolation Scheme

In this section we describe an information retrieval scheme
which requires O(n1=k) communication bits for k databases,
where k = O(1) is a constant, and O(log22 n log2 log2 n) bits
where k = 13 � log2 n. The scheme is based on the method
of low-degree polynomial interpolation, originating from [6]
and extensively used thereafter (see for example [15, 3, 4, 12]).
We start by presenting a simple version for k = log2 n + 1
databases. This version is essentially the one used for log2 n +1 oracles in [6]. An improved and more general scheme is
developed in Subsection 4.2. This scheme is a variant of the one
presented in [7].

4.1 A Simple Scheme For log2 n + 1 Databases

Supposing that n = 2s, we associate the set [n] � f0; 1gs
with the set of functions from [s] to f0; 1g. Thus j 2 [n] is
associated with the function j : [s] 7! f0; 1g so that, for every` = 1; 2; :::; s, the value j(`) is the `-th least significant bit in
the binary expansion of j. Let �i;j be the Kronecker function:�i;j 4= � 1 if i = j0 otherwise

We are currently interested in a scheme allowing U to retrieve
the ith bit of x = x1 � � �xn 2 f0; 1gn using s+1 databases. In
what follows we shall define a sequence of functions constructed
with the value of i in mind.

Let GF (q) be a finite field with at least s + 2 elements.
Consider a function, defined overGF (q), of the following form:F i;x(z) = Xj2[n] f ij (z) � xj
where

P1 the f ij ’s are polynomials (in z) of degree at most s; and

P2 f ij (0) = �j;i, for each j 2 [n].
By (P2), F i;x(0) =Pj2[n] f ij (0) �xj =Pj2[n] �j;i �xj = xi.
On the other hand, by (P1), F i;x is a polynomial of degree at
most s (in z). Thus, if U is given the value of F i;x(�) at s + 1
points, it can easily retrieve F i;x(0) by interpolation. So if U
can obtain from each DBp (p = 1; 2; :::; s+ 1) the value of F
at point p 6= 0, without yielding information about i, then we
are done. We describe a scheme which achieves this goal at low
cost.

The user selects uniformly and independently s elements in
the field GF (q), denoted by r1; :::; rs, and defines s functionsg`(z) 4= r` � z + i(`) for ` = 1; 2; :::; s:

For every j 2 [n] and ` 2 [s] we define the degree 1 polynomialf ij;`(z) 4= j(`) � g`(z) + (1 � j(`)) � (1� g`(z)):
The polynomial f ij(z) is now defined as the product of thef ij;`(z)’s, namelyf ij (z) = f ij;1(z) � f ij;2(z) � : : : � f ij;s(z) :

The user sends the values g1(p); :::; gs(p) to DBp (for p =1; 2; :::; s+ 1). DBp uses these s values to compute F i;x(p),
even though it does not know i, as follows. First, for every j and` (1 � j � n, 1 � ` � s), DBp computes the value f ij;`(p) by
setting f ij;`(p) = � g`(p) if j(`) = 1(1� g`(p)) otherwise

Now, for every j 2 [n],DBp computesf ij(p) = f ij;1(p) � f ij;2(p) � : : : � f ij;s(p)
and F i;x(p) = nXj=1 f ij (p) � xj :
This computation takesO(s�n) operations inGF (q). The valueF i;x(p) is sent to the user. This way, U obtains the value of the
polynomial F i;x(z) at the s + 1 points 1; 2; : : :; log2 n + 1.
The user interpolates and obtains F i;x(0) = xi.

We first assert that the scheme provides privacy. This is
because the values g1(p); :::; gs(p) sent byU toDBp (p 6= 0) are
uniformly and independently distributed in the field, regardless
of i. To see that the scheme yields the correct answer it suffices
to verify properties (P1) and (P2) above. By definition, each
of the polynomials f ij is a product of s linear polynomials, and
thus property (P1) follows. Property (P2) holds since f ij;`(z) =j(`) � g`(z) + (1 � j(`)) � (1 � g`(z)) and g`(0) = i(`), for
each ` 2 [s], and thusf ij(0) = sỲ=1 f ij;`(0)= sỲ=1 (j(`) � i(`) + (1� j(`)) � (1� i(`)))= �i;j :
Finally, we consider the communication complexity of the above
scheme. The communication between the user and each database
consists of s field elements sent from the user to the database
and one field element sent in response. Thus, the total commu-
nication amounts to (s + 1) � (s + 1) � log2 q, where q is the
size of the finite field GF (q). This q must be at least s + 2
(to accommodate s + 1 non-zero points), and can always be
found in the range [s + 2; 2s]. We have s = log2 n, so withs + 1 = log2 n + 1 databases, the communication complexity
is (1 + o(1)) � log22 n log2 log2(2n).

4.2 The General Case

To handle the general case of k databases, where k � log2 n,
we use the same basic idea, but employ a different representation
of integers in the range1 throughn. Instead of the “dense” binary
representation, we consider s-bit long binary sequences with
exactly k� 1 occurrences of 1 in them2. We take the minimums satisfying

� sk�1� � n. Every 1 � j � n is represented by
a sequence with s + 1 � k zeroes and k � 1 ones. We order
these sequences in lexicographic order, and represent j by thej-th sequence in this list. We now associate every j 2 [n] with
a function j : [s] 7! f0; 1g so that, for every ` = 1; 2; :::; s, the
value j(`) is the `-th entry in the j-th sequence.

Let GF (q) be a finite field with at least k + 1 elements. Leti be the bit position which U wants to retrieve. Again, consider
a polynomial F i;x(z) =Pj2[n] f ij(z) � xj, where

P1 the f ij ’s are polynomials of degree at most k � 1.

P2 f ij (0) = �j;i, for each j 2 [n].
By arguments identical to those used in Subsection 4.1, the
value of F i;x(�) at k points enablesU to interpolate and retrievexi = F i;x(0). We now describe the protocol.

The user selects uniformly and independently s elements in
the field GF (q), denoted by r1; :::; rs, and defines s functionsg`(z) 4= r` � z + i(`) for ` = 1; 2; :::; s:
The user sends the values g1(p); :::; gs(p) to DBp (for p =1; 2; :::; s+ 1). For every j 2 [n] and ` 2 [s] we define the
degree 1 polynomialf ij;`(z) 4= j(`) � g`(z) + (1� j(`)) � (1� g`(z)):
The next step, however, is different. The analog definition would
be to take f ij (z) as the product f ij;1(z) through f ij;s(z), which is
a polynomial of degree s. This would require s + 1 evaluation
points, more than the number of databases we have. We want
the polynomial f ij(z) to be of degree k � 1, with �j;i as its free
term. To achieve this, we definef ij(z) = Y`:j(`)=1 f ij;`(z) :
There are exactly k� 1 indices with j(`) = 1. Therefore f ij (z)
is of degree at most k � 1 (recall that each f ij;`(z) is of degree1), and so property (P1) holds. Property (P2) holds sincef ij (0) = Y`:j(`)=1 f ij;`(0)= Y`:j(`)=1 (j(`) � i(`) + (1 � j(`)) � (1� i(`)))2The scheme from [7] is also similar in spirit and can be thought of as using
a representation of integers with s-bit long sequences which are divided intok � 1 blocks of length s=(k � 1) and any block having a single 1.

If j = i then the last expression equalsY`:j(`)=1 �i2(`) + (1� i(`))2� :
Each multiplicand equals 1, and therefore the product, f ii (0),
equals 1. If j 6= i, then for at least one ` we have j(`) = 1
and i(`) = 0 (since both j(�) and i(�) have each exactly k � 1
entries of value 1). For this `, the multiplicand(j(`) � i(`) + (1� j(`)) � (1� i(`)))
is 0, and therefore the product, f ij(0), equals 0.

With this modification, the protocol proceeds similarly
to the previous one. The user sends to DBp the valuesg1(p); g2(p); : : : ; gs(p). The arguments for correctness and
privacy are the same too. The communication complexity,
however, is slightly different. As before, the user sends each
database s field elements and receives one field element in re-
sponse. However, here, the overall communication complexity
is k � (s + 1) � log2 q � k � (s + 1) � (1 + log2 k) (and k is
not necessarily equal to s + 1). Recall that s has to satisfy� sk�1� � n. We get

Theorem 3: Let s, k and n be integers so that
� sk�1� � n,

and let q � k + 1 be a prime power. Then there exists a private
information retrieval schemes for k databases, each holding n bits

of data, so that the communication consists of one round in which

the user sends s � log2 q bits to each database and receives log2 q
bits in return (from each database).

To exactly analyze the complexity, we separately consider dif-
ferent values of the parameters k and s. One point along this
curve is s = log2 n + log2 log2 n and k = s2 + 1. Using the

approximation
� ss=2� � 2sps , we get

� sk�1� > n. Thus,

Corollary 4: There are private information retrieval schemes for12 � (log2 n + log2 log2 n) + 1 databases, each holding n bits

of data, so that the communication complexity is 12 � (1 + o(1)) �log22 n � log2 log2(2n).
This is less3 than the communication complexity of the scheme
of Subsection 4.1, while the number of databases is slightly
over a half of the log2 n + 1 databases used there. The other
extreme on the curve is k constant. Here s is O(n1=(k�1))
(actually, s = (k � 1) � k�1pn+ k suffices), and the result-
ing communication complexity is also O(n1=(k�1)) (which is
strongly skewed towards the user-to-database direction). This
complexity can be brought down to O(n1=k), using a generic
balancing technique that is presented next.

4.3 A Generic Balancing Technique

Consider an arbitrary scheme for privately retrieving infor-
mation from several databases in which the communication is3specifically about one half

carried out in one round (i.e., the user simultaneously queries
each database and receives answers from which it computes the
desired bit). Given such a scheme for databases containing n
bits, one can derive a scheme for databases containing m � n
bits by repeating the scheme in parallel as follows. The user
views the m � n bits as a m-by-n matrix of bits. To retrieve the(j; i)-th bit in the matrix, U executes the n-bit scheme with i be-
ing the desired bit (ignoring, for the time being, the value of j).
Now, each database views itself as participating in m different
executions of the n-bit scheme, each one with a different row
(an n-bit string). Namely, in the j-th execution (j = 1; :::;m),
the database computes its response with respect to the j-th row.
Thus, the user privately retrieves the entire i-th column of the
matrix, from which it finds the desired (j; i)-th bit. Let us
compare the communication complexity of the original n bits
scheme with the resulting m � n bits scheme. The communica-
tion from the user to each database remains unchanged, while
the communication in the database-to-user direction increases
by a factor of m.

We now apply the balancing technique to the protocol in
Theorem 3. To this end, we view the string x as an m-by-(m=n) matrix of bits. Thus, we use the protocol of Theorem 3
for strings of length nm and so s should now satisfy

� sk�1� � nm .

Theorem 5: Let k, n;m and s be integers so that
� sk�1� � nm

and q � k + 1 be a prime power. Then there exists a private
information retrieval schemes for k databases, each holding n bits

of data, so that the communication complexity is k �(m+s) � log2 q.

In particular, setting s = k�1p(k � 1)! � ((n=m) + k) satisfies
the condition

� sk�1� � nm . Setting m = kpn (which is not
optimal), we get

Corollary 6: Let k and n be integers and q � k + 1 be a prime
power. Then there exists a private information retrieval schemes fork databases, each holdingn bits of data, so that the communication

complexity is k � �s+ kpn+ k� � log2 q
where s 4= k�1p(k � 1)! � k�1pn(k�1)=k + k. We may also uses = k�1p(k � 1)! � kpn + k�1pk!. Specifically, for k = 2 this

yields s = pn + 2; for k = 3, s = p2 � 3pn + 3; for k = 4,s = 3p6 � 4pn+3; and for k � 5 we may use s = (k� 1) � kpn.

This result is asymptotically (for n!1) better than the cover-
ing codes schemes of Subsection 3.3, except for the cases k = 2
and k = 4. For k = 2, we get here O(n1=2) communication,
while we had O(n1=3) communication there. For k = 4, both
methods give O(n1=4) complexities (and also the constant in
the O-notation are comparable4).4Actually, the constant here, 4 � (1 + 3p6) � log2 5 � 26:165, is slightly
better than the constant, 28, for the covering codes.

4.4 Further improving the general case

In this subsection we further improve the polynomial inter-
polation method of subsection 4.2. While this optimization does
not improve the asymptotic behavior of the communication for
any fixed number of databases, it does achieves significant sav-
ing when the number of databases is logarithmic.

As usual, let k denote the number of databases. Again the
starting point for the improved scheme is a different representa-
tion of integers in the interval from 1 ton. Instead of consideringf0; 1g-sequences with k�1 occurrences of 1 in them (as in Sub-
section 4.2), we consider this time sequences of non–negative
integers that sum up to exactly k � 1. We associate with everyj 2 [n], the function j : [s] 7! f0; : : : ; k � 1g, so that for
every ` = 1; : : : ; s, the value j(`) is the `-th entry in the j-th
sequence, and

Ps̀=1 j(`) = k � 1. The number of sequences
of length s whose sum equals r is

�s+r�1r �
, and hence we will

pick the minimum s so that
�s+k�2k�1 � � n. Let GF (q) be a

finite field with at least k + 1 elements.
Suppose the user U wishes to retrieve the i-th bit xi of the

database. Let î be the s-dimensional vector over GF (q) given
by î = (i(1); : : : ; i(s)). The user starts by uniformly picking
a vector ŵ = (w(1); : : : ; w(s)) 2 GF (q)s. For p = 1; :::; k,
the user sends î+ pŵ toDBp. (Here for two vectors v1 and v2,
the notation v1 + v2 is simply the vector sum, and for a scalara and vector v, the notation av denotes the vector obtained by
multiplying each coordinate of v by a.)

Consider a fixed multivariate polynomial G(ŷ) and a poly-
nomial F (z) = G(̂i+ zŵ) with the following properties:

P1 G is a polynomial on s variables of total degree at most k�1
and F is a univariate degree k � 1 polynomial.

P2 For any j 2 [n], G(ĵ) = xj, where ĵ denotes the vector(j(1); : : : ; j(s)). In particular, F (0) = G(̂i) = xi.
The database DBp responds with the value F (p) = G(̂i +pŵ). The user views the values F (1), F (2), : : :, F (k) and
interpolates for F (0).

It remains to show that a polynomial G as described above
exists. Let fk;j(ŷ) be the polynomialfk;j(ŷ) = sỲ=1 j(`)�1Yp=0 y(`) � pj(`) � p :
Then fk;j(ŷ) has degree

Ps̀=1 j(`) = k� 1 and it satisfies the
condition fk;j(ĵ0) = �j;j0 . (This is obviously true if j = j0
as all terms in the above product equal 1; on the other hand, ifj 6= j0 then since the sum of elements in both vectors ĵ andĵ0 is the same (i.e., k � 1) there exists an index ` for whichj0(`) < j(`). The term corresponding to this value ` and top = j0(`) equals 0 and hence the whole product is 0 as needed.)
Now define G(ŷ) to be

Pnj=1 fk;j(ŷ)xj, where the fk;j’s are
polynomials of degree at most k � 1 as above. It is clear thatG has degree at most k � 1. Furthermore, for any i 2 [n],

G(̂i) = Pnj=1 fk;j (̂i)xj = Pnj=1 �j;ixj = xi. Thus we
obtain the following theorem.

Theorem 7: Let s, k and n be integers so that
�s+k�2k�1 � � n,

and let q � k + 1 be a prime power. Then there exists a private

information retrieval schemes for k databases, each holding n bits

of data, so that the communication consists of one round in which

the user sends s � log2 q bits to each database and receives log2 q
bits in return (from each database).

The improvement provided by the above is quite significant
for values of k that are �(log2 n). For example, if we takek = 13 � log2 n and s = 2 + log2 n, we have

�s+k�2k�1 � �2H2(1=4)�43 log2 n > n1:081, where H2(�) is the binary entropy
function. This implies,

Corollary 8: There are private information retrieval schemes for1 + 13 log2 n databases, each holding n bits of data, so that the

communication complexity is 13 �(1+o(1))�log22 n�log2 log2(2n).
Employing the balancing technique of Subsection 4.3, we get

Theorem 9: Let k, n, m and s be integers so that
�s+k�2k�1 � �m �n, and let q � k + 1 be a prime power. Then there exists a private

information retrieval schemes for k databases, each holdingn bits of

data, so that the communication consists of one round in which the

user sends s � log2 q bits to each database and receives m log2 q
bits in return (from each database).

For fixed k and growing n ! 1, this result leaves the asymp-
totic communication complexity as it was, O(n1=k). Similarly,
for relatively small k (w.r.t. n) this result has little effect on the
actual numbers. However, for relatively larger k (for examplek = 16 andn = 240) the saving is meaningful. The next section
provides a sample of numeric results.

5 Numeric Results

Figure 2 summarizes the communication costs required for
private retrieval of a single data bit. We include a sam-
ple of databases numbers (k = 2; 4; 7; 16)5 and sizes (n =220; 230; 240). For the polynomial interpolation method, we in-
cluded both the “basic” results and the improved ones. (Except
the case k = 2, where s and m satisfy (s + 1)m � n in the
improved method, instead of sm � n, which results in a mean-
ingless improvement). It is readily seen from this table that fork = 2 the covering codes method is superior to the polyno-
mial interpolation method. For k = 4, k = 7 and k = 16,
the polynomial interpolation method is superior, especially for
large values of n. For the interpolations schemes the asymptotic
expression is obtained by setting m = kpn (as in Corollary 6)
whereas the actual figures in the last three columns are obtained5Except for k = 12, these are the only values for which covering-code
schemes exist. For other values of k one can only utilize k0 databases, wherek0 < k is the largest integer for which a covering code exists. For example, to
get a scheme for k = 6 databases, we use k0 = 4.

number of method communication total communication bits
databases complexity n = 220 n = 230 n = 240k = 2 covering codes 12 � 3pn 1,224 12,300 123,864k = 2 polynomial interpolation 6:34 � 2pn 6,493 207,745 6,647,815k = 4 covering codes 28 � 4pn 924 5,096 28,700k = 4 polynomial interpolation 26:17 � 4pn 827 4,635 26,136k = 4 improved interpolation as above 809 4,616 26,118k = 7 covering codes 60 � 5pn 1,020 3,900 15,420k = 7 polynomial interpolation 83:87 � 7pn 651 1,638 4,326k = 7 improved interpolation as above 546 1,533 4,221k = 16 covering codes 224 � 7pn 1,792 4,480 11,872k = 16 polynomial interpolation 485:5 � 16pn 1,635 2,224 3,205k = 16 improved interpolation as above 720 1,308 2,289

Figure 2: Comparison of some concrete schemes

via a better (optimized) choice ofm (which is slightly larger thankpn). For both versions of the polynomial interpolation scheme,
for k = 2; 4; 7; 16 we use finite fields with q = 3; 5; 8; 17 ele-
ments, respectively. Except q = 8, these are not powers of 2.
To encode them efficiently by binary strings we pack multiple
letters together. Thus we can represent GF (q) elements by us-
ing log2 q bits, which was used in the table (representation bydlog2 qe bits cause a substantial degradation).

Finally, we remark that when privately retrieving a larger
block of data (for example, 210 consecutive bits), the result-
ing communication is smaller than simply the communication
for single bit multiplied by the block size. This is achieved
by using the balancing technique, tuned to the block size. The
improvement is applicable for both the covering codes and the
polynomial interpolation method. Thus, the incurred overhead,
compared to non-private retrieval, is substantially smaller for
this more realistic case than for the single bit case. For example,
the improved interpolation method for k = 4 databases com-
municates 11; 238 bits for retrieving a block of 210 bits from a
database of size n = 230 (bits), and 26; 768 bits for retrieving
the same block from a database with n = 240. So the commu-
nication overhead is about 11 and 26 bits per one information
bit, respectively. For further discussions see Section 6.

6 Private Information Retrieval of Blocks

In this section we consider a more realistic model of private
information retrieving in which the information is partitioned
into blocks (or records) rather than single bits. For simplic-
ity, we assume that each block/record contains ` bits. We de-
note by PIR(`; n; k) the problem of retrieving privately an
(`-bit long) information block from k databases, each hold-
ing the same n blocks. Previous sections have dealt withPIR(1; n; k). Clearly PIR(`; n; k) can be solved by ` in-
vokations ofPIR(1; n�`; k),6 but there are much more efficient6In fact, PIR(`; n; k) can be easily solved by ` invokations ofPIR(1; n; k) just by considering in the j-th invocation only the j-th bit of

reductions of PIR(`; �; k) to PIR(1; �; k).
We start by noting that the Generic Balancing Technique of

Section 4.3 actually provides such a reduction. Specifically,

Proposition 10: Suppose that PIR(1; n; k) can be solved by
a one-round protocol in which the user sends �k(n) bits to each

database and receives �k(n) bits in return (from each database).

Then, for every ` > 1,PIR(`; n; k) can be solved by a one-round

protocol in which the user still sends �k(n) bits to each database

and receives ` � �k(n) bits in return (from each database).

In Section 4.3 we emphasized the asymmetric effect that the
above transformation has on the communication complexity
(i.e., increasing the communication from the databases to the
user while maintaining the communication complexity in the
other direction). An “asymmetric” transformation of the oppo-
site flavour follows.

Proposition 11: Suppose that PIR(1; n; k) can be solved by

a one-round protocol in which the user sends �k(n) bits to each

database and receives �k(n) bits in return (from each database).

Furthermore, suppose that the user retreives the desired informa-
tion bit by computing g(Pkj=1 fj(
j)), where
j is the message

obtained fromDBj , the fj ’s are arbitrary fixed functions mapping bi-

nary strings into elements of some finite field (of cardinality at most2�k(n)), summation is done over this field and g is an homomor-

phism of the field onto GF (2). (We stress that the fj ’s may not
depend on the desired bit nor on the randomness used by U .) Then,

for every m > 1, PIR(1;m � (n � 1); k) can be solved by a

one-round protocol in which the user sends m � �k(n) bits to each

database and receives �k(n) bits in return (from each database).

We note that all “pure” schemes (i.e., before “optimizing via
balancing”) presented in previous sections meet the hypothesis
of the proposition. Furthermore, the proposition can be gener-
alized to PIR(`; �; k) schemes (in which each bit in the block
is computed as conditioned above).

each of the n blocks.

Proof: For simplicity, we first assume that the fj’s mentioned
in the hypothesis are identity transformations. Our solution

to PIR(1;m � (n � 1); k) follows. We partition the N 4=m � (n � 1) bits, in each database, into m strings each holdingn � 1 bits and augment each of these strings by a dummy
position set to zero. Bit positions in [N] are represented as pairs
in [m] � [n � 1] in the natural manner. The user, wishing to
retreive i = [i0; i00] 2 [m]� [n� 1], employsPIR(1; n; k) in
parallel m times. In the jth instance U behaves as when asking
for position i00 if j = i0 and as asking for position n otherwise.
Each database adds together the answers it would have sent in
each of them invokations ofPIR(1; n; k) and sends this sum as
its only message. The user just adds all answers it has obtained
and applies g as it would have done in a single invokation ofPIR(1; n; k). We stress that each database sends only one�k(n)-bit long string rather than m such strings. Evidently,
the new scheme satisfies the privacy requirement. Correctness
follows from associativity of addition, the hypothesis that g is
a homomorphism, and the fact that the dummy position (i.e.,
position n) is set to 0. Specifically, let
jp be the designated
answer of DBp in the jth invokation. We know that g(Pp
jp)
equals xi 2 f0; 1g if j = i0 and 0 otherwise. Thus,g0@Xp Xj
jp1A =Xj g Xp
jp! = xi
It is left to extend the protocol to the general case. We first
observe that the hypothesis regrading the field size allows us to
modify the original PIR(1; n; k) protocol so that all the fi’s
are identity transformation.

Combining the above two propositions, we obtain.

Corollary 12: Let PIR(1; n; k) be as in Proposition 11 and`;m > 1. Then, PIR(`;m � (n � 1); k) can be solved by

a one-round protocol in which the user sends m � �k(n) bits to
each database and receives ` � �k(n) bits in return (from each

database). In particular,PIR(`; n; k) can be solved within ` times

the complexity of PIR(1; ǹ + 1; k).
In some settings the number of records is not substaintially big-
ger than the length of individual records. In these settings the
overhead introduced by private information retrieval is quite
small (compared to non-private information retreival). Further-
more, for ` � n, the basic two-databases scheme (of Section 3.1)
becomes of interest. Specifically, we get an overhead factor of
four:

Corollary 13: Let ` � n. Then,PIR(`; n; 2) can be solved by
a one-round protocol of total communication complexity 4 � `.
Proof: We use the PIR(1; n; 2) scheme (of Section 3.1)
in which U sends n bits to each database (indicating a linear
combination of the bits in the database) and xor-s (i.e., adds overGF (2)) the answers it obtains. Using Proposition 10, we are
done.

Note that unlike the PIR(1; n; 2) scheme (of Section 3.1), the
obvious PIR(1; n; 2) (or actually PIR(1; n; 1)), in which
each database sends its contents to the user who then retreives
the desired bit, is not an adequate starting point for applying
Proposition 10.

7 Privacy With Respect to Coalitions

Our results so far concerned the privacy of the user with
respect to any single database. It is not hard to verify that in
all the schemes described so far, any two databases get some
information about the desired index i from their joint queries
(and in some of the schemes can even recover it). In this section
we consider the scenario where the goal is to guarantee the
privacy of the user with respect to any coalition of no more thant databases. The definition of privacy follows the one given
in Section 2 but considers the joint probability distribution of
communication seen by any t0 � t databases. We present a
modification of the protocol in Subsection 4.2 to this scenario.

Given the parameter t (maximum number of databases in a
coalition) and n (input length), let k and s satisfy

� sk�1� � n.
The number of databases we use here is t(k� 1) + 1 (for t = 1
this gives k as in 4.2). We consider the same representation
of numbers j 2 [n] as sequences of length s with k � 1 ones
and s � k + 1 zeroes. Let GF (q) be a finite field with at leastt(k � 1) + 1 elements. Let xi be the bit U wants to retrieve.
Again, consider a polynomialF i;x(z) = Xj2[n] f ij (z) � xj
where now

P1 the f ij ’s are polynomials of degree at most t(k � 1).
P2 f ij (0) = �j;i, for each j 2 [n].
By arguments which are familiar by now, the value of F i;x(�)
at t(k � 1) + 1 points enables U to interpolate and retrievexi = F i;x(0).

The first part of the protocol is different. The user se-
lects s random independent polynomials of degree t in GF (q),
where the free term of the `-th polynomial, g`(z), is i(`)
(` = 1; 2; : : :; s). The user sends the values g1(p); :::; gs(p)
to DBp (for p = 1; 2; :::; s+ 1). For every j 2 [n] and ` 2 [s]
we define the degree-t polynomialfj;`(z) 4= j(`) � g`(z) + (1� j(`)) � (1� g`(z)):
The definition of the polynomials fj(z), as well as rest of the
protocol, is identical to 4.2, and we will not repeat it.

It is clear that the new property (P1) holds, and (P2) is un-
changed. This proves the correctness of the protocol. To show
that it is t-private, we observe that, for any ` and any t non-zero
points in GF (q), the values of the polynomial g`(�) at these t
points are uniformly distributed in GF (q). Furthermore, the

values of the s polynomials g`(z) (` = 1; 2; : : :; s) at these t
points are independent, and so any t databases receive t�s values
that are uniformly distributed in GF (q).

The communication complexity is as in Subsection 4.2: the
user sends each database s field elements and receives one field
element in response. The number of databases is t(k � 1) + 1,
so the overall communication complexity is (t(k � 1) + 1) �(s+1) � log2 q. The balancing techniques of Subsection 4.3 can
be applied here as well. The straightforward details are omitted.
To summarize,

Theorem 14:� Let t and d be be integer functions and c > 1 be a constant

so that d(n) = c � t(n). Then there are t(�)-private in-

formation retrieval schemes for d(�) databases, in which the
communication complexity is O(t(n) � cpn).� Let t be an integer function of n and d(n) = t(n) � log2 n.

Then there are t(�)-private information retrieval schemes ford(�) databases with communication complexitypolylog(n)�t(n).
We comment that the latter result is about the best we can hope
given our state of knowledge with respect to 1-private schemes
(e.g., Corollary 6). This is because of

Proposition 15: Let 1 < t < d. The communication complexity
of a t-private information retrieval scheme for d databases is at least

as the communication complexity of a 1-private information retrieval

scheme for dd=te databases.

Proof sketch Given a t-private scheme for d databases we
construct a 1-private scheme for dd=te databases by letting each
database in the new scheme emulate t databases in the original
scheme.

8 Conclusions and Open Problems

We have presented several techniques for constructing private
(i.e., 1-private) information retrieval schemes. Our feeling is that
the scheme for 2 databases is essentially the best one can hope for
(with respect to communication complexity). More generally,
we conjecture that private information retrieval schemes for a
constant number, k, of databases, each holding n bits of data,
require
(k+1pn) communication. Even if this conjecture is
true, it leaves a gap towards our k database schemes which, fork > 2, use O(kpn) communication.

In an attempt to develop lower bound for the problem, we
considered the very simple case in which there are two databases
and the user makes a single binary query to each of them. In
this simple case we were able to show that privacy requires the
user to send long messages (i.e., of length linear in the length of
the database). This lower bound is very restricted with respect
to what we want, but on the other hand it provides yet another
demonstration of the strength of the privacy condition.

Acknowledgment

We wish to thank Muli Safra, Shafi Goldwasser, Don Cop-
persmith and Joe Kilian for helpful discussions regarding related
issues. We are grateful to Tuvi Etzion for providing us some
pointers to the known results on covering codes, and to Oded
Shmueli for pointers to the database literature.

References

[1] ABADI M., J. FEIGENBAUM, AND J. KILIAN. On Hiding Information from
an Oracle. JCSS, 39:1, pp. 21—50, 1989.

[2] N. ADAM, AND J. WORTMANN. Security Control Methods for Statistical
Databases: A Comparative Study. ACM Computing Surveys, 21:4, pp.
515—555, 1989.

[3] L. BABAI, L. FORTNOW, AND C. LUND. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, v. 1, pp.
3-40, 1991.

[4] L. BABAI, L. FORTNOW, L. LEVIN, AND M. SZEGEDY. Checking computa-
tions in polylogarithmic time. STOC, 1991.

[5] L. BABAI, P. KIMMEL, AND S. V. LOKAM. Simultaneous Messages vs.
Communication. To appear STACS, 1995.

[6] D. BEAVER AND J. FEIGENBAUM. Hiding Instances in Multioracle Queries.
STACS, 1990.

[7] D. BEAVER, J. FEIGENBAUM, J. KILIAN AND P. ROGAWAY. Security with
Low Communication Overhead. CRYPTO, 1990.

[8] S. CERI AND G. PELAGATTI. Distributed Database Principles & Systems.
McGraw Hill, 1984.

[9] F. CHIN. Security Problems on Inference Control for SUM, MAX, and
MIN Queries. JACM, 33:3, pp. 451—464, 1986.

[10] D. DENNING. Cryptography and Data Security. Addison-Wesley, 1982.

[11] D. DOBKIN, A. K. JONES, AND R. J. LIPTON. Secure Databases: Protection
Against User Influence. ACM Transactions on Database Systems, 4:1, pp.
97—106, 1979.

[12] U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY.
Approximating clique is almost NP-Complete. FOCS, 1991.

[13] R. G. GALLAGER. InformationTheory and Reliable Communication. John-
Wiley and Sons, New-York, 1968.

[14] I. S. HONKALA. Modified Bounds for Covering Codes. IEEE Transactions
on Information Theory, 37:2, pp. 351—365, 1991.

[15] C. LUND, L. FORTNOW, H. KARLOFF, AND N. NISAN. Algebraic Methods
for Interactive Proof Systems. FOCS, 1990.

[16] P. PUDLÁK, AND V. RÖDL. Modified Ranks of Tensors and the Size of
Circuits. STOC, 1993.

[17] R.L. RIVEST, L. ADLEMAN, AND M.L. DERTOUZOS. On data banks and
privacy homomorphisms, Foundations of Secure Computation (eds., R.
DeMillo, D. Dobkin, A. Jones, and R. Lipton). Academic Press, 1978.

[18] P. TENDICK, AND N. MATLOFF. A Modified Random Perturbation Method
for Database Security. ACM Transactions on Database Systems, 19:1, pp.
47—63, 1994.

[19] J. D. ULLMAN. Principles of Database Systems. Second edition, 1982.

