Private I nfor mation Retrieval
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ABSTRACT: We describe schemes that enable a user to access k repli-
cated copies of a database (k > 2) and privately retrieve information
stored in the database. This means that each individual database gets
no information on the identity of the item retrieved by the user.

For a single database, achieving this type of privacy requires com-
municating the whol e database, or » bits (where n isthe number of bits
in the database). Our schemes use the replication to gain substantial
saving. In particular, we have

e A two database scheme with communication complexity of
O(n? 3 ).

e A scheme for a constant number, &, of databases with commu-
nication complexity O(n'/*).

e A scheme for %logQ n databases with polylogarithmic (in n)
communication compl exity.

1 Introduction

Consider a user that makes a query in a database. A lot
of research was devoted to methods that protect the database
against a “curious’ user. For example, methods that do not
allow auser to ask queriesto a statistical database in away that
enables him to reconstruct the value of particular entities (e.g.,
[2, 9,10, 11, 18] and [19, Section 10.5]).

It may seem surprising at first glancethat there areno methods
to protect the privacy of the user. For example, an investor that
gueries the stock-market database, for the value of a certain
stock, may wish to keep private the identity of the stock he is
interested in. However, itisnot difficult to prove that if the user
wants to keep its privacy then essentially the only thing he can
doisto ask for a copy of the whole database; clearly, thisisan
undesirable solution.

The rapid development of distributed databases (see[8]) and
al kind of data-services (“information highways”) results in
many scenariosin which the same databaseis replicated in sev-
eral sites. Thisraises hopeto get around the difficulty of achiev-
ing privacy in the single database scenario; it may be possibleto
make queriesto several databasessuch that from the answersthe
desired information can be obtained, while from each query no
information is given as to the information the user is interested
in, henceits privacy is maintained.
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Before going any further let us make the problem more con-
crete. We view the database as a string « of length ».. Identical
copiesof thisstring arestoredin k& > 2 sites. The user has some
index ¢, and he isinterested in obtaining the value of the bit ;.

We present various schemes that solve the retrieval problem
with significantly smaller communication complexity than the
obvious n-bit solution (i.e., asking for acopy of x). In particular
we obtai n atwo-database schemewith communication complex-
ity of O(n'/3), a k-database scheme with complexity O(n'/¥)
(for constant k), anda( log,, n+1)-databasesschemewithtotal
communication complexity £(1+o(1))-log3 n-log, log,(2n).
We remark that our schemes can be modified (with a small
penalty in the communication complexity) so as to guarantee a
higher degree of privacy: fort < k£ — 1, knowingt of the queries
still gives no information asto what isthe value of ¢ that the user
is interested in. We also remark that some of our schemes are
based on exclusive-or (linear summations, or sumj queries; this
type of queriesis very common and is actually implemented in
several “real-world” databases (see[9, 11, 19]).

Related Work

For thecasecaseof k£ = 2 (i.e., two databases), afirst indica-
tion that something better than the user asking for acopy of « can
be doneisgiven by arecent result of Pudlak and Rodl [16]. With
a complexity-theory motivation in mind they studied the follow-
ing question. There are three players: D that holds a string =
and anindex j, D, that holds the same string # and an index ¢,
and U that knowsboth j and ¢. Thegoal isfor Dy and 1D, to send
asinglemessageeachto U so that he will be able to computethe
bit #; +-¢ modn . They show that this can be done using o(n) bits
(more precisely, O(n log, log, n/ log, n)). Using their proto-
col, a scheme which guarantees privacy to the user of a database
can be constructed as follows: The user chooses uniformly at
random a pair of indices j, ¢ suchthat j + ¢ = ¢ mod n. He
sends j to the first database, ¢ to the second and the three of
them execute the protocol. This solves the problem with o(n)
bits while maintaining privacy.

Independently of our work, Babai, Kimmel, and Lokam [5]
studied a problem related to the one studied in [16] (where,
again, the motivation comes from complexity theory). When
viewed in our context their work provides a private information
retrieval schemefor the caseof general £ with total communica-
tion O(knt?2(1/(:+1)) "1n particular for the case of k = 2 this
provides a scheme with O(n2(1/3)) ~ O(n"??) communica-
tion. Thisis better than the schemethat can be derived from the
work of [16] but still not as good as the scheme provided in this



paper.

In[17, 1, 6, 7] the instance hiding problem is introduced and
studied. In this problem, a computationally bounded player U/
that holds an instance ¢ wishes to compute a known function
f oninput . The function f may be hard to compute, so
U can query & computationally unbounded oracles to achieve
this task (each oracle can compute f(j) for any j). Stll, the
player wantsto keep itsinstance ¢ hidden from the oracles. In a
sense, this problem can be viewed asif the oracles have a string
F(D)f(2)... f(n) and U wants to obtain the i*" bit of this
string, which is the value f(¢), while keeping ¢ private. In this
sensetheinstance hiding model isrelated to the model of private
information retrieval. Some of the techniques used in [6, 7]
are relevant to our problem, especialy the use of low degree
polynomials, introduced by Beaver and Feigenbaum [6], and
further developed by Beaver, Feigenbaum, Kilian and Rogaway
[7]. In particular, the scheme of [6] for 1 + log, n databasesis
essentially the onewe use asour starting point in Subsection4.1.
From the construction in [7] it is possible to derive a private
information retrieval scheme for k (constant) databases with
O(n'/*=1)y communication (see Remark 5.2 in [7]). In fact
the scheme shown here in Subsection 4.2 can be considered an
improved variant of their construction.

It should be emphasized that despite these similarities, there
are substantial differences between the models and between the
quality of the results. In our model the value n is considered a
feasible quantity, while in the instance hiding model n is expo-
nential in the length of the instance, so it is an infeasible quan-
tity. Consequently, the instance-hiding model is aimed towards
poly(]i])-time computations for U7, allowing only solutions in
which the communication between the user and the databasesis
poly-logarithmic in n. In contrast, the main thrust of our work
isthe case with small number of databases (specifically, smaller
than log, n). We do allow the user to perform »° time compu-
tation (where ¢ > 0 is a constant), and in particular send and
receive messages|onger than polylog(n).

Organization

In Section 2 we introduce notations and basic definitions.
In Section 3 we develop several schemes where every reply
is an exclusive-or of a subset of the database’s bits. In Sec-
tion 4 we introduce methods based on low degree polynomial
interpolation. Section 5 contains numeric results on the commu-
nication complexity for relevant numbers and sizes of databases.
Section 7 describes a generalization, which guarantees privacy
against coalitions of more than a single database. Conclusions
and open problems can be found in Section 8.

2 Prdiminaries and Definitions

Throughout the paper we denote the user by i/, the k
databases by DB;,...,DB;, the identical data they hold
by « € {0,1}", and the bit in which ¥/ is interested by

ieml2{1,2,...,m}.

PrIVACY: We want that for every database DB,, for every pos-
sible content of the database, «, and any two indices ¢ and j the
database will not be able to distinguish between the case that
the user holds index ¢ and the case that the user holds index j.
That is, the communication between the user and D3, should
be equally distributed, regardless of theindex i. NOTATION FOR

SECTION 3: For aset .S and an element « let

Sufa) ifags
S@“é{ S\{a} ifaes

NOTATION FOR SECTION 4: Weusefinitefields, denoted GF'(q),

where ¢ isa prime power. For notational simplicity, we denote
the ¢ elementsof GF'(¢) by 0,1, ..., ¢— 1. Whenever adding or
multiplying field elementsit is understood that these operations
are thefield’s operations.

3 ThelLinear-Summation Scheme

In this section we describe various schemes that are of the
“linear summation” type. In these schemes, the user sends
queriesintheform of subsetsS C {1, ..., n}, and the database
replleszth @jegl‘]’.

3.1 A Basic Two-Databases Scheme

We start by describing a very simple scheme that allows
the user I/ to privately obtain the bit z; by receiving a single
bit from each of two databases. The user uniformly selects a
random set S C [n] (i.e, each index j € [n] is selected with
probability 1/2). The user sends S to D3, and S & i to DBs.
Each of these databases, when receiving the message I C [n],
replies with a single bit which is the exclusive-or of the bits
withindicesin 7 (i.e., DB, replieswith @ ¢ 5x; whereas DB
replies with @; ¢ sg;%;). The user exclusive-ors the answers it
has received, thus retrieving the desired bit z;. Clearly, none
of the databases has obtained any information regarding which
index was desired by the user (as each of the databases obtains
auniformly distributed subset of [n]).

Although the above schemeis less obvious than a solution in
which one database sends al n bits to the user, it is not superior
as far as the total amount of communication goes. Indeed each
database sent only a single bit, but the messages sent by the user
(specifying arbitrary subsets of [n]) are n bits long. Yet, this
simple scheme serves as a basis for more efficient ones.

3.2 A Multi-Database Scheme

In this subsection, we present aschemefor any number & > 2
of databases available. Later, in Section 4, we present a better
schemefor thecaseof largek (i.e., k¥ > 4). However, thescheme
presented here, together with the covering codes method that we
present in the next subsection leads to the best upper bounds
we have for small values of % (the number of databases) and in
particular for the interesting case k = 2.



The scheme presented in this subsection allows the user to
obtain the desired bit by asking queriesto & = 2¢ databases, for
any d > 1, andrequirestotal communicationof 2¢-(d-n'/441).
The key ideaisto associate [n] with the d-dimensional cube [¢]¢
and generalize the simple scheme of Subsection 3.1, which may
be viewed as the 1-dimensional case (i.e., d = 1). In the gener-
alization, each of the 2¢ databasesis queried for the exclusive-or
of the bitsin a uniformly distributed subcube. Asin the basic
scheme, the different subcubes are related, and this alows to
retrieve the desired bit. The saving in communication comes
from the fact that subcubes can be described more succinctly
than general subsets.

We assume, without loss of generality that n = ¢¢. We
embed x in a d-dimensional cube, associating each position
j € [n] withad-tuple (ji, ..., ja) € [€]%, inthe natural manner.
In particular, theindex ¢ of the desired bit isassociated with a d-
tuple (iy, . .., i4) € [¢]%. It will also be convenient to associate
thek = 2¢ databaseswith stringsin {0, 1}¢. The schemeworks
asfollows.

1 U choosesuniformly and independently d random subsets
S9.85,...,8Y C [¢]. Based on these subsets it defines
another d subsetsof [¢] by ST = SY @ 4,53 = S @
ia,..., S = SY & ig. These 2d subsets are paired
in the natural way; namely, (S, S1),...,(S9,S}). To
each of the k = 2¢ databases / sends one subset per
pair, corresponding to the name of the database. Namely,
for every o = o1 ---04 € {0,1}¢, the user sends the
subsets 7', 552, ..., 57" toDB,.

2. Upon receiving the d subsets S7*,S77,...,57¢, the
database(i.e., PB,,....,) replieswith the exclusive-or of
the subcubedefined by these subsets. Namely, DB, ...»,
replieswith the bit @jlesfl vja€STE Tt

3. The user exclusive-orsthe k& = 2 bits it has received.

The correctness of the above scheme can be easily verified. The

privacy of the above scheme follows by observing that each

database receives a sequence of d uniformly and independently
chosen subsets of [¢]. Thus, the queries to each database are
distributed in the same way, for each possible value of : =

(f1,...,1q).

The communication involved in the above scheme consists
of sending a sequence of d subsetsin [¢] to each database, and
receiving a single bit back. Hence the total communication
complexity isk - (d - £+ 1) = 2¢ . (1 + d - &/n). We note
that the communication in the present scheme is not balanced.
The user sends d - n'/¢ bits to each database, and receives a
singlebit from eachin response. Interestingly, theimprovement
in Section 3.3 results by balancing the communication (in away
specific to the above scheme). A generic balancing techniqueis
presented in Section 4.3.

3.3 TheCovering Codes Scheme

In this subsection we describe a method based on covering
codes (from coding theory). Thismethod (essentially) maintains

the total communication complexity of the schemesdescribedin
the previous subsection but reduces the number of participating
databases. It is especially useful when the number of databases
(i.e, k)issmal (i.e, k = 2and k = 4).

We start with an example. For d = 3, the scheme of the
previous subsection consists of a user and 2¢ = 8 databases
whose namesare associated with thebinary stringsof lengthd =
3. Theuser sendsasubcube defined by the sets (57, 552, .55°)
to DB,, .0, Which replies with the exclusive-or of the bits
residing inthissubcube. Thus3-¥n bitsare sent from the user to
each database, which replieswith asinglebit. Thekey ideainthe
improvement isthat D B0, which getsthe query (SY, S35, 59),
can producearelatively short string which containsthe answer to
thequery (59, 55, S3), sentto DBgo:. Specifically, it knows S
and 59 andit also knowsthat S3 must be oneof form S & 7, for
somej € {1,2,...,/n}. Thus DBogy can emulate DBgo1 by
sending the &/n bits corresponding to the /n possible queries
which could have been sent to PByg;. In the same fashion,
DBgoo can emulate both DBg19 and DPB1gg. Thus, by |ett|ng
DBogg emulate DB1gg, PBo1o and DBygq, and |ett|ng DB111
emulate DBg11, PB1g1 and DB, We get a scheme for two
databases with total communication complexity O(/n). We
notethat it istoo expensiveto let DBgog emulate DBy1; asthis
will require considering all (%/n)? possibilitiesfor (51, 53).

In general, the above “emulation” method depends on the
ability to cover the strings in {0, 1}¢ by few d-bit long string,
where each string may cover itself and al strings at Hamming
distance 1 from it. In other words, we consider the problem
of covering {0, 1}¢ by balls of radius 1 (in the Hamming ge-
ometry). This is a well known problem in coding theory. A
covering code, Cy, with radius 1 for {0,1}¢ is a collection
Cq={ci,co,...,c1} C{0,1}4, suchthat the balls of radius
1 around the codewords cover the space; namely,

{Oa 1}d - UCjECdB(cj’ 1)

where B(e, 1) is the set of al d-bit long strings which differ
from ¢ in at most one position.

Given a(radius1) covering code, Cy = {¢1,¢a, ..., cx } (for
{0, 1}4), we use the emulation method to derive a k-database
protocol of communication complexity O(d - k - n*/?). The
user, being interested in position ¢ = (71, ..., ¢4), picks uni-
formly S9,59,...,589 C [n'/9,andsets S} = SV @iy, S) =
S9 @ ds, ..., St = 5% ® iy Theuser sendsto DB, (c € Cy)
the subcube corresponding to codeword ¢ (i.e., (S7*, ..., S5%)
where ¢ = o1 ---04). Each DB, replies by emulating itself
(i.e., one bit) and the databases corresponding to the words cov-
ered by the codeword ¢ (i.e., '/ bits per each such database).
All these answersallow the user to compute the answer it would
have receivedin the protocol for 2¢ databases, and consequently
retrieve the desired bit. The privacy of the original 2¢-databases
scheme is clearly preserved. As for the communication com-
plexity of the new protocol, we note that d - n2/¢ bits are sent
from U to each database and that the total nhumber of bits sent
back is k + (2¢ — k) - n'/? (note that only the emulation of



dimension # codewords | volume total
(databases) (lower) | communication
(e, d) | 2¢ (i.e, k) bound
3 8 2 2 12nt/3
4 16 4 4 28n1/4
5 32 7 6 60nt/>
6 64 12 10 124n1/6
7 128 16 16 224n1/7
8 256 32 29 480nt/8

Figure 1: Covering Codes and Protocols

databases corresponding to non-codewords requires n'/¢ bits
and that it suffices to emulate/cover each such database once').
Thus, the total communication equals (dk + 29 — k) -n'/4 4 k,
and we get

Theorem 1: Let d and k be integers so that there is a k-word
covering code (of radius 1) for {0, l}d. Then there exists a private
information retrieval schemes for & databases, each holding n bits
of data, so that the communication complexity of the scheme is

k4 (244 (d—=1)-k)-n'/d,

Clearly, k in the above theorem need not be greater than
29, On the other hand, k& > d2-|-_dl by the volume bound
(cf., [13]). The lower bound is not always attainable. The
construction given above, for d = 3, uses the fact that
{(0,0,0), (1, 1,1)} isacovering codewith radius 1 of {0, 1}>.
For d = 4 there exist covering codes with four codewords (e.g.,
{(0,0,0,0),(1,1,1,1),(1,0,0,0),(0,1,1,1)}) but not with
fewer codewords (due to the volume bound). In Figure 1 welist
the best known covering codes for d up to 8, the correspond-
ing volume bounds, and the communication complexity of the
resulting protocol (i.e., (2¢ 4+ (d — 1)k) - n'/4, ignoring the
additive term of k). We note that all these covering codes are
optimal (minimum size) [14]. For d = 3 and d = 7, these are
Hamming Codes which are perfect codes (all ballsare digjoint).

As one can see from this table, the improvement derived by
the emulation method (over the simpler method of Section 3.2
which reguires2¢ databases) isquitemeaningful for small values
of d. Covering codes with larger radii (say 2 or 3) are also
applicablein principle. For example, a k word radius 2 covering
code of {0, 1} would yield communication complexity & - d -
n'/? 4+ k- (3) - n*%. Reviewing the parameters of the best
codes[14], they turn out to be inferior for our purposes than the
radius 1 codes.

The results using the covering codes methods are most ap-
pealing for the cases of 2 and 4 databases. These cases are
summarized in the next corollary to Theorem 1.

Corollary 22 There are private information retrieval schemes for
n bits data, with the following parameters:

! Formally, we consider a fixed exact cover of {0,1}¢ by sets S(c;)’'s S0
that S(c;) C B(cj,1),foreveryj =1,..., k.

e For two databases (i.e., ¥k = 2), the communication com-
plexity is 12¢/n + 2.
e For four databases (i.e., k = 4), the communication com-

plexity is 28 ¢/n + 4.

4 The Polynomial Interpolation Scheme

In this section we describe an information retrieval scheme
which requires O(n'/*) communication bits for k databases,
where k = O(1) is aconstant, and O(log3 n log, log, n) bits
where k = 1 - log,n. The scheme is based on the method
of low-degree polynomial interpolation, originating from [6]
and extensively used thereafter (see for example [15, 3, 4, 12]).
We start by presenting a simple version for k& = log,n + 1
databases. Thisversion is essentially the one used for log, n +
1 oracles in [6]. An improved and more general scheme is
developed in Subsection 4.2. Thisschemeis avariant of the one
presented in [7].

4.1 A Simple Scheme For log, n + 1 Databases

Supposing that n = 2¢, we associate the set [n] = {0, 1}’
with the set of functions from [s] to {0,1}. Thusj € [n] is
associated with the function j : [s] — {0, 1} so that, for every
£ =1,2,... s thevaue j(¢) is the ¢-th least significant bit in
the binary expansion of j. Let é; ; be the Kronecker function:

71 0 otherwise
We are currently interested in a scheme allowing ¢/ to retrieve
thei'” bitof x = x; - - -x, € {0,1}" using s + 1 databases. In
what follows we shall define a sequence of functions constructed
with the value of ¢ in mind.
Let GF(q) be afinite field with at least s + 2 elements.
Consider afunction, defined over G F'(¢), of the following form:

Fir(z)y =" fi(2)-aj
Jj€[n]

where
P1 the f;f 'sare polynomials (in z) of degree at most s; and
P2 fi(0) = é;,, foreach j € [n].

By (P2), F*(0) = 3, ¢pny [7(0) 5 = X 05 - %5 = 4
On the other hand, by (P1), F'>* is a polynomial of degree at
most s (in z). Thus, if ¢/ isgiven the value of F%(-) at s + 1
points, it can easily retrieve F©:*(0) by interpolation. So if U
can obtain fromeach DB, (p = 1,2, ..., s+ 1) thevalue of F'
at point p # 0, without yielding information about ¢, then we
are done. We describe a schemewhich achievesthis goal at low
Cost.

The user selects uniformly and independently s elementsin
thefield GF(q), denoted by 4, ..., r;, and defines s functions

gz(z)ém~z—|—i(£) fort=1,2,..., s



For every j € [n]and ¢ € [s] wedefinethe degree 1 polynomial

1(2) 250 - ge(z) + (L= (0) - (1= ge(2)).

The polynomial f;f(z) is now defined as the product of the
1 1(2)'s, namely

L) =f1(2) - fa(e) - S (2)

The user sends the values g1 (p), ..., gs(p) to DB, (for p =
1,2,...,s+ 1). DB, usesthese s values to compute F'*:(p),
even though it doesnot know ¢, asfollows. First, for every j and
€1 <j<n1<<5), DB, computesthevalue f; ,(p) by
setting

ifj(¢) =1
otherwise

; [ a(p)
3e(p) = { (1— ()

Now, for every j € [n], DB, computes
W) =Faw) - fia0) - £ ()
and

FY*(p) = Z Fip) ;.

ThiscomputationtakesO(s-n) operationsin G F'(¢). Thevalue
F5(p) issent to the user. Thisway, I obtains the value of the
polynomia F7(z) at the s + 1 points 1,2, ...,logy n + 1.
The user interpolates and obtains F'*:%(0) = ;.

We first assert that the scheme provides privacy. This is
becausethevaluesg: (p), ..., g:(p) sentbyd toD B, (p # 0) are
uniformly and independently distributed in the field, regardless
of 7. To seethat the schemeyields the correct answer it suffices
to verify properties (P1) and (P2) above. By definition, each
of the polynomials f;f is a product of s linear polynomials, and
thus property (P1) follows. Property (P2) holds since f; (2) =
J(0) - ge(2) + (1= j(0)) - (1 = gu(2)) and g,(0) = 4(¢), for
each ¢ € [s], and thus

1 7 (0)
=1

= JI G -i)+ 1 —=j0)-(1—i0))
= 6

£y =

2,7

Finally, we consider the communi cation complexity of theabove
scheme. Thecommunication between theuser and each database
consists of s field elements sent from the user to the database
and one field element sent in response. Thus, the total commu-
nication amounts to (s + 1) - (s + 1) - log, ¢, where ¢ is the
size of the finite field G F'(¢). This ¢ must be at least s + 2
(to accommodate s + 1 non-zero points), and can aways be
found in the range [s + 2, 2s]. We have s = log, n, so with
s+ 1 = log, n + 1 databases, the communication complexity
is (14 o(1)) - log3 nlog, log,(2n).

4.2 TheGeneral Case

To handlethe general caseof % databases, where k < log, 7,
we usethe samebasicidea, but employ adifferent representation
of integersintherange 1 through ». Instead of the“dense” binary
representation, we consider s-bit long binary sequences with
exactly £ — 1 occurrencesof 1 inthem?. We take the minimum
s satisfying (,°,) > n. Every 1 < j < n is represented by
a sequence with s + 1 — k zeroesand & — 1 ones. We order
these sequences in lexicographic order, and represent j by the
Jj-th sequencein thislist. We now associateevery j € [r] with
afunction j : [s] — {0, 1} so that, for every £ = 1,2, ..., s, the
value j(¢) isthe ¢-th entry in the j-th sequence.

Let GF(q) beafinitefield with at least £ + 1 elements. Let
¢ be the bit position which ¢/ wantsto retrieve. Again, consider
apolynomial F*“(z) = 3" cru f1(2) -z, where

P1 the f;‘sare polynomials of degree at most &£ — 1.
P2 fi(0) = é;,, foreach j € [n].

By arguments identical to those used in Subsection 4.1, the
valueof F'*:7(-) at k points enablesi/ to interpolate and retrieve
z; = F%*(0). Wenow describe the protocol.

The user selects uniformly and independently s elementsin
thefield GF(q), denoted by 4, ..., r;, and defines s functions

gz(z)ém~z—|—i(£) fort=1,2,..., s

The user sends the values ¢1(p), ..., gs(p) to PB, (for p =
1,2,...,s+ 1). Forevery j € [n] and ¢ € [s] we define the
degree 1 polynomial

1(2) 20 - ge(2) + (L= () - (1= gu(2)).

Thenext step, however, isdifferent. The anal og definition would
beto take f} (=) asthe product f! , (=) through f; (=), whichis
apolynomial of degree s. Thiswould require s + 1 evaluation
points, more than the number of databases we have. We want
the polynomial f;f(z) to beof degree £ — 1, with 6; ; asitsfree
term. To achievethis, we define

f;(z) = H f;z(z) .
£:5(0)=1
There areexactly k — 1 indiceswith j(¢) = 1. Therefore f; (=)
is of degree at most k£ — 1 (recall that each f;’yz(z) is of degree
1), and so property (P1) holds. Property (P2) holds since

FHOREIE | (0
Li(0)=1

= Il Go-io+a-jw) a-iw)

£j(=1

2The scheme from [7] is also similar in spirit and can be thought of as using
a representation of integers with s-bit long sequences which are divided into
k — 1 blocks of length s /(& — 1) and any block having asingle 1.



If j = ¢ then the last expression equals

I G+ a—iw)?) .

(=1

Each multiplicand equals 1, and therefore the product, f£(0),
equals 1. If j # ¢, then for at least one ¢ we have j(¢) = 1
and i(¢) = 0 (since both j(-) and i(-) have each exactly k — 1
entries of value 1). For this ¢, the multiplicand

(0 i) + (1 = 5(6) - (1 = i(€)))

is 0, and therefore the product, f;f(O), equals0.

With this modification, the protocol proceeds similarly
to the previous one. The user sends to D53, the values
91(p), 92(p), ..., 9s(p). The arguments for correctness and
privacy are the same too. The communication complexity,
however, is slightly different. As before, the user sends each
database s field elements and receives one field element in re-
sponse. However, here, the overall communication complexity
isk-(s+1)-logaqg <k-(s+1) - (1+log,k) (and k is
not necessarily equal to s + 1). Recall that s has to satisfy
(,2,) > n. Weget

Theorem 3: Let s, k and n be integers so that (kil) > n,
and let ¢ > k + 1 be a prime power. Then there exists a private
information retrieval schemes for & databases, each holding n bits
of data, so that the communication consists of one round in which
the user sends s - logs, ¢ bits to each database and receives log-, ¢
bits in return (from each database).

To exactly analyze the complexity, we separately consider dif-
ferent values of the parameters k£ and s. One point along this
curveiss = log, n 4 log, logon and k = 5 + 1. Using the
approximation (,7,) ~ 2=, weget (,°,) > n. Thus,

Corollary 4:  There are private information retrieval schemes for
- (logy n + log, log, n) + 1 databases, each holding 7 bits
of data, so that the communication complexity is % (14 0o(1)) -
log2 n - log, log,(2n).

Thisisless® than the communication complexity of the scheme
of Subsection 4.1, while the number of databases is slightly
over a half of the log, n + 1 databases used there. The other
extreme on the curve is k congtant. Here s is O(n'/(*=1))
(actualy, s = (k — 1) - */n + k suffices), and the result-
ing communication complexity is aso O(n'/(*=1)) (which is
strongly skewed towards the user-to-database direction). This
complexity can be brought down to O(n'/*), using a generic
bal ancing technique that is presented next.

4.3 A Generic Balancing Technique

Consider an arbitrary scheme for privately retrieving infor-
mation from several databases in which the communication is

3 gpecifically about one half

carried out in one round (i.e., the user simultaneously queries
each database and receives answers from which it computes the
desired bit). Given such a scheme for databases containing n
bits, one can derive a scheme for databases containing m - n
bits by repeating the scheme in parallel as follows. The user
viewsthe m - n bits asam-by-n matrix of bits. To retrieve the
(4, )-th bitin the matrix, ¢/ executesthe n-bit schemewith ¢ be-
ing the desired bit (ignoring, for the time being, the value of j).
Now, each database views itself as participating in m different
executions of the n-bit scheme, each one with a different row
(an n-bit string). Namely, in the j-th execution ( = 1, ..., m),
the database computes its response with respect to the j-th row.
Thus, the user privately retrieves the entire ¢-th column of the
matrix, from which it finds the desired (j, ¢)-th bit. Let us
compare the communication complexity of the original n bits
scheme with the resulting m - n bits scheme. The communica-
tion from the user to each database remains unchanged, while
the communication in the database-to-user direction increases
by afactor of m.

We now apply the balancing technique to the protocol in
Theorem 3. To this end, we view the string = as an m-by-
(m/n) matrix of bits. Thus, we use the protocol of Theorem 3
for strings of length 2 and so s should now satisfy (,*,) > Z.

Theorem 5: Let k£, n,m and s be integers so that (kil) > =
and ¢ > k + 1 be a prime power. Then there exists a private
information retrieval schemes for & databases, each holding n bits
of data, so that the communication complexity is k - (m + 5) -log, q.

Yk — 1! ((n/m) + k) satisfies
. Setting m = ¥/n (which is not

In particular, setting s
the condition (,*,)
optimal), we get

2

n
m

Corollary 6: Let £ and n be integers and ¢ > k + 1 be a prime
power. Then there exists a private information retrieval schemes for
k databases, each holding n bits of data, so that the communication
complexity is

k- (5—1— \k/m) -logs ¢

where s 2 k‘\l/(k — D' */nE=1/% ¢ k. We may also use
s= (k=1 ¥n + "k specifically, for k = 2 this
yields s = \/n + 2;fork = 3,5 = /2 Yn+ 3 for k = 4,
s=/6-/n+3;andfork > 5wemayuses = (k—1) - ¥/n.

Thisresult isasymptotically (for n — oo) better than the cover-
ing codes schemes of Subsection 3.3, except for thecasesk = 2
and k = 4. For k = 2, we get here O(n'/?) communication,
while we had O(n'/3) communication there. For k = 4, both
methods give O(n'/*) complexities (and also the constant in
the O-notation are comparable?).

4 Actually, the constant here, 4 - 1+ %) -log, 5 & 26.165, isdightly
better than the constant, 28, for the covering codes.



4.4 Further improving the general case

In this subsection we further improve the polynomial inter-
polation method of subsection 4.2. While this optimization does
not improve the asymptotic behavior of the communication for
any fixed number of databases, it does achieves significant sav-
ing when the number of databasesislogarithmic.

As usual, let k& denote the number of databases. Again the
starting point for the improved schemeis a different representa-
tionof integersintheinterval from 1 ton. Instead of considering
{0, 1}-sequenceswith & — 1 occurrencesof 1 in them (asin Sub-
section 4.2), we consider this time sequences of non-negative
integers that sum up to exactly £ — 1. We associate with every
j € [n], the function j : [s] — {0,...,k — 1}, so that for
every £ = 1,...,s, thevalue j(¢) is the ¢-th entry in the j-th
sequence, and Y_;_, j(¢) = k — 1. The number of sequences
of length s whose sum equals r is (**7~"), and hence we will

pick the minimum s so that (*7*7%) > n. Let GF(q) be a
finite field with at least £ + 1 elements.

Suppose the user ¢/ wishes to retrieve the i-th bit =; of the
database. Let i be the s-dimensional vector over G F(¢) given
by ¢ = (i(1),...,i(s)). The user starts by uniformly picking
avector w = (w(l),...,w(s)) € GF(q)*. Forp =1,...k,
the user sendsi + pwtoDB,. (Herefor two vectors vy and v,
the notation v, + vy issimply the vector sum, and for a scalar
a and vector v, the notation av denotes the vector obtained by
multiplying each coordinate of v by a.)

Consider a fixed multivariate polynomial G/(y) and a poly-
nomia F'(z) = G(i 4 zw) with the following properties:

P1 G isapolynomial on s variablesof total degree at most k& — 1
and /" isaunivariate degree k — 1 polynomial.

P2 Forany j € [n], G(j) = «;, where j denotes the vector
(G(1),...,5(s)). Inpaticular, F(0) = G(i) = ;.

The database D83, responds with the value F'(p) = G(i +
pw). The user views the values F'(1), F(2), ..., F(k) and
interpolates for 7'(0).

It remains to show that a polynomial G as described above
exists. Let f; ; () bethe polynomial

IO 0 = p

fri(9) = ST

! g 1,1:[0 j0)—p
Then f5, ;(y) hasdegree >";_, j(¢) = k — 1 and it satisfiesthe
condition fkyj(j/) = §; ;.. (Thisis obviously trueif j = j
as all terms in the above product equal 1; on the other hapd, if
J # j' then since the sum of elements in both vectors ; and
j' is the same (i.e., k — 1) there exists an index ¢ for which
J'(£) < j(£). The term corresponding to this value ¢ and to
p = j'(¢) equals 0 and hencethe whole product is 0 as needed.)
Now define G(y) tobe 3°7_, fi ;(y)z;, where the f ;'s are
polynomials of degree at most & — 1 as above. It is clear that
G has degree at most k& — 1. Furthermore, for any i € [n],

G(Z) = Z?:l fkyj(i)l‘]’ = Z?:l (Sjyil‘]' = z;. Thus we
obtain the following theorem.

Theorem 7: Let s, k and n be integers so that (s‘}izz) > n,
and let ¢ > k + 1 be a prime power. Then there exists a private
information retrieval schemes for & databases, each holding n bits
of data, so that the communication consists of one round in which
the user sends s - log, ¢ bits to each database and receives log., ¢
bits in return (from each database).

The improvement provided by the above is quite significant
for values of k that are O(log, n). For example, if we take
k =% logynands = 2+ log,n, we have (s"k'lizz) e~
9Ha(1/4) 5logan 5 71081 \where H,(-) is the binary entropy
function. Thisimplies,

Corollary 8: There are private information retrieval schemes for
1+ % log, n databases, each holding n bits of data, so that the

communication complexityis 1 -(1+0(1)) log3 n-log, log,(2n).
Employing the balancing technique of Subsection 4.3, we get

Theorem 9 Let k, n, m and s be integers so that (s-}izz) -m >
n, and letq > k + 1 be a prime power. Then there exists a private
information retrieval schemes for k databases, each holding n bits of
data, so that the communication consists of one round in which the
user sends s - logs, ¢ bits to each database and receives m log, ¢

bits in return (from each database).

For fixed k and growing n — oo, this result leaves the asymp-
totic communication complexity asit was, O(n'/*). Similarly,
for relatively small k (w.r.t. n) this result has little effect on the
actual numbers. However, for relatively larger & (for example
k = 16andn = 2*9) thesavingismeaningful. Thenext section
provides a sample of numeric results.

5 Numeric Results

Figure 2 summarizes the communication costs required for
private retrieval of a single data bit. We include a sam-
ple of databases numbers (k = 2,4,7,16)° and sizes (n =
220 930 949y For the polynomial interpolation method, we in-
cluded both the “basic” results and the improved ones. (Except
the case k = 2, where s and m satisfy (s + 1)m > n inthe
improved method, instead of sm > n, which resultsin amean-
ingless improvement). It is readily seen from this table that for
k = 2 the covering codes method is superior to the polyno-
mial interpolation method. For & = 4, k = 7 and k = 16,
the polynomial interpolation method is superior, especialy for
large values of n. For the interpolations schemesthe asymptotic
expression is obtained by setting m = {/n (asin Corollary 6)
whereas the actual figuresin the last three columns are obtained

5Except for k = 12, these are the only values for which covering-code
schemes exigt. For other values of & one can only utilize &’ databases, where
k' < kisthe largest integer for which a covering code exists. For example, to
get aschemefor k = 6 databases, weuse k' = 4.



number of | method communication total communication bits

databases complexity | n =2" [ n=2" [ n=2"
k=2 covering codes 12 ¥/n 1,224 12,300 123,864
k=2 polynomial interpolation 6.34 - Yn 6,493 207,745 | 6,647,815
k=4 covering codes 28 - ¥n 924 5,096 28,700
k=4 polynomial interpolation 26.17 - /n 827 4,635 26,136
k=4 improved interpolation as above 809 4,616 26,118
k=7 covering codes 60 - &/n 1,020 3,900 15,420
k=17 polynomial interpolation 83.87 - /n 651 1,638 4,326
k=7 improved interpolation as above 546 1,533 4,221
k=16 covering codes 224 - ¥/n 1,792 4,480 11,872
k=16 polynomial interpolation 485.5 - %¥/n 1,635 2,224 3,205
k=16 improved interpolation as above 720 1,308 2,289

Figure 2: Comparison of some concrete schemes

viaabetter (optimized) choiceof m (whichisslightly larger than
{/n). For both versions of the polynomial interpolation scheme,
fork = 2,4,7,16 we usefinite fieldswith g = 3,5,8, 17 ele-
ments, respectively. Except ¢ = 8, these are not powers of 2.
To encode them efficiently by binary strings we pack multiple
|letters together. Thus we can represent G F'(¢) elements by us-
ing log, ¢ bits, which was used in the table (representation by
[log, ¢] bits cause a substantial degradation).

Finally, we remark that when privately retrieving a larger
block of data (for example, 21° consecutive bits), the result-
ing communication is smaller than simply the communication
for single bit multiplied by the block size. This is achieved
by using the balancing technique, tuned to the block size. The
improvement is applicable for both the covering codes and the
polynomial interpolation method. Thus, the incurred overhead,
compared to non-private retrieval, is substantially smaller for
thismore realistic casethan for the single bit case. For example,
the improved interpolation method for ¥ = 4 databases com-
municates 11, 238 bits for retrieving a block of 2'9 bits from a
database of size n = 239 (hits), and 26, 768 bits for retrieving
the same block from a database with n = 2%°. So the commu-
nication overhead is about 11 and 26 bits per one information
bit, respectively. For further discussions see Section 6.

6 Privatelnformation Retrieval of Blocks

In this section we consider a more realistic model of private
information retrieving in which the information is partitioned
into blocks (or records) rather than single bits. For simplic-
ity, we assume that each block/record contains ¢ bits. We de-
note by PZR({, n, k) the problem of retrieving privately an
(¢-bit long) information block from k databases, each hold-
ing the same n blocks. Previous sections have dealt with
PIR(1,n, k). Clearly PTR (¢, n,k) can be solved by ¢ in-
vokationsof PZR (1, n-¢, k),° but thereare much more efficient

SIn fact, PIR(¢,n,k) can be easly solved by ¢ invokations of
PIR(1,n,k) just by considering in the j-th invocation only the j-th bit of

reductions of PZR(¢, -, k) to PIR(L, -, k).
We start by noting that the Generic Balancing Technique of
Section 4.3 actually provides such areduction. Specifically,

Proposition 10: Suppose that PZR (1, n, k) can be solved by
a one-round protocol in which the user sends ak(n) bits to each
database and receives 6k(n) bits in return (from each database).
Then, forevery £ > 1, PZR({, n, k) can be solved by a one-round
protocol in which the user still sends ak(n) bits to each database
and receives £ - 3 (n) bits in return (from each database).

In Section 4.3 we emphasized the asymmetric effect that the
above transformation has on the communication complexity
(i.e., increasing the communication from the databases to the
user while maintaining the communication complexity in the
other direction). An“asymmetric” transformation of the oppo-
site flavour follows.

Proposition 11: Suppose that PZR (1, n, k) can be solved by
a one-round protocol in which the user sends ak(n) bits to each
database and receives 6k(n) bits in return (from each database).
Furthermore, suppose that the user retreives the desired informa-
tion bit by computing g(ZfIl fi(7;)), where ; is the message
obtained from DBj , the fj s are arbitrary fixed functions mapping bi-
nary strings into elements of some finite field (of cardinality at most
Qﬁk(”)), summation is done over this field and g is an homomor-
phism of the field onto G F'(2). (We stress that the f;'s may not
depend on the desired bit nor on the randomness used by /.) Then,
for every m > 1, PIR(1,m - (n — 1), k) can be solved by a
one-round protocol in which the user sends m - ak(n) bits to each
database and receives (3 (n) bits in return (from each database).

We note that all “pure” schemes (i.e., before “optimizing via
balancing”) presented in previous sections meet the hypothesis
of the proposition. Furthermore, the proposition can be gener-
alizedto PIR(¢, -, k) schemes (in which each bit in the block
is computed as conditioned above).

each of then blocks.



Proof:  For simplicity, wefirst assumethat the f;’'s mentioned
in the hypothesis are identity transformations. Our solution

to PIR(1,m - (n — 1), k) follows. We partition the N £
m - (n — 1) hits, in each database, into m strings each holding
n — 1 bits and augment each of these strings by a dummy
position set to zero. Bit positionsin [ V] are represented as pairs
in [m] x [n — 1] in the natural manner. The user, wishing to
retreivei = [/, '] € [m] x [n — 1], employsPZR(1,n, k) in
parallel m times. Inthe j* instance/ behaves as when asking
for position s/ if = 4’ and as asking for position n otherwise.
Each database adds together the answersit would have sent in
eachof them invokationsof PZR (1, n, k) and sendsthissumas
its only message. The user just adds all answersit has obtained
and applies ¢ as it would have done in a single invokation of
PIR(1,n, k). We stress that each database sends only one
B (n)-bit long string rather than m such strings. Evidently,
the new scheme satisfies the privacy requirement. Correctness
follows from associativity of addition, the hypothesisthat g is
a homomorphism, and the fact that the dummy position (i.e.,
position n) is set to 0. Specificaly, let 71{ be the designated
answer of DB3,, in the j*" invokation. Weknow that ¢(3°, 75)
equalsx; € {0,1}if j = i’ and 0 otherwise. Thus,

(Tre) e fee) -

It is left to extend the protocol to the general case. We first
observe that the hypothesis regrading the field size allows us to
modify the original PZR(1,n, k) protocol so that all the f;'s
are identity transformation. [l

Combining the above two propositions, we obtain.

Corollary 12: Let PZR(1,n, k) be as in Proposition 11 and
£m > 1. Then, PIR({,m - (n — 1), k) can be solved by
a one-round protocol in which the user sends m - ak(n) bits to
each database and receives £ - 6k(n) bits in return (from each
database). In particular, PZR (¢, n, k) can be solved within ¢ times
the complexity of PZR (1, 7 + 1, k).

In some settings the number of recordsis not substaintially big-
ger than the length of individual records. In these settings the
overhead introduced by private information retrieval is quite
small (compared to non-private information retreival). Further-
more, for £ > n, the basic two-databases scheme (of Section 3.1)
becomes of interest. Specifically, we get an overhead factor of
four:

Corollary 13 Let¢ > n. Then, PIR (¢, n,2) can be solved by
a one-round protocol of total communication complexity 4 - £.

Proof: We use the PZR(1, n,2) scheme (of Section 3.1)
in which ¢/ sends n bits to each database (indicating a linear
combination of the bitsin the database) and xor-s (i.e., adds over
(F(2)) the answers it obtains. Using Proposition 10, we are
done. O

Note that unlikethe PZR (1, n, 2) scheme (of Section 3.1), the
obvious PZR(1,n,2) (or actualy PIR(1,n,1)), in which
each database sends its contents to the user who then retreives
the desired hit, is not an adequate starting point for applying
Proposition 10.

7 Privacy With Respect to Coalitions

Our results so far concerned the privacy of the user with
respect to any single database. It is not hard to verify that in
all the schemes described so far, any two databases get some
information about the desired index ¢ from their joint queries
(and in some of the schemes can even recover it). In this section
we consider the scenario where the goal is to guarantee the
privacy of the user with respect to any coalition of no more than
t databases. The definition of privacy follows the one given
in Section 2 but considers the joint probability distribution of
communication seen by any ¢ < t databases. We present a
modification of the protocol in Subsection 4.2 to this scenario.

Given the parameter ¢ (maximum number of databasesin a
coalition) and n (input length), let & and s satisfy (,°,) > n.
The number of databaseswe usehereist(k — 1)+ 1 (fort = 1
this gives k as in 4.2). We consider the same representation
of numbers j € [n] as sequences of length s with £ — 1 ones
and s — k + 1 zeroes. Let GF'(q) beafinite field with at least
t(k — 1) + 1 elements. Let ; be the bit ¢/ wants to retrieve.
Again, consider a polynomial

EOED SO
Jj€[n]

where now
P1 the f;‘sare polynomials of degree at most ¢(k — 1).
P2 fi(0) = &;,,foreachj € [n].

By arguments which are familiar by now, the value of F%:(.)
at t(k — 1) + 1 points enables ¢/ to interpolate and retrieve
z; = F%(0).

The first part of the protocol is different. The user se-
lects s random independent polynomials of degreet in G F'(q),
where the free term of the ¢-th polynomial, g.(z), is i(¢)
(¢ =1,2,...,s). The user sends the values ¢ (p), ..., gs(p)
toDB, (forp=1,2,...,s+1). Forevery j € [n] and ¢ € [s]
we define the degree-t polynomial

Fe(2) 250 - ga(2) + (1= j(0) - (1= gu(2)).

The definition of the polynomials f; (), as well as rest of the
protocol, isidentical to 4.2, and we will not repeat it.

It is clear that the new property (P1) holds, and (P2) is un-
changed. This proves the correctness of the protocol. To show
that it is¢-private, we observe that, for any £ and any ¢ non-zero
pointsin G'F(q), the values of the polynomial ¢,(-) at these ¢
points are uniformly distributed in G F'(¢). Furthermore, the



values of the s polynomials g¢(z) (¢ = 1,2,...,s) at these ¢
pointsareindependent, and so any ¢ databasesreceivet - s values
that are uniformly distributed in GF'(q).

The communication complexity is asin Subsection 4.2: the
user sends each database s field elements and receives one field
element in response. The number of databasesis?(k — 1) + 1,
so the overall communication complexity is (¢(k — 1) + 1) -
(s+1)-log, ¢q. Thebalancing techniquesof Subsection 4.3 can
be applied here aswell. The straightforward details are omitted.
To summarize,

Theorem 14

e Lett and d be be integer functions and ¢ > 1 be a constant
so that d(n) = ¢ - t(n). Then there are ¢(-)-private in-
formation retrieval schemes for d() databases, in which the
communication complexity is O(t(n) - /n).

e Lett be aninteger function of n and d(n) = t(n) - log, n.
Then there are t(~)—private information retrieval schemes for
d(+) databases with communication complexity polylog(n)-

t(n).

We comment that the latter result is about the best we can hope
given our state of knowledge with respect to 1-private schemes
(e.g., Corallary 6). Thisis because of

Proposition 15; Let 1 < ¢ < d. The communication complexity
of a t-private information retrieval scheme for d databases is at least
as the communication complexity of a 1-private information retrieval
scheme for [d/t] databases.

Proof sketch  Given a ¢-private scheme for d databases we
construct a1-private schemefor [d/t] databasesby |etting each
database in the new scheme emulate ¢ databasesin the original
scheme.

8 Conclusionsand Open Problems

We have presented several techniquesfor constructing private
(i.e., 1-private) information retrieval schemes. Our feelingisthat
the schemefor 2 databasesis essentially the best one can hopefor
(with respect to communication complexity). More generally,
we conjecture that private information retrieval schemes for a
constant number, &, of databases, each holding » bits of data,
require Q( *+/n) communication. Even if this conjecture is
true, it leaves a gap towards our & database schemes which, for
k > 2, use O({/n) communication.

In an attempt to develop lower bound for the problem, we
considered the very simple casein which there are two databases
and the user makes a single binary query to each of them. In
this simple case we were able to show that privacy reguires the
user to send long messages (i.e., of length linear in the length of
the database). This lower bound is very restricted with respect
to what we want, but on the other hand it provides yet another
demonstration of the strength of the privacy condition.
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