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Abstra
tWe 
onsider pa
ket routing when pa
kets are inje
ted 
ontinuously into a network. We developan adversarial theory of queuing aimed at addressing some of the restri
tions inherent in proba-bilisti
 analysis and queuing theory based on time-invariant sto
hasti
 generation. We examinethe stability of queuing networks and poli
ies when the arrival pro
ess is adversarial, and providesome preliminary results in this dire
tion. Our approa
h sheds light on various queuing poli
ies insimple networks, and paves the way for a systemati
 study of queuing with few or no probabilisti
assumptions.1 Introdu
tionMotivated by the study of dynami
 
ontinuous (or dynami
) pa
ket routing, we introdu
e a newapproa
h to the analysis of queuing systems. In the 
ontext of pa
ket routing, our obje
tive isto study stability and bounds on routing delay for various networks and s
heduling poli
ies. Ourapproa
h is based on an adversarial generation of pa
kets (i.e., jobs) so that positive results (e.g.,stability and upper bounds on queue sizes) are more robust in that they do not depend on parti
ularprobabilisti
 assumptions about the input sequen
es. Negative results (e.g., instability) 
an also beused to suggest 
orresponding results for more traditional sto
hasti
 queuing model assumptions.Moreover, the adversarial model may be a better (or at least safer) model of arrival pro
esses inappli
ations su
h as heterogeneous ATM networks.New appli
ations in 
ommuni
ations networks and 
omplex manufa
turing systems have re
entlyled to signi�
ant advan
es in queuing theory. In parti
ular, the issue of stability for \open multi
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queuing networks" is now mu
h better understood. In a preliminary version of our work (see [9℄),we did not fully take into a

ount the dramati
 progress in this area. For example, using 
uid modellimits (see [18, 20, 47℄), Bramson [14℄ has re
ently shown that for independent and time-invariantinput distributions (say, for example, Poisson arrivals), FIFO s
heduling is stable for any 
lass-independent servi
e time distribution (in
luding 
onstant servi
e time, the standard assumptionin pa
ket routing) as long as the ne
essary load 
onditions (i.e., total expe
ted arrival rate at anyserver is less than the expe
ted servi
e rate) are satis�ed. Hen
e queuing theory 
learly provides ageneral methodology for studying 
ontinuous pa
ket routing. However, our initial results 
oupledwith the subsequent 
ompelling results of Andrews, Awerbu
h, Fern�andez, Kleinberg, Leighton andLiu [2℄, and other more re
ent results (for example, see [1, 3, 4℄) demonstrate that the adversarialapproa
h provides another useful perspe
tive to an important and fast evolving �eld. In fa
t, asone might expe
t in su
h a well-studied �eld, our \new approa
h" is not entirely new. The \leakybu
ket" model studied by Cruz [16, 17℄ should also be 
onsidered as a (restri
ted) adversarial model.We introdu
e our adversarial model and for de�niteness present this model in the 
ontext of pa
ketrouting. More generally this adversarial approa
h 
an be applied to any queuing network; seeTsaparas [51℄. Surprisingly, in spite of the power of the adversary, 
ertain networks and s
hedulingdis
iplines 
an be proven to be \universally stable". That is, 
ertain networks are stable under anygreedy s
heduling rule and 
ertain s
heduling rules are stable for any network. In 
ontrast, we willalso see that some natural s
heduling dis
iplines 
an be quite ill-behaved.2 Related workQueuing theory and analysis is, of 
ourse, a well developed and highly utilized �eld of study. We
annot endeavor to survey all the appli
able literature. We will only attempt to brie
y review themost relevant results 
on
erning multi
lass1 queuing networks. We will also brie
y review somerelevant results from the �eld of pa
ket routing. For basi
 de�nitions in queuing theory we referthe reader to standard texts su
h as Kelly [29℄, Kleinro
k [28℄ and Walrand [52℄. The reader maywish to skip this se
tion and pro
eed dire
tly to the new de�nitons in Se
tion 3.2.1 Multi
lass queuing networksWe 
an view dynami
 pa
ket routing as one restri
tive (but still quite important and non-trivial)type of multi
lass queuing network. In parti
ular, while oblivious routing ne
essitates di�erent
lasses2 (i.e., one for ea
h path), the servi
e time distributions are all identi
al and independentof the 
lass as well as independent of the number of jobs (i.e., pa
kets) waiting for servi
e at anyedge.In a series of papers beginning with the work of Lu and Kumar [35℄ and Rybko and Stolyar [47℄, itwas shown that the load 
onditions are not in general suÆ
ient to guarantee stability. These initial\
ounterexamples" (to what seems a very natural 
onje
ture) were �rst derived for s
heduling rulesbased on the priority of a 
lass. Seidman [48℄ (for deterministi
 arrivals and servi
e times) and thenBramson [12℄ for Poisson arrivals and exponential servi
e times, showed that even FIFO 
an be1In a multi
lass queuing network, jobs are partitioned into di�erent 
lasses with the understanding that all jobsin a 
lass are indistinguishable in the sense that they have the same servi
e requirements.2Note that from a queuing theory perspe
tive, the Bernoulli (or Markovian) network assumption dis
ussed belowavoids the need for multiple 
lasses. 2



made to be unstable. Indeed Bramson [13℄ showed that FIFO 
an be unstable at an arbitrarily smallratio of arrival rate to servi
e rate. All these examples require that the servi
e time distribution ata given server is 
lass dependent.Rybko and Stolyar [47℄ were able to analyze the stability of a parti
ular network by �rst arguingabout stability in a \
uid model abstra
tion" of this network. This approa
h was then formalizedas a general approa
h in the work of Dai [18℄ and Dai and Meyn [20℄. They show a \meta theorem"whereby stability in the 
uid model abstra
tion of a queuing network implies stability in the givenqueuing network. We note that the 
uid model abstra
tion only 
onsiders the mean rate of servi
edisregarding the nature of the servi
e distribution. (Sin
e the 
uid model must ne
essarily dependon the s
heduling rule and there is neither a formal de�nition of a s
heduling rule nor a pro
edureshowing how to transform the s
heduling rule into the 
orresponding equations, we have 
hosen to
all this a meta theorem. But the meaning and appli
ability of this result is 
lear.) A Kelly-typenetwork is a possibly multi
lass network but one in whi
h the servi
e time distribution at a server is
lass independent. Using the 
uid model approa
h, Bramson [14℄ has shown that FIFO s
hedulingin a Kelly-type network using FIFO s
heduling is stable. In parti
ular then, under mild assumptionson the nature of the (mutually independent) input distributions of the 
lasses, 
ontinuous pa
ket-routing networks (having 
onstant time servi
e) using FIFO s
heduling are stable networks. TheBramson FIFO stability result for the 
uid model stands in dire
t 
ontrast to the result of Andrewset al. [2℄ whi
h shows that FIFO 
an be unstable in the adversarial model.2.2 The Cruz permanent session modelCruz [16℄ introdu
es an input model designed to 
apture the burstiness of inputs in 
ommuni
ationnetworks. Cruz de�nes a (�i; �i) regulator as an input pro
ess that 
ontrols the rate of a parti
ularinput session (i.e. a path in the network) so that during any time interval [t1; t2℄, the input traÆ
(for this path) is bounded by �i + �i(t2 � t1) units of traÆ
. The rate �i 
orresponds to the longterm average rate of 
ow while the 
onstant �i bounds the burstiness of the input. Su
h an inputpro
ess 
an be viewed as the output of a \leaky bu
ket model" of 
ow 
ontrol where pa
kets aredropped whenever the above 
onstraints 
annot be satis�ed. The total indu
ed traÆ
 rate �(e)on any edge e is de�ned as Pi:e2Pi �i. Andrews [3℄ refers to this input model as a (�; �) regulatedsession model. Following Andrews and Zhang [4℄, we will refer to this input model as the permanentsession model (in 
ontrast to the adversarial model in whi
h sessions are viewed as temporary).Cruz [16, 17℄ develops some basi
 properties of su
h an input model in
luding the study of stabilityfor a
y
li
 networks relative to a 
lass of greedy s
heduling rules.Tassiulas and Georgiadis [50℄ adopt the permanent session model for the analysis of routing pa
kets 3in a (unidire
tional) ring G. They show that for any greedy s
heduling rule S that the system(G;A;S) is stable for any adversary A that 
orresponds to the (�; �) permanent session modelunder the load 
onstraint that �(e) < 1 for every edge e. Although the 
on
ept of an adversary isimpli
it, these results by Cruz, and Tassiulas and Georgiadis, 
an be viewed as initial results in thedevelopment of an adversarial queuing theory. Following the adversarial FIFO instability result ofAndrews et al. a re
ent result of Andrews [3℄ proves that FIFO 
an also be unstable in the Cruzpermanent session model.3To be more pre
ise, the s
heduling poli
ies in [50℄ also allow pro
essor-sharing rules and the transmission ofpa
kets viewed as streams of traÆ
 that 
an be routed in a 
ut-through mode as well as dis
rete pa
kets that aretransmitted in a store-and-forward mode. This added generality is not important for our purposes.3



For � < 1, we 
an model the permanent session model as a (w; �0) adversary for any �0 > � and asuÆ
iently big window w. Note that this 
orresponds to a (restri
ted) adversary whi
h is 
ontrollingindividual input streams (i.e., parti
ular paths in the network) rather than an adversary whi
h isglobally 
ontrolling the entire input pro
ess. The more general (w; �) adversary thus intuitivelyseems to provide a better model for ATM networks having heterogeneous and frequently 
hangingrates of traÆ
. Re
ently Andrews and Zhang [4℄ have shown that there are known s
heduling rules(namely, Generalized Pro
essor Sharing and Weighted Fair Queuing) whi
h are unstable (for the\baseball graph" introdu
ed by Andrews et al. [2℄) in the full adversarial model but whi
h (byresults of Parekh and Gallager [41, 42℄) are universally stable in the permanent session model. OurDAG result and the unidire
tional ring result of Andrews et al. therefore provide (respe
tively) asigni�
ant generalization of the Cruz, and Tassiulas and Georgiadis results.2.3 Stati
 routingThere has been re
ent work showing how stability results and delay bounds for 
ontinuous pa
ketrouting may be derived from analogous results in the stati
 setting. In a stati
 routing problem,we are given a �nite set of pa
kets, ea
h with an assigned path, and we wish to s
hedule themotion of ea
h pa
ket along its respe
tive path so as to minimize the maximum arrival time. Aseminal result in this regard is the well-known bound of Leighton, Maggs, and Rao [32℄, that everystati
 pa
ket routing problem in whi
h the maximum path length is D and the maximum numberof pa
kets using an edge is C has a s
hedule in whi
h ea
h pa
ket rea
hes its destination withinO(C +D) units of time. A 
entralized, polynomial-time algorithm to 
ompute su
h a s
hedule isgiven by Leighton, Maggs, and Ri
ha in [33℄. Rabani and Tardos [46℄ and Ostrovsky and Rabani[40℄ developed distributed algorithms for the stati
 problem of Leighton, Maggs, Rao with boundsthat approa
h the O(C +D) a
hieved by the 
entralized methods of [32, 33℄.The work of Rabani and Tardos [46℄ establishes a 
onne
tion with the adversarial model developedin this paper, in the following sense. Consider any algorithm for the n-pa
ket stati
 problem withparameters C and D de�ned above that produ
es a s
hedule with 
ompletion time (1 + Æ)C +g(n)D + f(n), where Æ > 0 is a 
onstant and f(n) � logn. Then it 
an be 
onverted into analgorithm for 
ontinuous pa
ket routing that is stable against an arbitrary (w; 1 � ") adversary,where " is a fun
tion of Æ and ea
h pa
ket has an inverse polynomial probability of being \dropped"before rea
hing its destination. This latter 
ondition, that an algorithm may drop pa
kets withsmall probability, is not present in our model.Broder, Frieze, and Upfal [11℄ also present a general method for transforming stati
 routing algo-rithms into 
ontinuous ones. They fo
us on a model in whi
h the swit
hing nodes in the networkhave bounded bu�ers. Here a distin
tion is drawn between input nodes in the network, wherepa
kets are generated, and all other intermediate nodes of the network. The queue at an inputnode may grow arbitrarily large, but the queue at an intermediate node v 
an grow no larger thanan absolute bound B, after whi
h pa
kets 
annot enter v. Broder et al. show that any stati
 pa
ketrouting algorithm in this model that satis�es some te
hni
al 
onditions 
an be transformed into astable algorithm for 
ontinuous pa
ket routing, against an arbitrary adversary of suÆ
iently small
onstant rate.The 
onne
tions between the stati
 and 
ontinuous settings appears impli
itly in the developmentof other proto
ols in adversarial queuing theory. The analysis showing a polynomial bound onqueue size for the randomized universally stable proto
ol of Andrews et al. [2℄, for example, builds4



on te
hniques used in the proof of the stati
 result of Leighton, Maggs, and Rao [32℄; the proto
ol,however, itself has a simple des
ription that is independent of the analysis.2.4 Continuous pa
ket routingWithout any expli
it use of queuing theory results, Leighton [31℄ analyzes one-bend routing onn�n arrays; the paths in one-bend routing are a
y
li
 and in fa
t one-bend routing on arrays turnsout to be easier to analyze than routing on 
y
li
 networks su
h as rings. Leighton 
onsiders the
ase where ea
h inje
ted pa
ket has a random destination4 and pa
kets are inje
ted at ea
h nodea

ording to a Bernoulli distribution with rate � < 4=n.These assumptions (on the routing s
heme, on the inje
tion rate at ea
h node, and on the fa
tthat pa
kets have random destinations) imply that the indu
ed traÆ
 rate on any edge is less thanone (the servi
e rate of ea
h edge). Leighton is able to provide a detailed analysis that shows thatfor the \farthest-to-go" s
heduling dis
ipline at ea
h edge queue, the network is stable and \withhigh probability" queue sizes are bounded by a small 
onstant. Moreover, the expe
ted delay of apa
ket is bounded by a 
onstant with high probability. These results are strengthened in Kahaleand Leighton [30℄ where the same results are proven for any s
heduling dis
ipline. Somewhat weakerresults are derived when the underlying graph is a ring. For the ring, stability and bounded delayresults are shown for FTG s
heduling. The pre
ise nature of these pa
ket delay results seemsbeyond what we 
an hope to derive from applying general queuing theory results. On the otherhand, the Leighton and Kahale-Leighton results are spe
i�
 to 
ertain networks and utilize theassumption of random destinations.Stamoulis and Tsitsiklis [49℄ 
onsider the 
ase of layered networks under the assumption of Bernoullirouting. In queuing networks with Bernoulli routing, jobs are indistinguishable (i.e. a single 
lassnetwork) and the next server taken is a Markov pro
ess (i.e., a probabilisti
 fun
tion of the lastserver and independent of previous history). In the 
ontext of pa
ket routing, the Bernoulli as-sumption means that the next edge to be traversed is a random fun
tion of the last edge traversedand is independent of the pa
ket identity. Stamoulis and Tsitsiklis 
onsider su
h networks underthe assumption of Poisson arrivals. They observe that for layered Bernoulli routing networks, thedistribution on the network states (i.e., the queue size at ea
h edge) that results from a networkwith 
onstant time edge traversal and FIFO s
heduling is statisti
ally dominated by the state dis-tribution obtained using a pro
essor (i.e., edge) sharing s
heduling dis
ipline. They apply thisobservation to random destination routing in layered networks (e.g., the butter
y) and in net-works that 
an be layered (e.g., dimension-by-dimension routing to random destinations in thehyper
ube).5 Thus bounds on expe
ted queue sizes for 
onstant-time edge traversal 
an be inferredfrom results about the analogous network whi
h assumes pro
essor sharing for edge traversal. Sin
ethe latter assumption results in a produ
t form network, standard queuing theory analysis 
an yield
onstant bounds on expe
ted queue sizes and from this follow (by Little's Theorem) bounds on theexpe
ted time in the network.Following similar experiments by Mitra and Cieslak [38℄ for the Omega network, Har
hol-Balterand Bla
k [6℄ simulate pa
ket routing on array networks and 
onje
ture that the queue sizes that4We note that 
ontinuous pa
ket routing results to date are restri
ted to the 
ase in whi
h pa
kets have randomdestinations. One of our main goals is to extend su
h results to the 
ase where a pa
ket is given a spe
i�ed destinationand path at the time of its inje
tion.5Stamoulis and Tsitsiklis allow a more general, non-uniform, sele
tion of random destinations than in Leightonand Kahale and Leighton; e.g., nearby destinations 
an be more probable.5



obtain under the assumption of exponentially-distributed edge-traversal times are an upper boundfor the queue sizes obtained with 
onstant-time edge traversal. Mitzenma
her [39℄ proves this
onje
ture for one bend routing on arrays. It is tempting to believe that the experiments and
onje
ture of Har
hol-Balter and Bla
k apply to a mu
h wider 
ontext. Indeed, independent ofthe results in pa
ket routing, there are many queuing-theoreti
 results pertaining to generalizedJa
kson networks. In parti
ular, under the appropriate load 
onditions and some very generalassumptions on the arrival and servi
e time distributions, Meyn and Down [37℄ establish stabilityfor su
h networks. These results apply to the more general 
ase that ea
h server has its own servi
etime distribution. However, Har
hol-Balter and Wolfe [7℄ give eviden
e that it will not be a simpletask to apply the approa
h in [49℄ to the general study of dynami
 pa
ket routing. First theyshow that the \layered" assumption in [49℄ is not ne
essary as they are able to derive the sameresults for any Bernoulli routing network. But they also show that without the Bernoulli networkassumption, it is no longer ne
essarily true that the set of delays for FIFO with 
onstant-timeservers is sto
hasti
ally dominated by pro
essor-sharing servers.3 The adversarial modelWe begin with an informal dis
ussion of pa
ket routing, adversaries and s
heduling poli
ies. Arouting network is a dire
ted graph. Time pro
eeds in dis
rete steps. A pa
ket is an atomi
 entitythat resides at a node at the end of any step. A pa
ket must travel along a path in the networkfrom its sour
e to its destination, both of whi
h are nodes in the network. When the pa
ket rea
hesits destination, we say that it is absorbed. During ea
h step, a pa
ket may be sent from its 
urrentnode along one of the outgoing edges from that node. At most one pa
ket may travel along anyedge of the network in a step. Any pa
kets that wish to travel along an edge e at a parti
ular timestep but are not sent wait in a queue for edge e. The delay of a pa
ket is the number of steps whi
hthe pa
ket spends waiting in queues.At ea
h step, an adversary generates a set of requests. In this paper a request is a path spe
ifyingthe route followed by a pa
ket. We say that the adversary inje
ts a set of pa
kets when it generatesa set of requested paths. We restri
t ourselves to the 
ase in whi
h the path traversed by ea
hpa
ket is �xed at the time of inje
tion (i.e., non-adaptive routing), so as to be able to fo
us on thequeuing rather than routing aspe
ts of the problem. (Re
ently, Aiello et al. [1℄ have su

essfullyextended the adversarial model to adaptive routing.)Clearly an unrestri
ted adversary 
an 
ood the network with pa
kets, demanding more bandwidththan available. Therefore we need to introdu
e a restri
tion analogous to the load 
ondition imposedin queuing theory. Let w be an arbitrary positive integer, e any edge in the network and � anysequen
e of w 
onse
utive time steps. We de�ne N(�; e) to be the number of paths inje
ted by theadversary during time interval � that traverse edge e. It is 
ommon in pa
ket routing to assumethat all paths are simple paths. However, in more general queuing appli
ations, one may not wantto assume simple paths and hen
e in the de�nition of N(�; e) we need not assume simple paths;thus we would 
ount the multipli
ity of the number of times a parti
ular path traverses e. For any� > 0, we de�ne a (w; �) adversary whi
h inje
ts paths subje
t to the following load 
ondition: forevery sequen
e � of w 
onse
utive time steps and for every edge e, N(�; e)=w � �. We say thatsu
h a (w; �) adversary inje
ts pa
kets at rate � with window size w. A rate � adversary is a (w; �)adversary for some w 6.6We follow the de�nition of a (w; �) adversary as it appears in Andrews et al. [2℄. In our original paper[9℄, we6



Clearly if the rate � were greater than one, an adversary (or any input generation pro
ess) would
ongest some edge (sin
e the servi
e rate of every edge is assumed to be 1) and the network wouldbe unstable. Hen
e we will hereafter assume that � � 1. We note that in its full generality, there areno 
omputational requirements on how the adversary 
hooses its requests in any given step and (aswill be formalized below). The adversary's 
hoi
e of input pa
kets is simply a fun
tion of the historyof the pa
ket routing that has taken pla
e thus far. One 
an of 
ourse pla
e further restri
tions onthe nature of the adversary. For example, a (w; �) path-pa
king adversary is further restri
ted sothat the paths requested at any step must be edge disjoint. A more stringent restri
tion (a singlepath adversary) requires that at most one pa
ket be inje
ted at ea
h step. In general, we have arequest 
olle
tion of permissible request sets; at ea
h step, the adversary must pi
k one request set(= set of paths) from this request 
olle
tion.Additionally, we 
onsider sto
hasti
 adversaries. A (w; �) sto
hasti
 adversary is also spe
i�ed bya request 
olle
tion, a rate and a window size; now, however, at ea
h step the adversary has aprobability distribution (possibly di�erent for ea
h step) over its request 
olle
tion, and at ea
hstep draws a set of requests from the spe
i�ed distribution. Now, the quantity N(�; e) is a randomvariable indu
ed by the distributions used by the adversary during the time steps � . If � denotesthe w time steps t+ 1; : : : ; t+ w, we let Ht denote the entire history of pa
ket arrivals up to (andin
luding) step t. The appropriate load 
ondition7 is that for every sequen
e � of w 
onse
utivetime steps and for every edge e, E[N(�; e)jHt℄=w � �. In order to a
hieve the greatest degree ofgenerality, we would like to impose the fewest 
onditions on a sto
hasti
 adversary and still be ableto derive stability results. On
e again, it is 
lear that � � 1 is ne
essary to avoid 
ooding some edge.Moreover, it is not hard to see that even for the simplest network 
onsisting of one edge, a rate 1sto
hasti
 adversary 
an be unstable. Simply 
onsider an adversary whi
h inje
ts zero pa
kets withprobability 12 and inje
ts two pa
kets with probability 12 ; after t steps the expe
ted queue size (whi
his a
ting like a random walk on the line [0;1)) is approximately pt. Hen
e we will be 
on
ernedwith sto
hasti
 adversaries having rate � < 1. However, this bound on the expe
tation (i.e., the�rst moment) is not suÆ
ient for our purposes and we will also have to impose a bound on the pthmoment (see Lemma 2) for p > 2. We will then say that a (w; �) sto
hasti
 adversary is properlybounded if there exist 
onstants p > 2, � > 0 and V su
h that for all sequen
es � of w 
onse
utivetime steps t+1; :::t+w and all edges e, E[N(�; e)jHt℄=w � 1�� and E[N(�; e)pjHt℄ � V . Note thatthis model is quite general as it allows the adversary to adaptively modify the distribution at ea
htime step. In parti
ular, it in
ludes the spe
ial 
ase (as is often assumed in queuing theory) of a�xed, time-invariant input distribution (e.g., say a Poisson or 
onstant rate arrival pro
ess) for ea
hpossible request. It also subsumes the 
ase of oblivious pa
ket routing for pa
kets that are generatedat ea
h node with randomly 
hosen destinations (e.g., as studied in [30, 31, 49℄). To di�erentiatesu
h sto
hasti
 adversaries from the non-sto
hasti
 adversaries de�ned above, we will refer to thenon-sto
hasti
 adversaries as deterministi
 adversaries. Clearly, deterministi
 adversaries are aspe
ial 
ase of sto
hasti
 adversaries.To the best of our knowledge, these adversarial models provide the �rst framework for studyingqueuing models where we do not essentially assume independent input streams. Moreover, theanalysis of these models provide not only results about stability but also quantitative bounds ononly de�ned and proved results for path-pa
king adversaries (to be de�ned) although we impli
itly suggested a moregeneral adversary. In subsequent dis
ussions, we independently adopted the general (w; �) adversarial framework.Stability proofs for the general adversary that are presented in this paper are extended versions of our earlier proofsgiven for path-pa
king adversaries.7In our 
onferen
e paper[9℄, we in
orre
tly stated the load 
ondition as the un
onditional expe
tationE[N(�; e)℄=w � �. 7



queue lengths and delays.A s
heduling poli
y spe
i�es, for ea
h edge e and ea
h time step, whi
h pa
ket (amongst thosewaiting) is to be moved along edge e. A greedy s
heduling poli
y (
alled a work-
onserving poli
yin the terminology of queuing theory) always spe
i�es some pa
ket to move along edge e if thereare pa
kets waiting to use edge e. In this paper we restri
t ourselves to deterministi
 greedys
heduling poli
ies. Examples of natural greedy s
heduling poli
ies in
lude the following:� FIFO (First-In-First-Out). This is also 
alled FCFS (First-Come-First-Served).� LIS (Longest-In-System). A pa
ket originates at a spe
i�ed time, and priority is given to thepa
ket whi
h has been in the network for the longest amount of time.� NIS (Newest-In-System). Similar to LIS but now priority is given to the pa
ket that hasspent the least amount of time in the network.� FTG (Furthest-To-Go). Ea
h pa
ket has a pres
ribed path, and priority is given to the pa
ketwhi
h has the largest number of edges still to be traversed.� NTG (Nearest -To-Go). Similar to FTG but now priority is given to the pa
ket that has thesmallest number of edges still to be traversed.All of these s
heduling poli
ies require some tie-breaking rule in order to be unambiguously de�ned.For our purposes we 
an assume that whenever we are proving a positive (e.g., stability) result, theadversary 
an break the tie. For a negative result, we 
an assume any well-determined tie-breakingrule. It should also be 
lear that all of these s
heduling poli
ies 
an be extended to more generalqueuing networks. For example, FTG would be extended to MTTG (Most-servi
e-Time-To-Go)where priority is given to that job whi
h has the most servi
e time remaining (summing the requiredservi
e over all servers still s
heduled to be visited).In order to make the above dis
ussion more pre
ise we need some additional de�nitions. A pa
ketP is a triple (ID; p; ~t) where ID is some unique identi�er, p is the path (from the origin to thedestination of the pa
ket) that the pa
ket must traverse, and ~t is the time that the pa
ket wasinje
ted into the network (at its origin). The statet(P ) of a pa
ket P at time t is the ve
tor(P; i; t1; : : : ; ti) where i is the number of time steps in whi
h P has traversed an edge in its pathand tj is the time of the jth su
h traversal. We de�ne the 
on�guration 
on�g t(G) of a network G attime t as 
on�g t(G) = fstatet(Pk)jPk is a pa
ket that is present in the network at time t g. Notethat the 
on�guration impli
itly spe
i�es the states of pa
kets in ea
h (edge) queue of the network.In parti
ular, we will assume that time begins at step t = 0 and thus 
on�g0(G) denotes the initial
on�guration of the network. We 
an then formally de�ne a deterministi
 adversary A as a fun
tionA : S1j=0[j �Qjt=0 
on�g t(G)℄ ! fPkjPk is a new pa
ketg ; that is, A (~t;Q~tt=0 
on�g t(G)) spe
i�esthe new pa
kets that the adversary A inje
ts into the network at time ~t and it does so based on theentire history of the routing up to this point of time. A sto
hasti
 adversary AS is similarly de�nedas a fun
tion AS : S1j=0[j�Qjt=0 
on�g t(G)℄! fDkjDk is a distribution on new pa
ketsg. That is,a sto
hasti
 adversary 
hooses a distribution for the next set of requests and this distribution is afun
tion of the the history of the network 
on�gurations. At any time t, on
e the distribution hasbeen 
hosen, the inputs are then randomly generated a

ording to this distribution. A deterministi
s
heduling poli
y S is de�ned as having the same domain as a deterministi
 adversary with its rangebeing the set of pa
kets that exist in the system at time ~t; that is, in its full generality we 
an
onsider global s
heduling rules based on the entire history to date. However, in pra
ti
e and for8



the purpose of this paper we will mainly be 
on
erned with distributed s
heduling poli
ies wherethe pa
ket sele
ted to traverse any given edge e is determined by the states of the pa
kets that arepresently in the queue asso
iated with edge e. We note that all the known deterministi
 s
hedulingrules �t into this framework. We 
ould also easily de�ne randomized s
heduling poli
ies but willnot do so sin
e we do not 
onsider su
h poli
ies in this paper. However, we note that randomizeds
heduling poli
ies are often utilized in pa
ket routing; see, for example, Rabani and Tardos [46℄.Our main goal will be to prove the stability of arbitrary and parti
ular greedy s
heduling poli
iesS on various networks G and against various 
lasses � of adversaries8. Similar to Andrews et al.[2℄, we de�ne a network system as the tuple (G;�;S). We will say that a network system (G;�;S)is stable, if for every initial 
on�guration C0(G) there is a 
onstant M (whi
h may depend onthe size of the network G, the initial 
on�guration and the rate and window parameters of theadversary 
lass �) su
h that for every adversary A in the 
lass of adversaries �, when the networksystem is exe
uted with initial 
on�guration C0(G) against adversary A (i.e., is exe
uted usingthe deterministi
 adversary A to generate pa
kets and the s
heduling poli
y S to route pa
kets),the maximum number of pa
kets in any queue is bounded by M .9 For sto
hasti
 adversaries,we say that the network system (G;�;S) is stable if for every initial 
on�guration C0(G) thereis a 
onstant M as above su
h that for every sto
hasti
 adversary AS in the 
lass �, when thenetwork system is exe
uted with initial 
on�guration C0(G) against adversary AS then at all timesthe expe
ted number of pa
kets in any queue is bounded by M . We will say that a network Gis universally stable with respe
t to a 
lass � of adversaries if (G;�;S) is stable for all greedys
heduling poli
ies, and similarly a s
heduling poli
y S is universally stable if (G;�;S) is stablefor all networks G10. Andrews, Awerbu
h, Fern�andez, Kleinberg, Leighton and Liu [2℄ show thatfor undire
ted networks (i.e. in the sense that ea
h undire
ted edge represents two dire
ted edges)it is de
idable if a pa
ket routing network is universally stable. Based on Andrews et al., Goel[25℄ gives a simple 
hara
terization for the universal stability of dire
ted and undire
ted networks.Bertsimas, Gamarnik, and Tsitsiklis [8℄ use linear programming to de
ide universal stability for all2-station 
uid model networks and 
onje
ture that su
h a test exists for all 
uid model queuingnetworks.Rather than de�ne stability in terms of maximum queue size, one 
ould also de�ne stability interms of the maximum delay in
urred by any pa
ket. Clearly, if no pa
ket is delayed by more thanM steps then the maximum queue size is also bounded by M . Conversely, for any (w; �) adversarywith rate � < 1, if the maximum queue size is bounded by M , then a pa
ket 
an be delayed in anyqueue by at most 
w steps where 
 is large enough that 
w > M=(1 � �). (In 
w steps, at most
w� pa
kets enter the queue and 
w pa
kets leave the queue while it remains nonempty.) Clearly,when � = 1, it is possible to have a given pa
ket delayed forever even though the system is stableunder the given de�nition.8For example, 
ertain networks G are stable against the 
lass of sto
hasti
 adversaries of rate � < 1 for any greedys
heduling rule.9Equivalently, we 
an say that the maximum number of pa
kets in the system is bounded by some 
onstantM . Inqueuing theory one sometimes de�nes stability in terms of the existen
e of a limiting stationary distribution for thestate of the network. Our de�nition is 
onsistent with other standard uses of the term and furthermore one 
annothope for a limiting distribution in an adversarial model.10For the study of the universal stability of a s
heduling rule, we 
an assume that the initial 
on�guration is empty.Informally, we argue that any network 
an be modi�ed by appending \input trees" to ea
h node and using theseinput trees to adversarily 
onstru
t any desired initial 
on�guration.
9



4 ResultsIt is perhaps tempting to 
onje
ture that for every network G, every greedy queuing dis
ipline isstable for a deterministi
 adversary with inje
tion rate � < 1 (or even � = 1). Our �rst result showsthat every dire
ted a
y
li
 network is universally stable for rate 1 deterministi
 adversaries.(1) If G is a DAG, and � is the 
lass of deterministi
 rate 1 adversaries, then (G;�;S) is stablefor every greedy queuing dis
ipline S. That is, every DAG is universally stable against the 
lass ofrate 1 deterministi
 adversaries.Unfortunately universal stability against rate 1 adversaries does not extend to the 
ase of graphswith dire
ted 
y
les, as our next result shows.(2) Let G be a unidire
tional ring network on n � 3 nodes and let � be the 
lass of deterministi
rate 1 single path adversaries . Then the network system (G;�; LIS) is not stable. Indeed for everyinitial 
on�guration, there is a rate 1 adversary A, inje
ting a single path on every step, whi
h willfor
e the network to have an unbounded number of pa
kets. Similarly, FIFO is unstable for rate 1single path adversaries.This instability result is in 
ontrast with the next result.(3) If G is a unidire
tional ring and � is the 
lass of deterministi
 rate 1 adversaries, then(G;�; FTG) is stable.All our stability results also hold for sto
hasti
 adversaries of bounded varian
e for inje
tion ratesbounded away from 1.In our 
onferen
e paper [9℄ we asked if our stability results for the ring and DAGs 
ould be extendedto all networks and all greedy s
heduling rules. Our results were soon signi�
antly extended byAndrews, Awerbu
h, Fern�andez, Kleinberg, Leighton and Liu [2℄. They show that the ring isuniversally stable with respe
t to the 
lass of rate � < 1 deterministi
 adversaries. They also showthat 
ertain s
heduling poli
ies S (su
h as Newest-in-System (NIS), LIS and FTG) are universallystable against the 
lass of rate � < 1 deterministi
 adversaries. However, they demonstrate that
ertain 
ommon s
heduling poli
ies (su
h as FIFO and Nearest To Go (NTG)) are not universallystable. Spe
i�
ally, for FIFO (respe
tively NTG) s
heduling, they show that there is some networkand initial 
on�guration for whi
h some rate � > :798 (respe
tively, rate � > :62) path-pa
kingadversary 
auses instability.In hindsight, the instability of NTG (pa
ket routing) is well motivated by the queuing instabilityexamples11 of Lu and Kumar [35℄ and Rybko and Stolyar [47℄. Note that our instability result forFIFO on the ring with rate 1 and the FIFO instability result of Andrews et al. stands in 
ontrastto Bramson's [14℄ 
uid stability result for 
lass-independent servi
e time networks with FIFOs
heduling. We strengthen the Andrews et al. NTG instability result by showing the following.(4) For every rate � > 0, there exists a network and initial 
on�guration for whi
h some rate �adversary 
auses NTG to be unstable. Indeed, although motivated by initial adversarial results, thisturns out not to be an adversarial result rather, the \adversary" will only set the initial 
on�gurationand then will be inje
ting all paths at a 
onstant rate!11These queuing network examples do not show that NTG is unstable for pa
ket routing (where we assume identi
alservi
e time distributions) but 
an be easily modi�ed to show pa
ket routing instability for some priority baseds
heduling poli
y. 10



Thus in addition to providing a framework for obtaining very general stability results, the adver-sarial model is able to distinguish between di�erent s
heduling poli
ies and to suggest instabilityresults in more 
lassi
al settings. This sensitivity to the s
heduling poli
y is not unnatural, yetprior queuing theoreti
 results do not seem to highlight this.The remainder of the paper is stru
tured as follows. Se
tion 5 dis
usses stability bounds for a
y
li
networks G. Se
tion 6 dis
usses results for the ring. Our NTG instability result is outlined inSe
tion 7. We 
on
lude in Se
tion 8 with a number of open problems.5 DAGs and MeshesPerkins and Kumar [45℄ show that for 
onstant rate arrivals there is a 
lass of s
heduling rules (
alled\
lear a fra
tion") with respe
t to whi
h all a
y
li
 networks are stable. Using a 
uid model, Downand Meyn [21℄ 
onsider a spe
i�
 a
y
li
 network and show that it is universally stable. Againusing a 
uid model, Dai [18℄ shows that every a
y
li
 network is universally stable for rate lessthan 1. These stability results for 
uid models then 
an be applied to obtain stability results forthe more standard \sto
hasti
 queuing networks" (i.e., with time-invariant input distributions).We extend these results by showing that for pa
ket routing, a
y
li
 networks are universally stablein the (deterministi
 and sto
hasti
) adversarial setting. Re
ently, Gamarnik [23℄ showed how touse 
uid models to show that if a pa
ket routing network is universally stable in the 
uid model,then it is universally stable in the deterministi
 adversarial model. However, the 
uid model resultsdo not seem to provide quantitative bounds on queue lengths.Theorem 1 Let G denote an arbitrary dire
ted a
y
li
 graph, S an arbitrary greedy proto
ol, and� the 
lass of deterministi
 rate 1 adversaries. Then (G;�;S) is stable.Proof: For e an edge of G, let Qt(e) denote the queue at edge e at time t, and let At(e) denote thenumber of pa
kets (not already absorbed) that have arrived by time t and are eventually destinedto 
ross edge e. For any adversary A that inje
ts at rate 1, there exists some window size w, su
hthat for any window of time (t�w; t℄ and for any edge e the adversary 
an inje
t at most w pa
ketsduring this window that are destined to 
ross the edge e.We de�ne a fun
tion  (�) indu
tively on the edges as follows. For an edge e, suppose f1; : : : ; fk areedges entering the tail of e. (Noti
e there may be no su
h elements and then we just take k to bezero.)  (e) = maxf2w;Q0(e)g + kXi=1  (fi):We 
laim that for all t = l � w � 0 and all e 2 G, we haveAt(e) �  (e) (1)Note that for any time t0 su
h that t � w < t0 < t, At0(e) � At�w(e) + w. The theorem will thenfollow, sin
e Pe  (e) gives an absolute upper bound on the number of pa
kets in the system, interms of the initial 
on�guration. 11



The proof of this 
laim pro
eeds by indu
tion on l. The 
laim 
learly holds when l = 0. Now lett = lw for l � 1. Suppose e is an edge whose tail is entered by edges f1; : : : ; fk. We 
onsider two
ases.Case 1: At�w(e) � w +Pki=1  (fi). In this 
ase, we use the fa
t that in w time steps the numberof new pa
kets inserted that wish to 
ross the edge ej is at most w. Thus, in this 
aseAt(e) � At�w(e) + w � 2w + kXi=1  (fi) �  (e):Case 2: At�w(e) > w+Pki=1  (fi). By the indu
tive assertion we have that At�w(fi) �  (fi). Butnoti
e that At�w(e) is at most Qt�w(e) +Pki=1At�w(fi). Thus we haveQt�w(e) � At�w(e) � kXi=1At�w(fi)> w + kXi=1  (fi)� kXi=1At�w(fi)� w:In other words, the number of pa
kets queued at edge e must be at least w at the beginning of timestep t�w. Thus in the next w time steps at least one pa
ket 
rosses the edge e in every step. Butthe number of pa
kets inserted whi
h wish to 
ross this edge may go up by at most w in w timesteps. Thus, in this 
ase also, we have At(e) � At�w(e) �  (e).The upper bound on the number of pa
kets in the system that follows from this proof is exponentialin the number of edges (more pre
isely, the depth) of G. Indeed, Andrews et al. show that for everym, there is an O(m2)-node DAG G and a (1 � 1=(m + 2)) rate path-pa
king adversary for whi
hthe s
heduling rule NIS (or FTG) 
an be for
ed to have queue size 2m�1. Another example ofexponentially long (in the depth but not the size) queues for DAGs 
an be found in Cruz [17℄. Forthe spe
ial 
ase of tree networks, the proof of Theorem 1 gives a mu
h better bound; in this 
ase,all the sets Q(e) have linear (in the depth) size.It is now reasonably easy to obtain essentially the same stability result for sto
hasti
 adversaries(satisfying some minimal 
onditions as previously indi
ated). We need the following Martingaletype lemma due to Pemantle and Rosenthal [44℄:Lemma 2 Let X1;X2; : : : be a sequen
e of nonnegative random variables satisfying the followingproperties:1. There exists positive 
onstants � and � su
h that for all x1; : : : ; xn with xn > �,E[Xn+1 �Xn j X1 = x1; :::;Xn = xn℄ � ��2. There exists a positive 
onstant � and a p > 2 su
h that for all x1; : : : ; xnE[jXn+1 �Xnjp j X1 = x1; :::;Xn = xn℄ � �:Then there exists M (M is a fun
tion of X0; �; � and �) and t0 su
h that for all t � t0; E[Xt℄ �M .12



An example in [44℄ shows that 
ondition (ii) above 
annot be repla
ed by a bounded se
ond moment.We also note that by bounding higher moments we immediately obtain improved results on the tailprobabilities (i.e., the probability that Xn will ex
eed 
 �M). Indeed, Hajek [26℄ had previouslyshown that a bound on exponential moments (repla
ing 
ondition (ii) above) yields exponentiallyde
reasing bounds on the tail probabilities of the Xn and assuming an absolute bound onXn+1�Xnallows us to use basi
 results 
on
erning super-Martingales (see, for example, the text by Durrett[22℄) to determine bounds on E[Xn℄ and the tail probabilities.Theorem 3 Let G denote an arbitrary dire
ted a
y
li
 graph, S an arbitrary greedy proto
ol, and� the 
lass of properly bounded sto
hasti
 adversaries with rate 1�� for some � > 0. Then (G;�;S)is stable.Proof: Let AS be a rate (1 � �) adversary and let w be an appropriate window size; that is,in any window of w 
onse
utive time steps and for any history of pa
ket inje
tions pre
eding thiswindow, for every edge e, the expe
ted number of pa
kets inje
ted by AS that need to 
ross e isbounded by (1� �)w. For every edge e in G, de�ne Qt(e), At(e) as in the proof of Theorem 1. Wealso de�ne  (e) in a manner similar to the proof of Theorem 1. Let f1; : : : ; fk be edges entering e.Then  (e) = maxf2w;Q0(e)g +Pkl=1( (fl) + �w). (Noti
e that for � = 0 this is exa
tly what wehad in the previous proof.)Unlike the deterministi
 adversary 
ase, we will not be able to 
laim that At(e) �  (e). Instead weuse a potential fun
tion and show that if the potential fun
tion is larger than a spe
i�ed quantity,the potential is expe
ted to de
rease in the next w time steps.To de�ne the potential, let e1; : : : ; em be a numbering of the edges in topologi
al order (i.e., if i < j,then no dire
ted path in G 
ontains the edge ej followed by the edge ei). The potential fun
tionasso
iated with ei is de�ned as: �t(ei) = maxfAt(ei);  (ei)g:The potential asso
iated with the whole network is:�t =Xi �m�i�t(ei);where � is a positive real number greater than 1 whose exa
t value will be 
hosen later.Following the notation used in the de�nition of a sto
hasti
 adversary, let Ht�w denote the entirehistory of pa
ket inje
tions up to and in
luding step t� w. In order to prove that the expe
tationof this potential fun
tion must de
rease if it is too large, we prove the following bounds.Claim 4 1. At(ei) � At�w(ei)� w2. E[At(ei)jHt�w℄ � At�w(ei) + (1� �)w.3. Let i be the smallest index (if it exists) su
h that for every j < i, At�w(ej) �  (ej) andAt�w(ei) >  (ei). (If su
h an i does not exist then say i = m + 1.) Then for every j < i,E[At(ej)℄ � �t�w(ej) and (if i � m) E[At(ei)jHt�w℄ � At�w(ei)� �w.13



Proof: Part (1) follows from the fa
t that at most one pa
ket 
an 
ross any edge in a given timestep. Part (2) follows from the fa
t that the expe
ted number of pa
kets that are inje
ted in time(t� w; t℄ and wish to 
ross the edge ei is at most (1 � �)w. To show part (3) we use an indu
tionargument similar to that in the proof of Theorem 1. Suppose for some j � i that ej is an edgewhose tail is entered by edges f1; : : : ; fk. We 
onsider two 
ases.Case 1: At�w(ej) � w+Pkl=1( (fl) + �w). Noti
e �rst that in this 
ase that At�w(ej) �  (ej)�wand (sin
e j < i) we only need to show that E[At(ej)℄ � �t�w(ej). We use the fa
t that in wtime steps the expe
ted number of newly inserted pa
kets that wish to 
ross the edge e is at most(1� �)w � w. Thus, in this 
aseE[At(ej)jHt�w℄ < At�w(ej) + w �  (ej)� w + w =  (ej) � �t�w(ej):Case 2: At�w(ej) > w + Pkl=1( (fl) + �w). We will show in this 
ase that E[At(ej)jHt�w℄ �At�w(ej)� �w. Noti
e that this is suÆ
ient to prove the assertion for both 
ases j < i and j = i.Sin
e fl = ej0 for some j0 < i, by the de�nition of i, we have that At�w(fl) �  (fl) <  (fl) + �w.But At�w(ej) is at most Qt�w(ej) +Pkl=1At�w(fl). Thus we haveQt�w(ej) � At�w(ej)� kXl=1At�w(fl)> w + kXl=1( (fl) + �w)� kXl=1At�w(fl)� w:In other words, the number of pa
kets queued at edge e must be at least w at the beginning oftime step t�w. Thus in the next w time steps one pa
ket 
rosses the edge e in every step. But theexpe
ted number of pa
kets inserted whi
h wish to 
ross this edge may go up by at most (1� �)win w time steps. Thus, in this 
ase, we have E[At(ej)jHt�w℄ � At�w(ej)� �w.We now 
on
lude by observing that if �t�w > � =Pmi=1 �m�i( (ei) + �w), then there must exist asmallest i su
h that �t�w(ei) >  (ei) + �w. Using the 
laim above, we 
on
lude thatE[�tjHt�w ^ �t�w > �℄� �t�w = Xj<i �m�j(E[�t(ej)jHt�w℄� �t�w(ej))+�m�i(E[�t(ei)jHt�w℄� �t�w(ei)) +Xj>i �m�j(E[�t(ej)jHt�w℄� �t�w(ej))� 0� �w�m�i + mXj=i+1(1� �)w�m�j� ��w�m�i + (1� �)w�m�i=(�� 1)= w�m�i�� 1 (���+ �+ 1� �)� �w�=2 (provided � � 2=�)The �nal inequality above determines our 
hoi
e of �, whi
h we set to 2=�. Thus we 
on
lude that ifthe potential �t�w is high enough, then after w time steps the potential �t is expe
ted to de
reaseby at least � = �w=2. It should also be 
lear that by assuming AS is properly bounded, we also14



know that E[j�t ��t�wjp℄ is bounded by some 
onstant � for p > 2 sin
e �t is linear in the At(e).Letting Xi = �i�w, the theorem follows from Lemma 2 sin
e the potential �t is an upper bound onthe number of pa
kets in the system at time t.Corollary 5 Consider any (say two dimensional) mesh as a routing network and 
onsider the 
aseof one bend routing. That is, pa
kets are �rst sent along their originating row to the destination
olumn and then traverse along this 
olumn until rea
hing the destination. Then for any s
hedulingrule S, and for the 
lass � of rate 1� � sto
hasti
 (and hen
e deterministi
) one bend adversaries,the network (G;�;S) is stable.Proof: We sket
h the proof for a two dimensional N by N mesh and deterministi
 adversaries.The proof is similar to the argument used by Kahale and Leighton [30℄ when they 
onsider one bendrouting in the 
ontext of Bernoulli distributed inputs destined to random destinations. Let � > 0and 
onsider a (w1; 1� �) adversary for any window w1. We 
an 
onsider pa
kets traversing a rowas if they are traversing a one dimensional line (i.e., in ea
h dire
tion a very restri
ted DAG) withinputs generated by the adversary. By Theorem 1, all pa
kets rea
h their 
olumn destination within
(w1+N) steps for some 
onstant 
. Now 
onsider the pa
kets that enter a parti
ular 
olumn (say
olumn j) during any interval [t; t+w2) of w2 time steps. Any su
h pa
ket has either arrived duringthis window of time or was generated at a step t0 2 [t� 
(w1 +N); t). There are therefore at most
(w1+N)(1��)+w2(1��) pa
kets in the network that are destined to traverse any parti
ular edgein 
olumn j during the interval [t; t+w2). Now for any �0 < �, 
(w1+N)(1��)+w2(1��) < w2(1��0)for w2 suÆ
iently large. With regard to 
olumn j , we 
an think of the (w1; 1 � �) adversary as a(w2; 1� �0) adversary. Applying Theorem 1 again (for 
olumn j thought of as a line) , every pa
ketthat enters 
olumn j at time t will rea
h its destination by time t+ 
(w2 +N).This proof easily generalizes to any dimensional array and also to sto
hasti
 adversaries. The sameidea 
an be applied to toroidal networks using the Andrews et al. [2℄ universal stability results forunidire
tional rings. However without the one bend routing assumption, the instability results ofAndrews et al. [2℄ show that (two dimensional) meshes are not universally stable networks.6 The ringThere are now a number of independent results (for di�erent queuing model assumptions) showingthat the (unidire
tional) ring is universally stable for rate < 1 (i.e., the total rate of servi
e requiredat any server is less than 1). For 
lass independent servi
e rates, Dai and Weiss [19℄ prove universalstability for 
uid models (and hen
e for time-invariant sto
hasti
 queuing networks under thesame assumption of 
lass independent servi
e rates). Tassiulas and Georgiadis [50℄ establish theanalogous result for pa
ket routing using the Cruz [16℄ leaky bu
ket model. Andrews et al. [2℄ showthat the ring is universally stable with respe
t to deterministi
 adversaries. We shall now showthat the s
heduling rule FTG is stable at rate 1 for the ring. In 
ontrast, neither LIS (whi
h isa universally stable s
heduling rule at any rate less than 1) nor FIFO are stable at rate 1 for thering. We then extend the FTG proof to sto
hasti
 adversaries with rate 1� �.Throughout this se
tion, our underlying graph G will be the n-node unidire
tional 
y
le, withverti
es numbered 0; : : : ; n� 1. For the purpose of pa
ket routing the unidire
tional assumption is15



not usually a restri
tion as we most often assume simple one dire
tional paths and 
learly pathsin the 
lo
kwise dire
tion will not interfere with paths in the 
ounter
lo
kwise dire
tion. Forde�niteness let us assume pa
kets are being routed in a 
lo
kwise dire
tion. Even this 
ase isquite non-trivial, both from the point of view of 
lassi
al queuing theory and within our adversarialsetting. Indeed as demonstrated in Andrews et al., a \slight" extension of the ring network (allowingtwo edges between ea
h pair of adja
ent nodes) is enough to show that 
ommon s
heduling poli
ieslike FIFO and NTG (nearest-to-go) 
an be unstable.6.1 Instability of LIS and FIFO at rate 1We show in Se
tion 6.2 that the FTG proto
ol is stable at inje
tion rate 1 on the ring. On theother hand, we now exhibit simple adversaries with inje
tion rate 1 that 
ause instability on thering for the Longest-in-System proto
ol (priority to the pa
ket that was inje
ted longest ago) andthe FIFO proto
ol (queues are maintained in First{Come{First{Served fashion).Theorem 6 There is a deterministi
 adversary A (respe
tively, an adversary A0) that inje
ts singlepaths onto the ring at rate 1, su
h that A (respe
tively, A0) will for
e the s
heduling rule LIS(respe
tively, the s
heduling rule FIFO) to have unbounded size queues.Proof: We �rst des
ribe the adversary A for LIS. For simpli
ity of presentation, assume thatea
h path requested by A will be a \self-loop" | a path whi
h traverses all the edges of the ringin sequen
e. It is not diÆ
ult to re�ne this argument so that the adversary inje
ts shorter paths.A works as follows:� For k = 1; 2; 3; : : :{ Inje
t kn self-loops in sequen
e at node 1.{ Inje
t kn self-loops in sequen
e at node 0.It is easy to verify by indu
tion on k � 1 that at the end of iteration k of this pro
ess, there willbe one pa
ket at node 1 (destined for node 0) and kn� 1 pa
kets queued at node 0 (also destinedfor node 0). Thus the number of pa
kets be
omes unbounded.The adversary for the FIFO 
ase is similar but a bit more 
ompli
ated. To simplify the presentation,we prove this 
ase by 
ontradi
tion. Say there is an absolute bound M su
h that the number ofpa
kets in the system is bounded by M for every adversary. Let us �rst show how to 
onstru
tan adversary that 
ontradi
ts this bound M . The adversary, A0 �rst does an \initial" phase 0 andthen works in phases indexed by k as follows:� For k = 1; 2; 3; : : :{ Inje
t (M + 1)n self-loops in sequen
e at node k( mod n).The invariant that will be established is that at the end of phase k all pa
kets in the network aredestined for node k with one pa
ket at ea
h queue other than the queue on the edge from k ! k+1,whi
h has Qk pa
kets in its queue where the Qk's form a monotone in
reasing sequen
e in k. Thusby the end of M phases we derive a 
ontradi
tion.16



We assume an empty initial 
on�guration. For phase 0, the adversary simply inje
ts n self loops atnode 0. Thus the invariant is initially satis�ed for k = 0 with Q0 = 1. Assume that the invariant istrue at the end of phase k � 1. We make some observations on the transient behavior in phase k.We start by observing that on
e the invariant is established for some time step during phase k, it
ontinues to hold in all subsequent time steps in phase k. Next noti
e that throughout this phasethere is at most one pa
ket queued in every queue other than queues k and k � 1. The numberof pa
kets queued at k � 1 is monotone non-in
reasing and the number of pa
kets queued at k ismonotone non-de
reasing. Furthermore, sin
e the queues at nodes k and k � 1 are of length atmost M , no pa
ket waits at any queue for more than M time steps. Thus after at most Mn timesteps in phase k, every pa
ket inje
ted in phase 0 to k� 1 has rea
hed its destination. In at most nmore time steps, we rea
h the invariant that all the queues other than k�1 and k have exa
tly onepa
ket in their queue. To 
on
lude we need to show that the queue at node k � 1 does eventuallydrain down to having 0 and then 1 pa
ket; and that the queue size at k at the end of phase k isstri
tly larger than the queue size at k � 1 at the beginning of this phase.To verify the �rst part noti
e that the queue size at node k� 1 (whi
h 
onsists of both phase k� 1pa
kets destined for node k�1 as well as phase k pa
kets destined for node k) is upper bounded bythe number of pa
kets in the system with destination k � 1. This observation is easily veri�ed byindu
tion on time. Moreover, sin
e the queue size goes down every time a pa
ket with destinationk�1 rea
hes its destination, the queue be
omes empty (for one time step). Finally we need to verifythat Qk, the number of pa
kets at queue k at the end of phase k, is greater than Qk�1. Assumeotherwise. Then this implies that the total work remaining in the system has not in
reased. Butthis 
an not be the 
ase, sin
e there is at least one queue, namely at node k � 1, that was idle forone time step (immediately after the last pa
ket destined for k � 1 rea
hed its destination) duringphase k. Sin
e n units of work are added at ea
h time step, the only way the workload does not goup is if every queue remains non-idle in every time step in phase k. This 
on
ludes the proof forthe bound M .In order to show that there is (one) adversary that defeats every boundM , we simply keep 
hangingthe goal of the adversary so that after it defeats a given M , it resets all queues to be empty (bynot doing any inje
tions) and then pro
eeds to defeat M + 1, et
.6.2 The Furthest-to-Go Proto
olIn this se
tion, we prove that the FTG proto
ol is stable for the ring, �rst (in 
ontrast to the LISand FIFO instability result at rate 1) for a deterministi
 adversary at inje
tion rate 1, and thenfor a sto
hasti
 adversary at inje
tion rate 1� �. We are assuming that all pa
kets are traveling asimple path (say in a 
lo
kwise dire
tion).We �rst de�ne a quantity A(i; j; t) for 0 � i; j � n� 1. (Throughout this se
tion, all arithmeti
 onnode names is mod n.) The quantity A(i; j; t) denotes the number of pa
kets at time t in the queuesin nodes i; i+1; : : : ; j (in
lusive) whi
h need to 
ross the edge from node i�1 to node i. We assumethat this quantity is measured at the end of time step t (that is, at time step t, pa
kets are inserted,then moved, after whi
h the value of A is determined). Let A be a deterministi
 (w; �) adversarywith � = 1. We next de�ne an appropriate potential fun
tion �(i; t) = maxf�1(i; t); w + n � 1gwhere �1(i; t) = maxfA(i; k; t) + (i+ n� 1� k) : i � k � i+ n� 1g. The 
rux of the argument isthe following lemma:Lemma 7 Let A be a (w; �) adversary with � = 1. Then for all t � 0, �(i; t+ w) � �(i; t).17



Proof: Clearly the only way A(i; j; t) 
an in
rease is due to the insertion of pa
kets and 
an onlygo up by one per insertion of a pa
ket that needs to 
ross edge (i� 1; i). (Note that by assumingsimple paths any pa
ket entering the queue at node i from the queue at i � 1 will not need totraverse the edge (i� 1; i) again, and thus is not 
ounted in A(i; j; t).) Thus after the w time stepst+1; t+2; : : : ; t+w, no A(i; j; t) 
an in
rease by more than w and hen
e �(i; t) will in
rease by atmost w due to all the pa
ket insertions during these steps.If �1(i; t + `) � n � 1 at any step t + ` with 0 � ` � w � 1 then �1(i; t + w) 
an be at mostw + n � 1 and hen
e �(i; t + w) = w + n � 1 � �(i; t). If �1(i; t + `) > n � 1 throughout thesew time steps then we argue that ea
h routing step 
auses �1 to de
rease by one (o�setting anyin
rease due to the inje
tion step). To see this note that there must be at least one pa
ket in thesystem at every time step by the de�nition of �1. Let k be any index whi
h maximizes the quantityB = maxfA(i; k; t) + (i + n � 1 � k) : i � k � i + n � 1g. If k > i, the queue for edge (k; k + 1)must be non-empty and 
ontain a pa
ket destined to 
ross edge (i � 1; i) or else the index k � 1would yield a larger value for B. If k = i, the queue for edge (i; i + 1) must be nonempty sin
e�1(i; t+ `) > n�1. By the FTG proto
ol some su
h pa
ket must traverse the edge (k; k+1) duringthis routing step and hen
e the quantity B must de
rease.Theorem 8 Let G denote the n-node 
y
le and � the 
lass of rate 1 deterministi
 adversaries(say with window size w). De�ne Q0(G) to be the total number of pa
kets initially in the network(i.e. the sum of all edge queue sizes) and let Q0 = maxfQ0(G); wg. Then (G;�; FTG) is stableand furthermore there are never more than n(Q0 � 1) + w pa
kets in the system.Proof: Consider any time t = mw form a non-negative integer. By Lemma 7, we have �(i;mw) ��(i; 0) � Q0 + n � 1. Hen
e at time t = mw, A(i; i � 1;mw) � Q0 � 1. The total number ofpa
kets in the system at time t = mw 
an then be upper bounded by Pn�1i=0 A(i; i � 1;mw), whi
hwill be no greater than n(Q0 � 1). Finally, for any time t with mw < t � (m + 1)w, we havePn�1i=0 A(i; i � 1; t) � w +Pn�1i=0 A(i; i � 1;mw).We now extend the above theorem to the 
ase of a sto
hasti
 adversary with inje
tion rate 1� �.Theorem 9 Let G denote the n-node 
y
le and � the 
lass of properly bounded sto
hasti
 adver-saries with rate 1� � for some � > 0. Then (G;�; FTG) is stable.The proof here is analogous to the proof for deterministi
 adversaries. We need an analogue ofLemma 7 so as to apply Lemma 2.Lemma 10 For all i, and for all t � 0, E[�(i; t + w)j�(i; t) � n+ 2w℄ � �(i; t) � �w�.Proof: We argue as in the deterministi
 
ase, that as pa
kets are inserted during steps t+1; : : : ; t+w, the potential in
reases by at most the number of inserted pa
kets during these time steps whi
hwish to 
ross the edge i� 1 to i. By the de�nition of a (w; 1� �) sto
hasti
 adversary, this impliesthat the expe
ted in
rease in � due to insertions during time steps t+ 1; : : : ; t + w is bounded byw(1 � �). It remains to observe (as in the deterministi
 
ase) that subje
t to the 
ondition that�(i; t) � n+ 2w, the de
rease in � during these steps due to pa
ket routing is exa
tly w.18



We 
ombine these fa
ts (about the expe
ted in
rease due to insertions and the de
rease due torouting steps) to obtain E[�(i; t + w)jHt℄ � �(i; t) + w(1 � �)� w provided �(i; t) � n+ 2w.Given Lemma 10 we 
an now apply Lemma 2 so as to 
omplete the proof of the Theorem.7 NTGTwo natural s
heduling rules for pa
ket routing are the Nearest-To-Go (NTG) and Furthest-To-Go(FTG) poli
ies. Andrews et al. [2℄ prove that FTG is stable for any pa
ket routing network at rate� < 1. Tsaparas [51℄ generalizes the Andrews et al. stability result for FTG to more general queuingnetworks by proving the universal stability of Most-Time-To-Go (MTTG) s
heduling. (When allservi
e times are identi
al as we assume in pa
ket routing networks, then MTTG be
omes FTG.)In 
ontrast to the stability of FTG, Andrews et al. show that there is a simple 6-node network su
hthat NTG s
heduling is unstable for a rate � = :62 path-pa
king adversary.We extend this result in two ways. First we show for every � > 0 there is a queuing network forwhi
h NTG is unstable at rate �. Moreover, this instability will o

ur (for some initial 
on�guration)even if pa
kets are generated with 
onstant rate �. Thus this instability result is not an adversarialresult (ex
ept for the setting of the initial 
on�guration) but was motivated by the adversarialapproa
h. (Some experimental eviden
e suggests that this instability would still o

ur for Poissonarrivals and an empty initial 
on�guration.)We shall now des
ribe the network G and only sket
h the intuitive reason for instability. (Thedetails of the instability proof 
an be found in Tsaparas.) Let � > 0 be given and without loss ofgenerality assume that 1=� is an integer. We �rst 
onstru
t a \toroidal queuing network" ~G (wherethe servers are the nodes rather than the edges) and des
ribe the instability result in terms of ~G. Itis then easy to 
onvert ~G to a pa
ket routing network G for whi
h the same instability phenomenono

urs.Let ~G be an n � n torus with n� > 2 and n even. There will be n 
lasses of jobs. A 
lass i jobinitiates at node (i; i+1) and follows the following path of (node) servers (i; i+1); (i; i+2); : : : ; (i; i�1); (i + 1; i); (i + 2; i); : : : ; (i� 1; i). (See Figure 1. All node addresses are 
omputed mod n.)For every i, a new 
lass i job will be generated every 1=� steps. For every node, exa
tly two job
lasses will pass through any given node so that the total indu
ed load per step on any server isexa
tly 2�.For the NTG s
heduling rule, jobs moving along a 
olumn have priority over jobs moving along arow. Thus 
lass i jobs when moving along 
olumn i will interse
t and have priority over all otherjob 
lasses. The intuitive idea to a
hieve instability is to initially establish two \walls" of pa
kets,say in 
olumn i and 
olumn j = i+n=2. By a wall of pa
kets on 
olumn i we mean that every node(k; i) with k 6= i is o

upied and in addition there may be a large number of 
lass i jobs queuedin node (i; i � 1) 12 whi
h will 
ontinue to keep 
olumn i o

upied. Su
h a wall will prevent otherjobs from making progress. Eventually, the walls at 
olumns i and j will drain out but at the sametime a pair of walls will have been formed at 
olumns i + 1 and i + 1 + n=2. Moreover, we 
laimthat the total number of jobs in the system has in
reased during this \phase" where the walls are12To be more pre
ise, we 
onsider this queue of jobs at node (i; i � 1) to in
lude other 
lass i pa
kets whi
h willrea
h (i; i� 1) during the present \phase" when a wall exists at 
olumn i.19



Packets of type 1
Packets of type 2
Packets of type 3
Packets of type 4Figure 1: Bad network for NTG s
hedulingmoving over one 
olumn. To see this suppose that there are M 
lass i jobs in the wall at the startof the phase (and the same for 
lass j = i + n=2). Now assume that there is a total of T jobs inthe system at the start of the phase. The phase lasts M steps during whi
h time exa
tly nM� newjobs have entered the system and 2M jobs have left the system. Thus at the end of the phase (andthe start of the next phase) there are T 0 = T + nM�� 2M > T jobs in the system sin
e n� > 2.Tsaparas [51℄ provides a 
areful proof of this intuitive idea. In parti
ular, his proof requires aninitial 
on�guration whi
h is very \symmetri
" and then shows that this symmetry is preservedthroughout the pro
ess so that new walls are formed without any breaks o

urring in the walls.Finally we need to indi
ate how to 
onvert ~G to a pa
ket routing network G. For every node� = (i; j) in ~G, we have two nodes u� and v� in G. The edge set of G 
onsists of a \server" edgee� = (u�; v�) for every node � in ~G and a \
onne
ting edge" f(�;�0) = (v�; u�0) for every pair ofnodes �; �0 in ~G for whi
h some job traverses from � to �0 in the queuing network; i.e., � = (i; j)and �0 = (i0; j0) and either i0 = i + 1 and j0 = j or i0 = i and j0 = j + 1. In the obvious way,ea
h job 
lass in the queuing network will determine a pa
ket 
lass (and its path) in the pa
ketrouting network. We 
laim that for n > 3� that the pa
ket routing network system (G;NTG;A)is unstable where A is an \adversary" whi
h is generating pa
kets in ea
h 
lass at 
onstant rate �.Again the proof of this 
laim 
an be found in [51℄.8 Con
lusion and open problemsWe have introdu
ed a new approa
h for the study of queuing networks. Although our motivation
omes from 
ontinuous pa
ket routing, we note that the adversarial approa
h 
an be applied moregenerally to the wider �eld of queuing theory (as is done in Tsaparas [51℄). Clearly more generalqueuing networks (in whi
h jobs 
an revisit the same server many times and/or where servi
etime distributions are 
lass dependent) o�er additional 
hallenges. It remains an interestingopen question to �nd some set of general 
onditions (depending, for example, on the rate, queuingdis
ipline, and underlying network) that are suÆ
ient to guarantee stability. Further work is alsoneeded to better bound queue sizes and pa
ket delays, and to understand spe
i�
 networks su
h asarrays and hyper
ubes. We mention a few of the many open problems:20



� For pa
ket routing, 
an FIFO be made unstable for arbitrarily small positive rates of inje
tionin the adversarial model? More generally, does stability at some rate �1 > 0 imply stabilityfor all � < 1 (for a \natural" s
heduling poli
y)?� Considering the ring as a queuing network allowing arbitrary (i.e., reversing) paths, is everys
heduling poli
y stable?� Is NTG unstable for a Poisson input model for pa
ket routing and for arbitrarily small rates?In parti
ular, does the instability result of Se
tion 7 extend from 
onstant rate arrivals toPoisson arrivals? More generally, when does adversarial instability from some given initial
on�guration imply instability with Poisson arrivals (and say an empty initial 
on�guration).Note that while FIFO is unstable in an adversarial setting (a spe
ial 
ase of 
lass independentservi
e times), it is stable for Poisson arrivals and 
lass independent servi
e times.� Is there a generi
 transformation of stability results from deterministi
 to sto
hasti
 adver-saries?� Our queue size bound for DAGs is exponential in the length d of the longest path in thenetwork. Indeed Andrews et al. [2℄ show that NIS and FTG 
an be made to su�er su
hexponential size queues on DAGs. What is the best bound on queue size in DAGs thatholds for the FIFO s
heduling rule? Re
ently Adler and Ros�en (personal 
ommuni
ation)show that LIS has polynomial size queues (as a fun
tion of d) on any DAG but in 
ontrastAndrews and Zhang [4℄ show that LIS 
an have exponential size queues (in d) queues for
ertain networks. But these networks have size exponential in d and hen
e it remains open ifthe queue size for LIS 
an be polynomially bounded as a fun
tion of the size of the network.Andrews et al. 
onstru
t a randomized (\LIS based") s
heduling rule whi
h has (with highprobability) polynomially-sized queues and note that this randomized poli
y 
an be 
onvertedto a 
entralized deterministi
 s
heduling poli
y with polynomially-sized queues. The obviousquestion is whether there exists a (natural) de
entralized, deterministi
 s
heduling rule thathas polynomially-sized (as a fun
tion of either d or the size of the network) queues for allnetworks.� What 
an be said about stability of non-adaptive routing in a network where ea
h edge eis 
apable of simultaneously transmitting some number ne pa
kets in one step? Spe
i�
ally,if (G;A;S) is universally stable for any (w; �) adversary A, does it follow that (G0;A0;S) isalso universally stable for any (w; �) adversary A' where G is a graph where all edges havebandwidth 1 and G0 is the same graph with arbitrary edge bandwidths fneg. Here the load
ondition is modi�ed in the obvious way so that in any window � of w time steps and for anyedge e, the adversary inje
ts at most N(�; e) � � � w � ne pa
kets whi
h 
ross edge e. (This
an also be viewed as a very spe
ial 
ase of adaptive routing by viewing a \high bandwidth"edge as a set of edges.) More generally, what \network transformations" preserve stability?Re
ent results along these lines have been derived by Borodin, Ostrovsky and Rabani [10℄.� Whi
h (natural or eÆ
ient) s
heduling rules are universally stable for deterministi
 rate 1adversaries? Subsequent to asking this question, David Gamarnik [24℄ has proven that the\nearest to origin" NTO s
heduling rule (whi
h gives priority to pa
kets that have traversedthe fewest edges thus far) is universally stable for deterministi
 rate 1 adversaries. It is easyto adapt Gamarnik's proof to show that FTG is also universally stable for deterministi
 rate1 adversaries. These proofs yield an exponential bound on the total number of pa
kets in21



the network. Gamarnik also observes that using either NTO or FTG, a rate 1 adversary 
anprevent some pa
kets from ever rea
hing their destination. He asks if there is a s
hedulingrule (perhaps a modi�
ation of NTO or FTG) that 
an guarantee bounded or at least �nitedelivery time with respe
t to deterministi
 rate 1 adversaries.A
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