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AbstratWe onsider paket routing when pakets are injeted ontinuously into a network. We developan adversarial theory of queuing aimed at addressing some of the restritions inherent in proba-bilisti analysis and queuing theory based on time-invariant stohasti generation. We examinethe stability of queuing networks and poliies when the arrival proess is adversarial, and providesome preliminary results in this diretion. Our approah sheds light on various queuing poliies insimple networks, and paves the way for a systemati study of queuing with few or no probabilistiassumptions.1 IntrodutionMotivated by the study of dynami ontinuous (or dynami) paket routing, we introdue a newapproah to the analysis of queuing systems. In the ontext of paket routing, our objetive isto study stability and bounds on routing delay for various networks and sheduling poliies. Ourapproah is based on an adversarial generation of pakets (i.e., jobs) so that positive results (e.g.,stability and upper bounds on queue sizes) are more robust in that they do not depend on partiularprobabilisti assumptions about the input sequenes. Negative results (e.g., instability) an also beused to suggest orresponding results for more traditional stohasti queuing model assumptions.Moreover, the adversarial model may be a better (or at least safer) model of arrival proesses inappliations suh as heterogeneous ATM networks.New appliations in ommuniations networks and omplex manufaturing systems have reentlyled to signi�ant advanes in queuing theory. In partiular, the issue of stability for \open multilass�Department of Computer Siene, University of Toronto, Toronto, Canada M5S 3G4. Part of this work wasperformed while visiting the IBM T.J. Watson Researh Center.yDepartment of Computer Siene, Cornell University, Ithaa, New York. Part of this work was performed whilevisiting the IBM T.J. Watson Researh Center. Currently supported in part by an Alfred P. Sloan Researh Fellowshipand by NSF Faulty Early Career Development Award CCR-9701399.zIBM Almaden Researh Center, 650 Harry Road, San Jose, CA 95120.xLaboratory for Computer Siene, MIT, Cambridge, MA 02139. Part of this work was performed while thisauthor was at the IBM T.J. Watson Researh Center.{IBM T.J. Watson Researh Center, Box 218, Yorktown Heights, NY 10598.



queuing networks" is now muh better understood. In a preliminary version of our work (see [9℄),we did not fully take into aount the dramati progress in this area. For example, using uid modellimits (see [18, 20, 47℄), Bramson [14℄ has reently shown that for independent and time-invariantinput distributions (say, for example, Poisson arrivals), FIFO sheduling is stable for any lass-independent servie time distribution (inluding onstant servie time, the standard assumptionin paket routing) as long as the neessary load onditions (i.e., total expeted arrival rate at anyserver is less than the expeted servie rate) are satis�ed. Hene queuing theory learly provides ageneral methodology for studying ontinuous paket routing. However, our initial results oupledwith the subsequent ompelling results of Andrews, Awerbuh, Fern�andez, Kleinberg, Leighton andLiu [2℄, and other more reent results (for example, see [1, 3, 4℄) demonstrate that the adversarialapproah provides another useful perspetive to an important and fast evolving �eld. In fat, asone might expet in suh a well-studied �eld, our \new approah" is not entirely new. The \leakybuket" model studied by Cruz [16, 17℄ should also be onsidered as a (restrited) adversarial model.We introdue our adversarial model and for de�niteness present this model in the ontext of paketrouting. More generally this adversarial approah an be applied to any queuing network; seeTsaparas [51℄. Surprisingly, in spite of the power of the adversary, ertain networks and shedulingdisiplines an be proven to be \universally stable". That is, ertain networks are stable under anygreedy sheduling rule and ertain sheduling rules are stable for any network. In ontrast, we willalso see that some natural sheduling disiplines an be quite ill-behaved.2 Related workQueuing theory and analysis is, of ourse, a well developed and highly utilized �eld of study. Weannot endeavor to survey all the appliable literature. We will only attempt to briey review themost relevant results onerning multilass1 queuing networks. We will also briey review somerelevant results from the �eld of paket routing. For basi de�nitions in queuing theory we referthe reader to standard texts suh as Kelly [29℄, Kleinrok [28℄ and Walrand [52℄. The reader maywish to skip this setion and proeed diretly to the new de�nitons in Setion 3.2.1 Multilass queuing networksWe an view dynami paket routing as one restritive (but still quite important and non-trivial)type of multilass queuing network. In partiular, while oblivious routing neessitates di�erentlasses2 (i.e., one for eah path), the servie time distributions are all idential and independentof the lass as well as independent of the number of jobs (i.e., pakets) waiting for servie at anyedge.In a series of papers beginning with the work of Lu and Kumar [35℄ and Rybko and Stolyar [47℄, itwas shown that the load onditions are not in general suÆient to guarantee stability. These initial\ounterexamples" (to what seems a very natural onjeture) were �rst derived for sheduling rulesbased on the priority of a lass. Seidman [48℄ (for deterministi arrivals and servie times) and thenBramson [12℄ for Poisson arrivals and exponential servie times, showed that even FIFO an be1In a multilass queuing network, jobs are partitioned into di�erent lasses with the understanding that all jobsin a lass are indistinguishable in the sense that they have the same servie requirements.2Note that from a queuing theory perspetive, the Bernoulli (or Markovian) network assumption disussed belowavoids the need for multiple lasses. 2



made to be unstable. Indeed Bramson [13℄ showed that FIFO an be unstable at an arbitrarily smallratio of arrival rate to servie rate. All these examples require that the servie time distribution ata given server is lass dependent.Rybko and Stolyar [47℄ were able to analyze the stability of a partiular network by �rst arguingabout stability in a \uid model abstration" of this network. This approah was then formalizedas a general approah in the work of Dai [18℄ and Dai and Meyn [20℄. They show a \meta theorem"whereby stability in the uid model abstration of a queuing network implies stability in the givenqueuing network. We note that the uid model abstration only onsiders the mean rate of serviedisregarding the nature of the servie distribution. (Sine the uid model must neessarily dependon the sheduling rule and there is neither a formal de�nition of a sheduling rule nor a proedureshowing how to transform the sheduling rule into the orresponding equations, we have hosen toall this a meta theorem. But the meaning and appliability of this result is lear.) A Kelly-typenetwork is a possibly multilass network but one in whih the servie time distribution at a server islass independent. Using the uid model approah, Bramson [14℄ has shown that FIFO shedulingin a Kelly-type network using FIFO sheduling is stable. In partiular then, under mild assumptionson the nature of the (mutually independent) input distributions of the lasses, ontinuous paket-routing networks (having onstant time servie) using FIFO sheduling are stable networks. TheBramson FIFO stability result for the uid model stands in diret ontrast to the result of Andrewset al. [2℄ whih shows that FIFO an be unstable in the adversarial model.2.2 The Cruz permanent session modelCruz [16℄ introdues an input model designed to apture the burstiness of inputs in ommuniationnetworks. Cruz de�nes a (�i; �i) regulator as an input proess that ontrols the rate of a partiularinput session (i.e. a path in the network) so that during any time interval [t1; t2℄, the input traÆ(for this path) is bounded by �i + �i(t2 � t1) units of traÆ. The rate �i orresponds to the longterm average rate of ow while the onstant �i bounds the burstiness of the input. Suh an inputproess an be viewed as the output of a \leaky buket model" of ow ontrol where pakets aredropped whenever the above onstraints annot be satis�ed. The total indued traÆ rate �(e)on any edge e is de�ned as Pi:e2Pi �i. Andrews [3℄ refers to this input model as a (�; �) regulatedsession model. Following Andrews and Zhang [4℄, we will refer to this input model as the permanentsession model (in ontrast to the adversarial model in whih sessions are viewed as temporary).Cruz [16, 17℄ develops some basi properties of suh an input model inluding the study of stabilityfor ayli networks relative to a lass of greedy sheduling rules.Tassiulas and Georgiadis [50℄ adopt the permanent session model for the analysis of routing pakets 3in a (unidiretional) ring G. They show that for any greedy sheduling rule S that the system(G;A;S) is stable for any adversary A that orresponds to the (�; �) permanent session modelunder the load onstraint that �(e) < 1 for every edge e. Although the onept of an adversary isimpliit, these results by Cruz, and Tassiulas and Georgiadis, an be viewed as initial results in thedevelopment of an adversarial queuing theory. Following the adversarial FIFO instability result ofAndrews et al. a reent result of Andrews [3℄ proves that FIFO an also be unstable in the Cruzpermanent session model.3To be more preise, the sheduling poliies in [50℄ also allow proessor-sharing rules and the transmission ofpakets viewed as streams of traÆ that an be routed in a ut-through mode as well as disrete pakets that aretransmitted in a store-and-forward mode. This added generality is not important for our purposes.3



For � < 1, we an model the permanent session model as a (w; �0) adversary for any �0 > � and asuÆiently big window w. Note that this orresponds to a (restrited) adversary whih is ontrollingindividual input streams (i.e., partiular paths in the network) rather than an adversary whih isglobally ontrolling the entire input proess. The more general (w; �) adversary thus intuitivelyseems to provide a better model for ATM networks having heterogeneous and frequently hangingrates of traÆ. Reently Andrews and Zhang [4℄ have shown that there are known sheduling rules(namely, Generalized Proessor Sharing and Weighted Fair Queuing) whih are unstable (for the\baseball graph" introdued by Andrews et al. [2℄) in the full adversarial model but whih (byresults of Parekh and Gallager [41, 42℄) are universally stable in the permanent session model. OurDAG result and the unidiretional ring result of Andrews et al. therefore provide (respetively) asigni�ant generalization of the Cruz, and Tassiulas and Georgiadis results.2.3 Stati routingThere has been reent work showing how stability results and delay bounds for ontinuous paketrouting may be derived from analogous results in the stati setting. In a stati routing problem,we are given a �nite set of pakets, eah with an assigned path, and we wish to shedule themotion of eah paket along its respetive path so as to minimize the maximum arrival time. Aseminal result in this regard is the well-known bound of Leighton, Maggs, and Rao [32℄, that everystati paket routing problem in whih the maximum path length is D and the maximum numberof pakets using an edge is C has a shedule in whih eah paket reahes its destination withinO(C +D) units of time. A entralized, polynomial-time algorithm to ompute suh a shedule isgiven by Leighton, Maggs, and Riha in [33℄. Rabani and Tardos [46℄ and Ostrovsky and Rabani[40℄ developed distributed algorithms for the stati problem of Leighton, Maggs, Rao with boundsthat approah the O(C +D) ahieved by the entralized methods of [32, 33℄.The work of Rabani and Tardos [46℄ establishes a onnetion with the adversarial model developedin this paper, in the following sense. Consider any algorithm for the n-paket stati problem withparameters C and D de�ned above that produes a shedule with ompletion time (1 + Æ)C +g(n)D + f(n), where Æ > 0 is a onstant and f(n) � logn. Then it an be onverted into analgorithm for ontinuous paket routing that is stable against an arbitrary (w; 1 � ") adversary,where " is a funtion of Æ and eah paket has an inverse polynomial probability of being \dropped"before reahing its destination. This latter ondition, that an algorithm may drop pakets withsmall probability, is not present in our model.Broder, Frieze, and Upfal [11℄ also present a general method for transforming stati routing algo-rithms into ontinuous ones. They fous on a model in whih the swithing nodes in the networkhave bounded bu�ers. Here a distintion is drawn between input nodes in the network, wherepakets are generated, and all other intermediate nodes of the network. The queue at an inputnode may grow arbitrarily large, but the queue at an intermediate node v an grow no larger thanan absolute bound B, after whih pakets annot enter v. Broder et al. show that any stati paketrouting algorithm in this model that satis�es some tehnial onditions an be transformed into astable algorithm for ontinuous paket routing, against an arbitrary adversary of suÆiently smallonstant rate.The onnetions between the stati and ontinuous settings appears impliitly in the developmentof other protools in adversarial queuing theory. The analysis showing a polynomial bound onqueue size for the randomized universally stable protool of Andrews et al. [2℄, for example, builds4



on tehniques used in the proof of the stati result of Leighton, Maggs, and Rao [32℄; the protool,however, itself has a simple desription that is independent of the analysis.2.4 Continuous paket routingWithout any expliit use of queuing theory results, Leighton [31℄ analyzes one-bend routing onn�n arrays; the paths in one-bend routing are ayli and in fat one-bend routing on arrays turnsout to be easier to analyze than routing on yli networks suh as rings. Leighton onsiders thease where eah injeted paket has a random destination4 and pakets are injeted at eah nodeaording to a Bernoulli distribution with rate � < 4=n.These assumptions (on the routing sheme, on the injetion rate at eah node, and on the fatthat pakets have random destinations) imply that the indued traÆ rate on any edge is less thanone (the servie rate of eah edge). Leighton is able to provide a detailed analysis that shows thatfor the \farthest-to-go" sheduling disipline at eah edge queue, the network is stable and \withhigh probability" queue sizes are bounded by a small onstant. Moreover, the expeted delay of apaket is bounded by a onstant with high probability. These results are strengthened in Kahaleand Leighton [30℄ where the same results are proven for any sheduling disipline. Somewhat weakerresults are derived when the underlying graph is a ring. For the ring, stability and bounded delayresults are shown for FTG sheduling. The preise nature of these paket delay results seemsbeyond what we an hope to derive from applying general queuing theory results. On the otherhand, the Leighton and Kahale-Leighton results are spei� to ertain networks and utilize theassumption of random destinations.Stamoulis and Tsitsiklis [49℄ onsider the ase of layered networks under the assumption of Bernoullirouting. In queuing networks with Bernoulli routing, jobs are indistinguishable (i.e. a single lassnetwork) and the next server taken is a Markov proess (i.e., a probabilisti funtion of the lastserver and independent of previous history). In the ontext of paket routing, the Bernoulli as-sumption means that the next edge to be traversed is a random funtion of the last edge traversedand is independent of the paket identity. Stamoulis and Tsitsiklis onsider suh networks underthe assumption of Poisson arrivals. They observe that for layered Bernoulli routing networks, thedistribution on the network states (i.e., the queue size at eah edge) that results from a networkwith onstant time edge traversal and FIFO sheduling is statistially dominated by the state dis-tribution obtained using a proessor (i.e., edge) sharing sheduling disipline. They apply thisobservation to random destination routing in layered networks (e.g., the buttery) and in net-works that an be layered (e.g., dimension-by-dimension routing to random destinations in thehyperube).5 Thus bounds on expeted queue sizes for onstant-time edge traversal an be inferredfrom results about the analogous network whih assumes proessor sharing for edge traversal. Sinethe latter assumption results in a produt form network, standard queuing theory analysis an yieldonstant bounds on expeted queue sizes and from this follow (by Little's Theorem) bounds on theexpeted time in the network.Following similar experiments by Mitra and Cieslak [38℄ for the Omega network, Harhol-Balterand Blak [6℄ simulate paket routing on array networks and onjeture that the queue sizes that4We note that ontinuous paket routing results to date are restrited to the ase in whih pakets have randomdestinations. One of our main goals is to extend suh results to the ase where a paket is given a spei�ed destinationand path at the time of its injetion.5Stamoulis and Tsitsiklis allow a more general, non-uniform, seletion of random destinations than in Leightonand Kahale and Leighton; e.g., nearby destinations an be more probable.5



obtain under the assumption of exponentially-distributed edge-traversal times are an upper boundfor the queue sizes obtained with onstant-time edge traversal. Mitzenmaher [39℄ proves thisonjeture for one bend routing on arrays. It is tempting to believe that the experiments andonjeture of Harhol-Balter and Blak apply to a muh wider ontext. Indeed, independent ofthe results in paket routing, there are many queuing-theoreti results pertaining to generalizedJakson networks. In partiular, under the appropriate load onditions and some very generalassumptions on the arrival and servie time distributions, Meyn and Down [37℄ establish stabilityfor suh networks. These results apply to the more general ase that eah server has its own servietime distribution. However, Harhol-Balter and Wolfe [7℄ give evidene that it will not be a simpletask to apply the approah in [49℄ to the general study of dynami paket routing. First theyshow that the \layered" assumption in [49℄ is not neessary as they are able to derive the sameresults for any Bernoulli routing network. But they also show that without the Bernoulli networkassumption, it is no longer neessarily true that the set of delays for FIFO with onstant-timeservers is stohastially dominated by proessor-sharing servers.3 The adversarial modelWe begin with an informal disussion of paket routing, adversaries and sheduling poliies. Arouting network is a direted graph. Time proeeds in disrete steps. A paket is an atomi entitythat resides at a node at the end of any step. A paket must travel along a path in the networkfrom its soure to its destination, both of whih are nodes in the network. When the paket reahesits destination, we say that it is absorbed. During eah step, a paket may be sent from its urrentnode along one of the outgoing edges from that node. At most one paket may travel along anyedge of the network in a step. Any pakets that wish to travel along an edge e at a partiular timestep but are not sent wait in a queue for edge e. The delay of a paket is the number of steps whihthe paket spends waiting in queues.At eah step, an adversary generates a set of requests. In this paper a request is a path speifyingthe route followed by a paket. We say that the adversary injets a set of pakets when it generatesa set of requested paths. We restrit ourselves to the ase in whih the path traversed by eahpaket is �xed at the time of injetion (i.e., non-adaptive routing), so as to be able to fous on thequeuing rather than routing aspets of the problem. (Reently, Aiello et al. [1℄ have suessfullyextended the adversarial model to adaptive routing.)Clearly an unrestrited adversary an ood the network with pakets, demanding more bandwidththan available. Therefore we need to introdue a restrition analogous to the load ondition imposedin queuing theory. Let w be an arbitrary positive integer, e any edge in the network and � anysequene of w onseutive time steps. We de�ne N(�; e) to be the number of paths injeted by theadversary during time interval � that traverse edge e. It is ommon in paket routing to assumethat all paths are simple paths. However, in more general queuing appliations, one may not wantto assume simple paths and hene in the de�nition of N(�; e) we need not assume simple paths;thus we would ount the multipliity of the number of times a partiular path traverses e. For any� > 0, we de�ne a (w; �) adversary whih injets paths subjet to the following load ondition: forevery sequene � of w onseutive time steps and for every edge e, N(�; e)=w � �. We say thatsuh a (w; �) adversary injets pakets at rate � with window size w. A rate � adversary is a (w; �)adversary for some w 6.6We follow the de�nition of a (w; �) adversary as it appears in Andrews et al. [2℄. In our original paper[9℄, we6



Clearly if the rate � were greater than one, an adversary (or any input generation proess) wouldongest some edge (sine the servie rate of every edge is assumed to be 1) and the network wouldbe unstable. Hene we will hereafter assume that � � 1. We note that in its full generality, there areno omputational requirements on how the adversary hooses its requests in any given step and (aswill be formalized below). The adversary's hoie of input pakets is simply a funtion of the historyof the paket routing that has taken plae thus far. One an of ourse plae further restritions onthe nature of the adversary. For example, a (w; �) path-paking adversary is further restrited sothat the paths requested at any step must be edge disjoint. A more stringent restrition (a singlepath adversary) requires that at most one paket be injeted at eah step. In general, we have arequest olletion of permissible request sets; at eah step, the adversary must pik one request set(= set of paths) from this request olletion.Additionally, we onsider stohasti adversaries. A (w; �) stohasti adversary is also spei�ed bya request olletion, a rate and a window size; now, however, at eah step the adversary has aprobability distribution (possibly di�erent for eah step) over its request olletion, and at eahstep draws a set of requests from the spei�ed distribution. Now, the quantity N(�; e) is a randomvariable indued by the distributions used by the adversary during the time steps � . If � denotesthe w time steps t+ 1; : : : ; t+ w, we let Ht denote the entire history of paket arrivals up to (andinluding) step t. The appropriate load ondition7 is that for every sequene � of w onseutivetime steps and for every edge e, E[N(�; e)jHt℄=w � �. In order to ahieve the greatest degree ofgenerality, we would like to impose the fewest onditions on a stohasti adversary and still be ableto derive stability results. One again, it is lear that � � 1 is neessary to avoid ooding some edge.Moreover, it is not hard to see that even for the simplest network onsisting of one edge, a rate 1stohasti adversary an be unstable. Simply onsider an adversary whih injets zero pakets withprobability 12 and injets two pakets with probability 12 ; after t steps the expeted queue size (whihis ating like a random walk on the line [0;1)) is approximately pt. Hene we will be onernedwith stohasti adversaries having rate � < 1. However, this bound on the expetation (i.e., the�rst moment) is not suÆient for our purposes and we will also have to impose a bound on the pthmoment (see Lemma 2) for p > 2. We will then say that a (w; �) stohasti adversary is properlybounded if there exist onstants p > 2, � > 0 and V suh that for all sequenes � of w onseutivetime steps t+1; :::t+w and all edges e, E[N(�; e)jHt℄=w � 1�� and E[N(�; e)pjHt℄ � V . Note thatthis model is quite general as it allows the adversary to adaptively modify the distribution at eahtime step. In partiular, it inludes the speial ase (as is often assumed in queuing theory) of a�xed, time-invariant input distribution (e.g., say a Poisson or onstant rate arrival proess) for eahpossible request. It also subsumes the ase of oblivious paket routing for pakets that are generatedat eah node with randomly hosen destinations (e.g., as studied in [30, 31, 49℄). To di�erentiatesuh stohasti adversaries from the non-stohasti adversaries de�ned above, we will refer to thenon-stohasti adversaries as deterministi adversaries. Clearly, deterministi adversaries are aspeial ase of stohasti adversaries.To the best of our knowledge, these adversarial models provide the �rst framework for studyingqueuing models where we do not essentially assume independent input streams. Moreover, theanalysis of these models provide not only results about stability but also quantitative bounds ononly de�ned and proved results for path-paking adversaries (to be de�ned) although we impliitly suggested a moregeneral adversary. In subsequent disussions, we independently adopted the general (w; �) adversarial framework.Stability proofs for the general adversary that are presented in this paper are extended versions of our earlier proofsgiven for path-paking adversaries.7In our onferene paper[9℄, we inorretly stated the load ondition as the unonditional expetationE[N(�; e)℄=w � �. 7



queue lengths and delays.A sheduling poliy spei�es, for eah edge e and eah time step, whih paket (amongst thosewaiting) is to be moved along edge e. A greedy sheduling poliy (alled a work-onserving poliyin the terminology of queuing theory) always spei�es some paket to move along edge e if thereare pakets waiting to use edge e. In this paper we restrit ourselves to deterministi greedysheduling poliies. Examples of natural greedy sheduling poliies inlude the following:� FIFO (First-In-First-Out). This is also alled FCFS (First-Come-First-Served).� LIS (Longest-In-System). A paket originates at a spei�ed time, and priority is given to thepaket whih has been in the network for the longest amount of time.� NIS (Newest-In-System). Similar to LIS but now priority is given to the paket that hasspent the least amount of time in the network.� FTG (Furthest-To-Go). Eah paket has a presribed path, and priority is given to the paketwhih has the largest number of edges still to be traversed.� NTG (Nearest -To-Go). Similar to FTG but now priority is given to the paket that has thesmallest number of edges still to be traversed.All of these sheduling poliies require some tie-breaking rule in order to be unambiguously de�ned.For our purposes we an assume that whenever we are proving a positive (e.g., stability) result, theadversary an break the tie. For a negative result, we an assume any well-determined tie-breakingrule. It should also be lear that all of these sheduling poliies an be extended to more generalqueuing networks. For example, FTG would be extended to MTTG (Most-servie-Time-To-Go)where priority is given to that job whih has the most servie time remaining (summing the requiredservie over all servers still sheduled to be visited).In order to make the above disussion more preise we need some additional de�nitions. A paketP is a triple (ID; p; ~t) where ID is some unique identi�er, p is the path (from the origin to thedestination of the paket) that the paket must traverse, and ~t is the time that the paket wasinjeted into the network (at its origin). The statet(P ) of a paket P at time t is the vetor(P; i; t1; : : : ; ti) where i is the number of time steps in whih P has traversed an edge in its pathand tj is the time of the jth suh traversal. We de�ne the on�guration on�g t(G) of a network G attime t as on�g t(G) = fstatet(Pk)jPk is a paket that is present in the network at time t g. Notethat the on�guration impliitly spei�es the states of pakets in eah (edge) queue of the network.In partiular, we will assume that time begins at step t = 0 and thus on�g0(G) denotes the initialon�guration of the network. We an then formally de�ne a deterministi adversary A as a funtionA : S1j=0[j �Qjt=0 on�g t(G)℄ ! fPkjPk is a new paketg ; that is, A (~t;Q~tt=0 on�g t(G)) spei�esthe new pakets that the adversary A injets into the network at time ~t and it does so based on theentire history of the routing up to this point of time. A stohasti adversary AS is similarly de�nedas a funtion AS : S1j=0[j�Qjt=0 on�g t(G)℄! fDkjDk is a distribution on new paketsg. That is,a stohasti adversary hooses a distribution for the next set of requests and this distribution is afuntion of the the history of the network on�gurations. At any time t, one the distribution hasbeen hosen, the inputs are then randomly generated aording to this distribution. A deterministisheduling poliy S is de�ned as having the same domain as a deterministi adversary with its rangebeing the set of pakets that exist in the system at time ~t; that is, in its full generality we anonsider global sheduling rules based on the entire history to date. However, in pratie and for8



the purpose of this paper we will mainly be onerned with distributed sheduling poliies wherethe paket seleted to traverse any given edge e is determined by the states of the pakets that arepresently in the queue assoiated with edge e. We note that all the known deterministi shedulingrules �t into this framework. We ould also easily de�ne randomized sheduling poliies but willnot do so sine we do not onsider suh poliies in this paper. However, we note that randomizedsheduling poliies are often utilized in paket routing; see, for example, Rabani and Tardos [46℄.Our main goal will be to prove the stability of arbitrary and partiular greedy sheduling poliiesS on various networks G and against various lasses � of adversaries8. Similar to Andrews et al.[2℄, we de�ne a network system as the tuple (G;�;S). We will say that a network system (G;�;S)is stable, if for every initial on�guration C0(G) there is a onstant M (whih may depend onthe size of the network G, the initial on�guration and the rate and window parameters of theadversary lass �) suh that for every adversary A in the lass of adversaries �, when the networksystem is exeuted with initial on�guration C0(G) against adversary A (i.e., is exeuted usingthe deterministi adversary A to generate pakets and the sheduling poliy S to route pakets),the maximum number of pakets in any queue is bounded by M .9 For stohasti adversaries,we say that the network system (G;�;S) is stable if for every initial on�guration C0(G) thereis a onstant M as above suh that for every stohasti adversary AS in the lass �, when thenetwork system is exeuted with initial on�guration C0(G) against adversary AS then at all timesthe expeted number of pakets in any queue is bounded by M . We will say that a network Gis universally stable with respet to a lass � of adversaries if (G;�;S) is stable for all greedysheduling poliies, and similarly a sheduling poliy S is universally stable if (G;�;S) is stablefor all networks G10. Andrews, Awerbuh, Fern�andez, Kleinberg, Leighton and Liu [2℄ show thatfor undireted networks (i.e. in the sense that eah undireted edge represents two direted edges)it is deidable if a paket routing network is universally stable. Based on Andrews et al., Goel[25℄ gives a simple haraterization for the universal stability of direted and undireted networks.Bertsimas, Gamarnik, and Tsitsiklis [8℄ use linear programming to deide universal stability for all2-station uid model networks and onjeture that suh a test exists for all uid model queuingnetworks.Rather than de�ne stability in terms of maximum queue size, one ould also de�ne stability interms of the maximum delay inurred by any paket. Clearly, if no paket is delayed by more thanM steps then the maximum queue size is also bounded by M . Conversely, for any (w; �) adversarywith rate � < 1, if the maximum queue size is bounded by M , then a paket an be delayed in anyqueue by at most w steps where  is large enough that w > M=(1 � �). (In w steps, at mostw� pakets enter the queue and w pakets leave the queue while it remains nonempty.) Clearly,when � = 1, it is possible to have a given paket delayed forever even though the system is stableunder the given de�nition.8For example, ertain networks G are stable against the lass of stohasti adversaries of rate � < 1 for any greedysheduling rule.9Equivalently, we an say that the maximum number of pakets in the system is bounded by some onstantM . Inqueuing theory one sometimes de�nes stability in terms of the existene of a limiting stationary distribution for thestate of the network. Our de�nition is onsistent with other standard uses of the term and furthermore one annothope for a limiting distribution in an adversarial model.10For the study of the universal stability of a sheduling rule, we an assume that the initial on�guration is empty.Informally, we argue that any network an be modi�ed by appending \input trees" to eah node and using theseinput trees to adversarily onstrut any desired initial on�guration.
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4 ResultsIt is perhaps tempting to onjeture that for every network G, every greedy queuing disipline isstable for a deterministi adversary with injetion rate � < 1 (or even � = 1). Our �rst result showsthat every direted ayli network is universally stable for rate 1 deterministi adversaries.(1) If G is a DAG, and � is the lass of deterministi rate 1 adversaries, then (G;�;S) is stablefor every greedy queuing disipline S. That is, every DAG is universally stable against the lass ofrate 1 deterministi adversaries.Unfortunately universal stability against rate 1 adversaries does not extend to the ase of graphswith direted yles, as our next result shows.(2) Let G be a unidiretional ring network on n � 3 nodes and let � be the lass of deterministirate 1 single path adversaries . Then the network system (G;�; LIS) is not stable. Indeed for everyinitial on�guration, there is a rate 1 adversary A, injeting a single path on every step, whih willfore the network to have an unbounded number of pakets. Similarly, FIFO is unstable for rate 1single path adversaries.This instability result is in ontrast with the next result.(3) If G is a unidiretional ring and � is the lass of deterministi rate 1 adversaries, then(G;�; FTG) is stable.All our stability results also hold for stohasti adversaries of bounded variane for injetion ratesbounded away from 1.In our onferene paper [9℄ we asked if our stability results for the ring and DAGs ould be extendedto all networks and all greedy sheduling rules. Our results were soon signi�antly extended byAndrews, Awerbuh, Fern�andez, Kleinberg, Leighton and Liu [2℄. They show that the ring isuniversally stable with respet to the lass of rate � < 1 deterministi adversaries. They also showthat ertain sheduling poliies S (suh as Newest-in-System (NIS), LIS and FTG) are universallystable against the lass of rate � < 1 deterministi adversaries. However, they demonstrate thatertain ommon sheduling poliies (suh as FIFO and Nearest To Go (NTG)) are not universallystable. Spei�ally, for FIFO (respetively NTG) sheduling, they show that there is some networkand initial on�guration for whih some rate � > :798 (respetively, rate � > :62) path-pakingadversary auses instability.In hindsight, the instability of NTG (paket routing) is well motivated by the queuing instabilityexamples11 of Lu and Kumar [35℄ and Rybko and Stolyar [47℄. Note that our instability result forFIFO on the ring with rate 1 and the FIFO instability result of Andrews et al. stands in ontrastto Bramson's [14℄ uid stability result for lass-independent servie time networks with FIFOsheduling. We strengthen the Andrews et al. NTG instability result by showing the following.(4) For every rate � > 0, there exists a network and initial on�guration for whih some rate �adversary auses NTG to be unstable. Indeed, although motivated by initial adversarial results, thisturns out not to be an adversarial result rather, the \adversary" will only set the initial on�gurationand then will be injeting all paths at a onstant rate!11These queuing network examples do not show that NTG is unstable for paket routing (where we assume identialservie time distributions) but an be easily modi�ed to show paket routing instability for some priority basedsheduling poliy. 10



Thus in addition to providing a framework for obtaining very general stability results, the adver-sarial model is able to distinguish between di�erent sheduling poliies and to suggest instabilityresults in more lassial settings. This sensitivity to the sheduling poliy is not unnatural, yetprior queuing theoreti results do not seem to highlight this.The remainder of the paper is strutured as follows. Setion 5 disusses stability bounds for aylinetworks G. Setion 6 disusses results for the ring. Our NTG instability result is outlined inSetion 7. We onlude in Setion 8 with a number of open problems.5 DAGs and MeshesPerkins and Kumar [45℄ show that for onstant rate arrivals there is a lass of sheduling rules (alled\lear a fration") with respet to whih all ayli networks are stable. Using a uid model, Downand Meyn [21℄ onsider a spei� ayli network and show that it is universally stable. Againusing a uid model, Dai [18℄ shows that every ayli network is universally stable for rate lessthan 1. These stability results for uid models then an be applied to obtain stability results forthe more standard \stohasti queuing networks" (i.e., with time-invariant input distributions).We extend these results by showing that for paket routing, ayli networks are universally stablein the (deterministi and stohasti) adversarial setting. Reently, Gamarnik [23℄ showed how touse uid models to show that if a paket routing network is universally stable in the uid model,then it is universally stable in the deterministi adversarial model. However, the uid model resultsdo not seem to provide quantitative bounds on queue lengths.Theorem 1 Let G denote an arbitrary direted ayli graph, S an arbitrary greedy protool, and� the lass of deterministi rate 1 adversaries. Then (G;�;S) is stable.Proof: For e an edge of G, let Qt(e) denote the queue at edge e at time t, and let At(e) denote thenumber of pakets (not already absorbed) that have arrived by time t and are eventually destinedto ross edge e. For any adversary A that injets at rate 1, there exists some window size w, suhthat for any window of time (t�w; t℄ and for any edge e the adversary an injet at most w paketsduring this window that are destined to ross the edge e.We de�ne a funtion  (�) indutively on the edges as follows. For an edge e, suppose f1; : : : ; fk areedges entering the tail of e. (Notie there may be no suh elements and then we just take k to bezero.)  (e) = maxf2w;Q0(e)g + kXi=1  (fi):We laim that for all t = l � w � 0 and all e 2 G, we haveAt(e) �  (e) (1)Note that for any time t0 suh that t � w < t0 < t, At0(e) � At�w(e) + w. The theorem will thenfollow, sine Pe  (e) gives an absolute upper bound on the number of pakets in the system, interms of the initial on�guration. 11



The proof of this laim proeeds by indution on l. The laim learly holds when l = 0. Now lett = lw for l � 1. Suppose e is an edge whose tail is entered by edges f1; : : : ; fk. We onsider twoases.Case 1: At�w(e) � w +Pki=1  (fi). In this ase, we use the fat that in w time steps the numberof new pakets inserted that wish to ross the edge ej is at most w. Thus, in this aseAt(e) � At�w(e) + w � 2w + kXi=1  (fi) �  (e):Case 2: At�w(e) > w+Pki=1  (fi). By the indutive assertion we have that At�w(fi) �  (fi). Butnotie that At�w(e) is at most Qt�w(e) +Pki=1At�w(fi). Thus we haveQt�w(e) � At�w(e) � kXi=1At�w(fi)> w + kXi=1  (fi)� kXi=1At�w(fi)� w:In other words, the number of pakets queued at edge e must be at least w at the beginning of timestep t�w. Thus in the next w time steps at least one paket rosses the edge e in every step. Butthe number of pakets inserted whih wish to ross this edge may go up by at most w in w timesteps. Thus, in this ase also, we have At(e) � At�w(e) �  (e).The upper bound on the number of pakets in the system that follows from this proof is exponentialin the number of edges (more preisely, the depth) of G. Indeed, Andrews et al. show that for everym, there is an O(m2)-node DAG G and a (1 � 1=(m + 2)) rate path-paking adversary for whihthe sheduling rule NIS (or FTG) an be fored to have queue size 2m�1. Another example ofexponentially long (in the depth but not the size) queues for DAGs an be found in Cruz [17℄. Forthe speial ase of tree networks, the proof of Theorem 1 gives a muh better bound; in this ase,all the sets Q(e) have linear (in the depth) size.It is now reasonably easy to obtain essentially the same stability result for stohasti adversaries(satisfying some minimal onditions as previously indiated). We need the following Martingaletype lemma due to Pemantle and Rosenthal [44℄:Lemma 2 Let X1;X2; : : : be a sequene of nonnegative random variables satisfying the followingproperties:1. There exists positive onstants � and � suh that for all x1; : : : ; xn with xn > �,E[Xn+1 �Xn j X1 = x1; :::;Xn = xn℄ � ��2. There exists a positive onstant � and a p > 2 suh that for all x1; : : : ; xnE[jXn+1 �Xnjp j X1 = x1; :::;Xn = xn℄ � �:Then there exists M (M is a funtion of X0; �; � and �) and t0 suh that for all t � t0; E[Xt℄ �M .12



An example in [44℄ shows that ondition (ii) above annot be replaed by a bounded seond moment.We also note that by bounding higher moments we immediately obtain improved results on the tailprobabilities (i.e., the probability that Xn will exeed  �M). Indeed, Hajek [26℄ had previouslyshown that a bound on exponential moments (replaing ondition (ii) above) yields exponentiallydereasing bounds on the tail probabilities of the Xn and assuming an absolute bound onXn+1�Xnallows us to use basi results onerning super-Martingales (see, for example, the text by Durrett[22℄) to determine bounds on E[Xn℄ and the tail probabilities.Theorem 3 Let G denote an arbitrary direted ayli graph, S an arbitrary greedy protool, and� the lass of properly bounded stohasti adversaries with rate 1�� for some � > 0. Then (G;�;S)is stable.Proof: Let AS be a rate (1 � �) adversary and let w be an appropriate window size; that is,in any window of w onseutive time steps and for any history of paket injetions preeding thiswindow, for every edge e, the expeted number of pakets injeted by AS that need to ross e isbounded by (1� �)w. For every edge e in G, de�ne Qt(e), At(e) as in the proof of Theorem 1. Wealso de�ne  (e) in a manner similar to the proof of Theorem 1. Let f1; : : : ; fk be edges entering e.Then  (e) = maxf2w;Q0(e)g +Pkl=1( (fl) + �w). (Notie that for � = 0 this is exatly what wehad in the previous proof.)Unlike the deterministi adversary ase, we will not be able to laim that At(e) �  (e). Instead weuse a potential funtion and show that if the potential funtion is larger than a spei�ed quantity,the potential is expeted to derease in the next w time steps.To de�ne the potential, let e1; : : : ; em be a numbering of the edges in topologial order (i.e., if i < j,then no direted path in G ontains the edge ej followed by the edge ei). The potential funtionassoiated with ei is de�ned as: �t(ei) = maxfAt(ei);  (ei)g:The potential assoiated with the whole network is:�t =Xi �m�i�t(ei);where � is a positive real number greater than 1 whose exat value will be hosen later.Following the notation used in the de�nition of a stohasti adversary, let Ht�w denote the entirehistory of paket injetions up to and inluding step t� w. In order to prove that the expetationof this potential funtion must derease if it is too large, we prove the following bounds.Claim 4 1. At(ei) � At�w(ei)� w2. E[At(ei)jHt�w℄ � At�w(ei) + (1� �)w.3. Let i be the smallest index (if it exists) suh that for every j < i, At�w(ej) �  (ej) andAt�w(ei) >  (ei). (If suh an i does not exist then say i = m + 1.) Then for every j < i,E[At(ej)℄ � �t�w(ej) and (if i � m) E[At(ei)jHt�w℄ � At�w(ei)� �w.13



Proof: Part (1) follows from the fat that at most one paket an ross any edge in a given timestep. Part (2) follows from the fat that the expeted number of pakets that are injeted in time(t� w; t℄ and wish to ross the edge ei is at most (1 � �)w. To show part (3) we use an indutionargument similar to that in the proof of Theorem 1. Suppose for some j � i that ej is an edgewhose tail is entered by edges f1; : : : ; fk. We onsider two ases.Case 1: At�w(ej) � w+Pkl=1( (fl) + �w). Notie �rst that in this ase that At�w(ej) �  (ej)�wand (sine j < i) we only need to show that E[At(ej)℄ � �t�w(ej). We use the fat that in wtime steps the expeted number of newly inserted pakets that wish to ross the edge e is at most(1� �)w � w. Thus, in this aseE[At(ej)jHt�w℄ < At�w(ej) + w �  (ej)� w + w =  (ej) � �t�w(ej):Case 2: At�w(ej) > w + Pkl=1( (fl) + �w). We will show in this ase that E[At(ej)jHt�w℄ �At�w(ej)� �w. Notie that this is suÆient to prove the assertion for both ases j < i and j = i.Sine fl = ej0 for some j0 < i, by the de�nition of i, we have that At�w(fl) �  (fl) <  (fl) + �w.But At�w(ej) is at most Qt�w(ej) +Pkl=1At�w(fl). Thus we haveQt�w(ej) � At�w(ej)� kXl=1At�w(fl)> w + kXl=1( (fl) + �w)� kXl=1At�w(fl)� w:In other words, the number of pakets queued at edge e must be at least w at the beginning oftime step t�w. Thus in the next w time steps one paket rosses the edge e in every step. But theexpeted number of pakets inserted whih wish to ross this edge may go up by at most (1� �)win w time steps. Thus, in this ase, we have E[At(ej)jHt�w℄ � At�w(ej)� �w.We now onlude by observing that if �t�w > � =Pmi=1 �m�i( (ei) + �w), then there must exist asmallest i suh that �t�w(ei) >  (ei) + �w. Using the laim above, we onlude thatE[�tjHt�w ^ �t�w > �℄� �t�w = Xj<i �m�j(E[�t(ej)jHt�w℄� �t�w(ej))+�m�i(E[�t(ei)jHt�w℄� �t�w(ei)) +Xj>i �m�j(E[�t(ej)jHt�w℄� �t�w(ej))� 0� �w�m�i + mXj=i+1(1� �)w�m�j� ��w�m�i + (1� �)w�m�i=(�� 1)= w�m�i�� 1 (���+ �+ 1� �)� �w�=2 (provided � � 2=�)The �nal inequality above determines our hoie of �, whih we set to 2=�. Thus we onlude that ifthe potential �t�w is high enough, then after w time steps the potential �t is expeted to dereaseby at least � = �w=2. It should also be lear that by assuming AS is properly bounded, we also14



know that E[j�t ��t�wjp℄ is bounded by some onstant � for p > 2 sine �t is linear in the At(e).Letting Xi = �i�w, the theorem follows from Lemma 2 sine the potential �t is an upper bound onthe number of pakets in the system at time t.Corollary 5 Consider any (say two dimensional) mesh as a routing network and onsider the aseof one bend routing. That is, pakets are �rst sent along their originating row to the destinationolumn and then traverse along this olumn until reahing the destination. Then for any shedulingrule S, and for the lass � of rate 1� � stohasti (and hene deterministi) one bend adversaries,the network (G;�;S) is stable.Proof: We sketh the proof for a two dimensional N by N mesh and deterministi adversaries.The proof is similar to the argument used by Kahale and Leighton [30℄ when they onsider one bendrouting in the ontext of Bernoulli distributed inputs destined to random destinations. Let � > 0and onsider a (w1; 1� �) adversary for any window w1. We an onsider pakets traversing a rowas if they are traversing a one dimensional line (i.e., in eah diretion a very restrited DAG) withinputs generated by the adversary. By Theorem 1, all pakets reah their olumn destination within(w1+N) steps for some onstant . Now onsider the pakets that enter a partiular olumn (sayolumn j) during any interval [t; t+w2) of w2 time steps. Any suh paket has either arrived duringthis window of time or was generated at a step t0 2 [t� (w1 +N); t). There are therefore at most(w1+N)(1��)+w2(1��) pakets in the network that are destined to traverse any partiular edgein olumn j during the interval [t; t+w2). Now for any �0 < �, (w1+N)(1��)+w2(1��) < w2(1��0)for w2 suÆiently large. With regard to olumn j , we an think of the (w1; 1 � �) adversary as a(w2; 1� �0) adversary. Applying Theorem 1 again (for olumn j thought of as a line) , every paketthat enters olumn j at time t will reah its destination by time t+ (w2 +N).This proof easily generalizes to any dimensional array and also to stohasti adversaries. The sameidea an be applied to toroidal networks using the Andrews et al. [2℄ universal stability results forunidiretional rings. However without the one bend routing assumption, the instability results ofAndrews et al. [2℄ show that (two dimensional) meshes are not universally stable networks.6 The ringThere are now a number of independent results (for di�erent queuing model assumptions) showingthat the (unidiretional) ring is universally stable for rate < 1 (i.e., the total rate of servie requiredat any server is less than 1). For lass independent servie rates, Dai and Weiss [19℄ prove universalstability for uid models (and hene for time-invariant stohasti queuing networks under thesame assumption of lass independent servie rates). Tassiulas and Georgiadis [50℄ establish theanalogous result for paket routing using the Cruz [16℄ leaky buket model. Andrews et al. [2℄ showthat the ring is universally stable with respet to deterministi adversaries. We shall now showthat the sheduling rule FTG is stable at rate 1 for the ring. In ontrast, neither LIS (whih isa universally stable sheduling rule at any rate less than 1) nor FIFO are stable at rate 1 for thering. We then extend the FTG proof to stohasti adversaries with rate 1� �.Throughout this setion, our underlying graph G will be the n-node unidiretional yle, withverties numbered 0; : : : ; n� 1. For the purpose of paket routing the unidiretional assumption is15



not usually a restrition as we most often assume simple one diretional paths and learly pathsin the lokwise diretion will not interfere with paths in the ounterlokwise diretion. Forde�niteness let us assume pakets are being routed in a lokwise diretion. Even this ase isquite non-trivial, both from the point of view of lassial queuing theory and within our adversarialsetting. Indeed as demonstrated in Andrews et al., a \slight" extension of the ring network (allowingtwo edges between eah pair of adjaent nodes) is enough to show that ommon sheduling poliieslike FIFO and NTG (nearest-to-go) an be unstable.6.1 Instability of LIS and FIFO at rate 1We show in Setion 6.2 that the FTG protool is stable at injetion rate 1 on the ring. On theother hand, we now exhibit simple adversaries with injetion rate 1 that ause instability on thering for the Longest-in-System protool (priority to the paket that was injeted longest ago) andthe FIFO protool (queues are maintained in First{Come{First{Served fashion).Theorem 6 There is a deterministi adversary A (respetively, an adversary A0) that injets singlepaths onto the ring at rate 1, suh that A (respetively, A0) will fore the sheduling rule LIS(respetively, the sheduling rule FIFO) to have unbounded size queues.Proof: We �rst desribe the adversary A for LIS. For simpliity of presentation, assume thateah path requested by A will be a \self-loop" | a path whih traverses all the edges of the ringin sequene. It is not diÆult to re�ne this argument so that the adversary injets shorter paths.A works as follows:� For k = 1; 2; 3; : : :{ Injet kn self-loops in sequene at node 1.{ Injet kn self-loops in sequene at node 0.It is easy to verify by indution on k � 1 that at the end of iteration k of this proess, there willbe one paket at node 1 (destined for node 0) and kn� 1 pakets queued at node 0 (also destinedfor node 0). Thus the number of pakets beomes unbounded.The adversary for the FIFO ase is similar but a bit more ompliated. To simplify the presentation,we prove this ase by ontradition. Say there is an absolute bound M suh that the number ofpakets in the system is bounded by M for every adversary. Let us �rst show how to onstrutan adversary that ontradits this bound M . The adversary, A0 �rst does an \initial" phase 0 andthen works in phases indexed by k as follows:� For k = 1; 2; 3; : : :{ Injet (M + 1)n self-loops in sequene at node k( mod n).The invariant that will be established is that at the end of phase k all pakets in the network aredestined for node k with one paket at eah queue other than the queue on the edge from k ! k+1,whih has Qk pakets in its queue where the Qk's form a monotone inreasing sequene in k. Thusby the end of M phases we derive a ontradition.16



We assume an empty initial on�guration. For phase 0, the adversary simply injets n self loops atnode 0. Thus the invariant is initially satis�ed for k = 0 with Q0 = 1. Assume that the invariant istrue at the end of phase k � 1. We make some observations on the transient behavior in phase k.We start by observing that one the invariant is established for some time step during phase k, itontinues to hold in all subsequent time steps in phase k. Next notie that throughout this phasethere is at most one paket queued in every queue other than queues k and k � 1. The numberof pakets queued at k � 1 is monotone non-inreasing and the number of pakets queued at k ismonotone non-dereasing. Furthermore, sine the queues at nodes k and k � 1 are of length atmost M , no paket waits at any queue for more than M time steps. Thus after at most Mn timesteps in phase k, every paket injeted in phase 0 to k� 1 has reahed its destination. In at most nmore time steps, we reah the invariant that all the queues other than k�1 and k have exatly onepaket in their queue. To onlude we need to show that the queue at node k � 1 does eventuallydrain down to having 0 and then 1 paket; and that the queue size at k at the end of phase k isstritly larger than the queue size at k � 1 at the beginning of this phase.To verify the �rst part notie that the queue size at node k� 1 (whih onsists of both phase k� 1pakets destined for node k�1 as well as phase k pakets destined for node k) is upper bounded bythe number of pakets in the system with destination k � 1. This observation is easily veri�ed byindution on time. Moreover, sine the queue size goes down every time a paket with destinationk�1 reahes its destination, the queue beomes empty (for one time step). Finally we need to verifythat Qk, the number of pakets at queue k at the end of phase k, is greater than Qk�1. Assumeotherwise. Then this implies that the total work remaining in the system has not inreased. Butthis an not be the ase, sine there is at least one queue, namely at node k � 1, that was idle forone time step (immediately after the last paket destined for k � 1 reahed its destination) duringphase k. Sine n units of work are added at eah time step, the only way the workload does not goup is if every queue remains non-idle in every time step in phase k. This onludes the proof forthe bound M .In order to show that there is (one) adversary that defeats every boundM , we simply keep hangingthe goal of the adversary so that after it defeats a given M , it resets all queues to be empty (bynot doing any injetions) and then proeeds to defeat M + 1, et.6.2 The Furthest-to-Go ProtoolIn this setion, we prove that the FTG protool is stable for the ring, �rst (in ontrast to the LISand FIFO instability result at rate 1) for a deterministi adversary at injetion rate 1, and thenfor a stohasti adversary at injetion rate 1� �. We are assuming that all pakets are traveling asimple path (say in a lokwise diretion).We �rst de�ne a quantity A(i; j; t) for 0 � i; j � n� 1. (Throughout this setion, all arithmeti onnode names is mod n.) The quantity A(i; j; t) denotes the number of pakets at time t in the queuesin nodes i; i+1; : : : ; j (inlusive) whih need to ross the edge from node i�1 to node i. We assumethat this quantity is measured at the end of time step t (that is, at time step t, pakets are inserted,then moved, after whih the value of A is determined). Let A be a deterministi (w; �) adversarywith � = 1. We next de�ne an appropriate potential funtion �(i; t) = maxf�1(i; t); w + n � 1gwhere �1(i; t) = maxfA(i; k; t) + (i+ n� 1� k) : i � k � i+ n� 1g. The rux of the argument isthe following lemma:Lemma 7 Let A be a (w; �) adversary with � = 1. Then for all t � 0, �(i; t+ w) � �(i; t).17



Proof: Clearly the only way A(i; j; t) an inrease is due to the insertion of pakets and an onlygo up by one per insertion of a paket that needs to ross edge (i� 1; i). (Note that by assumingsimple paths any paket entering the queue at node i from the queue at i � 1 will not need totraverse the edge (i� 1; i) again, and thus is not ounted in A(i; j; t).) Thus after the w time stepst+1; t+2; : : : ; t+w, no A(i; j; t) an inrease by more than w and hene �(i; t) will inrease by atmost w due to all the paket insertions during these steps.If �1(i; t + `) � n � 1 at any step t + ` with 0 � ` � w � 1 then �1(i; t + w) an be at mostw + n � 1 and hene �(i; t + w) = w + n � 1 � �(i; t). If �1(i; t + `) > n � 1 throughout thesew time steps then we argue that eah routing step auses �1 to derease by one (o�setting anyinrease due to the injetion step). To see this note that there must be at least one paket in thesystem at every time step by the de�nition of �1. Let k be any index whih maximizes the quantityB = maxfA(i; k; t) + (i + n � 1 � k) : i � k � i + n � 1g. If k > i, the queue for edge (k; k + 1)must be non-empty and ontain a paket destined to ross edge (i � 1; i) or else the index k � 1would yield a larger value for B. If k = i, the queue for edge (i; i + 1) must be nonempty sine�1(i; t+ `) > n�1. By the FTG protool some suh paket must traverse the edge (k; k+1) duringthis routing step and hene the quantity B must derease.Theorem 8 Let G denote the n-node yle and � the lass of rate 1 deterministi adversaries(say with window size w). De�ne Q0(G) to be the total number of pakets initially in the network(i.e. the sum of all edge queue sizes) and let Q0 = maxfQ0(G); wg. Then (G;�; FTG) is stableand furthermore there are never more than n(Q0 � 1) + w pakets in the system.Proof: Consider any time t = mw form a non-negative integer. By Lemma 7, we have �(i;mw) ��(i; 0) � Q0 + n � 1. Hene at time t = mw, A(i; i � 1;mw) � Q0 � 1. The total number ofpakets in the system at time t = mw an then be upper bounded by Pn�1i=0 A(i; i � 1;mw), whihwill be no greater than n(Q0 � 1). Finally, for any time t with mw < t � (m + 1)w, we havePn�1i=0 A(i; i � 1; t) � w +Pn�1i=0 A(i; i � 1;mw).We now extend the above theorem to the ase of a stohasti adversary with injetion rate 1� �.Theorem 9 Let G denote the n-node yle and � the lass of properly bounded stohasti adver-saries with rate 1� � for some � > 0. Then (G;�; FTG) is stable.The proof here is analogous to the proof for deterministi adversaries. We need an analogue ofLemma 7 so as to apply Lemma 2.Lemma 10 For all i, and for all t � 0, E[�(i; t + w)j�(i; t) � n+ 2w℄ � �(i; t) � �w�.Proof: We argue as in the deterministi ase, that as pakets are inserted during steps t+1; : : : ; t+w, the potential inreases by at most the number of inserted pakets during these time steps whihwish to ross the edge i� 1 to i. By the de�nition of a (w; 1� �) stohasti adversary, this impliesthat the expeted inrease in � due to insertions during time steps t+ 1; : : : ; t + w is bounded byw(1 � �). It remains to observe (as in the deterministi ase) that subjet to the ondition that�(i; t) � n+ 2w, the derease in � during these steps due to paket routing is exatly w.18



We ombine these fats (about the expeted inrease due to insertions and the derease due torouting steps) to obtain E[�(i; t + w)jHt℄ � �(i; t) + w(1 � �)� w provided �(i; t) � n+ 2w.Given Lemma 10 we an now apply Lemma 2 so as to omplete the proof of the Theorem.7 NTGTwo natural sheduling rules for paket routing are the Nearest-To-Go (NTG) and Furthest-To-Go(FTG) poliies. Andrews et al. [2℄ prove that FTG is stable for any paket routing network at rate� < 1. Tsaparas [51℄ generalizes the Andrews et al. stability result for FTG to more general queuingnetworks by proving the universal stability of Most-Time-To-Go (MTTG) sheduling. (When allservie times are idential as we assume in paket routing networks, then MTTG beomes FTG.)In ontrast to the stability of FTG, Andrews et al. show that there is a simple 6-node network suhthat NTG sheduling is unstable for a rate � = :62 path-paking adversary.We extend this result in two ways. First we show for every � > 0 there is a queuing network forwhih NTG is unstable at rate �. Moreover, this instability will our (for some initial on�guration)even if pakets are generated with onstant rate �. Thus this instability result is not an adversarialresult (exept for the setting of the initial on�guration) but was motivated by the adversarialapproah. (Some experimental evidene suggests that this instability would still our for Poissonarrivals and an empty initial on�guration.)We shall now desribe the network G and only sketh the intuitive reason for instability. (Thedetails of the instability proof an be found in Tsaparas.) Let � > 0 be given and without loss ofgenerality assume that 1=� is an integer. We �rst onstrut a \toroidal queuing network" ~G (wherethe servers are the nodes rather than the edges) and desribe the instability result in terms of ~G. Itis then easy to onvert ~G to a paket routing network G for whih the same instability phenomenonours.Let ~G be an n � n torus with n� > 2 and n even. There will be n lasses of jobs. A lass i jobinitiates at node (i; i+1) and follows the following path of (node) servers (i; i+1); (i; i+2); : : : ; (i; i�1); (i + 1; i); (i + 2; i); : : : ; (i� 1; i). (See Figure 1. All node addresses are omputed mod n.)For every i, a new lass i job will be generated every 1=� steps. For every node, exatly two joblasses will pass through any given node so that the total indued load per step on any server isexatly 2�.For the NTG sheduling rule, jobs moving along a olumn have priority over jobs moving along arow. Thus lass i jobs when moving along olumn i will interset and have priority over all otherjob lasses. The intuitive idea to ahieve instability is to initially establish two \walls" of pakets,say in olumn i and olumn j = i+n=2. By a wall of pakets on olumn i we mean that every node(k; i) with k 6= i is oupied and in addition there may be a large number of lass i jobs queuedin node (i; i � 1) 12 whih will ontinue to keep olumn i oupied. Suh a wall will prevent otherjobs from making progress. Eventually, the walls at olumns i and j will drain out but at the sametime a pair of walls will have been formed at olumns i + 1 and i + 1 + n=2. Moreover, we laimthat the total number of jobs in the system has inreased during this \phase" where the walls are12To be more preise, we onsider this queue of jobs at node (i; i � 1) to inlude other lass i pakets whih willreah (i; i� 1) during the present \phase" when a wall exists at olumn i.19



Packets of type 1
Packets of type 2
Packets of type 3
Packets of type 4Figure 1: Bad network for NTG shedulingmoving over one olumn. To see this suppose that there are M lass i jobs in the wall at the startof the phase (and the same for lass j = i + n=2). Now assume that there is a total of T jobs inthe system at the start of the phase. The phase lasts M steps during whih time exatly nM� newjobs have entered the system and 2M jobs have left the system. Thus at the end of the phase (andthe start of the next phase) there are T 0 = T + nM�� 2M > T jobs in the system sine n� > 2.Tsaparas [51℄ provides a areful proof of this intuitive idea. In partiular, his proof requires aninitial on�guration whih is very \symmetri" and then shows that this symmetry is preservedthroughout the proess so that new walls are formed without any breaks ourring in the walls.Finally we need to indiate how to onvert ~G to a paket routing network G. For every node� = (i; j) in ~G, we have two nodes u� and v� in G. The edge set of G onsists of a \server" edgee� = (u�; v�) for every node � in ~G and a \onneting edge" f(�;�0) = (v�; u�0) for every pair ofnodes �; �0 in ~G for whih some job traverses from � to �0 in the queuing network; i.e., � = (i; j)and �0 = (i0; j0) and either i0 = i + 1 and j0 = j or i0 = i and j0 = j + 1. In the obvious way,eah job lass in the queuing network will determine a paket lass (and its path) in the paketrouting network. We laim that for n > 3� that the paket routing network system (G;NTG;A)is unstable where A is an \adversary" whih is generating pakets in eah lass at onstant rate �.Again the proof of this laim an be found in [51℄.8 Conlusion and open problemsWe have introdued a new approah for the study of queuing networks. Although our motivationomes from ontinuous paket routing, we note that the adversarial approah an be applied moregenerally to the wider �eld of queuing theory (as is done in Tsaparas [51℄). Clearly more generalqueuing networks (in whih jobs an revisit the same server many times and/or where servietime distributions are lass dependent) o�er additional hallenges. It remains an interestingopen question to �nd some set of general onditions (depending, for example, on the rate, queuingdisipline, and underlying network) that are suÆient to guarantee stability. Further work is alsoneeded to better bound queue sizes and paket delays, and to understand spei� networks suh asarrays and hyperubes. We mention a few of the many open problems:20



� For paket routing, an FIFO be made unstable for arbitrarily small positive rates of injetionin the adversarial model? More generally, does stability at some rate �1 > 0 imply stabilityfor all � < 1 (for a \natural" sheduling poliy)?� Considering the ring as a queuing network allowing arbitrary (i.e., reversing) paths, is everysheduling poliy stable?� Is NTG unstable for a Poisson input model for paket routing and for arbitrarily small rates?In partiular, does the instability result of Setion 7 extend from onstant rate arrivals toPoisson arrivals? More generally, when does adversarial instability from some given initialon�guration imply instability with Poisson arrivals (and say an empty initial on�guration).Note that while FIFO is unstable in an adversarial setting (a speial ase of lass independentservie times), it is stable for Poisson arrivals and lass independent servie times.� Is there a generi transformation of stability results from deterministi to stohasti adver-saries?� Our queue size bound for DAGs is exponential in the length d of the longest path in thenetwork. Indeed Andrews et al. [2℄ show that NIS and FTG an be made to su�er suhexponential size queues on DAGs. What is the best bound on queue size in DAGs thatholds for the FIFO sheduling rule? Reently Adler and Ros�en (personal ommuniation)show that LIS has polynomial size queues (as a funtion of d) on any DAG but in ontrastAndrews and Zhang [4℄ show that LIS an have exponential size queues (in d) queues forertain networks. But these networks have size exponential in d and hene it remains open ifthe queue size for LIS an be polynomially bounded as a funtion of the size of the network.Andrews et al. onstrut a randomized (\LIS based") sheduling rule whih has (with highprobability) polynomially-sized queues and note that this randomized poliy an be onvertedto a entralized deterministi sheduling poliy with polynomially-sized queues. The obviousquestion is whether there exists a (natural) deentralized, deterministi sheduling rule thathas polynomially-sized (as a funtion of either d or the size of the network) queues for allnetworks.� What an be said about stability of non-adaptive routing in a network where eah edge eis apable of simultaneously transmitting some number ne pakets in one step? Spei�ally,if (G;A;S) is universally stable for any (w; �) adversary A, does it follow that (G0;A0;S) isalso universally stable for any (w; �) adversary A' where G is a graph where all edges havebandwidth 1 and G0 is the same graph with arbitrary edge bandwidths fneg. Here the loadondition is modi�ed in the obvious way so that in any window � of w time steps and for anyedge e, the adversary injets at most N(�; e) � � � w � ne pakets whih ross edge e. (Thisan also be viewed as a very speial ase of adaptive routing by viewing a \high bandwidth"edge as a set of edges.) More generally, what \network transformations" preserve stability?Reent results along these lines have been derived by Borodin, Ostrovsky and Rabani [10℄.� Whih (natural or eÆient) sheduling rules are universally stable for deterministi rate 1adversaries? Subsequent to asking this question, David Gamarnik [24℄ has proven that the\nearest to origin" NTO sheduling rule (whih gives priority to pakets that have traversedthe fewest edges thus far) is universally stable for deterministi rate 1 adversaries. It is easyto adapt Gamarnik's proof to show that FTG is also universally stable for deterministi rate1 adversaries. These proofs yield an exponential bound on the total number of pakets in21
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