
GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING�LUCA TREVISANy , GREGORY B. SORKINz, MADHU SUDANx, ANDDAVID P. WILLIAMSONzAbstrat. We present a linear programming-based method for �nding \gadgets", i.e., ombi-natorial strutures reduing onstraints of one optimization problem to onstraints of another. Akey step in this method is a simple observation whih limits the searh spae to a �nite one. Usingthis new method we present a number of new, omputer-onstruted gadgets for several di�erentredutions. This method also answers a question posed by Bellare, Goldreih and Sudan [2℄ of howto prove the optimality of gadgets: LP duality gives suh proofs.The new gadgets, when ombined with reent results of H�astad [9℄, improve the known inapprox-imability results for MAX CUT and MAX DICUT, showing that approximating these problems towithin fators of 16=17+ � and 12=13+ � respetively is NP-hard, for every � > 0. Prior to this work,the best known inapproximability thresholds for both problems was 71/72 [2℄. Without using thegadgets from this paper, the best possible hardness that would follow from [2, 9℄ is 18=19. We alsouse the gadgets to obtain an improved approximation algorithm for MAX 3SAT whih guaranteesan approximation ratio of :801. This improves upon the previous best bound (impliit from [8, 5℄)of :7704.Key words. Combinatorial optimization, Approximation algorithms, Redutions, Intratability,NP-ompleteness, Probabilisti proof systems.AMS subjet lassi�ations. 68Q151. Introdution. A \gadget" is a �nite ombinatorial struture whih trans-lates a given onstraint of one optimization problem into a set of onstraints of aseond optimization problem. A lassial example is in the redution from 3SAT toMAX 2SAT, due to Garey, Johnson and Stokmeyer [6℄. Given an instane of 3SATon variables X1; : : : ; Xn and with lauses C1; : : : ; Cm, the redution reates an in-stane of MAX 2SAT on the original or \primary" variables X1; : : : ; Xn along withnew or \auxiliary" variables Y 1; : : : ; Y m. The lauses of the MAX 2SAT instane areobtained by replaing eah lause of length 3 in the 3SAT instane with a \gadget", inthis ase a olletion of ten 2SAT lauses. For example the lause Ck = X1 _X2 _X3would be replaed with the following ten lauses on the variables X1; X2; X3 and anew auxiliary variable Y k:X1; X2; X3; :X1 _ :X2; :X2 _ :X3; :X3 _ :X1;Y k; X1 _ :Y k; X2 _ :Y k; X3 _ :Y k:The property satis�ed by this gadget is that for any assignment to the primary vari-ables, if lause Ck is satis�ed, then 7 of the 10 new lauses an be satis�ed by settingY k appropriately; otherwise only 6 of the 10 are satis�able. (Notie that the gadget�An extended abstrat of this paper appears in the Proeedings of the 37th IEEE Symposium onFoundations of Computer Siene, pages 617-626, Burlington, Vermont, 14-16 Otober 1996.y Columbia University, Department of Computer Siene, 1214 Amsterdam Avenue, New York,NY 10027, USA. lua�s.olumbia.edu. Part of this work was done while the author was at theUniversity of Rome \La Sapienza" and visiting IBM Researh.z IBM T.J. Watson Researh Center, P.O. Box 218, Yorktown Heights NY 10598. fsorkin,dpwg�watson.ibm.om.x MIT, Laboratory for Computer Siene, 545 Tehnology Square, Cambridge, MA 02139, USA.madhu�mit.edu. Work supported in part by an Alfred P. Sloan Foundation fellowship. Part of thiswork was done while the author was at the IBM Thomas J. Watson Researh Center.1



2 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONassoiated with eah lause Ck uses its own auxiliary variable Y k, and thus Y k maybe set independently of the values of variables not appearing in Ck's gadget.) Usingthis simple property of the gadget it is easy to see that the maximum number oflauses satis�ed in the MAX 2SAT instane by any assignment is 7m if and only ifthe instane of 3SAT is satis�able. This was used by [6℄ to prove the NP-hardness ofsolving MAX 2SAT. We will revisit the 3SAT-to-2SAT redution in Lemma 6.5.Starting with the work of Karp [12℄, gadgets have played a fundamental role inshowing the hardness of optimization problems. They are the ore of any redutionbetween ombinatorial problems, and they retain this role in the spate of new resultson the non-approximability of optimization problems.Despite their importane, the onstrution of gadgets has always been a \blakart", with no general methods of onstrution known. In fat, until reently no onehad even proposed a onrete de�nition of a gadget; Bellare, Goldreih and Sudan [2℄�nally did so, with a view to quantifying the role of gadgets in non-approximabilityresults. Their de�nition is aompanied by a seemingly natural \ost" measure fora gadget. The more \ostly" the gadget, the weaker the redution. However, �rstly,�nding a gadget for a given redution remained an ad ho task. Seondly, it remainedhard to prove that a gadget's ost was optimal.This paper addresses these two issues. We show that for a large lass of redutions,the spae of potential gadgets that need to be onsidered is atually �nite. Thisis not entirely trivial, and the proof depends on properties of the problem that isbeing redued to. However, the method is very general, and enompasses a largenumber of problems. An immediate onsequene of the �niteness of the spae is theexistene of a searh proedure to �nd an optimal gadget. But a naive searh would beimpratiably slow, and searh-based proofs of the optimality (or the non-existene)of a gadget would be monstrously large.Instead, we show how to express the searh for a gadget as a linear program (LP)whose onstraints guarantee that the potential gadget is indeed valid, and whoseobjetive funtion is the ost of the gadget. Central to this step is the idea of work-ing with weighted versions of optimization problems rather than unweighted ones.(Weighted versions result in LPs, while unweighted versions would result in integerprograms, IPs.) This seemingly helps only in showing hardness of weighted optimiza-tion problems, but a result due to Cresenzi, Silvestri and Trevisan [3℄ shows thatfor a large lass of optimization problems (inluding all the ones onsidered in thispaper), the weighted versions are exatly as hard with respet to approximation as theunweighted ones. Therefore, working with a weighted version is as good as workingwith an unweighted one.The LP representation has many bene�ts. First, we are able to searh for muhmore ompliated gadgets than is feasible manually. Seond, we an use the theoryof LP duality to present short(er) proofs of optimality of gadgets and non-existeneof gadgets. Last, we an solve relaxed or onstrained versions of the LP to obtainupper and lower bounds on the ost of a gadget, whih an be signi�antly quikerthan solving the atual LP. Being areful in the relaxing/onstraining proess (andwith a bit of luk) we an often get the bounds to math, thereby produing optimalgadgets with even greater eÆieny!Armed with this tool for �nding gadgets (and an RS/6000, OSL, and often



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 3APL21), we examine some of the known gadgets and onstrut many new ones. (Inwhat follows we often talk of \gadgets reduing problem X to problem Y" when wemean \gadgets used to onstrut a redution from problem X to problem Y".) Bel-lare et al. [2℄ presented gadgets reduing the omputation of a \veri�er" for a PCP(probabilistially hekable proof system) to several problems, inluding MAX 3SAT,MAX 2SAT, and MAX CUT. We examine these in turn and show that the gadgetsin [2℄ for MAX 3SAT and MAX 2SAT are optimal, but their MAX CUT gadget isnot. We improve on the eÆieny of the last, thereby improving on the fator towhih approximating MAX CUT an be shown to be NP-hard. We also onstrut anew gadget for the MAX DICUT problem, thereby strengthening the known boundon its hardness. Plugging our gadget into the redution (spei�ally Lemma 4.15)of [2℄, shows that approximating MAX CUT to within a fator of 60=61 is NP-hard,as is approximating MAX DICUT to within a fator of 44=45.2 For both problems,the hardness fator proved in [2℄ was 71=72. The PCP mahinery of [2℄ has sinebeen improved by H�astad [9℄. Our gadgets and H�astad's result show that, for every� > 0, approximating MAX CUT to within a fator of 16=17 + � is NP-hard, as isapproximating MAX DICUT to within a fator of 12=13+ �. Using H�astad's result inombination with the gadgets of [2℄ would have given a hardness fator of 18=19 + �for both problems, for every � > 0.Obtaining better redutions between problems an also yield improved approxi-mation algorithms (if the redution goes the right way!). We illustrate this point byonstruting a gadget reduing MAX 3SAT to MAX 2SAT. Using this new redutionin ombination with a tehnique of Goemans and Williamson [7, 8℄ and the state-of-the-art :931-approximation algorithm for MAX 2SAT due to Feige and Goemans [5℄(whih improves upon the previous :878-approximation algorithm of [8℄), we obtaina :801-approximation algorithm for MAX 3SAT. The best result that ould be ob-tained previously, by ombining the tehnique of [7, 8℄ and the bound of [5℄, was :7704.(The best previously published result is a :769-approximation algorithm, due to Ono,Hirata, and Asano [14℄.)Finally, our redutions have impliations for probabilistially hekable proof sys-tems. Let PCP;s[log; q℄ be the lass of languages that admit membership proofs thatan be heked by a probabilisti veri�er that uses a logarithmi number of randombits, reads at most q bits of the proof, aepts orret proofs of strings in the languagewith probability at least , and aepts purported proofs of strings not in the lan-guage with probability at most s. We show: �rst, for any � > 0, there exist onstants and s, =s > 10=9� �, suh that NP � PCP;s[log; 2℄; and seond, for all ; s with=s > 2:7214, PCP;s[log; 3℄ � P. The best bound for the former result obtainablefrom [2, 9℄ is 22=21� �; the best previous bound for the latter was 4 [16℄.All the gadgets we use are omputer-onstruted. In the �nal setion, we presentan example of a lower bound on the performane of a gadget. The bound is notomputer onstruted and annot be, by the nature of the problem. The bound stillrelies on de�ning an LP that desribes the optimal gadget, and extrating the lower1Respetively, an IBM RisSystem/6000 workstation, the IBM Optimization Subroutine Library,whih inludes a linear programming pakage, and (not that we are partisan) IBM's APL2 program-ming language.2Approximation ratios in this paper for maximization problems are less than 1, and representthe weight of the solution ahievable by a polynomial time algorithm, divided by the weight of theoptimal solution. This mathes the onvention used in [18, 7, 8, 5℄ and is the reiproal of themeasure used in [2℄.



4 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONbound from the LP's dual.Subsequent work. Subsequent to the original presentation of this work [17℄, theapproximability results presented in this paper have been superseded. Karlo� andZwik [10℄ present a 7/8-approximation algorithm for MAX 3SAT. This result is tightunless NP=P [9℄. The ontainment result PCP;s[log; 3℄ � P has also been improvedby Zwik [19℄ and shown to hold for any =s � 2. This result is also tight, againby [9℄. Finally, the gadget onstrution methods of this paper have found at leasttwo more appliations. H�astad [9℄ and Zwik [19℄ use gadgets onstruted by thesetehniques to show hardness results for two problems they onsider, MAX 2LIN andMAX NAE3SAT respetively.Version. An extended abstrat of this paper appeared as [17℄. This version or-rets some errors, pointed out by Karlo� and Zwik [11℄, from the extended abstrat.This version also presents inapproximability results resting on the improved PCPonstrutions of H�astad [9℄, while mentioning the results that ould be obtained oth-erwise.Organization of this paper. The next setion introdues preise de�nitions whihformalize the preeding outline. Setion 3 presents the �niteness proof and the LP-based searh strategy. Setion 4 ontains negative (non-approximability) results andthe gadgets used to derive them. Setion 5 briey desribes our omputer systemfor generating gadgets. Setion 6 presents the positive result for approximatingMAX 3SAT. Setion 7 presents proofs of optimality of the gadgets for some problemsand lower bounds on the osts of others. It inludes a mix of omputer-generated andhand-generated lower bounds.2. De�nitions. We begin with some de�nitions we will need before giving thede�nition of a gadget from [2℄. In what follows, for any positive integer n, let [n℄denote the set f1; : : : ; ng.Definition 2.1. A (k-ary) onstraint funtion is a boolean funtion f :f0; 1gk ! f0; 1g. We refer to k as the arity of a k-ary onstraint funtion f . Whenit is applied to variables X1; : : : ; Xk (see the following de�nitions) the funtion f isthought of as imposing the onstraint f(X1; : : : ; Xk) = 1.Definition 2.2. A onstraint family F is a olletion of onstraint funtions.The arity of F is the maximum of the arity of the onstraint funtions in F .Definition 2.3. A onstraint C over a variable set X1; : : : ; Xn is a pair C =(f; (i1; : : : ; ik)) where f : f0; 1gk ! f0; 1g is a onstraint funtion and i1; : : : ; ik aredistint members of [n℄. The onstraint C is said to be satis�ed by an assignment~a = a1; : : : ; an to X1; : : : ; Xn if C(a1; : : : ; an) def= f(ai1 ; : : : ; aik ) = 1. We say thatonstraint C is from F if f 2 F .Constraint funtions, onstraint families and onstraints are of interest due totheir de�ning role in a variety of NP optimization problems.Definition 2.4. For a �nitely spei�ed onstraint family F , MAX F is theoptimization problem given by:Input: An instane onsisting of m onstraints C1; : : : ; Cm, on n Boolean variablesX1; : : : ; Xn, with non-negative real weights w1; : : : ; wm. (An instane is thus a triple( ~X; ~C; ~w).)Goal: Find an assignment ~b to the variables ~X whih maximizes the weightPmj=1 wjCj(~b) of satis�ed onstraints.Constraint funtions, families and the lass fMAX F j Fg allow desriptions of



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 5optimization problems and redutions in a uniform manner. For example, if F =2SAT is the onstraint family onsisting of all onstraint funtions of arity at most2 that an be expressed as the disjuntion of up to 2 literals, then MAX 2SAT isthe orresponding MAX F problem. Similarly MAX 3SAT is the MAX F problemde�ned using the onstraint family F = 3SAT onsisting of all onstraint funtions ofarity up to 3 that an be expressed as the disjuntion of up to 3 literals.One of the motivations for this work is to understand the \approximability" ofmany entral optimization problems that an be expressed as MAX F problems,inluding MAX 2SAT and MAX 3SAT. For � 2 [0; 1℄, an algorithm A is saidto be a �-approximation algorithm for the MAX F problem, if on every instane( ~X; ~C; ~w) of MAX F with n variables and m onstraints, A outputs an assignment~a s.t. Pmj=1 wjCj(~a) � �max~bfPmj=1 wjCj(~b)g. We say that the problem MAX Fis �-approximable if there exists a polynomial time-bounded algorithm A that is a�-approximation algorithm for MAX F . We say that MAX F is hard to approxi-mate to within a fator � (�-inapproximable), if the existene of a polynomial time�-approximation algorithm for MAX F implies NP=P.Reent researh has yielded a number of new approximability results for severalMAX F problems (f. [7, 8℄) and a number of new results yielding hardness of ap-proximations (f. [2, 9℄). One of our goals is to onstrut eÆient redutions betweenMAX F problems that allow us to translate \approximability" and \inapproximabil-ity" results. As we saw in the opening example suh redutions may be onstruted byonstruting \gadgets" reduing one onstraint family to another. More spei�ally,the example shows how a redution from 3SAT to 2SAT results from the availability,for every onstraint funtion f in the family 3SAT, of a gadget reduing f to thefamily 2SAT. This notion of a gadget reduing a onstraint funtion f to a onstraintfamily F is formalized in the following de�nition.Definition 2.5 (Gadget [2℄). For � 2 R+, a onstraint funtion f : f0; 1gk !f0; 1g, and a onstraint family F : an �-gadget (or \gadget with performane �")reduing f to F is a set of variables Y1; : : : ; Yn, a �nite olletion of real weightswj � 0, and assoiated onstraints Cj from F over primary variables X1; : : : ; Xkand auxiliary variables Y1; : : : ; Yn, with the property that, for boolean assignments~a to X1; : : : ; Xk and ~b to Y1; : : : ; Yn, the following are satis�ed:(8~a : f(~a) = 1) (8~b) : Xj wjCj(~a;~b) � �;(2.1) (8~a : f(~a) = 1) (9~b) : Xj wjCj(~a;~b) = �;(2.2) (8~a : f(~a) = 0) (8~b) : Xj wjCj(~a;~b) � �� 1:(2.3)The gadget is strit if, in addition,(8~a : f(~a) = 0) (9~b) : Xj wjCj(~a;~b) = �� 1:(2.4)We use the shorthand notation � = (~Y ; ~C; ~w) to denote the gadget desribed above.It is straightforward to verify that the introdutory example yields a strit 7-gadget reduing the onstraint funtion f(X1; X2; X3) = X1_X2_X3 to the family2SAT.



6 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONObserve that an �-gadget � = (~Y ; ~C; ~w) an be onverted into an �0 > � gadgetby \resaling", i.e., multiplying every entry of the weight vetor ~w by �0=� (althoughstritness is not preserved). This indiates that a \strong" gadget is one with asmall �; in the extreme, a 1-gadget would be the \optimal" gadget. This intuitionwill be on�rmed in the role played by gadgets in the onstrution of redutions.Before desribing this, we �rst list the onstraints and onstraint families that are ofinterest to us.For onveniene we now give a omprehensive list of all the onstraints and on-straint families used in this paper.Definition 2.6.� Parity hek (PC) is the onstraint family fPC0;PC1g, where, for i 2f0; 1g, PCi is de�ned as follows:PCi(a; b; ) = � 1 if a� b�  = i0 otherwise.Heneforth we will simply use terms suh as MAX PC to denote the optimizationproblem MAX F where F = PC. MAX PC (referred to as MAX 3LIN in [9℄) is thesoure of all our inapproximability results.� For any k � 1, Exatly-k-SAT (EkSAT) is the onstraint family ff :f0; 1gk ! f0; 1g : jf~a : f(~a) = 0gj = 1g, that is, the set of k-ary disjuntiveonstraints.� For any k � 1, kSAT is the onstraint family Sl2[k℄ ElSAT.� SAT is the onstraint family Sl�1 ElSAT.The problems MAX 3SAT, MAX 2SAT, and MAX SAT are by now lassial opti-mization problems. They were onsidered originally in [6℄; subsequently their entralrole in approximation was highlighted in [15℄; and reently, novel approximation algo-rithms were developed in [7, 8, 5℄. The assoiated families are typially the targets ofgadget onstrutions in this paper. Shortly, we will desribe a lemma whih onnetsthe inapproximability of MAX F to the existene of gadgets reduing PC0 and PC1to F . This method has so far yielded in several ases tight, and in other ases thebest known, inapproximability results for MAX F problems.In addition to 3SAT's use as a target, its members are also used as soures; gadgetsreduing members of MAX 3SAT to MAX 2SAT help give an improved MAX 3SATapproximation algorithm.� 3-Conjuntive SAT (3ConjSAT) is the onstraint family ff000; f100; f110; f111g,where:1. f000(a; b; ) = a ^ b ^ .2. f001(a; b; ) = a ^ b ^ :3. f011(a; b; ) = a ^ :b ^ :4. f111(a; b; ) = :a ^ :b ^ :Members of 3ConjSAT are soures in gadgets reduing them to 2SAT. These gadgetsenable a better approximation algorithm for the MAX 3ConjSAT problem, whih inturn sheds light on the the lass PCP;s[log; 3℄.� CUT: f0; 1g2 ! f0; 1g is the onstraint funtion given by CUT(a; b) = a� b.CUT/0 is the family of onstraints fCUT;Tg, where T(a) = 0 � a = a.CUT/1 is the family of onstraints fCUT;Fg, where F(a) = 1� a = :a.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 7MAX CUT is again a lassial optimization problem. It has attrated attention dueto the reent result of Goemans and Williamson [8℄ providing a .878-approximationalgorithm. An observation from Bellare et al. [2℄ shows that the approximability ofMAX CUT/0, MAX CUT/1, and MAX CUT are all idential; this is also formalizedin Proposition 4.1 below. Hene MAX CUT/0 beomes the target of gadget on-strutions in this paper, allowing us to get inapproximability results for these threeproblems.� DICUT: f0; 1g2 ! f0; 1g is the onstraint funtion given by DICUT(a; b) =:a ^ b.MAX DICUT is another optimization problem to whih the algorithmi results of[8, 5℄ apply. Gadgets whose target is DICUT will enable us to get inapproximabilityresults for MAX DICUT.� 2CSP is the onstraint family onsisting of all 16 binary funtions, i.e. 2CSP =ff : f0; 1g2 ! f0; 1gg.MAX 2CSP was onsidered in [5℄, whih gives a .859-approximation algorithm; herewe provide inapproximability results.� Respet of monomial basis hek (RMBC) is the onstraint family fRMBCij ji; j 2f0; 1gg, whereRMBCij(a; b; ; d) = 8<: 1 if a = 0 and b = � i1 if a = 1 and b = d� j0 otherwise.RMBC00 may be thought of as the test (; d)[a℄ ?= b, RMBC01 as the test(;:d)[a℄ ?= b, RMBC10 as the test (:; d)[a℄ ?= b and RMBC11 as the test(:;:d)[a℄ ?= b, where the notation (v1; : : : ; vn)[i℄ refers to the i+1'st oordi-nate of the vetor (v1; : : : ; vn).Our original interest in RMBC ame from the work of Bellare et al. [2℄ whih derivedhardness results for MAX F using gadgets reduing every onstraint funtion in PCand RMBC to F . This work has been e�etively superseded by H�astad's [9℄ whihonly requires gadgets reduing members of PC to F . However we retain some ofthe disussion regarding gadgets with RMBC funtions as a soure, sine these on-strutions were signi�antly more hallenging, and some of the tehniques applied tooverome the hallenges may be appliable in other gadget onstrutions. A summaryof all the gadgets we found, with their performanes and lower bounds, is given inTable 1.We now put forth a theorem, essentially from [2℄ (and obtainable as a general-ization of its Lemmas 4.7 and 4.15), that relates the existene of gadgets with F astarget, to the hardness of approximating MAX F . Sine we will not be using thistheorem, exept as a motivation for studying the family RMBC, we do not prove ithere.Theorem 2.7. For any family F , if there exists an �1-gadget reduing everyfuntion in PC to F and an �2-gadget reduing every funtion in RMBC to F , thenfor any � > 0, MAX F is hard to approximate to within 1� :15:6�1+:4�2 + �.In this paper we will use the following, stronger, result by H�astad.Theorem 2.8. [9℄ For any family F , if there exists an �0-gadget reduing PC0to F and an �1-gadget reduing PC1 to F , then for any � > 0, MAX F is hard toapproximate to within 1� 1�0+�1 + �.



8 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONsoure f �! target F previous � our � lower bound3SAT �! 2SAT 7 3.5 3.53ConjSAT �! 2SAT(y) 4 4PC �! 3SAT 4 4PC �! 2SAT 11 11PC �! 2CSP 11 5 5PC0 �! CUT/0 10 8 8PC0 �! DICUT 6.5 6.5PC1 �! CUT/0 9 9PC1 �! DICUT 6.5 6.5RMBC �! 2CSP 11 5 5RMBC �! 3SAT 4 4RMBC �! 2SAT 11 11RMBC00 �! CUT/0 11 8 8RMBC00 �! DICUT 6 6RMBC01 �! CUT/0 12 8 8RMBC01 �! DICUT 6.5 6.5RMBC10 �! CUT/0 12 9 9RMBC10 �! DICUT 6.5 6.5RMBC11 �! CUT/0 12 9 9RMBC11 �! DICUT 7 7Table 2.1All gadgets desribed are provably optimal, and strit. The sole exeption (y) is the best possiblestrit gadget; there is a non-strit 3-gadget. All \previous" results quoted are interpretations of theresults in [2℄, exept the gadget reduing 3SAT to 2SAT, whih is due to [6℄, and the gadget reduingPC to 3SAT, whih is folklore.Thus, using CUT=0, DICUT, 2CSP, EkSAT and kSAT as the target of gadget on-strutions from PC0 and PC1, we an show the hardness of MAX CUT, MAX DICUT,MAX 2CSP, MAX EkSAT and MAX kSAT respetively. Furthermore, minimizingthe value of � in the gadgets gives better hardness results.3. The Basi Proedure. The key aspet of making the gadget searh spaes�nite is to limit the number of auxiliary variables, by showing that dupliates (in asense to be lari�ed) an be eliminated by means of proper substitutions. In general,this is possible if the target of the redution is a \hereditary" family as de�ned below.Definition 3.1. A onstraint family F is hereditary if for any f 2 F ofarity k, and any two indies i; j 2 [k℄, the funtion f when restrited to Xi � Xjand onsidered as a funtion of k � 1 variables, is idential (up to the order of thearguments) to some other funtion f 0 2 F [f0; 1g (where 0 and 1 denote the onstantfuntions).Definition 3.2. A family F is omplementation-losed if it is hereditaryand, for any f 2 F of arity k, and any index i 2 [k℄, the funtion f 0 given byf 0(X1; : : : ; Xk) = f(X1; : : : ; Xi�1;:Xi; Xi+1; : : : ; Xk) is ontained in F .Definition 3.3 (Partial Gadget). For � 2 R+, S � f0; 1gk, a onstraint fun-tion f : f0; 1gk ! f0; 1g, and a onstraint family F : an S-partial �-gadget (or\S-partial gadget with performane �") reduing f to F is a �nite olletion of on-straints C1; : : : ; Cm from F over primary variables X1; : : : ; Xk and �nitely many aux-



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 9iliary variables Y1; : : : ; Yn, and a olletion of non-negative real weights w1; : : : ; wm,with the property that, for boolean assignments ~a to X1; : : : ; Xk and ~b to Y1; : : : ; Yn,the following are satis�ed:(8~a 2 f0; 1gk : f(~a) = 1) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �;(3.1) (8~a 2 S : f(~a) = 1) (9~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) = �;(3.2) (8~a 2 f0; 1gk : f(~a) = 0) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �� 1:(3.3) (8~a 2 S : f(~a) = 0) (9~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) = �� 1:(3.4)We use the shorthand notation � = (~Y ; ~C; ~w) to denote the partial gadget.The following proposition follows immediately from the de�nitions of a gadgetand a partial gadget.Proposition 3.4. For a onstraint funtion f : f0; 1gk ! f0; 1g, let S1 = f~a 2f0; 1gk : f(~a) = 1g and let S2 = f0; 1gk. Then for every � 2 R+ and onstraintfamily F :1. An S1-partial �-gadget reduing f to F is an �-gadget reduing f to F .2. An S2-partial �-gadget reduing f to F is a strit �-gadget reduing f to F .Definition 3.5. For � � 1 and S � f0; 1gk, let � = (~Y ; ~C; ~w) be an S-partial�-gadget reduing a onstraint f : f0; 1gk ! f0; 1g to a onstraint family F . We saythat the funtion b : S ! f0; 1gn is a witness for the partial gadget, witnessing theset S, if b(~a) satis�es equations (3.2) and (3.4). Spei�ally:(8~a 2 S : f(~a) = 1) : mXj=1wjCj(~a; b(~a)) = �; and(8~a 2 S : f(~a) = 0) : mXj=1wjCj(~a; b(~a)) = �� 1:The witness funtion an also be represented as an jSj � (k + n)-matrix Wb whoserows are the vetors (~a; b(~a)). Notie that the olumns of the matrix orrespond to thevariables of the gadget, with the �rst k olumns orresponding to primary variables,and the last n orresponding to auxiliary variables. In what follows we shall oftenprefer the matrix notation.Definition 3.6. For a set S � f0; 1gk let MS be the matrix whose rows arethe vetors ~a 2 S, let k0S be the number of distint olumns in MS, and let k00S bethe number of olumns in MS distint up to omplementation. Given a onstraint fof arity k and a hereditary onstraint family F that is not omplementation-losed,an (S; f;F)-anonial witness matrix (for an S-partial gadget reduing f to F)is the jSj � (2jSj + k � k0S) matrix W whose �rst k olumns orrespond to the kprimary variables and whose remaining olumns are all possible olumn vetors that



10 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONare distint from one another and from the olumns orresponding to the primaryvariables. If F is omplementation-losed, then a anonial witness matrix is thejSj � (2jSj�1 + k � k00S) matrix W whose �rst k olumns orrespond to the k primaryvariables and whose remaining olumns are all possible olumn vetors that are distintup to omplementation from one another and from the olumns orresponding to theprimary variables.The following lemma is the rux of this paper and establishes that the optimalgadget reduing a onstraint funtion f to a hereditary family F is �nite. To motivatethe lemma, we �rst present an example, due to Karlo� and Zwik [11℄, showing thatthis need not hold if the family F is not hereditary. Their ounterexample has f(a) = aand F = fPC1g. Using k auxiliary variables, Y1; : : : ; Yk, one may onstrut a gadgetfor the onstraint X , using the onstraints X � Yi � Yj , 1 � i < j � k, with eahonstraint having the same weight. For an appropriate hoie of this weight it maybe veri�ed that this yields a (2� 2=k)-gadget for even k; thus the performane tendsto 2 in the limit. On the other hand it an be shown that any gadget with k auxiliaryvariables has performane at most 2� 21�k; thus no �nite gadget ahieves the limit.It is lear that for this example the lak of hereditariness is ritial: any hereditaryfamily ontaining PC1 would also ontain f , providing a trivial 1-gadget.To see why the hereditary property helps in general, onsider an �-gadget �reduing f to F , and let W be a witness matrix for �. Suppose two olumns of W ,orresponding to auxiliary variables Y1 and Y2 of �, are idential. Then we laim that� does not really need the variable Y2. In every onstraint ontaining Y2, replae itwith Y1, to yield a new olletion of weighted onstraints. By the hereditary propertyof F , all the resulting onstraints are from F . And, the resulting instane satis�esall the properties of an �-gadget. (The universal properties follow trivially, whilethe existential properties follow from the fat that in the witness matrix Y1 and Y2have the same assignment.) Thus this olletion of onstraints forms a gadget withfewer variables and performane at least as good. The �niteness follows from thefat a witness matrix with distint olumns has a bounded number of olumns. Thefollowing lemma formalizes this argument. In addition it also desribes the anonialwitness matrix for an optimal gadget | something that will be of use later.Lemma 3.7. For � � 1, set S � f0; 1gk, onstraint f : f0; 1gk ! f0; 1g andhereditary onstraint family F, if there exists an S-partial �-gadget � reduing f toF , with witness matrix W , then for any (S; f;F)-anonial witness matrix W 0, andsome �0 � �, there exists an �0-gadget �0 reduing f to F , with W 0 as a witnessmatrix.Proof. We �rst onsider the ase where F is not omplementation-losed. Let� = (~Y ; ~C; ~w) be an S-partial �-gadget reduing f to F and let W be a witnessmatrix for �. We reate a gadget �0 with n0 = 2jSj�k0 auxiliary variables Y 01 ; : : : ; Y 0n0 ,one assoiated with eah olumn of the matrix W 0 other than the �rst k.With eah variable Yi of � we assoiate a variable Z suh that the olumn orre-sponding to Yi in W is the same as the olumn orresponding to Z inW 0. Notie thatZ may be one of the primary variables X1; : : : ; Xk or one of the auxiliary variablesY 01 ; : : : ; Y 0n0 . By de�nition of a anonial witness, suh a olumn and hene variable Zdoes exist.Now for every onstraint Cj on variables Yi1 ; : : : ; Yik in � with weight wj , weintrodue the onstraint Cj on variables Y 0i01 ; : : : ; Y 0i0k in �0 with weight wj where Y 0i0lis the variable assoiated with Yil . Notie that in this proess the variables involved



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 11with a onstraint do not neessarily remain distint. This is where the hereditaryproperty of F is used to ensure that a onstraint Cj 2 F , when applied to a tupleof non-distint variables, remains a onstraint in F . In the proess we may arriveat some onstraints whih are either always satis�ed or never satis�ed. For the timebeing, we assume that the onstraints 0 and 1 are ontained in F , so this ourrenedoes not ause a problem. Later we show how this assumption is removed.This ompletes the desription of �0. To verify that �0 is indeed an S-partial�-gadget, we notie that the universal onstraints (onditions (3.1) and (3.3) in Def-inition 3.3) are trivially satis�ed, sine �0 is obtained from � by renaming some vari-ables and possibly identifying some others. To see that the existential onstraints(onditions (3.2) and (3.4) in De�nition 3.3) are satis�ed, notie that the assignmentsto the variables ~Y that witness these onditions in � are allowable assignments tothe orresponding variables in ~Y 0 and in fat this is what ditated our assoiation ofvariables in ~Y to the variables in ~Y 0. Thus �0 is indeed an S-partial �-gadget reduingf to F , and, by onstrution, has W 0 as a witness matrix.Last, we remove the assumption that �0 must inlude onstraints 0 and 1. Anyonstraints 0 an be safely thrown out of the gadget without hanging any of the pa-rameters, sine suh onstraints are never satis�ed. On the other hand, onstraints 1do a�et �. If we throw away a 1 onstraint of weight wj , this redues the total weightof satis�ed lauses in every assignment by wj . Throwing away all suh onstraintsredues � by the total weight of the 1 onstraints, produing a gadget of (improved)performane �0 � �.Finally, we desribe the modi�ations required to handle the ase where F isomplementation-losed (in whih ase the de�nition of a anonial witness hanges).Here, for eah variable Yi and its assoiated olumn of W , either there is an equalolumn in W 0, in whih ase we replae Yi with the olumn's assoiated variableY 0i0 , or there is a omplementary olumn in W 0, in whih ase we replae Yi withthe negation of the olumn's assoiated variable, :Y 0i0 , The rest of the onstrutionproeeds as above, and the proof of orretness is the same.It is an immediate onsequene of Lemma 3.7 that an optimum gadget reduing aonstraint funtion to a hereditary family does not need to use more than an expliitlybounded number of auxiliary variable.Corollary 3.8. Let f be a onstraint funtion of arity k with s satisfyingassignments. Let F be a onstraint family and � � 1 be suh that there exists an�-gadget reduing f to F .1. If F is hereditary then there exists an �0-gadget with at most 2s�k0 auxiliaryvariables reduing f to F , where �0 � �, and k0 is the number of distintvariables among the satisfying assignments of f .2. If F is omplementation-losed then there exists an �0-gadget with at most2s�1 � k00 auxiliary variables reduing f to F , for some �0 � �, where k00 isthe number of distint variables, up to omplementation, among the satisfyingassignments of f .Corollary 3.9. Let f be a onstraint funtion of arity k. Let F be a onstraintfamily and � � 1 be suh that there exists a strit �-gadget reduing f to F .1. If F is hereditary then there exists a strit �0-gadget with at most 22k � kauxiliary variables reduing f to F , for some �0 � �.2. If F is omplementation-losed then there exists a strit �0-gadget with atmost 22k�1 � k auxiliary variables reduing f to F , for some �0 � �.



12 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONWe will now show how to ast the searh for an optimum gadget as a linear program-ming problem.Definition 3.10. For a onstraint funtion f of arity k, onstraint family F ,and s� (k+n) witness matrix M , LP(f;F ;M) is a linear program de�ned as follows:� Let C1; : : : ; Cm be all the possible distint onstraints that arise from applyinga onstraint funtion from F to a set of n + k Boolean variables. Thus forevery j, Cj : f0; 1gk+n ! f0; 1g. The LP variables are w1; : : : ; wm, where wjorresponds to the weight of the onstraint Cj . Additionally the LP has onemore variable �.� Let S � f0; 1gk and b : S ! f0; 1gn be suh that M = Wb (i.e., M is thewitness matrix orresponding to the witness funtion b for the set S). TheLP inequalities orrespond to the de�nition of an S-partial gadget.(8~a 2 f0; 1gk : f(~a) = 1) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �;(3.5) (8~a 2 S : f(~a) = 1) : mXj=1wjCj(~a; b(~a)) = �;(3.6) (8~a 2 f0; 1gk : f(~a) = 0) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �� 1;(3.7) (8~a 2 S : f(~a) = 0) : mXj=1wjCj(~a; b(~a)) = �� 1:(3.8)Finally the LP has the inequalities wj � 0.� The objetive of the LP is to minimize �.Proposition 3.11. For any onstraint funtion f of arity k, onstraint familyF , and s � (k + n) witness matrix M witnessing the set S � f0; 1gk, if there existsan S-partial gadget reduing f to F with witness matrix M , then LP(f;F ;M) �ndssuh a gadget with the minimum possible �.Proof. The LP-generated gadget onsists of k primary variables X1; : : : ; Xk or-responding to the �rst k olumns ofM ; n auxiliary variables Y1; : : : ; Yn orrespondingto the remaining n olumns ofM ; onstraints C1; : : : ; Cm as de�ned in De�nition 3.10;and weights w1; : : : ; wm as returned by LP(f;F ;M). By onstrution the LP solutionreturns the minimum possible � for whih an S-partial �-gadget reduing f to F withwitness M exists.Theorem 3.12 (Main). Let f be a onstraint funtion of arity k with s satisfyingassignments. Let k0 be the number of distint variables of f and k00 be the numberof distint variables up to omplementation. Let F be a hereditary onstraint familywith funtions of arity at most l. Then:� If there exists an �-gadget reduing f to F , then there exists suh a gadget withat most v auxiliary variables, where v = 2s�1 � k00 if F is omplementation-losed and v = 2s � k0 otherwise.� If there exists a strit �-gadget reduing f to F then there exists suh agadget with at most v auxiliary variables, where v = 22k�1 � k00 if F isomplementation-losed and v = 22k � k0 otherwise.Furthermore suh a gadget with smallest performane an be found by solving a linearprogram with at most jFj � (v + k)l variables and 2v+k onstraints.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 13Remark: The sizes given above are upper bounds. In spei� instanes, the sizesmay be muh smaller. In partiular, if the onstraints of F exhibit symmetries, orare not all of the same arity, then the number of variables of the linear program willbe muh smaller.Proof. By Proposition 3.11 and Lemma 3.7, we have that LP(f;F ;WS) yieldsan optimal S-partial gadget if one exists. By Proposition 3.4 the setting S = S1 =f~ajf(~a) = 1g gives a gadget, and the setting S = S2 = f0; 1gk gives a strit gadget.Corollaries 3.8 and 3.9 give the required bound on the number of auxiliary variables;and the size of the LP then follows from the de�nition.To onlude this setion, we mention some (obvious) fats that beome relevantwhen searhing for large gadgets. First, if S0 � S, then the performane of an S0-partial gadget reduing f to F is also a lower bound on the performane of an S-partialgadget reduing f to F . The advantage here is that the searh for an S0-partial gadgetmay be muh faster. Similarly, to get upper bounds on the performane of an S-partialgadget, one may use other witness matries for S (rather than the anonial one); inpartiular ones with (many) fewer olumns. This orresponds to making a hoie ofauxiliary variables not to be used in suh a gadget.4. Improved Negative Results.4.1. MAX CUT. We begin by showing an improved hardness result for theMAX CUT problem. It is not diÆult to see that no gadget per De�nition 2.5 anredue any member of PC to CUT: for any setting of the variables whih satis�esequation (2.2), the omplementary setting has the opposite parity (so that it must besubjet to inequality (2.3)), but the values of all the CUT onstraints are unhanged,so that the gadget's value is still �, violating (2.3). Following [2℄, we use instead thefat that MAX CUT and MAX CUT/0 are equivalent with respet to approximationas shown below.Proposition 4.1. MAX CUT is equivalent to MAX CUT/0. Spei�ally, givenan instane I of either problem, we an reate an an instane I 0 of the other with thesame optimum and with the feature that an assignment satisfying onstraints of totalweight W to the latter an be transformed into an assignment satisfying onstraintsof the same total weight in I.Proof. The redution from MAX CUT to MAX CUT/0 is trivial, sine the familyCUT/0 ontains CUT; and thus the identity map provides the required redution.In the reverse diretion, given an instane ( ~X; ~C; ~w) of MAX CUT/0 with nvariables and m lauses, we reate an instane ( ~X 0; ~C 0; ~w) of MAX CUT with n + 1variables and m lauses. The variables are simply the variables ~X with one additionalvariable alled 0. The onstraints of ~C are transformed as follows. If the onstraintis a CUT onstraint on variables Xi and Xj it is retained as is. If the onstraint isT (Xi) it is replaed with the onstraint CUT(Xi; 0). Given a assignment ~a to thevetor ~X 0, notie that its omplement also satis�es the same number of onstraintsin I 0. We pik the one among the two that sets the variable 0 to 0, and then observethat the indued assignment to ~X satis�es the orresponding lauses of I.Thus we an look for redutions to CUT/0. Notie that the CUT=0 onstraintfamily is hereditary, sine identifying the two variables in a CUT onstraint yields theonstant funtion 0. Thus by Theorem 3.12, if there is an �-gadget reduing PC0 toCUT=0, then there is an �-gadget with at most 13 auxiliary variables (16 variablesin all). Only �162 � = 120 CUT onstraints are possible on 16 variables. Sine we only
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0

x1

x2

x3Fig. 4.1. 8-gadget reduing PC0 to CUT. Every edge has weight .5. The auxiliary variablewhih is always 0 is labelled 0.need to onsider the ases when Y1 = 0, we an onstrut a linear program as abovewith 216�1 + 4 = 32; 772 onstraints to �nd the optimal �-gadget reduing PC0 toCUT=0. A linear program of the same size an similarly be onstruted to �nd agadget reduing PC1 to CUT=0.Lemma 4.2. There exists an 8-gadget reduing PC0 to CUT=0, and it is optimaland strit.We show the resulting gadget in Figure 4.1 as a graph. The primary variables arelabelled x1; x2 and x3, while 0 is a speial variable. The unlabelled verties areauxiliary variables. Eah onstraint of non-zero weight is shown as an edge. An edgebetween the vertex 0 and some vertex x orresponds to the onstraint T (x). Anyother edge between x and y represents the onstraint CUT(x; y). Note that some ofthe 13 possible auxiliary variables do not appear in any positive weight onstraint andthus are omitted from the graph. All non-zero weight onstraints have weight .5.By the same methodology, we an prove the following.Lemma 4.3. There exists a 9-gadget reduing PC1 to CUT=0, and it is optimaland strit.The gadget is similar to the previous one, but the old vertex 0 is renamed Z, anda new vertex labelled 0 is joined to Z by an edge of weight 1.The two lemmas along with Proposition 4.1 above imply the following theorem.Theorem 4.4. For every � > 0, MAX CUT is hard to approximate to within16=17+ �.Proof. Combining Theorem 2.8 with Lemmas 4.2 and 4.3 we �nd that MAX CUT/0is hard to approximate to within 16=17+ �. The theorem then follows from Proposi-tion 4.1.RMBC gadgets. Finding RMBC gadgets was more diÆult. We disuss thispoint sine it leads to ideas that an be applied in general when �nding large gad-gets. Indeed, it turned out that we ouldn't exatly apply the tehnique aboveto �nd an optimal gadget reduing, say, RMBC00 to CUT=0. (Reall that theRMBC00(a1; a2; a3; a4) is the funtion (a3; a4)[a1℄ ?= a2.) Sine there are 8 satisfyingassignments to the 4 variables of the RMBC00 onstraint, by Theorem 3.12, we wouldneed to onsider 28 � 4 = 252 auxiliary variables, leading to a linear program with2252 + 8 onstraints, whih is somewhat beyond the apaity of urrent omputing



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 15mahines. To overome this diÆulty, we observed that for the RMBC00 funtion, thevalue of a4 is irrelevant when a1 = 0 and the value of a3 is irrelevant when a1 = 1. Thisled us to try only restrited witness funtions for whih ~b(0; a2; a3; 0) = ~b(0; a2; a3; 1)and ~b(1; a2; 0; a4) = ~b(1; a2; 1; a4) (dropping from the witness matrix olumns violat-ing the above onditions), even though it is not evident a priori that a gadget witha witness funtion of this form exists. The number of distint variable olumns thatsuh a witness matrix an have is at most 16. Exluding auxiliary variables identialto a1 or a2, we onsidered gadgets with at most 14 auxiliary variables. We then re-ated a linear program with �182 � = 153 variables and 218�1+8 = 131; 080 onstraints.The result of the linear program was that there exists an 8-gadget with onstant 0reduing RMBC00 to CUT, and that it is strit. Sine we used a restrited witnessfuntion, the linear program does not prove that this gadget is optimal.However, lower bounds an be established through onstrution of optimal S-partial gadgets. If S is a subset of the set of satisfying assignments of RMBC00, thenits de�ning equalities and inequalities (see De�nition 3.3) are a subset of those for agadget, and thus the performane of the partial gadget is a lower bound for that of atrue gadget.In fat, we have always been luky with the latter tehnique, in that some hoieof the set S has always yielded a lower bound and a mathing gadget. In partiular,for redutions from RMBC to CUT, we have the following result.Theorem 4.5. There is an 8-gadget reduing RMBC00 to CUT=0, and it isoptimal and strit; there is an 8-gadget reduing RMBC01 to CUT=0, and it is optimaland strit; there is a 9-gadget reduing RMBC10 to CUT=0, and it is optimal andstrit; and there is a 9-gadget reduing RMBC11 to CUT=0, and it is optimal andstrit.Proof. In eah ase, for some set S of satisfying assignments, an optimal S-partial gadget also happens to be a true gadget, and strit. In the same notation asin De�nition 2.6, the appropriate sets S of 4-tuples (a; b; ; d) are: for RMBC00, S =f0001; 1101; 0110; 1010g; for RMBC01, S = f0000; 1100; 0111; 1011g; for RMBC10,S = f0100; 1000; 0011; 1111g; and for RMBC11, S = f0101; 1001; 0010; 1110g.4.2. MAX DICUT. As in the previous subsetion, we observe that if thereexists an �-gadget reduing an element of PC to DICUT, there exists an �-gadget with13 auxiliary variables. This leads to linear programs with 16�15 variables (one for eahpossible DICUT onstraint, orresponding to a direted edge) and 216 + 4 = 65; 540linear onstraints. The solution to the linear programs gives the following.Lemma 4.6. There exist 6:5-gadgets reduing PC0 and PC1 to DICUT, and theyare optimal and strit.The PC0 gadget is shown in Figure 4.2. Again x1, x2 and x3 refer to the primaryvariable and an edge from x to y represents the onstraint :x^b. The PC1 gadget issimilar, but has all edges reversed.Theorem 4.7. For every � > 0, MAX DICUT is hard to approximate to within12=13+ �.RMBC gadgets. As with the redutions to CUT=0, redutions from the RMBCfamily members to DICUT an be done by onstruting optimal S-partial gadgets,and again (with fortuitous hoies of S) these turn out to be true gadgets, and strit.Theorem 4.8. There is a 6-gadget reduing RMBC00 to DICUT, and it isoptimal and strit; there is a 6.5-gadget reduing RMBC01 to DICUT, and it is optimaland strit; there is a 6.5-gadget reduing RMBC10 to DICUT, and it is optimal and
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Fig. 4.2. 8-gadget reduing PC0 to DICUT. Edges have weight 1 exept when marked otherwise.strit; and there is a 7-gadget reduing RMBC11 to DICUT, and it is optimal andstrit.Proof. Using, ase by ase, the same sets S as in the proof of Theorem 4.5, againyields in eah ase an optimal S-partial gadget that also happens to be a true, stritgadget.4.3. MAX 2-CSP. For reduing an element of PC to the 2CSP family we needonsider only 4 auxiliary variables, for a total of 7 variables. There are two non-onstant funtions on a single variable, and twelve non-onstant funtions on pairs ofvariables, so that there are 2 � 7+ 12 � �72� = 266 funtions to onsider overall. We anagain set up a linear program with a variable per funtion and 27 + 4 = 132 linearonstraints. We obtain the following.Lemma 4.9. There exist 5-gadgets reduing PC0 and PC1 to 2CSP, and they areoptimal and strit.The gadget reduing PC0 to 2CSP is the following:X1 ^ :Y1; X1 ^ Y2; :X1 ^ Y3; :X1 ^ Y4;X2 ^ :Y1; :X2 ^ Y2; X2 ^ Y3; :X2 ^ Y4;:X3 ^ Y1; X3 ^ :Y2; X3 ^ :Y3; :X3 ^ :Y4:The gadget reduing PC1 to 2CSP an be obtained from this one by omplementingall the ourrenes of X1.Theorem 4.10. For every � > 0, MAX 2CSP is hard to approximate to within9=10+ �.MAX 2CSP an be approximated within :859 [5℄. The above theorem has im-pliations for probabilistially hekable proofs. Reversing the well-known redutionfrom onstraint satisfation problems to probabilistially hekable proofs (f. [1℄)3,Theorem 4.10 yields the following theorem.Theorem 4.11. For any � > 0, onstants  and s exist suh that NP �PCP;s[log; 2℄ and =s > 10=9� �.The previously known gap between the ompleteness and soundness ahievable readingtwo bits was 74=73 [2℄. It would be 22=21� � using H�astad's result [9℄ in ombination3The reverse onnetion is by now a folklore result and may be proved along the lines of [2,Proposition 10.3, Part (3)℄.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 17with the argument of [2℄. Atually the redution from onstraint satisfation problemsto probabilistially hekable proofs is reversible, and this will be important in Setion7. RMBC gadgets. Theorem 4.12. For eah element of RMBC, there is a 5-gadgetreduing it to 2CSP, and it is optimal and strit.Proof. Using the same seleted assignments as in Theorems 4.5 and 4.8 againyields lower bounds and mathing strit gadgets.5. Interlude: Methodology. Despite their seeming variety, all the gadgets inthis paper were omputed using a single program (in the language APL2) to generatean LP, and all upon OSL (the IBM Optimization Subroutine Library) to solve it.This \gadget-generating" program takes several parameters.The soure funtion f is spei�ed expliitly, by a small program that omputesf . The target family F is desribed by a single funtion, implemented as a smallprogram, applied to all possible lauses of spei�ed lengths and symmetries. Thesymmetries are hosen from among: whether lauses are unordered or ordered; whethertheir variables may be omplemented; and whether they may inlude the onstants 0or 1. For example, a redution to MAX CUT=0 would take as F the funtion x1�x2,applied over unordered binomial lauses, in whih omplementation is not allowedbut the onstant 0 is allowed. This means of desribing F is relatively intuitive andhas never restrited us, even though it is not ompletely general. Finally, we speifyan arbitrary set S of seleted assignments, whih allows us to searh for S-partialgadgets (reall De�nition 3.3). From equations (3.2) and (3.4), eah seleted assign-ment ~a generates a onstraint that (9~b) : Pj wjCj(~a;~b) = � � (1 � f(~a)). Seletingall satisfying assignments of f reprodues the set of onstraints (2.2) for an �-gadget,while seleting all assignments reprodues the set of onstraints (2.2) and (2.4) for astrit �-gadget.Seleted assignments are spei�ed expliitly; by default, to produe an ordinarygadget, they are the satisfying assignments of f . The anonial witness for the seletedset of assignments is generated by our program as governed by De�nition 3.6. Notiethat the de�nition of the witness depends on whether F is omplementation-losedor not, and this is determined by the expliitly spei�ed symmetries.To failitate the generation of restrited witness matries, we have also madeuse of a \don't-are" state (in lieu of 0 or 1) to redue the number of seleted assign-ments. For example in redutions from RMBC00 we have used seleted assignmentsof (00 � 0) (011�) (10 � 0), and (11 � 1). The various LP onstraints must be satis�edfor both values of any don't-are, while the witness funtion must not depend onthe don't-are values. So in this example, use of a don't-are redues the numberof seleted assignments from 8 to 4, redues the number of auxiliary variables fromabout 28 to 24 (ignoring dupliations of the 4 primary variables, or any symmetries),and redues the number of onstraints in the LP from 228 (about 1077) to 224 (amore reasonable 65,536). Use of don't-ares provides a tehnique omplementary toseleting a subset of all satisfying assignments, in that if the LP is feasible it providesan upper bound and a gadget, but the gadget may not be optimal.In pratie, seleting a subset of satisfying assignments has been by far the moreuseful of the two tehniques; so far we have always been able to hoose a subset whihprodues a lower bound and a gadget to math.



18 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONAfter onstruting and solving an LP, the gadget-generating program uses brutefore to make an independent veri�ation of the gadget's validity, performane, andstritness.The hardest omputations were those for gadgets reduing from RMBC; on anIBM Ris System/6000 model 43P-240 workstation, running at 233MHz, these tookup to half an hour and used 500MB or so of memory. However, the strength of [9℄makes PC virtually the sole soure funtion of ontemporary interest, and all theredutions from PC are easy; they use very little memory, and run in seonds on anordinary 233MHz Pentium proessor.6. Improved Positive Results. In this setion we show that we an use gad-gets to improve approximation algorithms. In partiular, we look at MAX 3SAT, anda variation, MAX 3ConjSAT, in whih eah lause is a onjuntion (rather than adisjuntion) of three literals. An improved approximation algorithm for the latterproblem leads to improved results for probabilistially hekable proofs in whih theveri�er examines only 3 bits. Both of the improved approximation algorithms rely onstrit gadgets reduing the problem to MAX 2SAT. We begin with some notation.Definition 6.1. A (�1; �2)-approximation algorithm for MAX 2SAT is an algo-rithm whih reeives as input an instane with unary lauses of total weight m1 andbinary lauses of total weight m2, and two reals u1 � m1 and u2 � m2, and produesreals s1 � u1 and s2 � u2 and an assignment satisfying lauses of total weight atleast �1s1 + �2s2. If there exists an optimum solution that satis�es unary lauses ofweight no more than u1 and binary lauses of weight no more than u2, then there is aguarantee that no assignment satis�es lauses of total weight more than s1+s2. Thatis, supplied with a pair of \upper bounds" u1; u2, a (�1; �2)-approximation algorithmprodues a single upper bound of s1+s2, along with an assignment respeting a lowerbound of �1s1 + �2s2.Lemma 6.2. [5℄ There exists a polynomial-time (:976; :931)-approximation algo-rithm for MAX 2SAT.6.1. MAX 3SAT. In this setion we show how to derive an improved approxi-mation algorithm for MAX 3SAT. By restriting tehniques in [8℄ from MAX SAT toMAX 3SAT and using a :931-approximation algorithm for MAX 2SAT due to Feigeand Goemans [5℄, one an obtain a :7704-approximation algorithm for MAX 3SAT.The basi idea of [8℄ is to redue eah lause of length 3 to the three possible sub-lauses of length 2, give eah new length-2 lause one-third the original weight, andthen apply an approximation algorithm for MAX 2SAT. This approximation algo-rithm is then \balaned" with another approximation algorithm for MAX 3SAT toobtain the result. Here we show that by using a strit gadget to redue 3SAT toMAX 2SAT, a good (�1; �2)-approximation algorithm for MAX 2SAT leads to a :801-approximation algorithm for MAX 3SAT.Lemma 6.3. If for every f 2 E3SAT there exists a strit �-gadget reduing fto 2SAT, there exists a (�1; �2)-approximation algorithm for MAX 2SAT, and � �1 + (�1��2)2(1��2) , then there exists a �-approximation algorithm for MAX 3SAT with� = 12 + (�1 � 1=2)(3=8)(�� 1)(1� �2) + (�1 � �2) + (3=8) :Proof. Let � be an instane of MAX 3SAT with length-1 lauses of total weightm1, length-2 lauses of total weight m2, and length-3 lauses of total weight m3.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 19We use the two algorithms listed below, getting the orresponding upper and lowerbounds on number of satis�able lauses:� Random: We set eah variable to 1 with probability 1=2. This gives a solutionof weight at least m1=2 + 3m2=4 + 7m3=8.� Semide�nite programming: We use the strit �-gadget to redue every length-3 lause to length-2 lauses. This gives an instane of MAX 2SAT. We applythe (�1; �2)-approximation algorithm with parameters u1 = m1 and u2 =m2+�m3 to �nd an approximate solution to this problem. The approximationalgorithm gives an upper bound s1 + s2 on the weight of any solution tothe MAX 2SAT instane and an assignment of weight �1s1 + �2s2. Whentranslated bak to the MAX 3SAT instane, the assignment has weight atleast �1s1 + �2s2 � (� � 1)m3. Furthermore, s1 � m1, s2 � m2 + �m3,and the maximum weight satis�able in the MAX 3SAT instane is at mosts1 + s2 � (�� 1)m3.The performane guarantee of the algorithm whih takes the better of the twosolutions is at least�1 def= mins1�m1s2�m2+�m3 maxfm1=2 + 3m2=4 + 7m3=8; �1s1 + �2s2 � (�� 1)m3gs1 + s2 � (�� 1)m3 :We now de�ne a sequene of simpli�ations whih will help prove the bound.�2 def= mint1�m1t2�m2+m3 1t1 + t2 maxf m1=2 + 3m2=4 + 7m3=8;�1t1 + �2t2 � (1� �2)(�� 1)m3g�3 def= mint1�m1t2�m2+m3 1t1 + t2 maxf t1=2 + 3t2=4 +m3=8;t1=2 + 7m3=8;�1t1 + �2t2 � (1� �2)(�� 1)m3g�4 def= mint2�t 1t maxf t=2 + t2=4 +m3=8;t=2� t2=2 + 7m3=8;�1t� (�1 � �2)t2 � (1� �2)(�� 1)m3g�5 def= 12 + � 38 (�1 � 12 )(1� �2)(�� 1) + (�1 � �2) + 38 �To �nish the proof of the lemma, we laim that�1 � �2 � � � � � �5:To see this, notie that the �rst inequality follows from the substitution of variablest1 = s1, t2 = s2 � (� � 1)m3. The seond follows from the fat that setting m1 to t1and m2 to maxf0; t2 �m3g only redues the numerator. The third inequality followsfrom setting t = t1+ t2. The fourth is obtained by substituting a onvex ombinationof the arguments instead of max and then simplifying. The onvex ombination takesa �1 fration of the �rst argument, �2 of the seond and �3 of the third, where�1 = 23 (1� �2)(�� 1) + 76 (�1 � �2)(1� �2)(� � 1) + (�1 � �2) + 38 ;



20 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSON�2 = 13 (1� �2)(� � 1)� 16 (�1 � �2)(1� �2)(�� 1) + (�1 � �2) + 38and �3 = 38(1� �2)(� � 1) + (�1 � �2) + 38 :Observe that �1 + �2 + �3 = 1 and that the ondition on � guarantees that �2 � 0.Remark 6.4. The analysis given in the proof of the above lemma is tight. Inpartiular for an instane with m lauses suh thatm3 def= m �1 � 1=2(1� �2)(� � 1) + (�1 � �2) + 3=8 ;m1 def= m�m3, m2 def= 0, s1 = m1, and s2 = �m3, it is easy to see that �1 = �5.The following lemma gives the strit gadget reduing funtions in E3SAT to2SAT. Notie that �nding strit gadgets is almost as forbidding as �nding gadgetsfor RMBC, sine there are 8 existential onstraints in the spei�ation of a gadget.This time we relied instead on luk. We looked for an S-partial gadget for the setS = f111; 100; 010; 001g and found an S-partial 3:5-gadget that turned out to be agadget! Our hoie of S was made judiiously, but we ould have a�orded to runthrough all �84� sets S of size 4 in the hope that one would work.Lemma 6.5. For every funtion f 2 E3SAT, there exists a strit (and optimal)3:5-gadget reduing f to 2SAT.Proof. Sine 2SAT is omplementation-losed, it is suÆient to present a 3:5-gadget reduing (X1_X2_X3) to 2SAT. The gadget is X1 _ X3;:X1 _ :X3; X1 _:Y;:X1 _Y;X3 _:Y;:X3 _Y;X2 _ Y; where every lause exept the last has weight1=2, and the last lause has weight 1.Combining Lemmas 6.2, 6.3 and 6.5 we get a :801-approximation algorithm.Theorem 6.6. MAX 3SAT has a polynomial-time :801-approximation algo-rithm.6.2. MAX 3-CONJ SAT. We now turn to the MAX 3ConjSAT problem. Theanalysis is similar to that of Lemma 6.3.Lemma 6.7. If for every f 2 3ConjSAT there exists a strit (�1 + �2)-gadgetreduing f to 2SAT omposed of �1 length-1 lauses and �2 length-2 lauses, andthere exists a (�1; �2)-approximation algorithm for MAX 2SAT, then there exists a�-approximation algorithm for MAX 3ConjSAT with� = 18�118 + (1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1)provided �1 + �2 > 1 + 1=8(1� �2).Proof. Let � be an instane of MAX 3ConjSAT with onstraints of total weightm. As in the MAX 3SAT ase, we use two algorithms and take the better of the twosolutions:� Random: We set every variable to 1 with probability half. The total weightof satis�ed onstraints is at least m=8.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 21� Semide�nite programming: We use the strit �-gadget to redue any on-straint to 2SAT lauses. This gives an instane of MAX 2SAT and we use the(�1; �2)-approximation algorithm with parameters u1 = �1m and u2 = �2m.The algorithm returns an upper bound s1 + s2 on the total weight of satis-�able onstraints in the MAX 2SAT instane, and an assignment of measureat least �1s1+�2s2. When translated bak to the MAX 3ConjSAT instane,the measure of the assignment is at least �1s1 + �2s2 � (�1 +�2 � 1)m. Fur-thermore, s1 � �1m, s2 � �2m, and the total weight of satis�able onstraintsin the MAX 3ConjSAT instane is at most s1 + s2 � (�1 + �2 � 1)m.Thus we get that the performane ratio of the algorithm whih takes the betterof the two solutions above is at least�1 def= mins1��1ms2��2m maxfm=8; �1s1 + �2s2 � (�1 + �2 � 1)mgs1 + s2 � (�1 + �2 � 1)m :We now de�ne a sequene of simpli�ations whih will help prove the bound.�2 def= mint1��1mt2�(1��1)m 1t1 + t2 maxfm=8; �1t1 + �2t2 � (1� �2)(�1 + �2 � 1)mg�3 def= mint�mt2�(1��1)m 1t maxfm=8; �1t� (�1 � �2)t2 � (1� �2)(�1 + �2 � 1)mg�4 def= mint�m 1t maxfm=8; �1t� ((1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1))mg�5 def= 18�118 + (1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1)In order to prove the lemma, we laim that�1 � �2 � � � � � �5:To see this, observe that the �rst inequality follows from the substitution of variablest1 = s1 and t2 = s2 � (�1 + �2 � 1)m. The seond follows from setting t = t1 + t2.The third inequality follows from the fat that setting t2 to (1 � �1)m only reduesthe numerator. The fourth is obtained by substituting a onvex ombination of thearguments instead of max and then simplifying.The following gadget was found by looking for an S-partial gadget for S =f111; 110; 101; 011g.Lemma 6.8. For any f 2 3ConjSAT there exists a strit (and optimal) 4-gadgetreduing f to 2SAT. The gadget is omposed of one length-1 lause and three length-2lauses.Proof. Reall that 2SAT is omplementation-losed, and thus it is suÆient toexhibit a gadget reduing f(a1; a2; a3) = a1 ^ a2 ^ a3 to 2SAT. Suh gadget is Y ,(:Y _ X1), (:Y _ X2), (:Y _ X3), where all lauses have weight 1. The variablesX1; X2; X3 are primary variables and Y is an auxiliary variable.



22 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONTheorem 6.9. MAX 3ConjSAT has a polynomial-time .367-approximation al-gorithm.It is shown by Trevisan [16, Theorem 18℄ that the above theorem has onsequenesfor PCP;s[log; 3℄. This is beause the omputation of the veri�er in suh a proofsystem an be desribed by a deision tree of depth 3, for every hoie of randomstring. Further, there is a 1-gadget reduing every funtion whih an be omputedby a deision tree of depth k to kConjSAT.Corollary 6.10. PCP;s[log; 3℄ � P provided that =s > 2:7214. The previousbest trade-o� between ompleteness and soundness for polynomial-time PCP lasseswas =s > 4 [16℄.7. Lower Bounds for Gadget Construtions. In this setion we shall showthat some of the gadget onstrutions mentioned in this paper and in [2℄ are optimal,and we shall prove lower bounds for some other gadget onstrutions.The following result is useful to prove lower bounds for the RMBC family.Lemma 7.1. If there exists an �-gadget reduing an element of RMBC to aomplementation-losed onstraint family F , then there exists an �-gadget reduingall elements of PC to F .Proof. If a family F is omplementation-losed, then an �-gadget reduing anelement of PC (respetively RMBC) to F an be modi�ed (using omplementations)to yield �-gadgets reduing all elements of PC (respetively RMBC) to F . For thisreason, we will restrit our analysis to PC0 and RMBC00 gadgets. Note that, for anya1; a2; a3 2 f0; 1g3, PC0(a1; a2; a3) = 1 if and only if RMBC00(a1; a2; a3; a3) = 1. Let� be an � gadget over primary variables x1; : : : ; x4 and auxiliary variables y1; : : : ; ynreduing RMBC to 2SAT. Let �0 be the gadget obtained from � by imposing x4 � x3:it is immediate to verify that �0 is an �-gadget reduing PC0 to F .7.1. Reduing PC and RMBC to 2SAT. Theorem 7.2. If � is an �-gadgetreduing an element of PC to 2SAT, then � � 11.Proof. It suÆes to onsider PC0. We prove that the optimum of (LP1) is atleast 11. To this end, onsider the dual program of (LP1). We have a variable y~a;~bfor any ~a 2 f0; 1g3 and any ~b 2 f0; 1g4, plus additional variables ŷ~a;~bopt(~a) for any~a : PC(~a) = 1, where ~bopt is the \optimal" witness funtion de�ned in Setion 3. Theformulation ismaximize P~a;~b:PC(~a)=0 y~a;~bsubjet to P~a;~b y~a;~b � 1 +P~a:PC(~a)=1 y~a;~bopt(~a)P~a;~b y~a;~bCj(~a;~b) �P~a:PC(~a)=1 ŷ~a;~bopt(~a)Cj(~a;~bopt(~a)) 8j 2 [98℄y~a;~b � 0 (8~a 2 f0; 1g3) (8~b 2 f0; 1g4)ŷ~a;~bopt(~a) � 0 (8~a : PC(~a) = 1)(DUAL1)There exists a feasible solution for (DUAL1) whose ost is 11.Corollary 7.3. If � is an �-gadget reduing an element of RMBC to 2SAT,then � � 11.7.2. Reduing PC and RMBC to SAT. Theorem 7.4. If � is an �-gadgetreduing an element of PC to SAT, then � � 4.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 23Proof. As in the proof of Theorem 7.2 we give a feasible solution to the dualto obtain the lower bound. The linear program that �nds the best gadget reduingPC0 to SAT is similar to (LP1), the only di�erene being that a larger number N oflauses are onsidered, namely, N =P7i=1 �7i�2i. The dual program is thenmaximize P~a;~b:PC(~a)=0 y~a;~bsubjet to P~a;~b y~a;~b � 1 +P~a:PC(~a)=1 y~a;~bopt(~a)P~a;~b y~a;~bCj(~a;~b) �P~a:PC(~a)=1 ŷ~a;~bopt(~a)Cj(~a;~bopt(~a)) 8j 2 [N ℄y~a;~b � 0 (8~a 2 f0; 1g3) (8~b 2 f0; 1g4)ŷ~a;~bopt(~a) � 0 (8~a : PC(~a) = 1)(DUAL2)Consider now the following assignment of values to the variables of (DUAL2) (theunspei�ed values have to be set to zero):(8~a : PC(~a) = 1) ŷ~a;~bopt(~a) = 34(8~a : PC(~a) = 1)(8~a0 : d(~a;~a0) = 1) y~a0;~bopt(~a) = 13where d is the Hamming distane between binary sequenes. It is possible to showthat this is a feasible solution for (DUAL2) and it is immediate to verify that its ostis 4.Corollary 7.5. If � is an �-gadget reduing an element RMBC to SAT, then� � 4.7.3. Reduing kSAT to lSAT. Let k and l be any integers k > l � 3. Thestandard redution from EkSAT to lSAT an be seen as a d(k � 2)=(l � 2)e-gadget.In this setion we shall show that this is asymptotially the best possible. Note thatsine lSAT is omplementation-losed we an restrit ourselves to onsidering just oneonstraint funtion of EkSAT, say f(a1; : : : ; ak) � Wi ai.Theorem 7.6. For any k > l > 2, if � is an �-gadget reduing f to lSAT then� � k=l.Proof. We an write a linear program whose optimum gives the smallest � suhthat an �-gadget exists reduing f to lSAT. Let b be the witness funtion used toformulate this linear program. We an assume that b is 22k -ary and we let K = 22k .Also let N be the total number of onstraints from lSAT that an be de�ned overk+K variables. Assume some enumeration C1; : : : ; CN of suh onstraints. The dualLP ismaximize P~a;~b:PC(~a)=0 y~a;~bsubjet to P~a;~b y~a;~b � 1 +P~a:f(~a)=1 y~a;~bkSAT�lSAT (~a)8j 2 [N ℄ P~a;~b y~a;~bCj(~a;~b) �P~a:f(~a)=1 ŷ~a;~bkSAT�lSAT (~a)Cj(~a;~bkSAT�lSAT (~a))8~a 2 f0; 1gk; 8~b 2 f0; 1gK y~a;~b � 08~a : f(~a) = 1 ŷ~a;~bkSAT�lSAT (~a) � 0 (DUAL3)The witness funtion ~bkSAT�lSAT is an \optimal" witness funtion for gadgets redu-ing kSAT to lSAT.
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