
GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING�LUCA TREVISANy , GREGORY B. SORKINz, MADHU SUDANx, ANDDAVID P. WILLIAMSONzAbstra
t. We present a linear programming-based method for �nding \gadgets", i.e., 
ombi-natorial stru
tures redu
ing 
onstraints of one optimization problem to 
onstraints of another. Akey step in this method is a simple observation whi
h limits the sear
h spa
e to a �nite one. Usingthis new method we present a number of new, 
omputer-
onstru
ted gadgets for several di�erentredu
tions. This method also answers a question posed by Bellare, Goldrei
h and Sudan [2℄ of howto prove the optimality of gadgets: LP duality gives su
h proofs.The new gadgets, when 
ombined with re
ent results of H�astad [9℄, improve the known inapprox-imability results for MAX CUT and MAX DICUT, showing that approximating these problems towithin fa
tors of 16=17+ � and 12=13+ � respe
tively is NP-hard, for every � > 0. Prior to this work,the best known inapproximability thresholds for both problems was 71/72 [2℄. Without using thegadgets from this paper, the best possible hardness that would follow from [2, 9℄ is 18=19. We alsouse the gadgets to obtain an improved approximation algorithm for MAX 3SAT whi
h guaranteesan approximation ratio of :801. This improves upon the previous best bound (impli
it from [8, 5℄)of :7704.Key words. Combinatorial optimization, Approximation algorithms, Redu
tions, Intra
tability,NP-
ompleteness, Probabilisti
 proof systems.AMS subje
t 
lassi�
ations. 68Q151. Introdu
tion. A \gadget" is a �nite 
ombinatorial stru
ture whi
h trans-lates a given 
onstraint of one optimization problem into a set of 
onstraints of ase
ond optimization problem. A 
lassi
al example is in the redu
tion from 3SAT toMAX 2SAT, due to Garey, Johnson and Sto
kmeyer [6℄. Given an instan
e of 3SATon variables X1; : : : ; Xn and with 
lauses C1; : : : ; Cm, the redu
tion 
reates an in-stan
e of MAX 2SAT on the original or \primary" variables X1; : : : ; Xn along withnew or \auxiliary" variables Y 1; : : : ; Y m. The 
lauses of the MAX 2SAT instan
e areobtained by repla
ing ea
h 
lause of length 3 in the 3SAT instan
e with a \gadget", inthis 
ase a 
olle
tion of ten 2SAT 
lauses. For example the 
lause Ck = X1 _X2 _X3would be repla
ed with the following ten 
lauses on the variables X1; X2; X3 and anew auxiliary variable Y k:X1; X2; X3; :X1 _ :X2; :X2 _ :X3; :X3 _ :X1;Y k; X1 _ :Y k; X2 _ :Y k; X3 _ :Y k:The property satis�ed by this gadget is that for any assignment to the primary vari-ables, if 
lause Ck is satis�ed, then 7 of the 10 new 
lauses 
an be satis�ed by settingY k appropriately; otherwise only 6 of the 10 are satis�able. (Noti
e that the gadget�An extended abstra
t of this paper appears in the Pro
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iated with ea
h 
lause Ck uses its own auxiliary variable Y k, and thus Y k maybe set independently of the values of variables not appearing in Ck's gadget.) Usingthis simple property of the gadget it is easy to see that the maximum number of
lauses satis�ed in the MAX 2SAT instan
e by any assignment is 7m if and only ifthe instan
e of 3SAT is satis�able. This was used by [6℄ to prove the NP-hardness ofsolving MAX 2SAT. We will revisit the 3SAT-to-2SAT redu
tion in Lemma 6.5.Starting with the work of Karp [12℄, gadgets have played a fundamental role inshowing the hardness of optimization problems. They are the 
ore of any redu
tionbetween 
ombinatorial problems, and they retain this role in the spate of new resultson the non-approximability of optimization problems.Despite their importan
e, the 
onstru
tion of gadgets has always been a \bla
kart", with no general methods of 
onstru
tion known. In fa
t, until re
ently no onehad even proposed a 
on
rete de�nition of a gadget; Bellare, Goldrei
h and Sudan [2℄�nally did so, with a view to quantifying the role of gadgets in non-approximabilityresults. Their de�nition is a

ompanied by a seemingly natural \
ost" measure fora gadget. The more \
ostly" the gadget, the weaker the redu
tion. However, �rstly,�nding a gadget for a given redu
tion remained an ad ho
 task. Se
ondly, it remainedhard to prove that a gadget's 
ost was optimal.This paper addresses these two issues. We show that for a large 
lass of redu
tions,the spa
e of potential gadgets that need to be 
onsidered is a
tually �nite. Thisis not entirely trivial, and the proof depends on properties of the problem that isbeing redu
ed to. However, the method is very general, and en
ompasses a largenumber of problems. An immediate 
onsequen
e of the �niteness of the spa
e is theexisten
e of a sear
h pro
edure to �nd an optimal gadget. But a naive sear
h would beimpra
ti
ably slow, and sear
h-based proofs of the optimality (or the non-existen
e)of a gadget would be monstrously large.Instead, we show how to express the sear
h for a gadget as a linear program (LP)whose 
onstraints guarantee that the potential gadget is indeed valid, and whoseobje
tive fun
tion is the 
ost of the gadget. Central to this step is the idea of work-ing with weighted versions of optimization problems rather than unweighted ones.(Weighted versions result in LPs, while unweighted versions would result in integerprograms, IPs.) This seemingly helps only in showing hardness of weighted optimiza-tion problems, but a result due to Cres
enzi, Silvestri and Trevisan [3℄ shows thatfor a large 
lass of optimization problems (in
luding all the ones 
onsidered in thispaper), the weighted versions are exa
tly as hard with respe
t to approximation as theunweighted ones. Therefore, working with a weighted version is as good as workingwith an unweighted one.The LP representation has many bene�ts. First, we are able to sear
h for mu
hmore 
ompli
ated gadgets than is feasible manually. Se
ond, we 
an use the theoryof LP duality to present short(er) proofs of optimality of gadgets and non-existen
eof gadgets. Last, we 
an solve relaxed or 
onstrained versions of the LP to obtainupper and lower bounds on the 
ost of a gadget, whi
h 
an be signi�
antly qui
kerthan solving the a
tual LP. Being 
areful in the relaxing/
onstraining pro
ess (andwith a bit of lu
k) we 
an often get the bounds to mat
h, thereby produ
ing optimalgadgets with even greater eÆ
ien
y!Armed with this tool for �nding gadgets (and an RS/6000, OSL, and often



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 3APL21), we examine some of the known gadgets and 
onstru
t many new ones. (Inwhat follows we often talk of \gadgets redu
ing problem X to problem Y" when wemean \gadgets used to 
onstru
t a redu
tion from problem X to problem Y".) Bel-lare et al. [2℄ presented gadgets redu
ing the 
omputation of a \veri�er" for a PCP(probabilisti
ally 
he
kable proof system) to several problems, in
luding MAX 3SAT,MAX 2SAT, and MAX CUT. We examine these in turn and show that the gadgetsin [2℄ for MAX 3SAT and MAX 2SAT are optimal, but their MAX CUT gadget isnot. We improve on the eÆ
ien
y of the last, thereby improving on the fa
tor towhi
h approximating MAX CUT 
an be shown to be NP-hard. We also 
onstru
t anew gadget for the MAX DICUT problem, thereby strengthening the known boundon its hardness. Plugging our gadget into the redu
tion (spe
i�
ally Lemma 4.15)of [2℄, shows that approximating MAX CUT to within a fa
tor of 60=61 is NP-hard,as is approximating MAX DICUT to within a fa
tor of 44=45.2 For both problems,the hardness fa
tor proved in [2℄ was 71=72. The PCP ma
hinery of [2℄ has sin
ebeen improved by H�astad [9℄. Our gadgets and H�astad's result show that, for every� > 0, approximating MAX CUT to within a fa
tor of 16=17 + � is NP-hard, as isapproximating MAX DICUT to within a fa
tor of 12=13+ �. Using H�astad's result in
ombination with the gadgets of [2℄ would have given a hardness fa
tor of 18=19 + �for both problems, for every � > 0.Obtaining better redu
tions between problems 
an also yield improved approxi-mation algorithms (if the redu
tion goes the right way!). We illustrate this point by
onstru
ting a gadget redu
ing MAX 3SAT to MAX 2SAT. Using this new redu
tionin 
ombination with a te
hnique of Goemans and Williamson [7, 8℄ and the state-of-the-art :931-approximation algorithm for MAX 2SAT due to Feige and Goemans [5℄(whi
h improves upon the previous :878-approximation algorithm of [8℄), we obtaina :801-approximation algorithm for MAX 3SAT. The best result that 
ould be ob-tained previously, by 
ombining the te
hnique of [7, 8℄ and the bound of [5℄, was :7704.(The best previously published result is a :769-approximation algorithm, due to Ono,Hirata, and Asano [14℄.)Finally, our redu
tions have impli
ations for probabilisti
ally 
he
kable proof sys-tems. Let PCP
;s[log; q℄ be the 
lass of languages that admit membership proofs that
an be 
he
ked by a probabilisti
 veri�er that uses a logarithmi
 number of randombits, reads at most q bits of the proof, a

epts 
orre
t proofs of strings in the languagewith probability at least 
, and a

epts purported proofs of strings not in the lan-guage with probability at most s. We show: �rst, for any � > 0, there exist 
onstants
 and s, 
=s > 10=9� �, su
h that NP � PCP
;s[log; 2℄; and se
ond, for all 
; s with
=s > 2:7214, PCP
;s[log; 3℄ � P. The best bound for the former result obtainablefrom [2, 9℄ is 22=21� �; the best previous bound for the latter was 4 [16℄.All the gadgets we use are 
omputer-
onstru
ted. In the �nal se
tion, we presentan example of a lower bound on the performan
e of a gadget. The bound is not
omputer 
onstru
ted and 
annot be, by the nature of the problem. The bound stillrelies on de�ning an LP that des
ribes the optimal gadget, and extra
ting the lower1Respe
tively, an IBM Ris
System/6000 workstation, the IBM Optimization Subroutine Library,whi
h in
ludes a linear programming pa
kage, and (not that we are partisan) IBM's APL2 program-ming language.2Approximation ratios in this paper for maximization problems are less than 1, and representthe weight of the solution a
hievable by a polynomial time algorithm, divided by the weight of theoptimal solution. This mat
hes the 
onvention used in [18, 7, 8, 5℄ and is the re
ipro
al of themeasure used in [2℄.



4 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONbound from the LP's dual.Subsequent work. Subsequent to the original presentation of this work [17℄, theapproximability results presented in this paper have been superseded. Karlo� andZwi
k [10℄ present a 7/8-approximation algorithm for MAX 3SAT. This result is tightunless NP=P [9℄. The 
ontainment result PCP
;s[log; 3℄ � P has also been improvedby Zwi
k [19℄ and shown to hold for any 
=s � 2. This result is also tight, againby [9℄. Finally, the gadget 
onstru
tion methods of this paper have found at leasttwo more appli
ations. H�astad [9℄ and Zwi
k [19℄ use gadgets 
onstru
ted by thesete
hniques to show hardness results for two problems they 
onsider, MAX 2LIN andMAX NAE3SAT respe
tively.Version. An extended abstra
t of this paper appeared as [17℄. This version 
or-re
ts some errors, pointed out by Karlo� and Zwi
k [11℄, from the extended abstra
t.This version also presents inapproximability results resting on the improved PCP
onstru
tions of H�astad [9℄, while mentioning the results that 
ould be obtained oth-erwise.Organization of this paper. The next se
tion introdu
es pre
ise de�nitions whi
hformalize the pre
eding outline. Se
tion 3 presents the �niteness proof and the LP-based sear
h strategy. Se
tion 4 
ontains negative (non-approximability) results andthe gadgets used to derive them. Se
tion 5 brie
y des
ribes our 
omputer systemfor generating gadgets. Se
tion 6 presents the positive result for approximatingMAX 3SAT. Se
tion 7 presents proofs of optimality of the gadgets for some problemsand lower bounds on the 
osts of others. It in
ludes a mix of 
omputer-generated andhand-generated lower bounds.2. De�nitions. We begin with some de�nitions we will need before giving thede�nition of a gadget from [2℄. In what follows, for any positive integer n, let [n℄denote the set f1; : : : ; ng.Definition 2.1. A (k-ary) 
onstraint fun
tion is a boolean fun
tion f :f0; 1gk ! f0; 1g. We refer to k as the arity of a k-ary 
onstraint fun
tion f . Whenit is applied to variables X1; : : : ; Xk (see the following de�nitions) the fun
tion f isthought of as imposing the 
onstraint f(X1; : : : ; Xk) = 1.Definition 2.2. A 
onstraint family F is a 
olle
tion of 
onstraint fun
tions.The arity of F is the maximum of the arity of the 
onstraint fun
tions in F .Definition 2.3. A 
onstraint C over a variable set X1; : : : ; Xn is a pair C =(f; (i1; : : : ; ik)) where f : f0; 1gk ! f0; 1g is a 
onstraint fun
tion and i1; : : : ; ik aredistin
t members of [n℄. The 
onstraint C is said to be satis�ed by an assignment~a = a1; : : : ; an to X1; : : : ; Xn if C(a1; : : : ; an) def= f(ai1 ; : : : ; aik ) = 1. We say that
onstraint C is from F if f 2 F .Constraint fun
tions, 
onstraint families and 
onstraints are of interest due totheir de�ning role in a variety of NP optimization problems.Definition 2.4. For a �nitely spe
i�ed 
onstraint family F , MAX F is theoptimization problem given by:Input: An instan
e 
onsisting of m 
onstraints C1; : : : ; Cm, on n Boolean variablesX1; : : : ; Xn, with non-negative real weights w1; : : : ; wm. (An instan
e is thus a triple( ~X; ~C; ~w).)Goal: Find an assignment ~b to the variables ~X whi
h maximizes the weightPmj=1 wjCj(~b) of satis�ed 
onstraints.Constraint fun
tions, families and the 
lass fMAX F j Fg allow des
riptions of
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tions in a uniform manner. For example, if F =2SAT is the 
onstraint family 
onsisting of all 
onstraint fun
tions of arity at most2 that 
an be expressed as the disjun
tion of up to 2 literals, then MAX 2SAT isthe 
orresponding MAX F problem. Similarly MAX 3SAT is the MAX F problemde�ned using the 
onstraint family F = 3SAT 
onsisting of all 
onstraint fun
tions ofarity up to 3 that 
an be expressed as the disjun
tion of up to 3 literals.One of the motivations for this work is to understand the \approximability" ofmany 
entral optimization problems that 
an be expressed as MAX F problems,in
luding MAX 2SAT and MAX 3SAT. For � 2 [0; 1℄, an algorithm A is saidto be a �-approximation algorithm for the MAX F problem, if on every instan
e( ~X; ~C; ~w) of MAX F with n variables and m 
onstraints, A outputs an assignment~a s.t. Pmj=1 wjCj(~a) � �max~bfPmj=1 wjCj(~b)g. We say that the problem MAX Fis �-approximable if there exists a polynomial time-bounded algorithm A that is a�-approximation algorithm for MAX F . We say that MAX F is hard to approxi-mate to within a fa
tor � (�-inapproximable), if the existen
e of a polynomial time�-approximation algorithm for MAX F implies NP=P.Re
ent resear
h has yielded a number of new approximability results for severalMAX F problems (
f. [7, 8℄) and a number of new results yielding hardness of ap-proximations (
f. [2, 9℄). One of our goals is to 
onstru
t eÆ
ient redu
tions betweenMAX F problems that allow us to translate \approximability" and \inapproximabil-ity" results. As we saw in the opening example su
h redu
tions may be 
onstru
ted by
onstru
ting \gadgets" redu
ing one 
onstraint family to another. More spe
i�
ally,the example shows how a redu
tion from 3SAT to 2SAT results from the availability,for every 
onstraint fun
tion f in the family 3SAT, of a gadget redu
ing f to thefamily 2SAT. This notion of a gadget redu
ing a 
onstraint fun
tion f to a 
onstraintfamily F is formalized in the following de�nition.Definition 2.5 (Gadget [2℄). For � 2 R+, a 
onstraint fun
tion f : f0; 1gk !f0; 1g, and a 
onstraint family F : an �-gadget (or \gadget with performan
e �")redu
ing f to F is a set of variables Y1; : : : ; Yn, a �nite 
olle
tion of real weightswj � 0, and asso
iated 
onstraints Cj from F over primary variables X1; : : : ; Xkand auxiliary variables Y1; : : : ; Yn, with the property that, for boolean assignments~a to X1; : : : ; Xk and ~b to Y1; : : : ; Yn, the following are satis�ed:(8~a : f(~a) = 1) (8~b) : Xj wjCj(~a;~b) � �;(2.1) (8~a : f(~a) = 1) (9~b) : Xj wjCj(~a;~b) = �;(2.2) (8~a : f(~a) = 0) (8~b) : Xj wjCj(~a;~b) � �� 1:(2.3)The gadget is stri
t if, in addition,(8~a : f(~a) = 0) (9~b) : Xj wjCj(~a;~b) = �� 1:(2.4)We use the shorthand notation � = (~Y ; ~C; ~w) to denote the gadget des
ribed above.It is straightforward to verify that the introdu
tory example yields a stri
t 7-gadget redu
ing the 
onstraint fun
tion f(X1; X2; X3) = X1_X2_X3 to the family2SAT.



6 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONObserve that an �-gadget � = (~Y ; ~C; ~w) 
an be 
onverted into an �0 > � gadgetby \res
aling", i.e., multiplying every entry of the weight ve
tor ~w by �0=� (althoughstri
tness is not preserved). This indi
ates that a \strong" gadget is one with asmall �; in the extreme, a 1-gadget would be the \optimal" gadget. This intuitionwill be 
on�rmed in the role played by gadgets in the 
onstru
tion of redu
tions.Before des
ribing this, we �rst list the 
onstraints and 
onstraint families that are ofinterest to us.For 
onvenien
e we now give a 
omprehensive list of all the 
onstraints and 
on-straint families used in this paper.Definition 2.6.� Parity 
he
k (PC) is the 
onstraint family fPC0;PC1g, where, for i 2f0; 1g, PCi is de�ned as follows:PCi(a; b; 
) = � 1 if a� b� 
 = i0 otherwise.Hen
eforth we will simply use terms su
h as MAX PC to denote the optimizationproblem MAX F where F = PC. MAX PC (referred to as MAX 3LIN in [9℄) is thesour
e of all our inapproximability results.� For any k � 1, Exa
tly-k-SAT (EkSAT) is the 
onstraint family ff :f0; 1gk ! f0; 1g : jf~a : f(~a) = 0gj = 1g, that is, the set of k-ary disjun
tive
onstraints.� For any k � 1, kSAT is the 
onstraint family Sl2[k℄ ElSAT.� SAT is the 
onstraint family Sl�1 ElSAT.The problems MAX 3SAT, MAX 2SAT, and MAX SAT are by now 
lassi
al opti-mization problems. They were 
onsidered originally in [6℄; subsequently their 
entralrole in approximation was highlighted in [15℄; and re
ently, novel approximation algo-rithms were developed in [7, 8, 5℄. The asso
iated families are typi
ally the targets ofgadget 
onstru
tions in this paper. Shortly, we will des
ribe a lemma whi
h 
onne
tsthe inapproximability of MAX F to the existen
e of gadgets redu
ing PC0 and PC1to F . This method has so far yielded in several 
ases tight, and in other 
ases thebest known, inapproximability results for MAX F problems.In addition to 3SAT's use as a target, its members are also used as sour
es; gadgetsredu
ing members of MAX 3SAT to MAX 2SAT help give an improved MAX 3SATapproximation algorithm.� 3-Conjun
tive SAT (3ConjSAT) is the 
onstraint family ff000; f100; f110; f111g,where:1. f000(a; b; 
) = a ^ b ^ 
.2. f001(a; b; 
) = a ^ b ^ :
3. f011(a; b; 
) = a ^ :b ^ :
4. f111(a; b; 
) = :a ^ :b ^ :
Members of 3ConjSAT are sour
es in gadgets redu
ing them to 2SAT. These gadgetsenable a better approximation algorithm for the MAX 3ConjSAT problem, whi
h inturn sheds light on the the 
lass PCP
;s[log; 3℄.� CUT: f0; 1g2 ! f0; 1g is the 
onstraint fun
tion given by CUT(a; b) = a� b.CUT/0 is the family of 
onstraints fCUT;Tg, where T(a) = 0 � a = a.CUT/1 is the family of 
onstraints fCUT;Fg, where F(a) = 1� a = :a.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 7MAX CUT is again a 
lassi
al optimization problem. It has attra
ted attention dueto the re
ent result of Goemans and Williamson [8℄ providing a .878-approximationalgorithm. An observation from Bellare et al. [2℄ shows that the approximability ofMAX CUT/0, MAX CUT/1, and MAX CUT are all identi
al; this is also formalizedin Proposition 4.1 below. Hen
e MAX CUT/0 be
omes the target of gadget 
on-stru
tions in this paper, allowing us to get inapproximability results for these threeproblems.� DICUT: f0; 1g2 ! f0; 1g is the 
onstraint fun
tion given by DICUT(a; b) =:a ^ b.MAX DICUT is another optimization problem to whi
h the algorithmi
 results of[8, 5℄ apply. Gadgets whose target is DICUT will enable us to get inapproximabilityresults for MAX DICUT.� 2CSP is the 
onstraint family 
onsisting of all 16 binary fun
tions, i.e. 2CSP =ff : f0; 1g2 ! f0; 1gg.MAX 2CSP was 
onsidered in [5℄, whi
h gives a .859-approximation algorithm; herewe provide inapproximability results.� Respe
t of monomial basis 
he
k (RMBC) is the 
onstraint family fRMBCij ji; j 2f0; 1gg, whereRMBCij(a; b; 
; d) = 8<: 1 if a = 0 and b = 
� i1 if a = 1 and b = d� j0 otherwise.RMBC00 may be thought of as the test (
; d)[a℄ ?= b, RMBC01 as the test(
;:d)[a℄ ?= b, RMBC10 as the test (:
; d)[a℄ ?= b and RMBC11 as the test(:
;:d)[a℄ ?= b, where the notation (v1; : : : ; vn)[i℄ refers to the i+1'st 
oordi-nate of the ve
tor (v1; : : : ; vn).Our original interest in RMBC 
ame from the work of Bellare et al. [2℄ whi
h derivedhardness results for MAX F using gadgets redu
ing every 
onstraint fun
tion in PCand RMBC to F . This work has been e�e
tively superseded by H�astad's [9℄ whi
honly requires gadgets redu
ing members of PC to F . However we retain some ofthe dis
ussion regarding gadgets with RMBC fun
tions as a sour
e, sin
e these 
on-stru
tions were signi�
antly more 
hallenging, and some of the te
hniques applied toover
ome the 
hallenges may be appli
able in other gadget 
onstru
tions. A summaryof all the gadgets we found, with their performan
es and lower bounds, is given inTable 1.We now put forth a theorem, essentially from [2℄ (and obtainable as a general-ization of its Lemmas 4.7 and 4.15), that relates the existen
e of gadgets with F astarget, to the hardness of approximating MAX F . Sin
e we will not be using thistheorem, ex
ept as a motivation for studying the family RMBC, we do not prove ithere.Theorem 2.7. For any family F , if there exists an �1-gadget redu
ing everyfun
tion in PC to F and an �2-gadget redu
ing every fun
tion in RMBC to F , thenfor any � > 0, MAX F is hard to approximate to within 1� :15:6�1+:4�2 + �.In this paper we will use the following, stronger, result by H�astad.Theorem 2.8. [9℄ For any family F , if there exists an �0-gadget redu
ing PC0to F and an �1-gadget redu
ing PC1 to F , then for any � > 0, MAX F is hard toapproximate to within 1� 1�0+�1 + �.
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e f �! target F previous � our � lower bound3SAT �! 2SAT 7 3.5 3.53ConjSAT �! 2SAT(y) 4 4PC �! 3SAT 4 4PC �! 2SAT 11 11PC �! 2CSP 11 5 5PC0 �! CUT/0 10 8 8PC0 �! DICUT 6.5 6.5PC1 �! CUT/0 9 9PC1 �! DICUT 6.5 6.5RMBC �! 2CSP 11 5 5RMBC �! 3SAT 4 4RMBC �! 2SAT 11 11RMBC00 �! CUT/0 11 8 8RMBC00 �! DICUT 6 6RMBC01 �! CUT/0 12 8 8RMBC01 �! DICUT 6.5 6.5RMBC10 �! CUT/0 12 9 9RMBC10 �! DICUT 6.5 6.5RMBC11 �! CUT/0 12 9 9RMBC11 �! DICUT 7 7Table 2.1All gadgets des
ribed are provably optimal, and stri
t. The sole ex
eption (y) is the best possiblestri
t gadget; there is a non-stri
t 3-gadget. All \previous" results quoted are interpretations of theresults in [2℄, ex
ept the gadget redu
ing 3SAT to 2SAT, whi
h is due to [6℄, and the gadget redu
ingPC to 3SAT, whi
h is folklore.Thus, using CUT=0, DICUT, 2CSP, EkSAT and kSAT as the target of gadget 
on-stru
tions from PC0 and PC1, we 
an show the hardness of MAX CUT, MAX DICUT,MAX 2CSP, MAX EkSAT and MAX kSAT respe
tively. Furthermore, minimizingthe value of � in the gadgets gives better hardness results.3. The Basi
 Pro
edure. The key aspe
t of making the gadget sear
h spa
es�nite is to limit the number of auxiliary variables, by showing that dupli
ates (in asense to be 
lari�ed) 
an be eliminated by means of proper substitutions. In general,this is possible if the target of the redu
tion is a \hereditary" family as de�ned below.Definition 3.1. A 
onstraint family F is hereditary if for any f 2 F ofarity k, and any two indi
es i; j 2 [k℄, the fun
tion f when restri
ted to Xi � Xjand 
onsidered as a fun
tion of k � 1 variables, is identi
al (up to the order of thearguments) to some other fun
tion f 0 2 F [f0; 1g (where 0 and 1 denote the 
onstantfun
tions).Definition 3.2. A family F is 
omplementation-
losed if it is hereditaryand, for any f 2 F of arity k, and any index i 2 [k℄, the fun
tion f 0 given byf 0(X1; : : : ; Xk) = f(X1; : : : ; Xi�1;:Xi; Xi+1; : : : ; Xk) is 
ontained in F .Definition 3.3 (Partial Gadget). For � 2 R+, S � f0; 1gk, a 
onstraint fun
-tion f : f0; 1gk ! f0; 1g, and a 
onstraint family F : an S-partial �-gadget (or\S-partial gadget with performan
e �") redu
ing f to F is a �nite 
olle
tion of 
on-straints C1; : : : ; Cm from F over primary variables X1; : : : ; Xk and �nitely many aux-
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olle
tion of non-negative real weights w1; : : : ; wm,with the property that, for boolean assignments ~a to X1; : : : ; Xk and ~b to Y1; : : : ; Yn,the following are satis�ed:(8~a 2 f0; 1gk : f(~a) = 1) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �;(3.1) (8~a 2 S : f(~a) = 1) (9~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) = �;(3.2) (8~a 2 f0; 1gk : f(~a) = 0) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �� 1:(3.3) (8~a 2 S : f(~a) = 0) (9~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) = �� 1:(3.4)We use the shorthand notation � = (~Y ; ~C; ~w) to denote the partial gadget.The following proposition follows immediately from the de�nitions of a gadgetand a partial gadget.Proposition 3.4. For a 
onstraint fun
tion f : f0; 1gk ! f0; 1g, let S1 = f~a 2f0; 1gk : f(~a) = 1g and let S2 = f0; 1gk. Then for every � 2 R+ and 
onstraintfamily F :1. An S1-partial �-gadget redu
ing f to F is an �-gadget redu
ing f to F .2. An S2-partial �-gadget redu
ing f to F is a stri
t �-gadget redu
ing f to F .Definition 3.5. For � � 1 and S � f0; 1gk, let � = (~Y ; ~C; ~w) be an S-partial�-gadget redu
ing a 
onstraint f : f0; 1gk ! f0; 1g to a 
onstraint family F . We saythat the fun
tion b : S ! f0; 1gn is a witness for the partial gadget, witnessing theset S, if b(~a) satis�es equations (3.2) and (3.4). Spe
i�
ally:(8~a 2 S : f(~a) = 1) : mXj=1wjCj(~a; b(~a)) = �; and(8~a 2 S : f(~a) = 0) : mXj=1wjCj(~a; b(~a)) = �� 1:The witness fun
tion 
an also be represented as an jSj � (k + n)-matrix Wb whoserows are the ve
tors (~a; b(~a)). Noti
e that the 
olumns of the matrix 
orrespond to thevariables of the gadget, with the �rst k 
olumns 
orresponding to primary variables,and the last n 
orresponding to auxiliary variables. In what follows we shall oftenprefer the matrix notation.Definition 3.6. For a set S � f0; 1gk let MS be the matrix whose rows arethe ve
tors ~a 2 S, let k0S be the number of distin
t 
olumns in MS, and let k00S bethe number of 
olumns in MS distin
t up to 
omplementation. Given a 
onstraint fof arity k and a hereditary 
onstraint family F that is not 
omplementation-
losed,an (S; f;F)-
anoni
al witness matrix (for an S-partial gadget redu
ing f to F)is the jSj � (2jSj + k � k0S) matrix W whose �rst k 
olumns 
orrespond to the kprimary variables and whose remaining 
olumns are all possible 
olumn ve
tors that
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t from one another and from the 
olumns 
orresponding to the primaryvariables. If F is 
omplementation-
losed, then a 
anoni
al witness matrix is thejSj � (2jSj�1 + k � k00S) matrix W whose �rst k 
olumns 
orrespond to the k primaryvariables and whose remaining 
olumns are all possible 
olumn ve
tors that are distin
tup to 
omplementation from one another and from the 
olumns 
orresponding to theprimary variables.The following lemma is the 
rux of this paper and establishes that the optimalgadget redu
ing a 
onstraint fun
tion f to a hereditary family F is �nite. To motivatethe lemma, we �rst present an example, due to Karlo� and Zwi
k [11℄, showing thatthis need not hold if the family F is not hereditary. Their 
ounterexample has f(a) = aand F = fPC1g. Using k auxiliary variables, Y1; : : : ; Yk, one may 
onstru
t a gadgetfor the 
onstraint X , using the 
onstraints X � Yi � Yj , 1 � i < j � k, with ea
h
onstraint having the same weight. For an appropriate 
hoi
e of this weight it maybe veri�ed that this yields a (2� 2=k)-gadget for even k; thus the performan
e tendsto 2 in the limit. On the other hand it 
an be shown that any gadget with k auxiliaryvariables has performan
e at most 2� 21�k; thus no �nite gadget a
hieves the limit.It is 
lear that for this example the la
k of hereditariness is 
riti
al: any hereditaryfamily 
ontaining PC1 would also 
ontain f , providing a trivial 1-gadget.To see why the hereditary property helps in general, 
onsider an �-gadget �redu
ing f to F , and let W be a witness matrix for �. Suppose two 
olumns of W ,
orresponding to auxiliary variables Y1 and Y2 of �, are identi
al. Then we 
laim that� does not really need the variable Y2. In every 
onstraint 
ontaining Y2, repla
e itwith Y1, to yield a new 
olle
tion of weighted 
onstraints. By the hereditary propertyof F , all the resulting 
onstraints are from F . And, the resulting instan
e satis�esall the properties of an �-gadget. (The universal properties follow trivially, whilethe existential properties follow from the fa
t that in the witness matrix Y1 and Y2have the same assignment.) Thus this 
olle
tion of 
onstraints forms a gadget withfewer variables and performan
e at least as good. The �niteness follows from thefa
t a witness matrix with distin
t 
olumns has a bounded number of 
olumns. Thefollowing lemma formalizes this argument. In addition it also des
ribes the 
anoni
alwitness matrix for an optimal gadget | something that will be of use later.Lemma 3.7. For � � 1, set S � f0; 1gk, 
onstraint f : f0; 1gk ! f0; 1g andhereditary 
onstraint family F, if there exists an S-partial �-gadget � redu
ing f toF , with witness matrix W , then for any (S; f;F)-
anoni
al witness matrix W 0, andsome �0 � �, there exists an �0-gadget �0 redu
ing f to F , with W 0 as a witnessmatrix.Proof. We �rst 
onsider the 
ase where F is not 
omplementation-
losed. Let� = (~Y ; ~C; ~w) be an S-partial �-gadget redu
ing f to F and let W be a witnessmatrix for �. We 
reate a gadget �0 with n0 = 2jSj�k0 auxiliary variables Y 01 ; : : : ; Y 0n0 ,one asso
iated with ea
h 
olumn of the matrix W 0 other than the �rst k.With ea
h variable Yi of � we asso
iate a variable Z su
h that the 
olumn 
orre-sponding to Yi in W is the same as the 
olumn 
orresponding to Z inW 0. Noti
e thatZ may be one of the primary variables X1; : : : ; Xk or one of the auxiliary variablesY 01 ; : : : ; Y 0n0 . By de�nition of a 
anoni
al witness, su
h a 
olumn and hen
e variable Zdoes exist.Now for every 
onstraint Cj on variables Yi1 ; : : : ; Yik in � with weight wj , weintrodu
e the 
onstraint Cj on variables Y 0i01 ; : : : ; Y 0i0k in �0 with weight wj where Y 0i0lis the variable asso
iated with Yil . Noti
e that in this pro
ess the variables involved
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onstraint do not ne
essarily remain distin
t. This is where the hereditaryproperty of F is used to ensure that a 
onstraint Cj 2 F , when applied to a tupleof non-distin
t variables, remains a 
onstraint in F . In the pro
ess we may arriveat some 
onstraints whi
h are either always satis�ed or never satis�ed. For the timebeing, we assume that the 
onstraints 0 and 1 are 
ontained in F , so this o

urren
edoes not 
ause a problem. Later we show how this assumption is removed.This 
ompletes the des
ription of �0. To verify that �0 is indeed an S-partial�-gadget, we noti
e that the universal 
onstraints (
onditions (3.1) and (3.3) in Def-inition 3.3) are trivially satis�ed, sin
e �0 is obtained from � by renaming some vari-ables and possibly identifying some others. To see that the existential 
onstraints(
onditions (3.2) and (3.4) in De�nition 3.3) are satis�ed, noti
e that the assignmentsto the variables ~Y that witness these 
onditions in � are allowable assignments tothe 
orresponding variables in ~Y 0 and in fa
t this is what di
tated our asso
iation ofvariables in ~Y to the variables in ~Y 0. Thus �0 is indeed an S-partial �-gadget redu
ingf to F , and, by 
onstru
tion, has W 0 as a witness matrix.Last, we remove the assumption that �0 must in
lude 
onstraints 0 and 1. Any
onstraints 0 
an be safely thrown out of the gadget without 
hanging any of the pa-rameters, sin
e su
h 
onstraints are never satis�ed. On the other hand, 
onstraints 1do a�e
t �. If we throw away a 1 
onstraint of weight wj , this redu
es the total weightof satis�ed 
lauses in every assignment by wj . Throwing away all su
h 
onstraintsredu
es � by the total weight of the 1 
onstraints, produ
ing a gadget of (improved)performan
e �0 � �.Finally, we des
ribe the modi�
ations required to handle the 
ase where F is
omplementation-
losed (in whi
h 
ase the de�nition of a 
anoni
al witness 
hanges).Here, for ea
h variable Yi and its asso
iated 
olumn of W , either there is an equal
olumn in W 0, in whi
h 
ase we repla
e Yi with the 
olumn's asso
iated variableY 0i0 , or there is a 
omplementary 
olumn in W 0, in whi
h 
ase we repla
e Yi withthe negation of the 
olumn's asso
iated variable, :Y 0i0 , The rest of the 
onstru
tionpro
eeds as above, and the proof of 
orre
tness is the same.It is an immediate 
onsequen
e of Lemma 3.7 that an optimum gadget redu
ing a
onstraint fun
tion to a hereditary family does not need to use more than an expli
itlybounded number of auxiliary variable.Corollary 3.8. Let f be a 
onstraint fun
tion of arity k with s satisfyingassignments. Let F be a 
onstraint family and � � 1 be su
h that there exists an�-gadget redu
ing f to F .1. If F is hereditary then there exists an �0-gadget with at most 2s�k0 auxiliaryvariables redu
ing f to F , where �0 � �, and k0 is the number of distin
tvariables among the satisfying assignments of f .2. If F is 
omplementation-
losed then there exists an �0-gadget with at most2s�1 � k00 auxiliary variables redu
ing f to F , for some �0 � �, where k00 isthe number of distin
t variables, up to 
omplementation, among the satisfyingassignments of f .Corollary 3.9. Let f be a 
onstraint fun
tion of arity k. Let F be a 
onstraintfamily and � � 1 be su
h that there exists a stri
t �-gadget redu
ing f to F .1. If F is hereditary then there exists a stri
t �0-gadget with at most 22k � kauxiliary variables redu
ing f to F , for some �0 � �.2. If F is 
omplementation-
losed then there exists a stri
t �0-gadget with atmost 22k�1 � k auxiliary variables redu
ing f to F , for some �0 � �.
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ast the sear
h for an optimum gadget as a linear program-ming problem.Definition 3.10. For a 
onstraint fun
tion f of arity k, 
onstraint family F ,and s� (k+n) witness matrix M , LP(f;F ;M) is a linear program de�ned as follows:� Let C1; : : : ; Cm be all the possible distin
t 
onstraints that arise from applyinga 
onstraint fun
tion from F to a set of n + k Boolean variables. Thus forevery j, Cj : f0; 1gk+n ! f0; 1g. The LP variables are w1; : : : ; wm, where wj
orresponds to the weight of the 
onstraint Cj . Additionally the LP has onemore variable �.� Let S � f0; 1gk and b : S ! f0; 1gn be su
h that M = Wb (i.e., M is thewitness matrix 
orresponding to the witness fun
tion b for the set S). TheLP inequalities 
orrespond to the de�nition of an S-partial gadget.(8~a 2 f0; 1gk : f(~a) = 1) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �;(3.5) (8~a 2 S : f(~a) = 1) : mXj=1wjCj(~a; b(~a)) = �;(3.6) (8~a 2 f0; 1gk : f(~a) = 0) (8~b 2 f0; 1gn) : mXj=1wjCj(~a;~b) � �� 1;(3.7) (8~a 2 S : f(~a) = 0) : mXj=1wjCj(~a; b(~a)) = �� 1:(3.8)Finally the LP has the inequalities wj � 0.� The obje
tive of the LP is to minimize �.Proposition 3.11. For any 
onstraint fun
tion f of arity k, 
onstraint familyF , and s � (k + n) witness matrix M witnessing the set S � f0; 1gk, if there existsan S-partial gadget redu
ing f to F with witness matrix M , then LP(f;F ;M) �ndssu
h a gadget with the minimum possible �.Proof. The LP-generated gadget 
onsists of k primary variables X1; : : : ; Xk 
or-responding to the �rst k 
olumns ofM ; n auxiliary variables Y1; : : : ; Yn 
orrespondingto the remaining n 
olumns ofM ; 
onstraints C1; : : : ; Cm as de�ned in De�nition 3.10;and weights w1; : : : ; wm as returned by LP(f;F ;M). By 
onstru
tion the LP solutionreturns the minimum possible � for whi
h an S-partial �-gadget redu
ing f to F withwitness M exists.Theorem 3.12 (Main). Let f be a 
onstraint fun
tion of arity k with s satisfyingassignments. Let k0 be the number of distin
t variables of f and k00 be the numberof distin
t variables up to 
omplementation. Let F be a hereditary 
onstraint familywith fun
tions of arity at most l. Then:� If there exists an �-gadget redu
ing f to F , then there exists su
h a gadget withat most v auxiliary variables, where v = 2s�1 � k00 if F is 
omplementation-
losed and v = 2s � k0 otherwise.� If there exists a stri
t �-gadget redu
ing f to F then there exists su
h agadget with at most v auxiliary variables, where v = 22k�1 � k00 if F is
omplementation-
losed and v = 22k � k0 otherwise.Furthermore su
h a gadget with smallest performan
e 
an be found by solving a linearprogram with at most jFj � (v + k)l variables and 2v+k 
onstraints.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 13Remark: The sizes given above are upper bounds. In spe
i�
 instan
es, the sizesmay be mu
h smaller. In parti
ular, if the 
onstraints of F exhibit symmetries, orare not all of the same arity, then the number of variables of the linear program willbe mu
h smaller.Proof. By Proposition 3.11 and Lemma 3.7, we have that LP(f;F ;WS) yieldsan optimal S-partial gadget if one exists. By Proposition 3.4 the setting S = S1 =f~ajf(~a) = 1g gives a gadget, and the setting S = S2 = f0; 1gk gives a stri
t gadget.Corollaries 3.8 and 3.9 give the required bound on the number of auxiliary variables;and the size of the LP then follows from the de�nition.To 
on
lude this se
tion, we mention some (obvious) fa
ts that be
ome relevantwhen sear
hing for large gadgets. First, if S0 � S, then the performan
e of an S0-partial gadget redu
ing f to F is also a lower bound on the performan
e of an S-partialgadget redu
ing f to F . The advantage here is that the sear
h for an S0-partial gadgetmay be mu
h faster. Similarly, to get upper bounds on the performan
e of an S-partialgadget, one may use other witness matri
es for S (rather than the 
anoni
al one); inparti
ular ones with (many) fewer 
olumns. This 
orresponds to making a 
hoi
e ofauxiliary variables not to be used in su
h a gadget.4. Improved Negative Results.4.1. MAX CUT. We begin by showing an improved hardness result for theMAX CUT problem. It is not diÆ
ult to see that no gadget per De�nition 2.5 
anredu
e any member of PC to CUT: for any setting of the variables whi
h satis�esequation (2.2), the 
omplementary setting has the opposite parity (so that it must besubje
t to inequality (2.3)), but the values of all the CUT 
onstraints are un
hanged,so that the gadget's value is still �, violating (2.3). Following [2℄, we use instead thefa
t that MAX CUT and MAX CUT/0 are equivalent with respe
t to approximationas shown below.Proposition 4.1. MAX CUT is equivalent to MAX CUT/0. Spe
i�
ally, givenan instan
e I of either problem, we 
an 
reate an an instan
e I 0 of the other with thesame optimum and with the feature that an assignment satisfying 
onstraints of totalweight W to the latter 
an be transformed into an assignment satisfying 
onstraintsof the same total weight in I.Proof. The redu
tion from MAX CUT to MAX CUT/0 is trivial, sin
e the familyCUT/0 
ontains CUT; and thus the identity map provides the required redu
tion.In the reverse dire
tion, given an instan
e ( ~X; ~C; ~w) of MAX CUT/0 with nvariables and m 
lauses, we 
reate an instan
e ( ~X 0; ~C 0; ~w) of MAX CUT with n + 1variables and m 
lauses. The variables are simply the variables ~X with one additionalvariable 
alled 0. The 
onstraints of ~C are transformed as follows. If the 
onstraintis a CUT 
onstraint on variables Xi and Xj it is retained as is. If the 
onstraint isT (Xi) it is repla
ed with the 
onstraint CUT(Xi; 0). Given a assignment ~a to theve
tor ~X 0, noti
e that its 
omplement also satis�es the same number of 
onstraintsin I 0. We pi
k the one among the two that sets the variable 0 to 0, and then observethat the indu
ed assignment to ~X satis�es the 
orresponding 
lauses of I.Thus we 
an look for redu
tions to CUT/0. Noti
e that the CUT=0 
onstraintfamily is hereditary, sin
e identifying the two variables in a CUT 
onstraint yields the
onstant fun
tion 0. Thus by Theorem 3.12, if there is an �-gadget redu
ing PC0 toCUT=0, then there is an �-gadget with at most 13 auxiliary variables (16 variablesin all). Only �162 � = 120 CUT 
onstraints are possible on 16 variables. Sin
e we only
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0

x1

x2

x3Fig. 4.1. 8-gadget redu
ing PC0 to CUT. Every edge has weight .5. The auxiliary variablewhi
h is always 0 is labelled 0.need to 
onsider the 
ases when Y1 = 0, we 
an 
onstru
t a linear program as abovewith 216�1 + 4 = 32; 772 
onstraints to �nd the optimal �-gadget redu
ing PC0 toCUT=0. A linear program of the same size 
an similarly be 
onstru
ted to �nd agadget redu
ing PC1 to CUT=0.Lemma 4.2. There exists an 8-gadget redu
ing PC0 to CUT=0, and it is optimaland stri
t.We show the resulting gadget in Figure 4.1 as a graph. The primary variables arelabelled x1; x2 and x3, while 0 is a spe
ial variable. The unlabelled verti
es areauxiliary variables. Ea
h 
onstraint of non-zero weight is shown as an edge. An edgebetween the vertex 0 and some vertex x 
orresponds to the 
onstraint T (x). Anyother edge between x and y represents the 
onstraint CUT(x; y). Note that some ofthe 13 possible auxiliary variables do not appear in any positive weight 
onstraint andthus are omitted from the graph. All non-zero weight 
onstraints have weight .5.By the same methodology, we 
an prove the following.Lemma 4.3. There exists a 9-gadget redu
ing PC1 to CUT=0, and it is optimaland stri
t.The gadget is similar to the previous one, but the old vertex 0 is renamed Z, anda new vertex labelled 0 is joined to Z by an edge of weight 1.The two lemmas along with Proposition 4.1 above imply the following theorem.Theorem 4.4. For every � > 0, MAX CUT is hard to approximate to within16=17+ �.Proof. Combining Theorem 2.8 with Lemmas 4.2 and 4.3 we �nd that MAX CUT/0is hard to approximate to within 16=17+ �. The theorem then follows from Proposi-tion 4.1.RMBC gadgets. Finding RMBC gadgets was more diÆ
ult. We dis
uss thispoint sin
e it leads to ideas that 
an be applied in general when �nding large gad-gets. Indeed, it turned out that we 
ouldn't exa
tly apply the te
hnique aboveto �nd an optimal gadget redu
ing, say, RMBC00 to CUT=0. (Re
all that theRMBC00(a1; a2; a3; a4) is the fun
tion (a3; a4)[a1℄ ?= a2.) Sin
e there are 8 satisfyingassignments to the 4 variables of the RMBC00 
onstraint, by Theorem 3.12, we wouldneed to 
onsider 28 � 4 = 252 auxiliary variables, leading to a linear program with2252 + 8 
onstraints, whi
h is somewhat beyond the 
apa
ity of 
urrent 
omputing
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hines. To over
ome this diÆ
ulty, we observed that for the RMBC00 fun
tion, thevalue of a4 is irrelevant when a1 = 0 and the value of a3 is irrelevant when a1 = 1. Thisled us to try only restri
ted witness fun
tions for whi
h ~b(0; a2; a3; 0) = ~b(0; a2; a3; 1)and ~b(1; a2; 0; a4) = ~b(1; a2; 1; a4) (dropping from the witness matrix 
olumns violat-ing the above 
onditions), even though it is not evident a priori that a gadget witha witness fun
tion of this form exists. The number of distin
t variable 
olumns thatsu
h a witness matrix 
an have is at most 16. Ex
luding auxiliary variables identi
alto a1 or a2, we 
onsidered gadgets with at most 14 auxiliary variables. We then 
re-ated a linear program with �182 � = 153 variables and 218�1+8 = 131; 080 
onstraints.The result of the linear program was that there exists an 8-gadget with 
onstant 0redu
ing RMBC00 to CUT, and that it is stri
t. Sin
e we used a restri
ted witnessfun
tion, the linear program does not prove that this gadget is optimal.However, lower bounds 
an be established through 
onstru
tion of optimal S-partial gadgets. If S is a subset of the set of satisfying assignments of RMBC00, thenits de�ning equalities and inequalities (see De�nition 3.3) are a subset of those for agadget, and thus the performan
e of the partial gadget is a lower bound for that of atrue gadget.In fa
t, we have always been lu
ky with the latter te
hnique, in that some 
hoi
eof the set S has always yielded a lower bound and a mat
hing gadget. In parti
ular,for redu
tions from RMBC to CUT, we have the following result.Theorem 4.5. There is an 8-gadget redu
ing RMBC00 to CUT=0, and it isoptimal and stri
t; there is an 8-gadget redu
ing RMBC01 to CUT=0, and it is optimaland stri
t; there is a 9-gadget redu
ing RMBC10 to CUT=0, and it is optimal andstri
t; and there is a 9-gadget redu
ing RMBC11 to CUT=0, and it is optimal andstri
t.Proof. In ea
h 
ase, for some set S of satisfying assignments, an optimal S-partial gadget also happens to be a true gadget, and stri
t. In the same notation asin De�nition 2.6, the appropriate sets S of 4-tuples (a; b; 
; d) are: for RMBC00, S =f0001; 1101; 0110; 1010g; for RMBC01, S = f0000; 1100; 0111; 1011g; for RMBC10,S = f0100; 1000; 0011; 1111g; and for RMBC11, S = f0101; 1001; 0010; 1110g.4.2. MAX DICUT. As in the previous subse
tion, we observe that if thereexists an �-gadget redu
ing an element of PC to DICUT, there exists an �-gadget with13 auxiliary variables. This leads to linear programs with 16�15 variables (one for ea
hpossible DICUT 
onstraint, 
orresponding to a dire
ted edge) and 216 + 4 = 65; 540linear 
onstraints. The solution to the linear programs gives the following.Lemma 4.6. There exist 6:5-gadgets redu
ing PC0 and PC1 to DICUT, and theyare optimal and stri
t.The PC0 gadget is shown in Figure 4.2. Again x1, x2 and x3 refer to the primaryvariable and an edge from x to y represents the 
onstraint :x^b. The PC1 gadget issimilar, but has all edges reversed.Theorem 4.7. For every � > 0, MAX DICUT is hard to approximate to within12=13+ �.RMBC gadgets. As with the redu
tions to CUT=0, redu
tions from the RMBCfamily members to DICUT 
an be done by 
onstru
ting optimal S-partial gadgets,and again (with fortuitous 
hoi
es of S) these turn out to be true gadgets, and stri
t.Theorem 4.8. There is a 6-gadget redu
ing RMBC00 to DICUT, and it isoptimal and stri
t; there is a 6.5-gadget redu
ing RMBC01 to DICUT, and it is optimaland stri
t; there is a 6.5-gadget redu
ing RMBC10 to DICUT, and it is optimal and
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Fig. 4.2. 8-gadget redu
ing PC0 to DICUT. Edges have weight 1 ex
ept when marked otherwise.stri
t; and there is a 7-gadget redu
ing RMBC11 to DICUT, and it is optimal andstri
t.Proof. Using, 
ase by 
ase, the same sets S as in the proof of Theorem 4.5, againyields in ea
h 
ase an optimal S-partial gadget that also happens to be a true, stri
tgadget.4.3. MAX 2-CSP. For redu
ing an element of PC to the 2CSP family we need
onsider only 4 auxiliary variables, for a total of 7 variables. There are two non-
onstant fun
tions on a single variable, and twelve non-
onstant fun
tions on pairs ofvariables, so that there are 2 � 7+ 12 � �72� = 266 fun
tions to 
onsider overall. We 
anagain set up a linear program with a variable per fun
tion and 27 + 4 = 132 linear
onstraints. We obtain the following.Lemma 4.9. There exist 5-gadgets redu
ing PC0 and PC1 to 2CSP, and they areoptimal and stri
t.The gadget redu
ing PC0 to 2CSP is the following:X1 ^ :Y1; X1 ^ Y2; :X1 ^ Y3; :X1 ^ Y4;X2 ^ :Y1; :X2 ^ Y2; X2 ^ Y3; :X2 ^ Y4;:X3 ^ Y1; X3 ^ :Y2; X3 ^ :Y3; :X3 ^ :Y4:The gadget redu
ing PC1 to 2CSP 
an be obtained from this one by 
omplementingall the o

urren
es of X1.Theorem 4.10. For every � > 0, MAX 2CSP is hard to approximate to within9=10+ �.MAX 2CSP 
an be approximated within :859 [5℄. The above theorem has im-pli
ations for probabilisti
ally 
he
kable proofs. Reversing the well-known redu
tionfrom 
onstraint satisfa
tion problems to probabilisti
ally 
he
kable proofs (
f. [1℄)3,Theorem 4.10 yields the following theorem.Theorem 4.11. For any � > 0, 
onstants 
 and s exist su
h that NP �PCP
;s[log; 2℄ and 
=s > 10=9� �.The previously known gap between the 
ompleteness and soundness a
hievable readingtwo bits was 74=73 [2℄. It would be 22=21� � using H�astad's result [9℄ in 
ombination3The reverse 
onne
tion is by now a folklore result and may be proved along the lines of [2,Proposition 10.3, Part (3)℄.
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tually the redu
tion from 
onstraint satisfa
tion problemsto probabilisti
ally 
he
kable proofs is reversible, and this will be important in Se
tion7. RMBC gadgets. Theorem 4.12. For ea
h element of RMBC, there is a 5-gadgetredu
ing it to 2CSP, and it is optimal and stri
t.Proof. Using the same sele
ted assignments as in Theorems 4.5 and 4.8 againyields lower bounds and mat
hing stri
t gadgets.5. Interlude: Methodology. Despite their seeming variety, all the gadgets inthis paper were 
omputed using a single program (in the language APL2) to generatean LP, and 
all upon OSL (the IBM Optimization Subroutine Library) to solve it.This \gadget-generating" program takes several parameters.The sour
e fun
tion f is spe
i�ed expli
itly, by a small program that 
omputesf . The target family F is des
ribed by a single fun
tion, implemented as a smallprogram, applied to all possible 
lauses of spe
i�ed lengths and symmetries. Thesymmetries are 
hosen from among: whether 
lauses are unordered or ordered; whethertheir variables may be 
omplemented; and whether they may in
lude the 
onstants 0or 1. For example, a redu
tion to MAX CUT=0 would take as F the fun
tion x1�x2,applied over unordered binomial 
lauses, in whi
h 
omplementation is not allowedbut the 
onstant 0 is allowed. This means of des
ribing F is relatively intuitive andhas never restri
ted us, even though it is not 
ompletely general. Finally, we spe
ifyan arbitrary set S of sele
ted assignments, whi
h allows us to sear
h for S-partialgadgets (re
all De�nition 3.3). From equations (3.2) and (3.4), ea
h sele
ted assign-ment ~a generates a 
onstraint that (9~b) : Pj wjCj(~a;~b) = � � (1 � f(~a)). Sele
tingall satisfying assignments of f reprodu
es the set of 
onstraints (2.2) for an �-gadget,while sele
ting all assignments reprodu
es the set of 
onstraints (2.2) and (2.4) for astri
t �-gadget.Sele
ted assignments are spe
i�ed expli
itly; by default, to produ
e an ordinarygadget, they are the satisfying assignments of f . The 
anoni
al witness for the sele
tedset of assignments is generated by our program as governed by De�nition 3.6. Noti
ethat the de�nition of the witness depends on whether F is 
omplementation-
losedor not, and this is determined by the expli
itly spe
i�ed symmetries.To fa
ilitate the generation of restri
ted witness matri
es, we have also madeuse of a \don't-
are" state (in lieu of 0 or 1) to redu
e the number of sele
ted assign-ments. For example in redu
tions from RMBC00 we have used sele
ted assignmentsof (00 � 0) (011�) (10 � 0), and (11 � 1). The various LP 
onstraints must be satis�edfor both values of any don't-
are, while the witness fun
tion must not depend onthe don't-
are values. So in this example, use of a don't-
are redu
es the numberof sele
ted assignments from 8 to 4, redu
es the number of auxiliary variables fromabout 28 to 24 (ignoring dupli
ations of the 4 primary variables, or any symmetries),and redu
es the number of 
onstraints in the LP from 228 (about 1077) to 224 (amore reasonable 65,536). Use of don't-
ares provides a te
hnique 
omplementary tosele
ting a subset of all satisfying assignments, in that if the LP is feasible it providesan upper bound and a gadget, but the gadget may not be optimal.In pra
ti
e, sele
ting a subset of satisfying assignments has been by far the moreuseful of the two te
hniques; so far we have always been able to 
hoose a subset whi
hprodu
es a lower bound and a gadget to mat
h.
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onstru
ting and solving an LP, the gadget-generating program uses brutefor
e to make an independent veri�
ation of the gadget's validity, performan
e, andstri
tness.The hardest 
omputations were those for gadgets redu
ing from RMBC; on anIBM Ris
 System/6000 model 43P-240 workstation, running at 233MHz, these tookup to half an hour and used 500MB or so of memory. However, the strength of [9℄makes PC virtually the sole sour
e fun
tion of 
ontemporary interest, and all theredu
tions from PC are easy; they use very little memory, and run in se
onds on anordinary 233MHz Pentium pro
essor.6. Improved Positive Results. In this se
tion we show that we 
an use gad-gets to improve approximation algorithms. In parti
ular, we look at MAX 3SAT, anda variation, MAX 3ConjSAT, in whi
h ea
h 
lause is a 
onjun
tion (rather than adisjun
tion) of three literals. An improved approximation algorithm for the latterproblem leads to improved results for probabilisti
ally 
he
kable proofs in whi
h theveri�er examines only 3 bits. Both of the improved approximation algorithms rely onstri
t gadgets redu
ing the problem to MAX 2SAT. We begin with some notation.Definition 6.1. A (�1; �2)-approximation algorithm for MAX 2SAT is an algo-rithm whi
h re
eives as input an instan
e with unary 
lauses of total weight m1 andbinary 
lauses of total weight m2, and two reals u1 � m1 and u2 � m2, and produ
esreals s1 � u1 and s2 � u2 and an assignment satisfying 
lauses of total weight atleast �1s1 + �2s2. If there exists an optimum solution that satis�es unary 
lauses ofweight no more than u1 and binary 
lauses of weight no more than u2, then there is aguarantee that no assignment satis�es 
lauses of total weight more than s1+s2. Thatis, supplied with a pair of \upper bounds" u1; u2, a (�1; �2)-approximation algorithmprodu
es a single upper bound of s1+s2, along with an assignment respe
ting a lowerbound of �1s1 + �2s2.Lemma 6.2. [5℄ There exists a polynomial-time (:976; :931)-approximation algo-rithm for MAX 2SAT.6.1. MAX 3SAT. In this se
tion we show how to derive an improved approxi-mation algorithm for MAX 3SAT. By restri
ting te
hniques in [8℄ from MAX SAT toMAX 3SAT and using a :931-approximation algorithm for MAX 2SAT due to Feigeand Goemans [5℄, one 
an obtain a :7704-approximation algorithm for MAX 3SAT.The basi
 idea of [8℄ is to redu
e ea
h 
lause of length 3 to the three possible sub-
lauses of length 2, give ea
h new length-2 
lause one-third the original weight, andthen apply an approximation algorithm for MAX 2SAT. This approximation algo-rithm is then \balan
ed" with another approximation algorithm for MAX 3SAT toobtain the result. Here we show that by using a stri
t gadget to redu
e 3SAT toMAX 2SAT, a good (�1; �2)-approximation algorithm for MAX 2SAT leads to a :801-approximation algorithm for MAX 3SAT.Lemma 6.3. If for every f 2 E3SAT there exists a stri
t �-gadget redu
ing fto 2SAT, there exists a (�1; �2)-approximation algorithm for MAX 2SAT, and � �1 + (�1��2)2(1��2) , then there exists a �-approximation algorithm for MAX 3SAT with� = 12 + (�1 � 1=2)(3=8)(�� 1)(1� �2) + (�1 � �2) + (3=8) :Proof. Let � be an instan
e of MAX 3SAT with length-1 
lauses of total weightm1, length-2 
lauses of total weight m2, and length-3 
lauses of total weight m3.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 19We use the two algorithms listed below, getting the 
orresponding upper and lowerbounds on number of satis�able 
lauses:� Random: We set ea
h variable to 1 with probability 1=2. This gives a solutionof weight at least m1=2 + 3m2=4 + 7m3=8.� Semide�nite programming: We use the stri
t �-gadget to redu
e every length-3 
lause to length-2 
lauses. This gives an instan
e of MAX 2SAT. We applythe (�1; �2)-approximation algorithm with parameters u1 = m1 and u2 =m2+�m3 to �nd an approximate solution to this problem. The approximationalgorithm gives an upper bound s1 + s2 on the weight of any solution tothe MAX 2SAT instan
e and an assignment of weight �1s1 + �2s2. Whentranslated ba
k to the MAX 3SAT instan
e, the assignment has weight atleast �1s1 + �2s2 � (� � 1)m3. Furthermore, s1 � m1, s2 � m2 + �m3,and the maximum weight satis�able in the MAX 3SAT instan
e is at mosts1 + s2 � (�� 1)m3.The performan
e guarantee of the algorithm whi
h takes the better of the twosolutions is at least�1 def= mins1�m1s2�m2+�m3 maxfm1=2 + 3m2=4 + 7m3=8; �1s1 + �2s2 � (�� 1)m3gs1 + s2 � (�� 1)m3 :We now de�ne a sequen
e of simpli�
ations whi
h will help prove the bound.�2 def= mint1�m1t2�m2+m3 1t1 + t2 maxf m1=2 + 3m2=4 + 7m3=8;�1t1 + �2t2 � (1� �2)(�� 1)m3g�3 def= mint1�m1t2�m2+m3 1t1 + t2 maxf t1=2 + 3t2=4 +m3=8;t1=2 + 7m3=8;�1t1 + �2t2 � (1� �2)(�� 1)m3g�4 def= mint2�t 1t maxf t=2 + t2=4 +m3=8;t=2� t2=2 + 7m3=8;�1t� (�1 � �2)t2 � (1� �2)(�� 1)m3g�5 def= 12 + � 38 (�1 � 12 )(1� �2)(�� 1) + (�1 � �2) + 38 �To �nish the proof of the lemma, we 
laim that�1 � �2 � � � � � �5:To see this, noti
e that the �rst inequality follows from the substitution of variablest1 = s1, t2 = s2 � (� � 1)m3. The se
ond follows from the fa
t that setting m1 to t1and m2 to maxf0; t2 �m3g only redu
es the numerator. The third inequality followsfrom setting t = t1+ t2. The fourth is obtained by substituting a 
onvex 
ombinationof the arguments instead of max and then simplifying. The 
onvex 
ombination takesa �1 fra
tion of the �rst argument, �2 of the se
ond and �3 of the third, where�1 = 23 (1� �2)(�� 1) + 76 (�1 � �2)(1� �2)(� � 1) + (�1 � �2) + 38 ;



20 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSON�2 = 13 (1� �2)(� � 1)� 16 (�1 � �2)(1� �2)(�� 1) + (�1 � �2) + 38and �3 = 38(1� �2)(� � 1) + (�1 � �2) + 38 :Observe that �1 + �2 + �3 = 1 and that the 
ondition on � guarantees that �2 � 0.Remark 6.4. The analysis given in the proof of the above lemma is tight. Inparti
ular for an instan
e with m 
lauses su
h thatm3 def= m �1 � 1=2(1� �2)(� � 1) + (�1 � �2) + 3=8 ;m1 def= m�m3, m2 def= 0, s1 = m1, and s2 = �m3, it is easy to see that �1 = �5.The following lemma gives the stri
t gadget redu
ing fun
tions in E3SAT to2SAT. Noti
e that �nding stri
t gadgets is almost as forbidding as �nding gadgetsfor RMBC, sin
e there are 8 existential 
onstraints in the spe
i�
ation of a gadget.This time we relied instead on lu
k. We looked for an S-partial gadget for the setS = f111; 100; 010; 001g and found an S-partial 3:5-gadget that turned out to be agadget! Our 
hoi
e of S was made judi
iously, but we 
ould have a�orded to runthrough all �84� sets S of size 4 in the hope that one would work.Lemma 6.5. For every fun
tion f 2 E3SAT, there exists a stri
t (and optimal)3:5-gadget redu
ing f to 2SAT.Proof. Sin
e 2SAT is 
omplementation-
losed, it is suÆ
ient to present a 3:5-gadget redu
ing (X1_X2_X3) to 2SAT. The gadget is X1 _ X3;:X1 _ :X3; X1 _:Y;:X1 _Y;X3 _:Y;:X3 _Y;X2 _ Y; where every 
lause ex
ept the last has weight1=2, and the last 
lause has weight 1.Combining Lemmas 6.2, 6.3 and 6.5 we get a :801-approximation algorithm.Theorem 6.6. MAX 3SAT has a polynomial-time :801-approximation algo-rithm.6.2. MAX 3-CONJ SAT. We now turn to the MAX 3ConjSAT problem. Theanalysis is similar to that of Lemma 6.3.Lemma 6.7. If for every f 2 3ConjSAT there exists a stri
t (�1 + �2)-gadgetredu
ing f to 2SAT 
omposed of �1 length-1 
lauses and �2 length-2 
lauses, andthere exists a (�1; �2)-approximation algorithm for MAX 2SAT, then there exists a�-approximation algorithm for MAX 3ConjSAT with� = 18�118 + (1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1)provided �1 + �2 > 1 + 1=8(1� �2).Proof. Let � be an instan
e of MAX 3ConjSAT with 
onstraints of total weightm. As in the MAX 3SAT 
ase, we use two algorithms and take the better of the twosolutions:� Random: We set every variable to 1 with probability half. The total weightof satis�ed 
onstraints is at least m=8.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 21� Semide�nite programming: We use the stri
t �-gadget to redu
e any 
on-straint to 2SAT 
lauses. This gives an instan
e of MAX 2SAT and we use the(�1; �2)-approximation algorithm with parameters u1 = �1m and u2 = �2m.The algorithm returns an upper bound s1 + s2 on the total weight of satis-�able 
onstraints in the MAX 2SAT instan
e, and an assignment of measureat least �1s1+�2s2. When translated ba
k to the MAX 3ConjSAT instan
e,the measure of the assignment is at least �1s1 + �2s2 � (�1 +�2 � 1)m. Fur-thermore, s1 � �1m, s2 � �2m, and the total weight of satis�able 
onstraintsin the MAX 3ConjSAT instan
e is at most s1 + s2 � (�1 + �2 � 1)m.Thus we get that the performan
e ratio of the algorithm whi
h takes the betterof the two solutions above is at least�1 def= mins1��1ms2��2m maxfm=8; �1s1 + �2s2 � (�1 + �2 � 1)mgs1 + s2 � (�1 + �2 � 1)m :We now de�ne a sequen
e of simpli�
ations whi
h will help prove the bound.�2 def= mint1��1mt2�(1��1)m 1t1 + t2 maxfm=8; �1t1 + �2t2 � (1� �2)(�1 + �2 � 1)mg�3 def= mint�mt2�(1��1)m 1t maxfm=8; �1t� (�1 � �2)t2 � (1� �2)(�1 + �2 � 1)mg�4 def= mint�m 1t maxfm=8; �1t� ((1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1))mg�5 def= 18�118 + (1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1)In order to prove the lemma, we 
laim that�1 � �2 � � � � � �5:To see this, observe that the �rst inequality follows from the substitution of variablest1 = s1 and t2 = s2 � (�1 + �2 � 1)m. The se
ond follows from setting t = t1 + t2.The third inequality follows from the fa
t that setting t2 to (1 � �1)m only redu
esthe numerator. The fourth is obtained by substituting a 
onvex 
ombination of thearguments instead of max and then simplifying.The following gadget was found by looking for an S-partial gadget for S =f111; 110; 101; 011g.Lemma 6.8. For any f 2 3ConjSAT there exists a stri
t (and optimal) 4-gadgetredu
ing f to 2SAT. The gadget is 
omposed of one length-1 
lause and three length-2
lauses.Proof. Re
all that 2SAT is 
omplementation-
losed, and thus it is suÆ
ient toexhibit a gadget redu
ing f(a1; a2; a3) = a1 ^ a2 ^ a3 to 2SAT. Su
h gadget is Y ,(:Y _ X1), (:Y _ X2), (:Y _ X3), where all 
lauses have weight 1. The variablesX1; X2; X3 are primary variables and Y is an auxiliary variable.



22 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONTheorem 6.9. MAX 3ConjSAT has a polynomial-time .367-approximation al-gorithm.It is shown by Trevisan [16, Theorem 18℄ that the above theorem has 
onsequen
esfor PCP
;s[log; 3℄. This is be
ause the 
omputation of the veri�er in su
h a proofsystem 
an be des
ribed by a de
ision tree of depth 3, for every 
hoi
e of randomstring. Further, there is a 1-gadget redu
ing every fun
tion whi
h 
an be 
omputedby a de
ision tree of depth k to kConjSAT.Corollary 6.10. PCP
;s[log; 3℄ � P provided that 
=s > 2:7214. The previousbest trade-o� between 
ompleteness and soundness for polynomial-time PCP 
lasseswas 
=s > 4 [16℄.7. Lower Bounds for Gadget Constru
tions. In this se
tion we shall showthat some of the gadget 
onstru
tions mentioned in this paper and in [2℄ are optimal,and we shall prove lower bounds for some other gadget 
onstru
tions.The following result is useful to prove lower bounds for the RMBC family.Lemma 7.1. If there exists an �-gadget redu
ing an element of RMBC to a
omplementation-
losed 
onstraint family F , then there exists an �-gadget redu
ingall elements of PC to F .Proof. If a family F is 
omplementation-
losed, then an �-gadget redu
ing anelement of PC (respe
tively RMBC) to F 
an be modi�ed (using 
omplementations)to yield �-gadgets redu
ing all elements of PC (respe
tively RMBC) to F . For thisreason, we will restri
t our analysis to PC0 and RMBC00 gadgets. Note that, for anya1; a2; a3 2 f0; 1g3, PC0(a1; a2; a3) = 1 if and only if RMBC00(a1; a2; a3; a3) = 1. Let� be an � gadget over primary variables x1; : : : ; x4 and auxiliary variables y1; : : : ; ynredu
ing RMBC to 2SAT. Let �0 be the gadget obtained from � by imposing x4 � x3:it is immediate to verify that �0 is an �-gadget redu
ing PC0 to F .7.1. Redu
ing PC and RMBC to 2SAT. Theorem 7.2. If � is an �-gadgetredu
ing an element of PC to 2SAT, then � � 11.Proof. It suÆ
es to 
onsider PC0. We prove that the optimum of (LP1) is atleast 11. To this end, 
onsider the dual program of (LP1). We have a variable y~a;~bfor any ~a 2 f0; 1g3 and any ~b 2 f0; 1g4, plus additional variables ŷ~a;~bopt(~a) for any~a : PC(~a) = 1, where ~bopt is the \optimal" witness fun
tion de�ned in Se
tion 3. Theformulation ismaximize P~a;~b:PC(~a)=0 y~a;~bsubje
t to P~a;~b y~a;~b � 1 +P~a:PC(~a)=1 y~a;~bopt(~a)P~a;~b y~a;~bCj(~a;~b) �P~a:PC(~a)=1 ŷ~a;~bopt(~a)Cj(~a;~bopt(~a)) 8j 2 [98℄y~a;~b � 0 (8~a 2 f0; 1g3) (8~b 2 f0; 1g4)ŷ~a;~bopt(~a) � 0 (8~a : PC(~a) = 1)(DUAL1)There exists a feasible solution for (DUAL1) whose 
ost is 11.Corollary 7.3. If � is an �-gadget redu
ing an element of RMBC to 2SAT,then � � 11.7.2. Redu
ing PC and RMBC to SAT. Theorem 7.4. If � is an �-gadgetredu
ing an element of PC to SAT, then � � 4.



GADGETS, APPROXIMATION, AND LINEAR PROGRAMMING 23Proof. As in the proof of Theorem 7.2 we give a feasible solution to the dualto obtain the lower bound. The linear program that �nds the best gadget redu
ingPC0 to SAT is similar to (LP1), the only di�eren
e being that a larger number N of
lauses are 
onsidered, namely, N =P7i=1 �7i�2i. The dual program is thenmaximize P~a;~b:PC(~a)=0 y~a;~bsubje
t to P~a;~b y~a;~b � 1 +P~a:PC(~a)=1 y~a;~bopt(~a)P~a;~b y~a;~bCj(~a;~b) �P~a:PC(~a)=1 ŷ~a;~bopt(~a)Cj(~a;~bopt(~a)) 8j 2 [N ℄y~a;~b � 0 (8~a 2 f0; 1g3) (8~b 2 f0; 1g4)ŷ~a;~bopt(~a) � 0 (8~a : PC(~a) = 1)(DUAL2)Consider now the following assignment of values to the variables of (DUAL2) (theunspe
i�ed values have to be set to zero):(8~a : PC(~a) = 1) ŷ~a;~bopt(~a) = 34(8~a : PC(~a) = 1)(8~a0 : d(~a;~a0) = 1) y~a0;~bopt(~a) = 13where d is the Hamming distan
e between binary sequen
es. It is possible to showthat this is a feasible solution for (DUAL2) and it is immediate to verify that its 
ostis 4.Corollary 7.5. If � is an �-gadget redu
ing an element RMBC to SAT, then� � 4.7.3. Redu
ing kSAT to lSAT. Let k and l be any integers k > l � 3. Thestandard redu
tion from EkSAT to lSAT 
an be seen as a d(k � 2)=(l � 2)e-gadget.In this se
tion we shall show that this is asymptoti
ally the best possible. Note thatsin
e lSAT is 
omplementation-
losed we 
an restri
t ourselves to 
onsidering just one
onstraint fun
tion of EkSAT, say f(a1; : : : ; ak) � Wi ai.Theorem 7.6. For any k > l > 2, if � is an �-gadget redu
ing f to lSAT then� � k=l.Proof. We 
an write a linear program whose optimum gives the smallest � su
hthat an �-gadget exists redu
ing f to lSAT. Let b be the witness fun
tion used toformulate this linear program. We 
an assume that b is 22k -ary and we let K = 22k .Also let N be the total number of 
onstraints from lSAT that 
an be de�ned overk+K variables. Assume some enumeration C1; : : : ; CN of su
h 
onstraints. The dualLP ismaximize P~a;~b:PC(~a)=0 y~a;~bsubje
t to P~a;~b y~a;~b � 1 +P~a:f(~a)=1 y~a;~bkSAT�lSAT (~a)8j 2 [N ℄ P~a;~b y~a;~bCj(~a;~b) �P~a:f(~a)=1 ŷ~a;~bkSAT�lSAT (~a)Cj(~a;~bkSAT�lSAT (~a))8~a 2 f0; 1gk; 8~b 2 f0; 1gK y~a;~b � 08~a : f(~a) = 1 ŷ~a;~bkSAT�lSAT (~a) � 0 (DUAL3)The witness fun
tion ~bkSAT�lSAT is an \optimal" witness fun
tion for gadgets redu
-ing kSAT to lSAT.



24 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSONLet Ak � f0; 1gk be the set of binary k-ary strings with exa
tly one non-zero
omponent (note that jAkj = k). Also let ~0 (respe
tively, ~1) be the k-ary string allwhose 
omponents are equal to 0 (respe
tively, 1). The following is a feasible solutionfor (DUAL3) whose 
ost is k=l. We only spe
ify non-zero values.(8~a 2 Ak) ŷ~a;~bkSAT�lSAT (~a) = 1=l(8~a 2 Ak) y~0;~bkSAT�lSAT (~a) = 1=l(8~a 2 Ak) y~1;~bkSAT�lSAT (~a) = 1=k :In view of the above lower bound, a gadget 
annot provide an approximation-preserving redu
tion from MAX SAT to MAX kSAT. More generally, there 
annot bean approximation-preserving gadget redu
tion fromMAX SAT to, say, MAX (logn)SAT.In partial 
ontrast with this lower bound, Khanna et al. [13℄ have given an approximation-preserving redu
tion from MAX SAT to MAX 3SAT and Cres
enzi and Trevisan [4℄have provided a tight redu
tion between MAX SAT and MAX (logn)SAT, showingthat the two problems have the same approximation threshold.A
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