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AbstratThe study of self-testing and self-orreting programs leads to the searh for ro-bust haraterizations of funtions. Here we make this notion preise and show suh aharaterization for polynomials. From this haraterization, we get the following ap-pliations. We onstrut simple and eÆient self-testers for polynomial funtions. Ourharaterizations provide results in the area of oding theory, by giving extremely fastand eÆient error-deteting shemes for some well known odes. This error-detetionsheme plays a ruial role in subsequent results on the hardness of approximatingsome NP-optimization problems.1 IntrodutionThe study of program hekers [Blu88℄[BK89℄, self-testing programs [BLR90℄ and self-orretingprograms [BLR90℄[Lip91℄ was introdued in order to allow one to use a program P to om-pute a funtion without trusting that P works orretly. A program heker heks that theprogram gives the orret answer on a partiular input, a self-testing program for f tests thatprogram P is orret on most inputs, and a self-orreting program for f takes a programP that is orret on most inputs and uses it to ompute f orretly on every input withhigh probability. The program heker, self-tester and self-orretor may all the program�This paper uni�es and extends part of the results ontained in Gemmell et al. [GLRSW91℄ and Rubinfeldand Sudan [RS92℄.yCornell University. email: ronitt�s.ornell.edu. This work is supported by ONR Young Investigatorgrant N00014-93-1-0590 and the United States{Israel Binational Siene Foundation grant 92-00226. Partof this work was done while the author was at Prineton University, supported by DIMACS (Center forDisrete Mathematis and Theoretial Computer Siene), NSF-STC88-09648.zI.B.M. Thomas J. Watson Researh Center. email: madhu�watson.ibm.om. Part of this work was donewhen the author was a student at the University of California at Berkeley under the support of NSF PYIGrant CCR 8896202. 1



as a blak box, are required to do something other than to atually ompute the funtion,and should be muh simpler and at least di�erent from any program for the funtion f inthe preise sense de�ned by [BK89℄. It is straightforward to show that hekers, self-testersand self-orretors for funtions are related in the following way: If f has a self-tester anda self-orretor, then it an be shown that f has a program result heker. Conversely, if fhas a heker, then it has a self-tester (though not neessarily a self-orretor). It is arguedin [BK89℄ and [BLR90℄ that this provides an attrative alternative method for attaking theproblem of program orretness.One of the main goals of the researh in the area of self-testing/orreting programs andprogram heking is to �nd general tehniques for �nding very simple and eÆient self-testers,self-orretors and hekers for large lasses of problems. In fat, some suess towardsthis goal has been ahieved. For example, in [BK89℄, it is shown how to use tehniquesfrom the area of interative proof systems in order to write hekers. Using these andother tehniques, hekers (and hene self-testers) have been found for a variety of problems[AHK, BK89, Rub90, Kan90, BFLS91, BF91℄. If a funtion is random self-reduible, i.e., thevalue of the funtion at any input an be inferred from its value at randomly hosen inputs,then it has a self-orretor [BLR90℄[Lip91℄. This provides self-orretors for a surprisingrange of funtions, inluding the lass of linear funtions (homomorphisms between groups)and polynomials.In the diretion of haraterizing funtions that have self-testers, some suess has beenahieved in [BLR90℄. They give a number of methods of onstruting self-testers for fun-tions, some of whih we mention here: They observe that any heker for a funtion anbe used to onstrut a self-tester for the funtion. They present a partiular method ofonstruting self-testers for a variety of funtions based on a method of bootstrapping fromtests over smaller domains. They also show another method of onstruting self-testers for alllinear funtions, i.e., funtions that at as homomorphisms between groups, in other wordssatisfy f(x) + f(y) = f(x+ y) for a group operation +.The main fous of this paper is to study and understand the funtions whih have self-testers, and to broaden the lass of funtions that are known to have self-testers. Thelinearity tester of [BLR90℄ is the starting point for this paper. A partiularly interestingfeature of this linearity tester is that it breaks the task of self-testing a funtion into the twotasks of (1) testing it for ertain \strutural properties" and (2) using the strutural propertyto then identify the funtion preisely. In this paper we introdue a new notion { a funtionfamily tester { whih helps delineate these two tasks more learly. We �rst introdue someterminology:We work with funtions de�ned over some �nite domain D. The distane between twofuntions f and g over the domain D is the fration of points x 2 D where the two funtionsdisagree: d(f; g) � jfx 2 Djf(x) 6= g(x)gjjDjWe say that two funtions are �-lose if d(f; g) � �. In some of the informal disussionsthat follow, we drop the � and just desribe two funtions as being lose. In suh ases, it is2



implied that we are talking of some small enough �. In terms of this notion a self-tester fora funtion f may be de�ned as follows:A �-self-tester T for a funtion f over a domain D, is a (randomized) orale program thattakes as input a program P and behaves as follows:� Aepts P if d(P; f) = 0.� Rejets P (with high probability) if P and f are not �-lose.� Behaves arbitrarily otherwise.Testers for funtion families using robust haraterizations Let F be a family offuntions. An �-funtion family tester T for the family F , takes as input a program P andtests if there exists a funtion f 2 F suh that P is �-lose to f .The notion of a funtion family tester aptures the notion of verifying properties of a funtionas follows: Let P be a property we wish to test for. Let F be the family of all funtions thathave the property P. Then a funtion family tester for F an be used to test if a program P\essentially" has the property P (i.e., there exists a funtion with property P that is loseto P ). To make some of these abstrat de�nitions onrete, let us work with the simpleexample of the property of linearity among funtions from Zp to Zp. For this example, thefamily of funtions we work with is Flinear � ffaja 2 Zp; fa(x) = a � xg. Thus a testerfor the family of linear funtions veri�es that the omputation of a program P is essentiallylinear.The existene of a funtion family tester for any lass of funtions implies a powerful har-aterization of the family. In partiular, onsider any program that is rejeted by the tester.In order to rejet the program, the tester will have found some evidene in the small setof sampled points whih \proves" that P an not be a member of F . In other words, allmembers of F must satisfy some property on the set of inputs that are examined by thefamily tester. Thus all members of F satisfy a \loal" property (by loal we mean a propertyon a set of small size { we de�ne this notion more formally in Setion 2). Moreover, if allsuh loal properties are satis�ed, then the tester aepts the funtion, implying that theseloal onstraints form a haraterization of the family. Thus in order for a funtion familyto have a tester, it needs to have a loal haraterization. In our example, suh a loalharaterization of linear funtions is the property that 8x; y 2 Zp, f(x) + f(y) = f(x+ y).If a funtion is not linear then there exists a ounterexample of size three that proves thatit is not linear.However, loal haraterizations do not form a suÆient ondition for the onstrution oftesters. Typially an exat loal haraterization of a family of funtions involves a universalquanti�ation, whih is not feasible to verify. In our example, the haraterization of linearfuntions by the property 8x; y 2 Zp, f(x)+f(y) = f(x+y) is not useful to test a purportedlinear funtion sine we annot hope to eÆiently test that this holds for all possible pairsx; y. Thus for a haraterization to be useful for testing, it needs to be \robust", involvingthe words \for most" rather than \for all". Spei�ally, let F be the funtion family that3



satis�es the properties at all inputs, and let f be any funtion that satis�es the propertiesat most inputs. Then f must be lose to some g 2 F (see Setion 2 for a more formalde�nition). In our example, if f(x) + f(y) = f(x + y) is satis�ed by f for most x; y, thenf(x) =  � x for most x and some onstant .Our results on funtion family testing One of the main emphases of this paper isto �nd robust haraterizations for the family of low degree univariate and multivariatepolynomials. In Setion 3 we start by desribing some (well-known) loal haraterizations ofunivariate and multivariate polynomials and then prove that some of these haraterizationsare atually robust haraterizations. As an immediate onsequene we get funtion familytesters for all low-degree polynomials over �nite �elds. For the ase of polynomials over Zp,our testers are very simple and do not even need to multiply elements of the �eld. Ourtesters are the �rst testers that diretly attempt to test the total degree of a polynomial (asopposed to the testers of [BFLS91, FGLSS91, AS92℄, all of whih test that the degree in eahvariable is not too large). The proof of orretness of our tester also is di�erent from theproofs of orretness of the other testers in that it does not rely on an indutive argumentbased on the number of variables. This allows for its \eÆieny" to be independent of thenumber of variables and provides the hope for the existene of a tester with nearly optimaleÆieny.A seond emphasis of this paper is the notion of test sets that allows us to use the resultson funtion family testing to obtain self-testers for spei� funtions. Informally, a test setis a set of points from the domain, suh that no two funtions from the family F agree witheah other on all the points from the test set. Our self-tester for a spei� funtion f wouldrequire, as a desription of f , its value on all points in a test set. The omplexity (runningtime) of the self-tester will depend on the size of the test set.Other impliations of low-degree testing The task of onstruting family testers forthe family of low-degree polynomials is losely related to the task of error-detetion in ReedSolomon odes. In fat, a low-degree test an be desribed as a \randomized" error-detetorthat determines whether the number of errors in a reeived word is small or not. In thissense, the error-detetors we onstrut have the feature that they are highly eÆient andan be used to get estimates on the distane of a reeived word from a valid odeword.This perspetive an similarly be applied to the results of [BLR90℄ to get randomized error-deteting and orreting shemes for the Hadamard odes that probe the reeived word inonly a onstant number of bits to detet an error or �nd any bit of the odeword losest tothe reeived word. In fat, it has been shown by M. Naor [Nao92℄ that these results an beused to onstrut odes for whih error-detetion/orretion an be performed by uniformquasi-polynomial sized iruits of onstant depth. In Setion 7 we de�ne the notion of a\loally testable ode" - a notion that preisely desribes the relationship between testingand error-orreting odes. We also provide appliations of our testers to the onstrutionof \loally testable odes" in the setion.A di�erent perspetive on the onstrution of family testers is to view it as the followingapproximation problem: 4



Given a family of funtions F and a funtion P , estimate the distane d(P;F)between P and F to within a small multipliative error.A tester for a funtion family F essentially yields suh an approximator (provided d(P;F)is smaller than half) by de�ning some new quantities Æ(P;F) that are easy to estimate byrandom sampling and then showing that some approximate relations hold between Æ(P;F)and d(P;F). For example, the linearity test of [BLR90℄ may be viewed as trying to ap-proximate the distane d(f;Flinear). To approximate this distane they de�ne the quantityÆ(f;Flinear) � Pr[f(x) + f(y) 6= f(x + y)℄ whih is easy to approximate. Then they showthat Æ(f;Flinear)=3 � d(f;Flinear) � 9=2Æ(f;Flinear). The testers given here de�ne simi-lar quantities related to low-degree polynomials and show similar approximate relationships.Suh inequalities may be of independent interest.The task of low-degree testing forms a entral ingredient in the proof of MIP = NEXPTIMEdue to [BFL91℄. The tester given here provides an alternate mehanism that works in theirsetting. The eÆieny of low-degree testing also beomes very important to the ensuingresults on hardness of approximations [FGLSS91, ALMSS92℄ and therefore a lot of attentionhas been paid to this problem [BFL91, BFLS91, FGLSS91, AS92℄. However all these resultsfous on tests that are lose variants of the test given in [BFL91℄. The low-degree testgiven here is fundamentally di�erent from the ones mentioned above and originated fromindependent onsiderations in the work of [GLRSW91℄. The eÆieny of the tester shownhere may also be found in [RS92℄. It turns out that this tester is partiularly well-suitedto suh multiple prover appliations and provides a one round, onstant prover proof that afuntion is a low degree polynomial over �nite �elds. This is observed in subsequent workof [ALMSS92℄ (see also [Sud92℄) and follows by using an improved analysis for Lemma 11from [AS92℄. This turns out to play a ruial role in the NP = PCP(logn;O(1)) resultof [ALMSS92℄, whih in turn provides hardness results for a wide variety of approximationproblems. An exat desription of the relevane of the various testers and the hronology ofontributions maybe found in Setion 8.Organization of Paper The rest of this paper is organized as follows. In Setion 2 weformally de�ne the notions of loal haraterizations - exat and robust. Setion 3 lists some(well-known) exat haraterizations of low-degree polynomials. Setions 4 and 5 show thattwo of these exat haraterizations are robust. In Setion 6 we desribe the appliationsof these haraterizations to self-testing of programs. In Setion 7 we de�ne a notion ofloally-testable odes (based on the notion of probabilistially hekable proofs) and showappliations of our testers to suh odes. Setion 8 ontains some onluding remarks.2 Loal Charaterizations: Exat and RobustIn this setion we make preise the notion of a loal haraterization and what we meanby exat and robust haraterizations. We will also isolate a parameter assoiated with the5



robust haraterizations that aptures the eÆieny of the tester suggested by the hara-terization.We will use D to represent a �nite domain. We will onsider here, families of funtions Fwhere f 2 F maps elements from D to a range R. We illustrate these de�nitions using theexample of linear funtions. Here the domain and range are Zp and the family of funtionsis ffaja 2 Zp where fa(x) = a � xg.De�nition 1 (Neighborhoods) A k-loal neighborhood N is an ordered tuple of (not ne-essarily distint) k points from D . A k-loal olletion of neighborhoods N is a set of k-loalneighborhoods.De�nition 2 (Properties) A k-loal property P is a funtion from (D�R)k to f0; 1g. Wesay that a funtion f satis�es a property P over a neighborhood N if P(f(x; f(x))gx2N) = 1.De�nition 3 (Exat Charaterizations) A property P over a olletion of neighborhoodsN is an exat haraterization of a family of funtions F if a funtion f satis�es P over allneighborhoods N 2 N exatly when f 2 F . The haraterization is k-loal if the property P(and the olletion N ) is k-loal.In our example, the olletion of neighborhoods N = f(x; y; x+ y)jx; y 2 Zpg. The propertyP is 3-loal and is satis�ed by f on the triple (x1; x2; x3) if f(x1)+f(x2) = f(x3). Thus overthe olletion of neighborhoods N , P gives a 3-loal haraterization of the family of linearfuntions.De�nition 4 (Robust Charaterizations) A property P over a olletion of neighbor-hoods N is said to be an (�; Æ)-robust haraterization of F , if whenever a funtion f satis�esP on all but Æ fration of the neighborhoods in N , it is �-lose to some funtion g 2 F .Moreover, all members of F satisfy P on all neighborhoods in N .To ontinue with the example of linear funtions, the theorem of [BLR90℄ an be used tosay that P over the neighborhood N is a (92(29 � �); 29 � �)-robust haraterization of linearfuntions for any onstant �.The exat onstant � determining loseness is not very important for the family of multivari-ate polynomials. For most of the haraterizations we onsider here, it an be shown thatany funtion f is ((1 + o(1))Æ)-lose to some member g of F if f is 14 -lose to g and violatesonly a Æ fration of the neighborhood onstraints. Thus for the purposes of this paper, we�x the value of � to be 14 .In order to test if f is lose to some member of F , one would need to sample at least 1Æ ofthe neighborhoods in N and test if P holds on these neighborhoods. Hene, the parameter1Æ is referred to as the eÆieny of the haraterization.6



3 Exat Charaterizations of PolynomialsIn this setion we start by desribing some (well-known) exat loal haraterizations ofpolynomial funtions. In later setions we will show that some of these haraterizations anbe made robust.The family of degree d polynomials an be haraterized in a number of ways. The dif-ferent haraterizations arise from looking at di�erent olletions of neighborhoods N . Theproperty P has to remain invariant in the following sense: P will be satis�ed by f on a neigh-borhood N if there exists a polynomial that agrees with f on all points in N . The omplexityof a neighborhood test, i.e., testing whether a onstraint is being satis�ed by a neighborhood,is also inuened by the hoie of the neighborhood. Thus by hoosing the haraterizationsappropriately, we might be able to tradeo� the simpliity of the neighborhood test againstthe number of times the test needs to be repeated. The di�erent haraterizations also haveto be quali�ed by di�erent restritions on the underlying ring. For instane, some hara-terizations hold only for �nite �elds while others hold only for rings of the form Zm. We willtake are to point out the restritions on the haraterizations. We give examples of possibleneighborhoods and their orresponding tests.1. Univariate polynomialsThe following haraterization of univariate polynomials holds for a funtion f mappinga ring R to itself.(a) Charaterization: f : R 7! R is a polynomial of degree at most d if and only if8x0; : : : ; xd+1 2 R, there exists a polynomial gx0;:::;xd+1 of degree at most d suhthat f(xi) = gx0;:::;xd+1(xi).(b) Neighborhood struture: N = Rd+2, i.e., all possible (multi)-subsets of R of sized+ 2.() Complexity of neighborhood test: A test of the above nature involves �ndingthe (unique) degree d polynomial g that agrees with f at the points x0; : : : ; xdand then evaluating g(xd+1) and verifying that this equals f(xd+1). Standardinterpolation tehniques (see, for instane, [dW70℄) imply that this is equivalentto omputing oeÆients �0; : : : ; �d+1, where the f�ig's depend only on the fxig's,and verifying thatPd+1i=0 �i �f(xi) = 0. The �i's an be omputed using elementaryalgorithms with O(d2) additions, subtrations and multipliations over R.2. Univariate polynomials using evenly spaed pointsThis haraterization works over the ring Zm. Let �i = �d+1i �(�1)i+1. The interpola-tion identity for degree d polynomials on evenly spaed points, x; x+h; : : : ; x+(d+1)�h,redues to Pd+1i=0 �if(x + i � h) = 0. We refer to x as the starting point and h as theo�set.(a) Charaterization: f : Zm 7! Zm is a polynomial of degree at most d if and onlyif 8x; h 2 Zm, Pd+1i=0 �if(x+ i � h) = 0.7



(b) Neighborhood struture: De�ne the neighborhood sets Nx;h � fx+i�hgd+1i=0 . Thenthe neighborhood olletion is N = Sx;h2Zm Nx;h.() Complexity of Neighborhood Test: Notie that the onstants �i are now indepen-dent of x and h and an be preomputed one and for all. In fat, due to thespeial relationship between the �i's, given the value of f at the points x + i � h,we an ompute the above summation with O(d2) additions and subtrations andno multipliations (see appendix).3. Multivariate polynomials using linesThis haraterization applies to m-variate funtions over a �nite �eld F . De�ne thenotion of a line through the spae Fm as follows: For x̂; ĥ 2 Fm, the line lx̂;ĥ throughx̂ with o�set ĥ is the set of points fx̂ + i � ĥji 2 Fg. We will often refer to the line inits parametri form lx̂;ĥ(i). Observe that a polynomial f of total degree d, restritedto a line lx̂;ĥ(i) beomes a univariate polynomial of degree at most d in the parameteri. This gives us the following haraterization of degree d polynomials over suÆientlylarge �nite �elds (jF j � 2d+ 1). 1(a) Charaterization: The funtion f : Fm 7! F is a polynomial of degree at most dif and only if 8x̂; ĥ 2 Fm, f restrited to lx̂;ĥ(i) is a univariate polynomial in i ofdegree at most d (see appendix for a proof).(b) Neighborhood Struture: Let the neighborhoods be lines. Then N � fNx̂;ĥ =lx̂;ĥjx̂; ĥ 2 Fmg.() Complexity of Neighborhood Test: In this form the haraterization is not veryloal sine the ounterexamples are lines, i.e., olletions of jF j points. But thisharaterization is interesting to us beause it says that the haraterization ofmultivariate polynomials an be redued to the haraterization of univariatepolynomials (on these lines). Thus we �nd that we an now use, for instane,Charaterization 1 to �nd ounterexamples of size at most d+2. The omplexityof a neighborhood test here is no more than the omplexity of the neighborhoodtest in Charaterization 1.4. Multivariate polynomials using axis parallel linesThis haraterization is a speialization of the haraterization above, in terms ofspeial lines - axis parallel lines. We say that a line is axis parallel if the o�set ĥontains only one non-zero oordinate.(a) Charaterization: f : Fm 7! F is a polynomial of degree at most d in eah variableif and only if 8 axis parallel lines, f restrited to the line is a univariate polynomialof degree at most d. Notie that here we haraterize polynomials di�erently, i.e.,in terms of individual degree in eah variable rather than total degree.1The above haraterization is not the tightest possible in its requirement of the parameter jF j. Indeed,for the ase of �elds of prime order this an be improved to the optimal ase jF j � d+ 2 and this has beenshown reently in [FS94℄. For arbitrary �nite �elds it turns out that jF j � d+2 is not a suÆient onditionfor this haraterization to hold. A ounterexample to this e�et is also shown in [FS94℄.8



(b) Neighborhood Struture: The neighborhoods here are sets of the form Ni;�̂ �f(�1; : : : ; �i�1; t; �i; : : : ; �m�1)jt 2 Fg, for every hoie of �̂ 2 Fm�1, and everyhoie of i 2 f1; : : : ; mg. Then N = Si2f1;:::;mg;�̂2Fm�1 Ni;�̂.() Complexity of Neighborhood Test: The omplexity of a neighborhood test is thesame as the omplexity of Charaterization 1.5. Multivariate polynomials: evenly spaed pointsA ombination of Charaterizations 2 and 3 gives the following haraterization ofpolynomials over Zp, provided p is large enough for Charaterization 3 to hold.(a) Charaterization: f : Zmp 7! Zp is a polynomial of degree at most d if and only if8x̂; ĥ 2 Zmp , Pd+1i=0 �if(x̂ + iĥ) = 0, where �i = (�1)i+1�d+1i �.(b) Neighborhood Struture: The neighborhoods here are of the form Nx̂;ĥ � fx̂ +iĥji 2 f0; : : : ; d+ 1gg. Then N � Sx̂;ĥ2Zmp Nx̂;ĥ.() Complexity of Neighborhood Test: The omplexity of this neighborhood test isthe same as the omplexity in Charaterization 2.6. Multivariate polynomials: evenly spaed points - 2This haraterization is a trivial onsequene of the haraterization above, and seemsweaker sine its neighborhood struture is larger than those of the ones above. But itturns out that this haraterization is muh more useful due to the kind of robustnessit yields. This haraterization holds for polynomials over Zp, for p > 10d.(a) Charaterization: f : Zmp 7! Zp is a polynomial of degree at most d if and onlyif 8x̂; ĥ 2 Zmp , the values of f at the points fx̂ + iĥji 2 f0; : : : ; 10dgg agree withsome univariate polynomial g of degree at most d in t.(b) Neighborhood Struture: The neighborhoods here are sets of the form Nx̂;ĥ �fx̂ + iĥji 2 f0; : : : ; 10dgg. Then N � Sx̂;ĥ2Zmp Nx̂;ĥ.() Complexity of the neighborhood test: One again it turns out that the omplexityof this test is within a onstant fator of the omplexity of the test in Chara-terization 2, i.e., O(d2) additions and subtrations and no multipliations (seeappendix).All haraterizations above turn out to be robust. The robustness of Charaterization 1 isstraightforward and omitted here (see, for instane, [Sud92℄). The robustness of 4 followsfrom the work of [BFL91℄ (see also [BFLS91, FGLSS91, AS92, Lun92℄). Robustness of 2, 3,5 and 6 are presented in Setions 4 and 5.A typial robust haraterization theorem for degree d polynomials in m variables over a�nite �eld F would go as follows: 9



There exists a Æ0 (whih may be a funtion of d;m; jF j) suh that for Æ � Æ0, ifthe fration of neighborhoods where P satis�es the loal onstraints is at least1� Æ, then P is �-lose to some degree d polynomial (where � is some funtion ofÆ).An important parameter in determining the eÆieny of a tester, is the relationship betweenÆ0 and m; d; jF j. For instane, if Æ0 = 1dm log jF j , then this implies that we will have to testthat the loal property holds for at least dm log jF j randomly hosen neighborhoods beforewe an satisfy ourselves that P is lose to some polynomial. Our main thrust will be to geta theorem that holds for as high a Æ0 as possible. 2In what follows, we show �rst that Charaterization 5 above is robust with Æ0 = �( 1d2 ). Thisproof gives a simple and eÆient tester for the family of multivariate polynomials that workswith O(d3) probes into f . Robustness of the haraterizations in 2 and 3 follow as speialases. This bound on Æ0 is in ontrast to the robustness of 4 that has an inherent dependenyon m.Next we show a robustness of Charaterization 6. The eÆieny of this test is analyzedmodulo the eÆieny of a ertain test for bivariate polynomials and is shown to be within aonstant fator of the bivariate test. We also show that the eÆieny of the bivariate test isO(d), giving a test for multivariate polynomials that works with O(d2) probes into f .4 A Robust Charaterization of Polynomial FuntionsIn this setion, we prove the robustness of Charaterization 5. We onsider a funtion(program) P mapping m variables from Zp to Zp and prove the following:Theorem 5 For Æ0 = 12(d+2)2 , if P : Zmp 7! Zp satis�esÆ � Prx;h2RZmp "P (x) 6= d+1Xi=1 �iP (x+ i � h)# � Æ0then there exists a degree d polynomial g : Zmp 7! Zp that is 2Æ-lose to P .This theorem makes very minimal requirements on the �eld size required for its validity.The theorem is valid whenever Charaterization 5 holds and Friedl and Sudan, [FS94℄, haveshown that this holds for p � d+2 - the smallest oneivable �eld size for whih the test ouldbe de�ned. We do not know of other testers that work with suh a minimal requirement onthe �eld size.We de�ne g(x) to be majh2Zmp fPd+1i=1 �iP (x + ih)g, where maj of a set is the funtion thatpiks the element ourring most often (hoosing arbitrarily in the ase of ties). First weshow that g is 2Æ-lose to P . Later in this setion we show that g is a low-degree polynomial.2A seondary parameter of interest is the relationship between � and Æ. In all the proofs that follow, wewill only show that � = 2Æ. Atually, one suh a result is shown it an be shown again that any � > Æ works.10



Lemma 6 g and P agree on more than 1� 2Æ fration of the inputs from Zmp .Proof: Consider the set of elements x suh that Prh[P (x) = Pd+1i=1 �iP (x + i � h)℄ <1=2. If the fration of suh elements is more than 2Æ then it ontradits the ondition thatPrx;h[Pd+1i=0 �iP (x+ i � h) = 0℄ = Æ. For all remaining elements, P (x) = g(x). 2In the following lemmas, we show that the funtion g satis�es the interpolation formula forall x; h and is therefore a degree d polynomial. We do this by �rst showing that for all x,g(x) is equal to the interpolation of P at x by most o�sets t. We then use this to show thatthe interpolation formula is satis�ed by g for all x; h.Lemma 7 For all x 2 Zmp , Prh [g(x) = Pd+1i=1 �iP (x+ i � h)℄ � 1� 2(d+ 1)Æ.Proof: Observe that h1; h2 2R Zmp impliesx + i � h1 2R Zmp and x+ j � h2 2R Zmp) Prh1;h2[P (x+ i � h1) = d+1Xj=1 �jP (x+ i � h1 + j � h2)℄ � 1� Æ) Prh1;h2[P (x+ j � h2) = d+1Xi=1 �iP (x+ i � h1 + j � h2)℄ � 1� ÆCombining the two we getPrh1;h2 [Pd+1i=1 �iP (x+ i � h1) = Pd+1i=1 Pd+1j=1 �i�jP (x+ i � h1 + j � h2)= Pd+1j=1 �jP (x+ j � h2)℄ � 1� 2(d+ 1)ÆThe lemma now follows from the observation that the probability that the same objet isdrawn twie from a set in two independent trials lower bounds the probability of drawing themost likely objet in one trial: Suppose the objets are ordered so that pi is the probabilityof drawing objet i, and p1 � p2 � : : :. Then the probability of drawing the same objettwie is Pi p2i � Pi p1pi = p1. 2Lemma 8 For all x; h 2 Zmp , if Æ � 12(d+2)2 , then Pd+1i=0 �ig(x + i � h) = 0 (and thus g is adegree d polynomial [dW70℄).Proof: Observe that, sine h1 + ih2 2R Zmp , we have for all 0 � i � d+ 1Prh1;h2 [g(x+ i � h) = d+1Xj=1 �jP ((x+ i � h) + j � (h1 + ih2))℄ � 1� 2(d+ 1)Æ
11



Furthermore, we have for all 1 � j � d+ 1Prh1;h2 [ d+1Xi=0 �iP ((x+ j � h1) + i � (h+ j � h2)) = 0℄ � 1� ÆPutting these two together we getPrh1;h2 [ d+1Xi=0 �ig(x+ i � h) = d+1Xj=1 �j d+1Xi=0 �iP ((x+ j � h1) + i � (h+ j � h2)) = 0℄ > 0The lemma follows sine the statement \Pd+1i=0 �ig(x + i � h) = 0" is independent of h1; h2,and therefore if its probability is positive, it must be 1. 2Proof (of Theorem 5): Theorem 5 follows from Lemmas 6 and 8 25 EÆient tester for polynomialsIn this setion we prove the robustness of Charaterization 6. Reall that this hara-terization uses the olletion of neighborhoods N = fNx;hjx; h 2 Zmp g where Nx;h =(x; x + h; : : : ; x + 10dh). The following theorem shows that the eÆieny of this hara-terization is O(d), i.e., if a funtion satis�es the onsisteny test on all but a O(1d) frationof the neighborhoods then it is lose to a polynomial.Theorem 9 There exists a onstant  suh that for 0 � Æ � 1d , if f is a funtion from Zmpto Zp that satis�es the neighborhood onsisteny test on all but a Æ fration of the olletionof neighborhoods N = fNx;hjx; h 2 Zmp g (where Nx;h = fx; x+ h; : : : ; x+ 10dhg), then thereexists a polynomial g : Zmp ! Zp of total degree at most d suh that d(f; g) � (1 + o(1))Æ(provided p > 10d.)In the rest of this setion we prove this theorem for the ase d � 1. (The ase d = 0 amountsto proving that f is a onstant and is omitted as a straightforward exerise.)Fix a funtion f that satis�es the neighborhood onstraints on all but a Æ fration of theneighborhoods.The proof follows the same basi outline as the one in Setion 4, but in order to ahievethe better eÆieny, we use ideas that an be thought of in terms of error-orretion. Thusmany of the steps that were quite simple in Setion 4 require more work here. In Setion 4the funtion g was de�ned to be the value that ours most often (for most h) when onelooks at the evaluation at x of the unique polynomial that agrees with the values of f atx + h; :::; x + (d + 1)h. Here we view the values of a polynomial at x + h; :::; x + 10dh as aode word. Intuitively, the values of f at x + h; :::; x + 10dh will often have enough goodinformation in it to allow us to get bak to a orret odeword. The funtion g de�nedbelow an be thought of as the value that ours most often (for most h) when one looks atthe polynomial de�ned by the error orretion of the values of f at x; x + h; : : : ; x + 10dhevaluated at x. We then show that g has the following properties:12



1. g(x) = f(x) with probability at least 1� Æ � o(Æ) if x is piked randomly from Zmp .2. On every neighborhood Nx;h, g is desribed by a univariate polynomial of degree d.Notie that Charaterization 6 now implies that g is a degree d polynomial.Notation: For x; h 2 Zmp , we let Px;h(i) be (the unique) polynomial in i that satis�esPx;h(i) = f(x + ih) for at least 6d values of i 2 f0; : : : ; 10dg. If no suh polynomial existsthen Px;h is de�ned to be error.Let g : Zmp 7! Zp be g(x) � pluralityhfPx;h(0)gwhere the plurality is taken over P 's that are not error.In Setion 4 it is shown that if one omputes the value of a polynomial funtion at x byinterpolating from the values of the funtion along o�set h1 that are in turn omputed byinterpolating from the values of the funtion along o�set h2, then one would get the sameanswer as if one had omputed the value of the funtion at x by interpolating from the valuesof the funtion along o�set h2 whih in turn are omputed by interpolating from the values ofthe funtion along o�set h1. This is not hard to see beause it turns out that an interpolationis a weighted summation and obtaining the identity amounts to hanging the order of adouble summation (see for instane Lemma 7). Here g is atually an interpolation of theerror-orretion of the values of the funtion, whih is no longer a simple algebrai funtionof the observed values. We repair the situation by onstruting a bivariate polynomialQ(i; j)that agrees with f(x + i � h1 + j � h2) for most values of i and j. This allows us to get bakto simple interpolation where we work with the funtion Q(i; j) rather than f . Lemma 10shows when suh a bivariate polynomial an be set up to agree with a matrix of values mij.Lemma 11 shows how to use this polynomial to simulate the e�et of the interhange in theorder of the summation.The following lemma follows diretly from the axis parallel haraterization of polynomials.Lemma 10 For X; Y � Zp with jXj; jY j > d + 2, if frigi2X and fjgj2Y are univariate(degree d) polynomials suh that for all i 2 X and j 2 Y , ri(j) = j(i), then there exists apolynomial Q(:; :) suh that for all i; j Q(i; j) = ri(j) = j(i).Lemma 11 (Matrix Polynomial Lemma) Given families of univariate degree d polyno-mials frig10di=0 and fjg10dj=0 and a matrix fmijg10d;10di=0;j=0 that satisfy:� For 90% of the i's in f0; : : : ; 10dg, ri(j) = mij for all j 2 f0; : : : ; 10dg.� For 90% of the j's in f0; : : : ; 10dg, j(i) = mij for all i 2 f0; : : : ; 10dg.Then there exists a bivariate polynomial Q(�; �) of degree d in eah variable suh that for alli0; j0 2 f0; : : : ; 10dg the following holds:� For at least 90% of the i's in f0; : : : ; 10dg, Q(i; j0) = mij0 .13



� For at least 90% of the j's in f0; : : : ; 10dg, Q(i0; j) = mi0j.Proof: Let X be the set of good rows of M , i.e., those with the property that ri(j)equals j(i) for all values of j 2 f0; : : : ; 10dg. Similarly, let Y be the set of good olumns.It an now be seen that the onditions of Lemma 10 are appliable, implying that thereexists a polynomial Q(i; j) suh that Q(i; j) = ri(j) = j(i) for all (i; j) 2 X � Y , wherejXj and jY j are both at least 9d. But for any i 2 X, there exists a unique polynomialdesribing all the elements in its row and Q agrees with it on 90% of its elements. Thus,for i 2 X, Q(i; j) = mij for all j 2 f0; : : : ; 10dg. In partiular this holds for j = j0, i.e., forall i 2 X, Q(i; j0) = mij0. Similarly by using the olumns indexed by Y one an show thatQ(i0; j) = mi0j for all j 2 Y . The lemma follows sine the ardinalities of X and Y are atleast 9d. 2The following lemmas are analogous to Lemmas 6, 7 and 8 of Setion 4. Lemma 12 andCorollary 13 roughly orrespond to Lemma 7. Lemma 12 essentially states that the pluralityin the de�nition of g is atually an overwhelming majority. This may be obtained by settingi0 = 0 in the statement of the lemma. The slightly stronger statement used here is neededlater. Lemma 14 is similar to Lemma 6 and shows that g and f agree at all but a Æ + o(Æ)fration of the plaes. Lemma 15 shows that g is a multivariate polynomial of degree d.Lemma 12 There exists a onstant 1 suh that for Æ1 = 1Æ, the following holds:8x 2 Fm; i0 2 f0; : : : ; 10dg; Prh1;h2 [Px;h1(i0) = Px+i0h1;h2(0)℄ � 1� Æ1Proof: Pik h1; h2 2R Zmp and de�ne M = fmijg to be the matrix given by mij =f(x + ih1 + jh2). We show that M satis�es the onditions required by Lemma 11 (withj0 = 0), with probability at least 1� Æ1. This suÆes to prove the lemma sine this impliesthat the polynomial Px;h1 is the polynomial Q(i; j) restrited to j = 0 and that Px+i0h1;h2 isQ(i0; j). Thus Px;h1(i0) = Px+i0h1;h2(0) = Q(i0; 0).Any row of the matrix, other than the 0th row, represents a random neighborhood (inde-pendent of x) and satis�es the neighborhood onstraint with probability 1 � Æ. Thus withprobability at least 1 � 10Æ we have that the fration of rows that don't have a degree dpolynomial desribing them is at most 0:1. An analogous argument an be made for theolumns. Thus M satis�es the onditions required by Lemma 11 with probability at least1� 20Æ. The lemma is satis�ed with the hoie of 1 = 20. 2Corollary 13 For x 2 Zmp ; i 2 f0; : : : ; 10dg, Prh [g(x+ ih) = Px;h(i)℄ � 1� 2Æ1.Proof: Let B be the set of h's that violate Px;h(i) = majorityh1 fPx+ih;h1(0)g. For allh 62 B notie that g(x + ih) = Px;h(i). Also for h in B, the probability, for a randomlyhosen h1, that Px+ih;h1(0) 6= Px;h(i) is at least 1=2. Thus with probability at least jBj2pm ,we �nd that a randomly hosen pair (h; h1) violates the ondition Px+ih;h1(0) = Px;h(i).Applying Lemma 12 we get that jBjpm is at most 2Æ1. 2We next show that g and f agree in most plaes:14



Lemma 14 d(f; g) � Æ(1 + o(1)).Proof: Let B0 be the set of x's that satisfy f(x) 6= Px;h(0) for at least 1 � 2Æ1 frationof the h's in Zmp . Observe that due to Corollary 13, for all x 62 B0, f(x) is the same asg(x) (g(x) an disagree with Px;h(0) on at most 2Æ1 fration of the h's). The size of B0 as afration of Zmp an be at most Æ1�2Æ1 . Thus we �nd that d(f; g) � Æ1�2Æ1 = Æ(1 + o(1)). 2Notation: For x; h 2 Zmp , we de�ne P (g)x;h(i) to be (the unique) polynomial in i that satis�esP (g)x;h(i) = g(x + ih) for at least 9d values of i 2 f0; : : : ; 10dg. If no suh polynomial existsthen P (g)x;h is de�ned to be error.Lemma 15 There exists a onstant  suh that if Æ � 1d then 8x; h g(x) = P (g)x;h(0).Proof: As in the proof of Lemma 12 we will pik a onvenient matrix on whih we willapply Lemma 11. This time the matrix of hoie is obtained by piking h1; h2 2R Zmp andletting mij = g(x+ ih+ j(h1 + ih2)).We will now show that Lemma 11 an be applied to this matrix with high probability (fori0 = j0 = 0). Observe that every row fmijg10dj=0 represents a random neighborhood ontainingthe �xed point x+ ih and hene Corollary 13 implies that Px+ih;h1+ih2(j) agrees with mij forany hoie of j with probability 1�2Æ1. Thus, for every i, with probability at least 1�2dÆ1,Px+ih;h1+ih2(j) agrees withmij for all but 1d fration of the j's. Thus with probability at least1�22dÆ1, this holds for at least 90% of the rows, inluding the row i = 0. By piking  > 10we satisfy the onditions required of the rows in Lemma 11. A similar argument based onthe olumns shows that the onditions required of the olumns are also true with probability1�20dÆ1�o(1) (all olumns exept for the 0th one represent random neighborhoods). Thusthe onditions required for Lemma 11 are satis�ed with probability at least 1�42dÆ1�o(1).Applying Lemma 11 we �nd that there exists a bivariate polynomial Q(i; j) suh that itagrees with mi0 for 90% of the i's. Thus P (g)x;h(i) = Q(i; 0). We now argue that m00 = Q(0; 0)and this will omplete the proof, sine m00 = g(x).By Lemma 11 we �nd that m0j = Q(0; j) for 90% of the j's, implying P (g)x;h1(j) = Q(0; j). ByCorollary 13 we also �nd that m00 = Px;h1(0) with probability at least 1� 2Æ1. In order toshow that this equals Q(0; 0) it now suÆes to show that P (g)x;h1(�) = Px;h1(�).This last part follows from the following observation: For j 6= 0, x + jh1 is distributeduniformly over Fm and thus with probability 1� (1+o(1))Æ we have g(x+ jh1) = f(x+ jh1)(by Corollary 13). Hene with probability at least 1� 10Æ � o(1), g(x + jh1) = f(x + jh1)for 90% of the j's. But both the polynomials Px;h1(j) and P (g)x;h1(j) agree with f(x+ jh1) andg(x+ jh1) for 90% of the j's respetively. Thus P (g)x;h1(�) must agree with Px;h1(�) on at least80% of the inputs, implying P (g)x;h1(�) = Px;h1(�).Thus with probability at least 1� (42dÆ1+2Æ1+10Æ+o(1)) (over random hoies of h1 andh2) the identity g(x) = P (g)x;h(0) holds. But this event is deterministi (independent of h1 and15



h2) and hene if its probability is positive then it must always hold. If Æ < 1=((20)(541)d),then Æ1 < 1=(541d) and then the above probability is positive. 2Proof (of Theorem 9): Lemma 15 implies that along eah line lx;h, g an be desribedby a univariate polynomial of degree at most d. Charaterization 6 an now be applied toinfer that g is a polynomial of total degree at most d. From Lemma 14 we now know that fand g di�er in at most Æ(1 + o(1)) fration of the plaes. This ompletes the proof. 26 Self-Testing PolynomialsIn this setion we omplement the results of [BF90℄[Lip91℄ by showing how to onstrut aself-tester for any polynomial funtion. The results an also be generalized to give self-testersand self-orretors for funtions in �nite dimensional funtion spaes that are losed undershifting and saling.Previously, program testing was thought of as the following: pik a random input x and verifythat P (x) = f(x) by omputing f via another program. This method has two problems: �rst,it relies on believing the other program to be orret, and seondly, sine testing is oftendone at runtime [BLR90℄, it negates the bene�ts of designing faster programs, sine theomputation time will be dominated by the omputation time of the old program.As in [BLR90℄, our testers are of a nontraditional form and use the robust haraterizationof the funtion being tested: the tester is given a short spei�ation of the funtion in theform of properties that the funtion must have, and veri�es that these properties \usually"hold. We show that these properties are suh that if the program \usually" satis�es theseproperties, then it is essentially omputing the orret funtion.Test Sets Given that a funtion omputes a polynomial, we want a way of speifying thatit is the orret polynomial. We do this by speifying the funtion value of the polynomial ata number of inputs. It is easy to see that the number of inputs required is exatly the numberof inputs neessary to determine whether two degree d polynomials are distint. Sine anytwo degree d univariate polynomial funtions an only agree on d points, it suÆes to hekwhether or not the polynomial funtions agree at any d+ 1 points to determine whether ornot they are distint. On the other hand, distint multivariate polynomials an agree at anunbounded number of points. However, it is well known that there exists a set of (d + 1)mpoints suh that no two degree d, m-variate polynomials an agree at all points in the set.We make the following de�nition:De�nition 16 We say that T = f(x1; y1); : : : ; (xt; yt)g is a (d;m)-polynomial test set if thereis only one degree d, m variable polynomial f suh that for all i 2 [1; :::; t℄; f(xi) = yi.A (d;m)-test set need only be of size (d+ 1)m.When the number of variables is small, the provision that the value of the funtion is knownon at least (d+1)m points is not very restritive sine the degree is assumed to be small with16



respet to the size of the �eld: Suppose one has a program for the RSA funtion x3 mod m.Traditional testing requires that the tester know the value of f(x) for random values of x.Here one only needs to know the following simple and easy to generate spei�ation: f is adegree 3 polynomial in one variable, and f(0) = 0; f(1) = 1; f(�1) = �1; f(2) = 8. Thesefuntion values are the same over any ring Zm of size at least 9.6.1 Testing AlgorithmOur self-tester for a polynomial of degree d with m variables assumes that the spei�ationof the polynomial is given by the value of the funtion on a (d;m)-polynomial test set.Theorem 17 If f is a degree d polynomial in m variables over Zp, and the value of f isgiven on a (d;m)-polynomial test set, then for � � O(1=d2), f has an ( �2(d+2) ; 4�)-self-testeron Zp with O((d+ 1)m=�+ d �max(d2; 1� )) alls to P .The self-testing is done in two phases, one verifying that the program is essentially omputingsome degree d polynomial funtion g, and the other verifying that the g is the orretpolynomial funtion by verifying that g (rather than P ) is orret on the polynomial testset.We now give the self-testing program that is used to prove Theorem 17.For simpliity, in the desription of our self-testing program, we assume that whenever theself-tester makes a all to P , it veri�es that the answer returned by P is in the proper range,and if the answer is not in the proper range, then the program notes that there is an error.We use x 2R Zmp to denote that x is hosen uniformly at random in Zmp .program Polynomial-Self-Test(P; �; �; T = ((x1; f(x1)); : : : ; (xt; f(xt))))Degree TestRepeat �(1� log (1=�)) timesPik x; h 2R Zmp and test that Pd+1i=0 �iP (x+ i � h) = 0Rejet P if the test fails more than an � fration of the time.Equality Testfor j going from 1 to t doRepeat �(log (d=�)) timesPik h 2R Zmp and test that f(xj) = Pd+1i=1 �iP (xj + i � h).Rejet P if the test fails more than 1=4th of the time.
17



6.2 Corretness of AlgorithmNotation: Let Æ � Prx;h[Pd+1i=0 �iP (x+ i � h) 6= 0℄We say program P is �-good if Æ � �2 and 8j 2 f1; : : : ; tg, Prh[f(xj) = Pd+1i=1 �iP (xj+i�h)℄ �3=4. We say P is �-bad if either Æ > 2� or if 9j suh that Prh[f(xj) = Pd+1i=1 �iP (xj+ i�h)℄ <1=2. (Note that there are programs that are neither �-good or �-bad).The following lemma is easy to prove :Lemma 18 With probability at least 1� � an �-good program is passed by Polynomial-Self-Test. With probability at least 1� � an �-bad program is rejeted by Polynomial-Self-Test.It is easy to see that if a program P �2(d+2) -omputes f , then it is �-good. On the otherhand, we need to show that if P does not 4�-ompute f then it is �-bad. We show theontrapositive, i.e. that if P is not �-bad, then it 4�-omputes f .If P is not �-bad, then Æ � 2�. Under this assumption, we show that there exists a funtiong with the following properties:1. g(x) = P (x) for most x.2. 8x; t Pd+1i=0 �ig(x+ it) = 0, and thus g is a degree d polynomial.3. g(xj) = f(xj) for j 2 f0; 1; : : : ; dg.The funtion g is as de�ned in the previous setion on robust haraterizations, and properties(1) and (2) follow from the lemmas proved there. In order to show property (3), we alsohave:Lemma 19 g(xj) = f(xj)Proof: Follows from the de�nition of g and the fat that P is not �-bad. 2Theorem 20 The program Polynomial-Self-Test is a ( �2(d+2) ; 4�)-self-testing program forany degree d polynomial funtion over Zmp spei�ed by its values at any (d;m)-polynomialtest set T , if � � 14(d+2)2 .Proof: Follows from Lemmas 18,8, and 19. 2
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7 Loally Testable CodesIn this setion we introdue some de�nitions related to oding and show the impliations oflow-degree testing to generating odes with nie properties. 3 We start by desribing somestandard parameters assoiated with error-orreting odes.A n-letter string over the alphabet � is an element of �n. Given a string w 2 �n, the ithharater of w is denoted wi. Given strings w;w0 2 �, the relative distane between w andw0, denoted d(w;w0) is the fration of indies i 2 f1; : : : ; ng where wi 6= w0i. (Here onwardswe will drop the term relative from the desription of this parameter).De�nition 21 (Error Correting Code) A (k; n;�; a)-ode onsists of an alphabet �suh that log j�j = a and a funtion C : �k ! �n, suh that for any two strings m;m0 2 �k,the distane between C(m) and C(m0) is at least �.For the purposes of this setion we will restrit our attention to error-orreting odes withina small range of the above parameters whih are interesting for the appliations to proba-bilistially hekable proofs. We all these the good odes. Suh odes need to have onstantrelative distane. The enoded message is allowed to be muh larger than the original mes-sage size, as long as the �nal length is polynomially bounded. Perhaps the most interestingaspet is the alphabet size. While the ultimate goal would be to get odes whih workover a onstant sized alphabet, getting an alphabet size whih is signi�antly smaller thanthe message size (smaller than any non-onstant polynomial) turns out to be an importantintermediate goal. Here we hoose this parameter to be polylogarithmi in the message size.De�nition 22 (Good Code) A family of odes fCig with parameters (ki; ni;�i; ai) is goodif ki !1, ni is upper bounded by some polynomial in ki, �i > 0, and ai is upper boundedby some funtion growing as polylog(ki).A wide variety of odes desribed in pratie satisfy the properties required of a good ode.In partiular we desribe the polynomial odes.De�nition 23 (Polynomial Codes) Fix some � > 0. The polynomial odes fPmg arehosen by letting d = dm1+�e and piking a �nite �eld F of size between 10d and 20d. Theode ahieves km = �m+dm � and nm = jF jm over the alphabet F and works as follows: Themessage is viewed as speifying the oeÆients of a degree d polynomial in m variables andthe enoding onsists of the value of this polynomial at all inputs.It may be veri�ed that fPmg forms a good ode with distane at least 0:9. In what follows wewill try to desribe how this family of odes and a related ode have extremely \good" loalhekability properties. The following de�nition formalizes the notion of loal hekability.Informally, the de�nition expets that by probing a string in just p (randomly hosen) letters,the veri�er an test if it lose to a valid odeword and if not rejets it with probability atleast Æ.3These de�nitions are motivated by subsequent work in the area of proof heking where our tester hasfound appliations, most notably that of [ALMSS92℄.19



De�nition 24 (Loally Testable Code) For a positive integer p and a positive real num-ber Æ, an (n; k;�; a)-ode C over the alphabet � is (p; Æ)-loally testable if the following exist� A probability spae 
 whih an be eÆiently sampled.� Funtions q1; q2; : : : ; qp : 
! f1; : : : ; ng.� A boolean funtion V : 
� �p ! f0; 1g.with the property that for all w 2 �n, ifPrr2
 hV (r; wq1(r); : : : ; wqp(r)) = 0i < Æthen there exists a (unique) string m 2 �k suh that d(w;C(m)) < �=2. Conversely, ifw = C(m) for some m, then V (r; wq1(r); : : : ; wqp(r)) = 1 for all r 2 
.Before we desribe the kind of loally hekable odes that our testers provide we attempt tomotivate the de�nition above by showing that (seemingly minor) modi�ations of the abovede�nitions yield important onepts in proof heking - namely, probabilistially hekableproofs. We onsider espeially probabilistially hekable proofs over a large alphabet inwhih number of alphabets that a veri�er is allowed to probe is a parameter. This oneptis an important ingredient in the reursive onstrution of probabilistially hekable proofs[AS92, ALMSS92, BGLR93℄ and is also of independent interest in omplexity theory [LS91,FL92a℄. The original de�nition of probabilistially hekable proofs is due to [AS92℄ based onan impliit notion in [FGLSS91℄. A very losely related notion - that of holographi proofs -appears in the work of [BFLS91℄. The partiular hoie of parameters made in the followingde�nition is due to [BGLR93℄.De�nition 25 (PCP) Given funtions r; p; a; Æ : Z+ ! Z+, a language L � f0; 1g� is saidto be in PCP[r; p; a; Æ℄ if there exists a polynomially growing funtion n(l), an alphabet � ofsize a(l) suh that for all integers l > 0 the following exist:� A probability spae 
 whih an be sampled using r(l) bits.� Funtions q1; q2; : : : ; qp(k) : 
! f1; : : : ; n(l)g.� A boolean funtion V : f0; 1gl � 
� �p ! f0; 1g.with the property that for all x 2 f0; 1gl, if w 2 �n(l) satis�esPrr2
 hV (x; r; wq1(r); : : : ; wqp(r)) = 0i < Æthen x 2 L. Conversely, if x 2 L, then there exists w 2 �n(l) suh that for all r 2 
,V (x; r; wq1(r); : : : ; wqp(r)) = 1. 20



It turns out that there is strong orrelation between PCP[log; p; polylog; Æ℄, and good odeswhih are (p; Æ) loally hekable. In partiular the odes we desribe next translate intosuh probabilistially hekable proofs.The robust haraterization of polynomials desribed in Theorem 9 shows that the polyno-mial odes are (d+2;
(1=d))-loally testable. Observe further that for the polynomial odesthe growth of d is polylogarithmi in k. It seems that the approah above annot hope togive odes whih are testable using fewer than 
(d) probes. However this is not the ase. Wedesribe next a simple way of modifying the odes so as to give odes with appreiably betterloal-testability. These odes are obtained by observing that the odes we have onstrutedso far use a muh smaller alphabet size than neessary for \goodness".De�nition 26 (Polynomial-Line Codes) Fix some � > 0. The polynomial-line odesfLmg are hosen by letting t = dm1+�e and piking a �nite �eld F of size between 10dand 20d. The ode ahieves km = �m+dm �=(d + 1) and nm = jF j2m over the alphabet F d+1.As in the polynomial odes, the message again onsists of �m+dd � �eld elements and is viewedas a degree d polynomial spei�ed by its oeÆients. Given a message polynomial p, theodeword is onstruted as follows: For every pair of �eld elements x̂; ĥ 2 Fm, let lx̂;ĥ bethe line through x̂ with o�set ĥ as in Charaterization 3. p restrited to lx̂;ĥ is a univari-ate polynomial of degree d. Let Cx̂;ĥ 2 F d+1 be the vetor of oeÆients of this univariatepolynomial. The odeword onsists of fCx̂;ĥgx̂;ĥ2Fm.It is easy to see that the Polynomial-Line Codes are also good odes. The proof of Theorem 9an be transformed to show that the Polynomial-Line Codes are loally testable with aonstant number of probes. More spei�ally the following an be shown.Proposition: The Polynomial-Line Codes are (2;
(1=d))-loally testable.Better analysis of some portions of our proof yields even better statements about thePolynomial-Line Codes. This is desribed in the next setion.8 ConlusionsThere has been a spate of results about low-degree tests in the last few years. A brief listinginludes the low-degree test of [BFL91, Lun92℄ whih was the �rst test for multivariatepolynomials, the results of [BFLS91, FGLSS91℄ obtained independently and onurrentlywith ours (from [GLRSW91, RS92℄), and subsequent works of [AS92, ALMSS92, FHS94,PS94, FS94℄. Here we summarize some of their ahievements along with a omparisonwith our results. We start by distinguishing the merits of our tester from those of [BFL91,BFLS91℄.Program heking The test of [BFL91℄[Lun92℄, in the program heking setting allowsthe self-tester to be onvined that the program is omputing a multivariate polynomial21



funtion of low degree in polynomial time. However, the tests are somewhat ompliated toperform, beause they involve the reonstrution of a univariate polynomial given its valuesat a number of points (whih in turn requires multipliations and matrix inversions), andlater the evaluation of the reonstruted polynomial at random points. If the given funtionis a funtion of a single variable then the [BFL91℄[Lun92℄ tester is no simpler than a programevaluating the polynomial. Therefore it does not have the \little-oh" property de�ned by[BK89℄ nor is it di�erent from the program evaluating the polynomial, in the sense de�nedby [BLR90℄, and does not give a self-tester or heker. Our test in ontrast is di�erent sineit requires no multipliations to perform the test.Relationship with proof heking. The low-degree tester forms a ruial ingredient inthe reent results on proof heking. Our result from Setion 4 gives a very simple proof ofone of the relatively hard parts of the proof of MIP=NEXPTIME shown by [BFL91℄. Thehardness of the analysis of the tester of [BFL91℄ (and its simpli�ations, see for instane,[FGLSS91℄) is in their need to rely on the isoperimetri properties of the m-dimensional grid.Our proof on the other hand does not seem to require any ombinatoris, and is insteadbased on elementary algebrai/probabilisti tehniques. This di�erene may be explainedas follows: The suess of the test does indeed depend on the isoperimetri properties of agraph related to the neighborhood struture. In the ase of the test of [BFL91℄ this graphturns out to be in the m-dimensional grid. In our ase, the underlying graph turns out tobe a omplete graph. This graph is obviously muh easier to analyse for its properties andhene the proof is devoid of any ombinatorial statements.We now desribe some of the subsequent results and the role of our tester in these results.The ontrast is desribed in terms of loally-testable odes.Loally testable odes The low-degree test desribed in [BFL91, BFLS91℄ gives rise togood odes whih also have nie loal hekability property. A sequene of improvements[BFL91, BFLS91, FGLSS91℄ ulminated in the work of [AS92℄ whih ahieves asymptotiallyoptimal bound for suh odes by showing that they are (2;
(1=m))-loally testable. Thehighlight of the work of [AS92℄ is that the loality bounds are independent of the degreeof the polynomial that they work with. However, the dependene of Æ on m, is inherentfor suh odes and Æ ! 0 as m ! 1. The Polynomial-Line Codes desribed in Setion 7seem to have no inherent reason why Æ should go to zero. This turns out to be indeed thease. [ALMSS92℄ observe that a ombination of the analysis of [AS92℄ and that of Setion 5implies that there exists a onstant Æ > 0 suh that the Polynomial-Line Codes are (2; Æ)-loally testable, provided that the �eld F is of ardinaltity at least d2. As mentioned inSetion 7 this translates into a proof of NP � PCP[log; O(1); polylog;
(1)℄ in [ALMSS92℄.By employing the tehnique of reursive proof heking, due to [AS92℄, on suh proof systems[ALMSS92℄ go on to prove that NP � PCP[log; O(1); O(1);
(1)℄. The loal testability ofthe Polynomial-Line odes has been further improved in two ways reently. [PS94℄ haveshown that the odes are (2; Æ)-loally hekable over this works for linear sized �elds aswell, for some Æ > 0. In a di�erent diretion [FS94℄ show that the Polynomial-Line odesare (2; Æ)-loally hekable for all Æ < 1=8. 22
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A.2 CharaterizationsLemma 28 (axis parallel lines) f : Zmp 7! Zp is a polynomial in m variables of de-gree at most d in eah variable if and only if for all i 2 f1; : : : ; mg, �j 2 Zp (j 6= i),f(�1; : : : ; �i�1; xi; : : : ; �m) is a polynomial in xi of degree at most d.Proof [Sketh℄: It is lear that every polynomial of degree d in eah variable restritedto axis parallel lines, behaves as a univariate polynomial of degree d. The other diretionan be proved by indution on m. The base ase m = 1 is obvious. For general m > 1, letfi(x1; : : : ; xm�1) be the funtion f(x1; : : : ; xm�1; i). By indution fi is a polynomial of degreed inm�1 variables. Now onsider the funtion h(x1; : : : ; xm) � Pdi=0 Æ(d)i (xm)fi(x1; : : : ; xm�1)(where Æ(d)i is the unique polynomial of degree d in one variable that is 1 at xm = i and 0 forother values of xm 2 f0; : : : ; dg).It is lear by onstrution that h is a polynomial of degree at most d in eah variable. Wenow argue that f and h are idential. Fix x1 = �1; : : : ; xm�1 = �m�1. It is lear thath(x1; : : : ; xm) = f(x1; : : : ; xm) for xm 2 f0; : : : ; dg. Moreover, both h and f are degree dpolynomials in xm whih agree at d + 1 plaes. Hene f and h must agree at all values ofxm. Sine this held for any hoie of �i's, f and h agree everywhere. 2Lemma 29 (general lines) For p � 2d+ 1, f : Zmp 7! Zp is a polynomial in m variablesof total degree at most d if and only if 8x̂; ĥ 2 Zmp ; f(x̂+ t � ĥ) is a univariate polynomial int of degree at most d.Proof: It is lear that every polynomial restrited to lines must beome a degree dpolynomial in the parameter desribing the line. Here we prove the other diretion of theharaterization. We �rst observe that sine the set of all lines inludes the axis parallellines, we an use Lemma 28 to show that f is a polynomial in m variables with degree atmost d in eah variable. Having got this weak haraterization, we will now strengthen thisto a tighter one. By indution on the number of variables, we an assume that f restritedto any value of the last variable xm is a polynomial of total degree at most d in the variablesx1; : : : ; xm�1. Thus f beomes a funtion in x1 through xm of total degree d0 � 2d.Assume for ontradition that d0 > d. Now onsider the funtion f(t � ĥ) for ĥ 2R Zmp .The oeÆient of td0 is a polynomial in ĥ of degree d0 whih with probability at least 1� d0pshould be non-zero. (Note that to make this probability positive, we need 2d < p.) Thus frestrited to this line is a polynomial of degree d0 > d, whih violates the given ondition onf . 2
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