
To appear: SIAM J. on Computing, manus
ript no. 0255151.
Robust Chara
terizations of Polynomials withAppli
ations to Program Testing�Ronitt Rubinfeld yMadhu Sudan z

Abstra
tThe study of self-testing and self-
orre
ting programs leads to the sear
h for ro-bust 
hara
terizations of fun
tions. Here we make this notion pre
ise and show su
h a
hara
terization for polynomials. From this 
hara
terization, we get the following ap-pli
ations. We 
onstru
t simple and eÆ
ient self-testers for polynomial fun
tions. Our
hara
terizations provide results in the area of 
oding theory, by giving extremely fastand eÆ
ient error-dete
ting s
hemes for some well known 
odes. This error-dete
tions
heme plays a 
ru
ial role in subsequent results on the hardness of approximatingsome NP-optimization problems.1 Introdu
tionThe study of program 
he
kers [Blu88℄[BK89℄, self-testing programs [BLR90℄ and self-
orre
tingprograms [BLR90℄[Lip91℄ was introdu
ed in order to allow one to use a program P to 
om-pute a fun
tion without trusting that P works 
orre
tly. A program 
he
ker 
he
ks that theprogram gives the 
orre
t answer on a parti
ular input, a self-testing program for f tests thatprogram P is 
orre
t on most inputs, and a self-
orre
ting program for f takes a programP that is 
orre
t on most inputs and uses it to 
ompute f 
orre
tly on every input withhigh probability. The program 
he
ker, self-tester and self-
orre
tor may 
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as a bla
k box, are required to do something other than to a
tually 
ompute the fun
tion,and should be mu
h simpler and at least di�erent from any program for the fun
tion f inthe pre
ise sense de�ned by [BK89℄. It is straightforward to show that 
he
kers, self-testersand self-
orre
tors for fun
tions are related in the following way: If f has a self-tester anda self-
orre
tor, then it 
an be shown that f has a program result 
he
ker. Conversely, if fhas a 
he
ker, then it has a self-tester (though not ne
essarily a self-
orre
tor). It is arguedin [BK89℄ and [BLR90℄ that this provides an attra
tive alternative method for atta
king theproblem of program 
orre
tness.One of the main goals of the resear
h in the area of self-testing/
orre
ting programs andprogram 
he
king is to �nd general te
hniques for �nding very simple and eÆ
ient self-testers,self-
orre
tors and 
he
kers for large 
lasses of problems. In fa
t, some su

ess towardsthis goal has been a
hieved. For example, in [BK89℄, it is shown how to use te
hniquesfrom the area of intera
tive proof systems in order to write 
he
kers. Using these andother te
hniques, 
he
kers (and hen
e self-testers) have been found for a variety of problems[AHK, BK89, Rub90, Kan90, BFLS91, BF91℄. If a fun
tion is random self-redu
ible, i.e., thevalue of the fun
tion at any input 
an be inferred from its value at randomly 
hosen inputs,then it has a self-
orre
tor [BLR90℄[Lip91℄. This provides self-
orre
tors for a surprisingrange of fun
tions, in
luding the 
lass of linear fun
tions (homomorphisms between groups)and polynomials.In the dire
tion of 
hara
terizing fun
tions that have self-testers, some su

ess has beena
hieved in [BLR90℄. They give a number of methods of 
onstru
ting self-testers for fun
-tions, some of whi
h we mention here: They observe that any 
he
ker for a fun
tion 
anbe used to 
onstru
t a self-tester for the fun
tion. They present a parti
ular method of
onstru
ting self-testers for a variety of fun
tions based on a method of bootstrapping fromtests over smaller domains. They also show another method of 
onstru
ting self-testers for alllinear fun
tions, i.e., fun
tions that a
t as homomorphisms between groups, in other wordssatisfy f(x) + f(y) = f(x+ y) for a group operation +.The main fo
us of this paper is to study and understand the fun
tions whi
h have self-testers, and to broaden the 
lass of fun
tions that are known to have self-testers. Thelinearity tester of [BLR90℄ is the starting point for this paper. A parti
ularly interestingfeature of this linearity tester is that it breaks the task of self-testing a fun
tion into the twotasks of (1) testing it for 
ertain \stru
tural properties" and (2) using the stru
tural propertyto then identify the fun
tion pre
isely. In this paper we introdu
e a new notion { a fun
tionfamily tester { whi
h helps delineate these two tasks more 
learly. We �rst introdu
e someterminology:We work with fun
tions de�ned over some �nite domain D. The distan
e between twofun
tions f and g over the domain D is the fra
tion of points x 2 D where the two fun
tionsdisagree: d(f; g) � jfx 2 Djf(x) 6= g(x)gjjDjWe say that two fun
tions are �-
lose if d(f; g) � �. In some of the informal dis
ussionsthat follow, we drop the � and just des
ribe two fun
tions as being 
lose. In su
h 
ases, it is2



implied that we are talking of some small enough �. In terms of this notion a self-tester fora fun
tion f may be de�ned as follows:A �-self-tester T for a fun
tion f over a domain D, is a (randomized) ora
le program thattakes as input a program P and behaves as follows:� A

epts P if d(P; f) = 0.� Reje
ts P (with high probability) if P and f are not �-
lose.� Behaves arbitrarily otherwise.Testers for fun
tion families using robust 
hara
terizations Let F be a family offun
tions. An �-fun
tion family tester T for the family F , takes as input a program P andtests if there exists a fun
tion f 2 F su
h that P is �-
lose to f .The notion of a fun
tion family tester 
aptures the notion of verifying properties of a fun
tionas follows: Let P be a property we wish to test for. Let F be the family of all fun
tions thathave the property P. Then a fun
tion family tester for F 
an be used to test if a program P\essentially" has the property P (i.e., there exists a fun
tion with property P that is 
loseto P ). To make some of these abstra
t de�nitions 
on
rete, let us work with the simpleexample of the property of linearity among fun
tions from Zp to Zp. For this example, thefamily of fun
tions we work with is Flinear � ffaja 2 Zp; fa(x) = a � xg. Thus a testerfor the family of linear fun
tions veri�es that the 
omputation of a program P is essentiallylinear.The existen
e of a fun
tion family tester for any 
lass of fun
tions implies a powerful 
har-a
terization of the family. In parti
ular, 
onsider any program that is reje
ted by the tester.In order to reje
t the program, the tester will have found some eviden
e in the small setof sampled points whi
h \proves" that P 
an not be a member of F . In other words, allmembers of F must satisfy some property on the set of inputs that are examined by thefamily tester. Thus all members of F satisfy a \lo
al" property (by lo
al we mean a propertyon a set of small size { we de�ne this notion more formally in Se
tion 2). Moreover, if allsu
h lo
al properties are satis�ed, then the tester a

epts the fun
tion, implying that theselo
al 
onstraints form a 
hara
terization of the family. Thus in order for a fun
tion familyto have a tester, it needs to have a lo
al 
hara
terization. In our example, su
h a lo
al
hara
terization of linear fun
tions is the property that 8x; y 2 Zp, f(x) + f(y) = f(x+ y).If a fun
tion is not linear then there exists a 
ounterexample of size three that proves thatit is not linear.However, lo
al 
hara
terizations do not form a suÆ
ient 
ondition for the 
onstru
tion oftesters. Typi
ally an exa
t lo
al 
hara
terization of a family of fun
tions involves a universalquanti�
ation, whi
h is not feasible to verify. In our example, the 
hara
terization of linearfun
tions by the property 8x; y 2 Zp, f(x)+f(y) = f(x+y) is not useful to test a purportedlinear fun
tion sin
e we 
annot hope to eÆ
iently test that this holds for all possible pairsx; y. Thus for a 
hara
terization to be useful for testing, it needs to be \robust", involvingthe words \for most" rather than \for all". Spe
i�
ally, let F be the fun
tion family that3



satis�es the properties at all inputs, and let f be any fun
tion that satis�es the propertiesat most inputs. Then f must be 
lose to some g 2 F (see Se
tion 2 for a more formalde�nition). In our example, if f(x) + f(y) = f(x + y) is satis�ed by f for most x; y, thenf(x) = 
 � x for most x and some 
onstant 
.Our results on fun
tion family testing One of the main emphases of this paper isto �nd robust 
hara
terizations for the family of low degree univariate and multivariatepolynomials. In Se
tion 3 we start by des
ribing some (well-known) lo
al 
hara
terizations ofunivariate and multivariate polynomials and then prove that some of these 
hara
terizationsare a
tually robust 
hara
terizations. As an immediate 
onsequen
e we get fun
tion familytesters for all low-degree polynomials over �nite �elds. For the 
ase of polynomials over Zp,our testers are very simple and do not even need to multiply elements of the �eld. Ourtesters are the �rst testers that dire
tly attempt to test the total degree of a polynomial (asopposed to the testers of [BFLS91, FGLSS91, AS92℄, all of whi
h test that the degree in ea
hvariable is not too large). The proof of 
orre
tness of our tester also is di�erent from theproofs of 
orre
tness of the other testers in that it does not rely on an indu
tive argumentbased on the number of variables. This allows for its \eÆ
ien
y" to be independent of thenumber of variables and provides the hope for the existen
e of a tester with nearly optimaleÆ
ien
y.A se
ond emphasis of this paper is the notion of test sets that allows us to use the resultson fun
tion family testing to obtain self-testers for spe
i�
 fun
tions. Informally, a test setis a set of points from the domain, su
h that no two fun
tions from the family F agree withea
h other on all the points from the test set. Our self-tester for a spe
i�
 fun
tion f wouldrequire, as a des
ription of f , its value on all points in a test set. The 
omplexity (runningtime) of the self-tester will depend on the size of the test set.Other impli
ations of low-degree testing The task of 
onstru
ting family testers forthe family of low-degree polynomials is 
losely related to the task of error-dete
tion in ReedSolomon 
odes. In fa
t, a low-degree test 
an be des
ribed as a \randomized" error-dete
torthat determines whether the number of errors in a re
eived word is small or not. In thissense, the error-dete
tors we 
onstru
t have the feature that they are highly eÆ
ient and
an be used to get estimates on the distan
e of a re
eived word from a valid 
odeword.This perspe
tive 
an similarly be applied to the results of [BLR90℄ to get randomized error-dete
ting and 
orre
ting s
hemes for the Hadamard 
odes that probe the re
eived word inonly a 
onstant number of bits to dete
t an error or �nd any bit of the 
odeword 
losest tothe re
eived word. In fa
t, it has been shown by M. Naor [Nao92℄ that these results 
an beused to 
onstru
t 
odes for whi
h error-dete
tion/
orre
tion 
an be performed by uniformquasi-polynomial sized 
ir
uits of 
onstant depth. In Se
tion 7 we de�ne the notion of a\lo
ally testable 
ode" - a notion that pre
isely des
ribes the relationship between testingand error-
orre
ting 
odes. We also provide appli
ations of our testers to the 
onstru
tionof \lo
ally testable 
odes" in the se
tion.A di�erent perspe
tive on the 
onstru
tion of family testers is to view it as the followingapproximation problem: 4



Given a family of fun
tions F and a fun
tion P , estimate the distan
e d(P;F)between P and F to within a small multipli
ative error.A tester for a fun
tion family F essentially yields su
h an approximator (provided d(P;F)is smaller than half) by de�ning some new quantities Æ(P;F) that are easy to estimate byrandom sampling and then showing that some approximate relations hold between Æ(P;F)and d(P;F). For example, the linearity test of [BLR90℄ may be viewed as trying to ap-proximate the distan
e d(f;Flinear). To approximate this distan
e they de�ne the quantityÆ(f;Flinear) � Pr[f(x) + f(y) 6= f(x + y)℄ whi
h is easy to approximate. Then they showthat Æ(f;Flinear)=3 � d(f;Flinear) � 9=2Æ(f;Flinear). The testers given here de�ne simi-lar quantities related to low-degree polynomials and show similar approximate relationships.Su
h inequalities may be of independent interest.The task of low-degree testing forms a 
entral ingredient in the proof of MIP = NEXPTIMEdue to [BFL91℄. The tester given here provides an alternate me
hanism that works in theirsetting. The eÆ
ien
y of low-degree testing also be
omes very important to the ensuingresults on hardness of approximations [FGLSS91, ALMSS92℄ and therefore a lot of attentionhas been paid to this problem [BFL91, BFLS91, FGLSS91, AS92℄. However all these resultsfo
us on tests that are 
lose variants of the test given in [BFL91℄. The low-degree testgiven here is fundamentally di�erent from the ones mentioned above and originated fromindependent 
onsiderations in the work of [GLRSW91℄. The eÆ
ien
y of the tester shownhere may also be found in [RS92℄. It turns out that this tester is parti
ularly well-suitedto su
h multiple prover appli
ations and provides a one round, 
onstant prover proof that afun
tion is a low degree polynomial over �nite �elds. This is observed in subsequent workof [ALMSS92℄ (see also [Sud92℄) and follows by using an improved analysis for Lemma 11from [AS92℄. This turns out to play a 
ru
ial role in the NP = PCP(logn;O(1)) resultof [ALMSS92℄, whi
h in turn provides hardness results for a wide variety of approximationproblems. An exa
t des
ription of the relevan
e of the various testers and the 
hronology of
ontributions maybe found in Se
tion 8.Organization of Paper The rest of this paper is organized as follows. In Se
tion 2 weformally de�ne the notions of lo
al 
hara
terizations - exa
t and robust. Se
tion 3 lists some(well-known) exa
t 
hara
terizations of low-degree polynomials. Se
tions 4 and 5 show thattwo of these exa
t 
hara
terizations are robust. In Se
tion 6 we des
ribe the appli
ationsof these 
hara
terizations to self-testing of programs. In Se
tion 7 we de�ne a notion oflo
ally-testable 
odes (based on the notion of probabilisti
ally 
he
kable proofs) and showappli
ations of our testers to su
h 
odes. Se
tion 8 
ontains some 
on
luding remarks.2 Lo
al Chara
terizations: Exa
t and RobustIn this se
tion we make pre
ise the notion of a lo
al 
hara
terization and what we meanby exa
t and robust 
hara
terizations. We will also isolate a parameter asso
iated with the5



robust 
hara
terizations that 
aptures the eÆ
ien
y of the tester suggested by the 
hara
-terization.We will use D to represent a �nite domain. We will 
onsider here, families of fun
tions Fwhere f 2 F maps elements from D to a range R. We illustrate these de�nitions using theexample of linear fun
tions. Here the domain and range are Zp and the family of fun
tionsis ffaja 2 Zp where fa(x) = a � xg.De�nition 1 (Neighborhoods) A k-lo
al neighborhood N is an ordered tuple of (not ne
-essarily distin
t) k points from D . A k-lo
al 
olle
tion of neighborhoods N is a set of k-lo
alneighborhoods.De�nition 2 (Properties) A k-lo
al property P is a fun
tion from (D�R)k to f0; 1g. Wesay that a fun
tion f satis�es a property P over a neighborhood N if P(f(x; f(x))gx2N) = 1.De�nition 3 (Exa
t Chara
terizations) A property P over a 
olle
tion of neighborhoodsN is an exa
t 
hara
terization of a family of fun
tions F if a fun
tion f satis�es P over allneighborhoods N 2 N exa
tly when f 2 F . The 
hara
terization is k-lo
al if the property P(and the 
olle
tion N ) is k-lo
al.In our example, the 
olle
tion of neighborhoods N = f(x; y; x+ y)jx; y 2 Zpg. The propertyP is 3-lo
al and is satis�ed by f on the triple (x1; x2; x3) if f(x1)+f(x2) = f(x3). Thus overthe 
olle
tion of neighborhoods N , P gives a 3-lo
al 
hara
terization of the family of linearfun
tions.De�nition 4 (Robust Chara
terizations) A property P over a 
olle
tion of neighbor-hoods N is said to be an (�; Æ)-robust 
hara
terization of F , if whenever a fun
tion f satis�esP on all but Æ fra
tion of the neighborhoods in N , it is �-
lose to some fun
tion g 2 F .Moreover, all members of F satisfy P on all neighborhoods in N .To 
ontinue with the example of linear fun
tions, the theorem of [BLR90℄ 
an be used tosay that P over the neighborhood N is a (92(29 � �); 29 � �)-robust 
hara
terization of linearfun
tions for any 
onstant �.The exa
t 
onstant � determining 
loseness is not very important for the family of multivari-ate polynomials. For most of the 
hara
terizations we 
onsider here, it 
an be shown thatany fun
tion f is ((1 + o(1))Æ)-
lose to some member g of F if f is 14 -
lose to g and violatesonly a Æ fra
tion of the neighborhood 
onstraints. Thus for the purposes of this paper, we�x the value of � to be 14 .In order to test if f is 
lose to some member of F , one would need to sample at least 1Æ ofthe neighborhoods in N and test if P holds on these neighborhoods. Hen
e, the parameter1Æ is referred to as the eÆ
ien
y of the 
hara
terization.6



3 Exa
t Chara
terizations of PolynomialsIn this se
tion we start by des
ribing some (well-known) exa
t lo
al 
hara
terizations ofpolynomial fun
tions. In later se
tions we will show that some of these 
hara
terizations 
anbe made robust.The family of degree d polynomials 
an be 
hara
terized in a number of ways. The dif-ferent 
hara
terizations arise from looking at di�erent 
olle
tions of neighborhoods N . Theproperty P has to remain invariant in the following sense: P will be satis�ed by f on a neigh-borhood N if there exists a polynomial that agrees with f on all points in N . The 
omplexityof a neighborhood test, i.e., testing whether a 
onstraint is being satis�ed by a neighborhood,is also in
uen
ed by the 
hoi
e of the neighborhood. Thus by 
hoosing the 
hara
terizationsappropriately, we might be able to tradeo� the simpli
ity of the neighborhood test againstthe number of times the test needs to be repeated. The di�erent 
hara
terizations also haveto be quali�ed by di�erent restri
tions on the underlying ring. For instan
e, some 
hara
-terizations hold only for �nite �elds while others hold only for rings of the form Zm. We willtake 
are to point out the restri
tions on the 
hara
terizations. We give examples of possibleneighborhoods and their 
orresponding tests.1. Univariate polynomialsThe following 
hara
terization of univariate polynomials holds for a fun
tion f mappinga ring R to itself.(a) Chara
terization: f : R 7! R is a polynomial of degree at most d if and only if8x0; : : : ; xd+1 2 R, there exists a polynomial gx0;:::;xd+1 of degree at most d su
hthat f(xi) = gx0;:::;xd+1(xi).(b) Neighborhood stru
ture: N = Rd+2, i.e., all possible (multi)-subsets of R of sized+ 2.(
) Complexity of neighborhood test: A test of the above nature involves �ndingthe (unique) degree d polynomial g that agrees with f at the points x0; : : : ; xdand then evaluating g(xd+1) and verifying that this equals f(xd+1). Standardinterpolation te
hniques (see, for instan
e, [dW70℄) imply that this is equivalentto 
omputing 
oeÆ
ients �0; : : : ; �d+1, where the f�ig's depend only on the fxig's,and verifying thatPd+1i=0 �i �f(xi) = 0. The �i's 
an be 
omputed using elementaryalgorithms with O(d2) additions, subtra
tions and multipli
ations over R.2. Univariate polynomials using evenly spa
ed pointsThis 
hara
terization works over the ring Zm. Let �i = �d+1i �(�1)i+1. The interpola-tion identity for degree d polynomials on evenly spa
ed points, x; x+h; : : : ; x+(d+1)�h,redu
es to Pd+1i=0 �if(x + i � h) = 0. We refer to x as the starting point and h as theo�set.(a) Chara
terization: f : Zm 7! Zm is a polynomial of degree at most d if and onlyif 8x; h 2 Zm, Pd+1i=0 �if(x+ i � h) = 0.7



(b) Neighborhood stru
ture: De�ne the neighborhood sets Nx;h � fx+i�hgd+1i=0 . Thenthe neighborhood 
olle
tion is N = Sx;h2Zm Nx;h.(
) Complexity of Neighborhood Test: Noti
e that the 
onstants �i are now indepen-dent of x and h and 
an be pre
omputed on
e and for all. In fa
t, due to thespe
ial relationship between the �i's, given the value of f at the points x + i � h,we 
an 
ompute the above summation with O(d2) additions and subtra
tions andno multipli
ations (see appendix).3. Multivariate polynomials using linesThis 
hara
terization applies to m-variate fun
tions over a �nite �eld F . De�ne thenotion of a line through the spa
e Fm as follows: For x̂; ĥ 2 Fm, the line lx̂;ĥ throughx̂ with o�set ĥ is the set of points fx̂ + i � ĥji 2 Fg. We will often refer to the line inits parametri
 form lx̂;ĥ(i). Observe that a polynomial f of total degree d, restri
tedto a line lx̂;ĥ(i) be
omes a univariate polynomial of degree at most d in the parameteri. This gives us the following 
hara
terization of degree d polynomials over suÆ
ientlylarge �nite �elds (jF j � 2d+ 1). 1(a) Chara
terization: The fun
tion f : Fm 7! F is a polynomial of degree at most dif and only if 8x̂; ĥ 2 Fm, f restri
ted to lx̂;ĥ(i) is a univariate polynomial in i ofdegree at most d (see appendix for a proof).(b) Neighborhood Stru
ture: Let the neighborhoods be lines. Then N � fNx̂;ĥ =lx̂;ĥjx̂; ĥ 2 Fmg.(
) Complexity of Neighborhood Test: In this form the 
hara
terization is not verylo
al sin
e the 
ounterexamples are lines, i.e., 
olle
tions of jF j points. But this
hara
terization is interesting to us be
ause it says that the 
hara
terization ofmultivariate polynomials 
an be redu
ed to the 
hara
terization of univariatepolynomials (on these lines). Thus we �nd that we 
an now use, for instan
e,Chara
terization 1 to �nd 
ounterexamples of size at most d+2. The 
omplexityof a neighborhood test here is no more than the 
omplexity of the neighborhoodtest in Chara
terization 1.4. Multivariate polynomials using axis parallel linesThis 
hara
terization is a spe
ialization of the 
hara
terization above, in terms ofspe
ial lines - axis parallel lines. We say that a line is axis parallel if the o�set ĥ
ontains only one non-zero 
oordinate.(a) Chara
terization: f : Fm 7! F is a polynomial of degree at most d in ea
h variableif and only if 8 axis parallel lines, f restri
ted to the line is a univariate polynomialof degree at most d. Noti
e that here we 
hara
terize polynomials di�erently, i.e.,in terms of individual degree in ea
h variable rather than total degree.1The above 
hara
terization is not the tightest possible in its requirement of the parameter jF j. Indeed,for the 
ase of �elds of prime order this 
an be improved to the optimal 
ase jF j � d+ 2 and this has beenshown re
ently in [FS94℄. For arbitrary �nite �elds it turns out that jF j � d+2 is not a suÆ
ient 
onditionfor this 
hara
terization to hold. A 
ounterexample to this e�e
t is also shown in [FS94℄.8



(b) Neighborhood Stru
ture: The neighborhoods here are sets of the form Ni;�̂ �f(�1; : : : ; �i�1; t; �i; : : : ; �m�1)jt 2 Fg, for every 
hoi
e of �̂ 2 Fm�1, and every
hoi
e of i 2 f1; : : : ; mg. Then N = Si2f1;:::;mg;�̂2Fm�1 Ni;�̂.(
) Complexity of Neighborhood Test: The 
omplexity of a neighborhood test is thesame as the 
omplexity of Chara
terization 1.5. Multivariate polynomials: evenly spa
ed pointsA 
ombination of Chara
terizations 2 and 3 gives the following 
hara
terization ofpolynomials over Zp, provided p is large enough for Chara
terization 3 to hold.(a) Chara
terization: f : Zmp 7! Zp is a polynomial of degree at most d if and only if8x̂; ĥ 2 Zmp , Pd+1i=0 �if(x̂ + iĥ) = 0, where �i = (�1)i+1�d+1i �.(b) Neighborhood Stru
ture: The neighborhoods here are of the form Nx̂;ĥ � fx̂ +iĥji 2 f0; : : : ; d+ 1gg. Then N � Sx̂;ĥ2Zmp Nx̂;ĥ.(
) Complexity of Neighborhood Test: The 
omplexity of this neighborhood test isthe same as the 
omplexity in Chara
terization 2.6. Multivariate polynomials: evenly spa
ed points - 2This 
hara
terization is a trivial 
onsequen
e of the 
hara
terization above, and seemsweaker sin
e its neighborhood stru
ture is larger than those of the ones above. But itturns out that this 
hara
terization is mu
h more useful due to the kind of robustnessit yields. This 
hara
terization holds for polynomials over Zp, for p > 10d.(a) Chara
terization: f : Zmp 7! Zp is a polynomial of degree at most d if and onlyif 8x̂; ĥ 2 Zmp , the values of f at the points fx̂ + iĥji 2 f0; : : : ; 10dgg agree withsome univariate polynomial g of degree at most d in t.(b) Neighborhood Stru
ture: The neighborhoods here are sets of the form Nx̂;ĥ �fx̂ + iĥji 2 f0; : : : ; 10dgg. Then N � Sx̂;ĥ2Zmp Nx̂;ĥ.(
) Complexity of the neighborhood test: On
e again it turns out that the 
omplexityof this test is within a 
onstant fa
tor of the 
omplexity of the test in Chara
-terization 2, i.e., O(d2) additions and subtra
tions and no multipli
ations (seeappendix).All 
hara
terizations above turn out to be robust. The robustness of Chara
terization 1 isstraightforward and omitted here (see, for instan
e, [Sud92℄). The robustness of 4 followsfrom the work of [BFL91℄ (see also [BFLS91, FGLSS91, AS92, Lun92℄). Robustness of 2, 3,5 and 6 are presented in Se
tions 4 and 5.A typi
al robust 
hara
terization theorem for degree d polynomials in m variables over a�nite �eld F would go as follows: 9



There exists a Æ0 (whi
h may be a fun
tion of d;m; jF j) su
h that for Æ � Æ0, ifthe fra
tion of neighborhoods where P satis�es the lo
al 
onstraints is at least1� Æ, then P is �-
lose to some degree d polynomial (where � is some fun
tion ofÆ).An important parameter in determining the eÆ
ien
y of a tester, is the relationship betweenÆ0 and m; d; jF j. For instan
e, if Æ0 = 1dm log jF j , then this implies that we will have to testthat the lo
al property holds for at least dm log jF j randomly 
hosen neighborhoods beforewe 
an satisfy ourselves that P is 
lose to some polynomial. Our main thrust will be to geta theorem that holds for as high a Æ0 as possible. 2In what follows, we show �rst that Chara
terization 5 above is robust with Æ0 = �( 1d2 ). Thisproof gives a simple and eÆ
ient tester for the family of multivariate polynomials that workswith O(d3) probes into f . Robustness of the 
hara
terizations in 2 and 3 follow as spe
ial
ases. This bound on Æ0 is in 
ontrast to the robustness of 4 that has an inherent dependen
yon m.Next we show a robustness of Chara
terization 6. The eÆ
ien
y of this test is analyzedmodulo the eÆ
ien
y of a 
ertain test for bivariate polynomials and is shown to be within a
onstant fa
tor of the bivariate test. We also show that the eÆ
ien
y of the bivariate test isO(d), giving a test for multivariate polynomials that works with O(d2) probes into f .4 A Robust Chara
terization of Polynomial Fun
tionsIn this se
tion, we prove the robustness of Chara
terization 5. We 
onsider a fun
tion(program) P mapping m variables from Zp to Zp and prove the following:Theorem 5 For Æ0 = 12(d+2)2 , if P : Zmp 7! Zp satis�esÆ � Prx;h2RZmp "P (x) 6= d+1Xi=1 �iP (x+ i � h)# � Æ0then there exists a degree d polynomial g : Zmp 7! Zp that is 2Æ-
lose to P .This theorem makes very minimal requirements on the �eld size required for its validity.The theorem is valid whenever Chara
terization 5 holds and Friedl and Sudan, [FS94℄, haveshown that this holds for p � d+2 - the smallest 
on
eivable �eld size for whi
h the test 
ouldbe de�ned. We do not know of other testers that work with su
h a minimal requirement onthe �eld size.We de�ne g(x) to be majh2Zmp fPd+1i=1 �iP (x + ih)g, where maj of a set is the fun
tion thatpi
ks the element o

urring most often (
hoosing arbitrarily in the 
ase of ties). First weshow that g is 2Æ-
lose to P . Later in this se
tion we show that g is a low-degree polynomial.2A se
ondary parameter of interest is the relationship between � and Æ. In all the proofs that follow, wewill only show that � = 2Æ. A
tually, on
e su
h a result is shown it 
an be shown again that any � > Æ works.10



Lemma 6 g and P agree on more than 1� 2Æ fra
tion of the inputs from Zmp .Proof: Consider the set of elements x su
h that Prh[P (x) = Pd+1i=1 �iP (x + i � h)℄ <1=2. If the fra
tion of su
h elements is more than 2Æ then it 
ontradi
ts the 
ondition thatPrx;h[Pd+1i=0 �iP (x+ i � h) = 0℄ = Æ. For all remaining elements, P (x) = g(x). 2In the following lemmas, we show that the fun
tion g satis�es the interpolation formula forall x; h and is therefore a degree d polynomial. We do this by �rst showing that for all x,g(x) is equal to the interpolation of P at x by most o�sets t. We then use this to show thatthe interpolation formula is satis�ed by g for all x; h.Lemma 7 For all x 2 Zmp , Prh [g(x) = Pd+1i=1 �iP (x+ i � h)℄ � 1� 2(d+ 1)Æ.Proof: Observe that h1; h2 2R Zmp impliesx + i � h1 2R Zmp and x+ j � h2 2R Zmp) Prh1;h2[P (x+ i � h1) = d+1Xj=1 �jP (x+ i � h1 + j � h2)℄ � 1� Æ) Prh1;h2[P (x+ j � h2) = d+1Xi=1 �iP (x+ i � h1 + j � h2)℄ � 1� ÆCombining the two we getPrh1;h2 [Pd+1i=1 �iP (x+ i � h1) = Pd+1i=1 Pd+1j=1 �i�jP (x+ i � h1 + j � h2)= Pd+1j=1 �jP (x+ j � h2)℄ � 1� 2(d+ 1)ÆThe lemma now follows from the observation that the probability that the same obje
t isdrawn twi
e from a set in two independent trials lower bounds the probability of drawing themost likely obje
t in one trial: Suppose the obje
ts are ordered so that pi is the probabilityof drawing obje
t i, and p1 � p2 � : : :. Then the probability of drawing the same obje
ttwi
e is Pi p2i � Pi p1pi = p1. 2Lemma 8 For all x; h 2 Zmp , if Æ � 12(d+2)2 , then Pd+1i=0 �ig(x + i � h) = 0 (and thus g is adegree d polynomial [dW70℄).Proof: Observe that, sin
e h1 + ih2 2R Zmp , we have for all 0 � i � d+ 1Prh1;h2 [g(x+ i � h) = d+1Xj=1 �jP ((x+ i � h) + j � (h1 + ih2))℄ � 1� 2(d+ 1)Æ
11



Furthermore, we have for all 1 � j � d+ 1Prh1;h2 [ d+1Xi=0 �iP ((x+ j � h1) + i � (h+ j � h2)) = 0℄ � 1� ÆPutting these two together we getPrh1;h2 [ d+1Xi=0 �ig(x+ i � h) = d+1Xj=1 �j d+1Xi=0 �iP ((x+ j � h1) + i � (h+ j � h2)) = 0℄ > 0The lemma follows sin
e the statement \Pd+1i=0 �ig(x + i � h) = 0" is independent of h1; h2,and therefore if its probability is positive, it must be 1. 2Proof (of Theorem 5): Theorem 5 follows from Lemmas 6 and 8 25 EÆ
ient tester for polynomialsIn this se
tion we prove the robustness of Chara
terization 6. Re
all that this 
hara
-terization uses the 
olle
tion of neighborhoods N = fNx;hjx; h 2 Zmp g where Nx;h =(x; x + h; : : : ; x + 10dh). The following theorem shows that the eÆ
ien
y of this 
hara
-terization is O(d), i.e., if a fun
tion satis�es the 
onsisten
y test on all but a O(1d) fra
tionof the neighborhoods then it is 
lose to a polynomial.Theorem 9 There exists a 
onstant 
 su
h that for 0 � Æ � 1
d , if f is a fun
tion from Zmpto Zp that satis�es the neighborhood 
onsisten
y test on all but a Æ fra
tion of the 
olle
tionof neighborhoods N = fNx;hjx; h 2 Zmp g (where Nx;h = fx; x+ h; : : : ; x+ 10dhg), then thereexists a polynomial g : Zmp ! Zp of total degree at most d su
h that d(f; g) � (1 + o(1))Æ(provided p > 10d.)In the rest of this se
tion we prove this theorem for the 
ase d � 1. (The 
ase d = 0 amountsto proving that f is a 
onstant and is omitted as a straightforward exer
ise.)Fix a fun
tion f that satis�es the neighborhood 
onstraints on all but a Æ fra
tion of theneighborhoods.The proof follows the same basi
 outline as the one in Se
tion 4, but in order to a
hievethe better eÆ
ien
y, we use ideas that 
an be thought of in terms of error-
orre
tion. Thusmany of the steps that were quite simple in Se
tion 4 require more work here. In Se
tion 4the fun
tion g was de�ned to be the value that o

urs most often (for most h) when onelooks at the evaluation at x of the unique polynomial that agrees with the values of f atx + h; :::; x + (d + 1)h. Here we view the values of a polynomial at x + h; :::; x + 10dh as a
ode word. Intuitively, the values of f at x + h; :::; x + 10dh will often have enough goodinformation in it to allow us to get ba
k to a 
orre
t 
odeword. The fun
tion g de�nedbelow 
an be thought of as the value that o

urs most often (for most h) when one looks atthe polynomial de�ned by the error 
orre
tion of the values of f at x; x + h; : : : ; x + 10dhevaluated at x. We then show that g has the following properties:12



1. g(x) = f(x) with probability at least 1� Æ � o(Æ) if x is pi
ked randomly from Zmp .2. On every neighborhood Nx;h, g is des
ribed by a univariate polynomial of degree d.Noti
e that Chara
terization 6 now implies that g is a degree d polynomial.Notation: For x; h 2 Zmp , we let Px;h(i) be (the unique) polynomial in i that satis�esPx;h(i) = f(x + ih) for at least 6d values of i 2 f0; : : : ; 10dg. If no su
h polynomial existsthen Px;h is de�ned to be error.Let g : Zmp 7! Zp be g(x) � pluralityhfPx;h(0)gwhere the plurality is taken over P 's that are not error.In Se
tion 4 it is shown that if one 
omputes the value of a polynomial fun
tion at x byinterpolating from the values of the fun
tion along o�set h1 that are in turn 
omputed byinterpolating from the values of the fun
tion along o�set h2, then one would get the sameanswer as if one had 
omputed the value of the fun
tion at x by interpolating from the valuesof the fun
tion along o�set h2 whi
h in turn are 
omputed by interpolating from the values ofthe fun
tion along o�set h1. This is not hard to see be
ause it turns out that an interpolationis a weighted summation and obtaining the identity amounts to 
hanging the order of adouble summation (see for instan
e Lemma 7). Here g is a
tually an interpolation of theerror-
orre
tion of the values of the fun
tion, whi
h is no longer a simple algebrai
 fun
tionof the observed values. We repair the situation by 
onstru
ting a bivariate polynomialQ(i; j)that agrees with f(x + i � h1 + j � h2) for most values of i and j. This allows us to get ba
kto simple interpolation where we work with the fun
tion Q(i; j) rather than f . Lemma 10shows when su
h a bivariate polynomial 
an be set up to agree with a matrix of values mij.Lemma 11 shows how to use this polynomial to simulate the e�e
t of the inter
hange in theorder of the summation.The following lemma follows dire
tly from the axis parallel 
hara
terization of polynomials.Lemma 10 For X; Y � Zp with jXj; jY j > d + 2, if frigi2X and f
jgj2Y are univariate(degree d) polynomials su
h that for all i 2 X and j 2 Y , ri(j) = 
j(i), then there exists apolynomial Q(:; :) su
h that for all i; j Q(i; j) = ri(j) = 
j(i).Lemma 11 (Matrix Polynomial Lemma) Given families of univariate degree d polyno-mials frig10di=0 and f
jg10dj=0 and a matrix fmijg10d;10di=0;j=0 that satisfy:� For 90% of the i's in f0; : : : ; 10dg, ri(j) = mij for all j 2 f0; : : : ; 10dg.� For 90% of the j's in f0; : : : ; 10dg, 
j(i) = mij for all i 2 f0; : : : ; 10dg.Then there exists a bivariate polynomial Q(�; �) of degree d in ea
h variable su
h that for alli0; j0 2 f0; : : : ; 10dg the following holds:� For at least 90% of the i's in f0; : : : ; 10dg, Q(i; j0) = mij0 .13



� For at least 90% of the j's in f0; : : : ; 10dg, Q(i0; j) = mi0j.Proof: Let X be the set of good rows of M , i.e., those with the property that ri(j)equals 
j(i) for all values of j 2 f0; : : : ; 10dg. Similarly, let Y be the set of good 
olumns.It 
an now be seen that the 
onditions of Lemma 10 are appli
able, implying that thereexists a polynomial Q(i; j) su
h that Q(i; j) = ri(j) = 
j(i) for all (i; j) 2 X � Y , wherejXj and jY j are both at least 9d. But for any i 2 X, there exists a unique polynomialdes
ribing all the elements in its row and Q agrees with it on 90% of its elements. Thus,for i 2 X, Q(i; j) = mij for all j 2 f0; : : : ; 10dg. In parti
ular this holds for j = j0, i.e., forall i 2 X, Q(i; j0) = mij0. Similarly by using the 
olumns indexed by Y one 
an show thatQ(i0; j) = mi0j for all j 2 Y . The lemma follows sin
e the 
ardinalities of X and Y are atleast 9d. 2The following lemmas are analogous to Lemmas 6, 7 and 8 of Se
tion 4. Lemma 12 andCorollary 13 roughly 
orrespond to Lemma 7. Lemma 12 essentially states that the pluralityin the de�nition of g is a
tually an overwhelming majority. This may be obtained by settingi0 = 0 in the statement of the lemma. The slightly stronger statement used here is neededlater. Lemma 14 is similar to Lemma 6 and shows that g and f agree at all but a Æ + o(Æ)fra
tion of the pla
es. Lemma 15 shows that g is a multivariate polynomial of degree d.Lemma 12 There exists a 
onstant 
1 su
h that for Æ1 = 
1Æ, the following holds:8x 2 Fm; i0 2 f0; : : : ; 10dg; Prh1;h2 [Px;h1(i0) = Px+i0h1;h2(0)℄ � 1� Æ1Proof: Pi
k h1; h2 2R Zmp and de�ne M = fmijg to be the matrix given by mij =f(x + ih1 + jh2). We show that M satis�es the 
onditions required by Lemma 11 (withj0 = 0), with probability at least 1� Æ1. This suÆ
es to prove the lemma sin
e this impliesthat the polynomial Px;h1 is the polynomial Q(i; j) restri
ted to j = 0 and that Px+i0h1;h2 isQ(i0; j). Thus Px;h1(i0) = Px+i0h1;h2(0) = Q(i0; 0).Any row of the matrix, other than the 0th row, represents a random neighborhood (inde-pendent of x) and satis�es the neighborhood 
onstraint with probability 1 � Æ. Thus withprobability at least 1 � 10Æ we have that the fra
tion of rows that don't have a degree dpolynomial des
ribing them is at most 0:1. An analogous argument 
an be made for the
olumns. Thus M satis�es the 
onditions required by Lemma 11 with probability at least1� 20Æ. The lemma is satis�ed with the 
hoi
e of 
1 = 20. 2Corollary 13 For x 2 Zmp ; i 2 f0; : : : ; 10dg, Prh [g(x+ ih) = Px;h(i)℄ � 1� 2Æ1.Proof: Let B be the set of h's that violate Px;h(i) = majorityh1 fPx+ih;h1(0)g. For allh 62 B noti
e that g(x + ih) = Px;h(i). Also for h in B, the probability, for a randomly
hosen h1, that Px+ih;h1(0) 6= Px;h(i) is at least 1=2. Thus with probability at least jBj2pm ,we �nd that a randomly 
hosen pair (h; h1) violates the 
ondition Px+ih;h1(0) = Px;h(i).Applying Lemma 12 we get that jBjpm is at most 2Æ1. 2We next show that g and f agree in most pla
es:14



Lemma 14 d(f; g) � Æ(1 + o(1)).Proof: Let B0 be the set of x's that satisfy f(x) 6= Px;h(0) for at least 1 � 2Æ1 fra
tionof the h's in Zmp . Observe that due to Corollary 13, for all x 62 B0, f(x) is the same asg(x) (g(x) 
an disagree with Px;h(0) on at most 2Æ1 fra
tion of the h's). The size of B0 as afra
tion of Zmp 
an be at most Æ1�2Æ1 . Thus we �nd that d(f; g) � Æ1�2Æ1 = Æ(1 + o(1)). 2Notation: For x; h 2 Zmp , we de�ne P (g)x;h(i) to be (the unique) polynomial in i that satis�esP (g)x;h(i) = g(x + ih) for at least 9d values of i 2 f0; : : : ; 10dg. If no su
h polynomial existsthen P (g)x;h is de�ned to be error.Lemma 15 There exists a 
onstant 
 su
h that if Æ � 1
d then 8x; h g(x) = P (g)x;h(0).Proof: As in the proof of Lemma 12 we will pi
k a 
onvenient matrix on whi
h we willapply Lemma 11. This time the matrix of 
hoi
e is obtained by pi
king h1; h2 2R Zmp andletting mij = g(x+ ih+ j(h1 + ih2)).We will now show that Lemma 11 
an be applied to this matrix with high probability (fori0 = j0 = 0). Observe that every row fmijg10dj=0 represents a random neighborhood 
ontainingthe �xed point x+ ih and hen
e Corollary 13 implies that Px+ih;h1+ih2(j) agrees with mij forany 
hoi
e of j with probability 1�2Æ1. Thus, for every i, with probability at least 1�2
dÆ1,Px+ih;h1+ih2(j) agrees withmij for all but 1
d fra
tion of the j's. Thus with probability at least1�22
dÆ1, this holds for at least 90% of the rows, in
luding the row i = 0. By pi
king 
 > 10we satisfy the 
onditions required of the rows in Lemma 11. A similar argument based onthe 
olumns shows that the 
onditions required of the 
olumns are also true with probability1�20
dÆ1�o(1) (all 
olumns ex
ept for the 0th one represent random neighborhoods). Thusthe 
onditions required for Lemma 11 are satis�ed with probability at least 1�42
dÆ1�o(1).Applying Lemma 11 we �nd that there exists a bivariate polynomial Q(i; j) su
h that itagrees with mi0 for 90% of the i's. Thus P (g)x;h(i) = Q(i; 0). We now argue that m00 = Q(0; 0)and this will 
omplete the proof, sin
e m00 = g(x).By Lemma 11 we �nd that m0j = Q(0; j) for 90% of the j's, implying P (g)x;h1(j) = Q(0; j). ByCorollary 13 we also �nd that m00 = Px;h1(0) with probability at least 1� 2Æ1. In order toshow that this equals Q(0; 0) it now suÆ
es to show that P (g)x;h1(�) = Px;h1(�).This last part follows from the following observation: For j 6= 0, x + jh1 is distributeduniformly over Fm and thus with probability 1� (1+o(1))Æ we have g(x+ jh1) = f(x+ jh1)(by Corollary 13). Hen
e with probability at least 1� 10Æ � o(1), g(x + jh1) = f(x + jh1)for 90% of the j's. But both the polynomials Px;h1(j) and P (g)x;h1(j) agree with f(x+ jh1) andg(x+ jh1) for 90% of the j's respe
tively. Thus P (g)x;h1(�) must agree with Px;h1(�) on at least80% of the inputs, implying P (g)x;h1(�) = Px;h1(�).Thus with probability at least 1� (42
dÆ1+2Æ1+10Æ+o(1)) (over random 
hoi
es of h1 andh2) the identity g(x) = P (g)x;h(0) holds. But this event is deterministi
 (independent of h1 and15



h2) and hen
e if its probability is positive then it must always hold. If Æ < 1=((20)(541)d),then Æ1 < 1=(541d) and then the above probability is positive. 2Proof (of Theorem 9): Lemma 15 implies that along ea
h line lx;h, g 
an be des
ribedby a univariate polynomial of degree at most d. Chara
terization 6 
an now be applied toinfer that g is a polynomial of total degree at most d. From Lemma 14 we now know that fand g di�er in at most Æ(1 + o(1)) fra
tion of the pla
es. This 
ompletes the proof. 26 Self-Testing PolynomialsIn this se
tion we 
omplement the results of [BF90℄[Lip91℄ by showing how to 
onstru
t aself-tester for any polynomial fun
tion. The results 
an also be generalized to give self-testersand self-
orre
tors for fun
tions in �nite dimensional fun
tion spa
es that are 
losed undershifting and s
aling.Previously, program testing was thought of as the following: pi
k a random input x and verifythat P (x) = f(x) by 
omputing f via another program. This method has two problems: �rst,it relies on believing the other program to be 
orre
t, and se
ondly, sin
e testing is oftendone at runtime [BLR90℄, it negates the bene�ts of designing faster programs, sin
e the
omputation time will be dominated by the 
omputation time of the old program.As in [BLR90℄, our testers are of a nontraditional form and use the robust 
hara
terizationof the fun
tion being tested: the tester is given a short spe
i�
ation of the fun
tion in theform of properties that the fun
tion must have, and veri�es that these properties \usually"hold. We show that these properties are su
h that if the program \usually" satis�es theseproperties, then it is essentially 
omputing the 
orre
t fun
tion.Test Sets Given that a fun
tion 
omputes a polynomial, we want a way of spe
ifying thatit is the 
orre
t polynomial. We do this by spe
ifying the fun
tion value of the polynomial ata number of inputs. It is easy to see that the number of inputs required is exa
tly the numberof inputs ne
essary to determine whether two degree d polynomials are distin
t. Sin
e anytwo degree d univariate polynomial fun
tions 
an only agree on d points, it suÆ
es to 
he
kwhether or not the polynomial fun
tions agree at any d+ 1 points to determine whether ornot they are distin
t. On the other hand, distin
t multivariate polynomials 
an agree at anunbounded number of points. However, it is well known that there exists a set of (d + 1)mpoints su
h that no two degree d, m-variate polynomials 
an agree at all points in the set.We make the following de�nition:De�nition 16 We say that T = f(x1; y1); : : : ; (xt; yt)g is a (d;m)-polynomial test set if thereis only one degree d, m variable polynomial f su
h that for all i 2 [1; :::; t℄; f(xi) = yi.A (d;m)-test set need only be of size (d+ 1)m.When the number of variables is small, the provision that the value of the fun
tion is knownon at least (d+1)m points is not very restri
tive sin
e the degree is assumed to be small with16



respe
t to the size of the �eld: Suppose one has a program for the RSA fun
tion x3 mod m.Traditional testing requires that the tester know the value of f(x) for random values of x.Here one only needs to know the following simple and easy to generate spe
i�
ation: f is adegree 3 polynomial in one variable, and f(0) = 0; f(1) = 1; f(�1) = �1; f(2) = 8. Thesefun
tion values are the same over any ring Zm of size at least 9.6.1 Testing AlgorithmOur self-tester for a polynomial of degree d with m variables assumes that the spe
i�
ationof the polynomial is given by the value of the fun
tion on a (d;m)-polynomial test set.Theorem 17 If f is a degree d polynomial in m variables over Zp, and the value of f isgiven on a (d;m)-polynomial test set, then for � � O(1=d2), f has an ( �2(d+2) ; 4�)-self-testeron Zp with O((d+ 1)m=�+ d �max(d2; 1� )) 
alls to P .The self-testing is done in two phases, one verifying that the program is essentially 
omputingsome degree d polynomial fun
tion g, and the other verifying that the g is the 
orre
tpolynomial fun
tion by verifying that g (rather than P ) is 
orre
t on the polynomial testset.We now give the self-testing program that is used to prove Theorem 17.For simpli
ity, in the des
ription of our self-testing program, we assume that whenever theself-tester makes a 
all to P , it veri�es that the answer returned by P is in the proper range,and if the answer is not in the proper range, then the program notes that there is an error.We use x 2R Zmp to denote that x is 
hosen uniformly at random in Zmp .program Polynomial-Self-Test(P; �; �; T = ((x1; f(x1)); : : : ; (xt; f(xt))))Degree TestRepeat �(1� log (1=�)) timesPi
k x; h 2R Zmp and test that Pd+1i=0 �iP (x+ i � h) = 0Reje
t P if the test fails more than an � fra
tion of the time.Equality Testfor j going from 1 to t doRepeat �(log (d=�)) timesPi
k h 2R Zmp and test that f(xj) = Pd+1i=1 �iP (xj + i � h).Reje
t P if the test fails more than 1=4th of the time.
17



6.2 Corre
tness of AlgorithmNotation: Let Æ � Prx;h[Pd+1i=0 �iP (x+ i � h) 6= 0℄We say program P is �-good if Æ � �2 and 8j 2 f1; : : : ; tg, Prh[f(xj) = Pd+1i=1 �iP (xj+i�h)℄ �3=4. We say P is �-bad if either Æ > 2� or if 9j su
h that Prh[f(xj) = Pd+1i=1 �iP (xj+ i�h)℄ <1=2. (Note that there are programs that are neither �-good or �-bad).The following lemma is easy to prove :Lemma 18 With probability at least 1� � an �-good program is passed by Polynomial-Self-Test. With probability at least 1� � an �-bad program is reje
ted by Polynomial-Self-Test.It is easy to see that if a program P �2(d+2) -
omputes f , then it is �-good. On the otherhand, we need to show that if P does not 4�-
ompute f then it is �-bad. We show the
ontrapositive, i.e. that if P is not �-bad, then it 4�-
omputes f .If P is not �-bad, then Æ � 2�. Under this assumption, we show that there exists a fun
tiong with the following properties:1. g(x) = P (x) for most x.2. 8x; t Pd+1i=0 �ig(x+ it) = 0, and thus g is a degree d polynomial.3. g(xj) = f(xj) for j 2 f0; 1; : : : ; dg.The fun
tion g is as de�ned in the previous se
tion on robust 
hara
terizations, and properties(1) and (2) follow from the lemmas proved there. In order to show property (3), we alsohave:Lemma 19 g(xj) = f(xj)Proof: Follows from the de�nition of g and the fa
t that P is not �-bad. 2Theorem 20 The program Polynomial-Self-Test is a ( �2(d+2) ; 4�)-self-testing program forany degree d polynomial fun
tion over Zmp spe
i�ed by its values at any (d;m)-polynomialtest set T , if � � 14(d+2)2 .Proof: Follows from Lemmas 18,8, and 19. 2
18



7 Lo
ally Testable CodesIn this se
tion we introdu
e some de�nitions related to 
oding and show the impli
ations oflow-degree testing to generating 
odes with ni
e properties. 3 We start by des
ribing somestandard parameters asso
iated with error-
orre
ting 
odes.A n-letter string over the alphabet � is an element of �n. Given a string w 2 �n, the ith
hara
ter of w is denoted wi. Given strings w;w0 2 �, the relative distan
e between w andw0, denoted d(w;w0) is the fra
tion of indi
es i 2 f1; : : : ; ng where wi 6= w0i. (Here onwardswe will drop the term relative from the des
ription of this parameter).De�nition 21 (Error Corre
ting Code) A (k; n;�; a)-
ode 
onsists of an alphabet �su
h that log j�j = a and a fun
tion C : �k ! �n, su
h that for any two strings m;m0 2 �k,the distan
e between C(m) and C(m0) is at least �.For the purposes of this se
tion we will restri
t our attention to error-
orre
ting 
odes withina small range of the above parameters whi
h are interesting for the appli
ations to proba-bilisti
ally 
he
kable proofs. We 
all these the good 
odes. Su
h 
odes need to have 
onstantrelative distan
e. The en
oded message is allowed to be mu
h larger than the original mes-sage size, as long as the �nal length is polynomially bounded. Perhaps the most interestingaspe
t is the alphabet size. While the ultimate goal would be to get 
odes whi
h workover a 
onstant sized alphabet, getting an alphabet size whi
h is signi�
antly smaller thanthe message size (smaller than any non-
onstant polynomial) turns out to be an importantintermediate goal. Here we 
hoose this parameter to be polylogarithmi
 in the message size.De�nition 22 (Good Code) A family of 
odes fCig with parameters (ki; ni;�i; ai) is goodif ki !1, ni is upper bounded by some polynomial in ki, �i > 0, and ai is upper boundedby some fun
tion growing as polylog(ki).A wide variety of 
odes des
ribed in pra
ti
e satisfy the properties required of a good 
ode.In parti
ular we des
ribe the polynomial 
odes.De�nition 23 (Polynomial Codes) Fix some � > 0. The polynomial 
odes fPmg are
hosen by letting d = dm1+�e and pi
king a �nite �eld F of size between 10d and 20d. The
ode a
hieves km = �m+dm � and nm = jF jm over the alphabet F and works as follows: Themessage is viewed as spe
ifying the 
oeÆ
ients of a degree d polynomial in m variables andthe en
oding 
onsists of the value of this polynomial at all inputs.It may be veri�ed that fPmg forms a good 
ode with distan
e at least 0:9. In what follows wewill try to des
ribe how this family of 
odes and a related 
ode have extremely \good" lo
al
he
kability properties. The following de�nition formalizes the notion of lo
al 
he
kability.Informally, the de�nition expe
ts that by probing a string in just p (randomly 
hosen) letters,the veri�er 
an test if it 
lose to a valid 
odeword and if not reje
ts it with probability atleast Æ.3These de�nitions are motivated by subsequent work in the area of proof 
he
king where our tester hasfound appli
ations, most notably that of [ALMSS92℄.19



De�nition 24 (Lo
ally Testable Code) For a positive integer p and a positive real num-ber Æ, an (n; k;�; a)-
ode C over the alphabet � is (p; Æ)-lo
ally testable if the following exist� A probability spa
e 
 whi
h 
an be eÆ
iently sampled.� Fun
tions q1; q2; : : : ; qp : 
! f1; : : : ; ng.� A boolean fun
tion V : 
� �p ! f0; 1g.with the property that for all w 2 �n, ifPrr2
 hV (r; wq1(r); : : : ; wqp(r)) = 0i < Æthen there exists a (unique) string m 2 �k su
h that d(w;C(m)) < �=2. Conversely, ifw = C(m) for some m, then V (r; wq1(r); : : : ; wqp(r)) = 1 for all r 2 
.Before we des
ribe the kind of lo
ally 
he
kable 
odes that our testers provide we attempt tomotivate the de�nition above by showing that (seemingly minor) modi�
ations of the abovede�nitions yield important 
on
epts in proof 
he
king - namely, probabilisti
ally 
he
kableproofs. We 
onsider espe
ially probabilisti
ally 
he
kable proofs over a large alphabet inwhi
h number of alphabets that a veri�er is allowed to probe is a parameter. This 
on
eptis an important ingredient in the re
ursive 
onstru
tion of probabilisti
ally 
he
kable proofs[AS92, ALMSS92, BGLR93℄ and is also of independent interest in 
omplexity theory [LS91,FL92a℄. The original de�nition of probabilisti
ally 
he
kable proofs is due to [AS92℄ based onan impli
it notion in [FGLSS91℄. A very 
losely related notion - that of holographi
 proofs -appears in the work of [BFLS91℄. The parti
ular 
hoi
e of parameters made in the followingde�nition is due to [BGLR93℄.De�nition 25 (PCP) Given fun
tions r; p; a; Æ : Z+ ! Z+, a language L � f0; 1g� is saidto be in PCP[r; p; a; Æ℄ if there exists a polynomially growing fun
tion n(l), an alphabet � ofsize a(l) su
h that for all integers l > 0 the following exist:� A probability spa
e 
 whi
h 
an be sampled using r(l) bits.� Fun
tions q1; q2; : : : ; qp(k) : 
! f1; : : : ; n(l)g.� A boolean fun
tion V : f0; 1gl � 
� �p ! f0; 1g.with the property that for all x 2 f0; 1gl, if w 2 �n(l) satis�esPrr2
 hV (x; r; wq1(r); : : : ; wqp(r)) = 0i < Æthen x 2 L. Conversely, if x 2 L, then there exists w 2 �n(l) su
h that for all r 2 
,V (x; r; wq1(r); : : : ; wqp(r)) = 1. 20



It turns out that there is strong 
orrelation between PCP[log; p; polylog; Æ℄, and good 
odeswhi
h are (p; Æ) lo
ally 
he
kable. In parti
ular the 
odes we des
ribe next translate intosu
h probabilisti
ally 
he
kable proofs.The robust 
hara
terization of polynomials des
ribed in Theorem 9 shows that the polyno-mial 
odes are (d+2;
(1=d))-lo
ally testable. Observe further that for the polynomial 
odesthe growth of d is polylogarithmi
 in k. It seems that the approa
h above 
annot hope togive 
odes whi
h are testable using fewer than 
(d) probes. However this is not the 
ase. Wedes
ribe next a simple way of modifying the 
odes so as to give 
odes with appre
iably betterlo
al-testability. These 
odes are obtained by observing that the 
odes we have 
onstru
tedso far use a mu
h smaller alphabet size than ne
essary for \goodness".De�nition 26 (Polynomial-Line Codes) Fix some � > 0. The polynomial-line 
odesfLmg are 
hosen by letting t = dm1+�e and pi
king a �nite �eld F of size between 10dand 20d. The 
ode a
hieves km = �m+dm �=(d + 1) and nm = jF j2m over the alphabet F d+1.As in the polynomial 
odes, the message again 
onsists of �m+dd � �eld elements and is viewedas a degree d polynomial spe
i�ed by its 
oeÆ
ients. Given a message polynomial p, the
odeword is 
onstru
ted as follows: For every pair of �eld elements x̂; ĥ 2 Fm, let lx̂;ĥ bethe line through x̂ with o�set ĥ as in Chara
terization 3. p restri
ted to lx̂;ĥ is a univari-ate polynomial of degree d. Let Cx̂;ĥ 2 F d+1 be the ve
tor of 
oeÆ
ients of this univariatepolynomial. The 
odeword 
onsists of fCx̂;ĥgx̂;ĥ2Fm.It is easy to see that the Polynomial-Line Codes are also good 
odes. The proof of Theorem 9
an be transformed to show that the Polynomial-Line Codes are lo
ally testable with a
onstant number of probes. More spe
i�
ally the following 
an be shown.Proposition: The Polynomial-Line Codes are (2;
(1=d))-lo
ally testable.Better analysis of some portions of our proof yields even better statements about thePolynomial-Line Codes. This is des
ribed in the next se
tion.8 Con
lusionsThere has been a spate of results about low-degree tests in the last few years. A brief listingin
ludes the low-degree test of [BFL91, Lun92℄ whi
h was the �rst test for multivariatepolynomials, the results of [BFLS91, FGLSS91℄ obtained independently and 
on
urrentlywith ours (from [GLRSW91, RS92℄), and subsequent works of [AS92, ALMSS92, FHS94,PS94, FS94℄. Here we summarize some of their a
hievements along with a 
omparisonwith our results. We start by distinguishing the merits of our tester from those of [BFL91,BFLS91℄.Program 
he
king The test of [BFL91℄[Lun92℄, in the program 
he
king setting allowsthe self-tester to be 
onvin
ed that the program is 
omputing a multivariate polynomial21



fun
tion of low degree in polynomial time. However, the tests are somewhat 
ompli
ated toperform, be
ause they involve the re
onstru
tion of a univariate polynomial given its valuesat a number of points (whi
h in turn requires multipli
ations and matrix inversions), andlater the evaluation of the re
onstru
ted polynomial at random points. If the given fun
tionis a fun
tion of a single variable then the [BFL91℄[Lun92℄ tester is no simpler than a programevaluating the polynomial. Therefore it does not have the \little-oh" property de�ned by[BK89℄ nor is it di�erent from the program evaluating the polynomial, in the sense de�nedby [BLR90℄, and does not give a self-tester or 
he
ker. Our test in 
ontrast is di�erent sin
eit requires no multipli
ations to perform the test.Relationship with proof 
he
king. The low-degree tester forms a 
ru
ial ingredient inthe re
ent results on proof 
he
king. Our result from Se
tion 4 gives a very simple proof ofone of the relatively hard parts of the proof of MIP=NEXPTIME shown by [BFL91℄. Thehardness of the analysis of the tester of [BFL91℄ (and its simpli�
ations, see for instan
e,[FGLSS91℄) is in their need to rely on the isoperimetri
 properties of the m-dimensional grid.Our proof on the other hand does not seem to require any 
ombinatori
s, and is insteadbased on elementary algebrai
/probabilisti
 te
hniques. This di�eren
e may be explainedas follows: The su

ess of the test does indeed depend on the isoperimetri
 properties of agraph related to the neighborhood stru
ture. In the 
ase of the test of [BFL91℄ this graphturns out to be in the m-dimensional grid. In our 
ase, the underlying graph turns out tobe a 
omplete graph. This graph is obviously mu
h easier to analyse for its properties andhen
e the proof is devoid of any 
ombinatorial statements.We now des
ribe some of the subsequent results and the role of our tester in these results.The 
ontrast is des
ribed in terms of lo
ally-testable 
odes.Lo
ally testable 
odes The low-degree test des
ribed in [BFL91, BFLS91℄ gives rise togood 
odes whi
h also have ni
e lo
al 
he
kability property. A sequen
e of improvements[BFL91, BFLS91, FGLSS91℄ 
ulminated in the work of [AS92℄ whi
h a
hieves asymptoti
allyoptimal bound for su
h 
odes by showing that they are (2;
(1=m))-lo
ally testable. Thehighlight of the work of [AS92℄ is that the lo
ality bounds are independent of the degreeof the polynomial that they work with. However, the dependen
e of Æ on m, is inherentfor su
h 
odes and Æ ! 0 as m ! 1. The Polynomial-Line Codes des
ribed in Se
tion 7seem to have no inherent reason why Æ should go to zero. This turns out to be indeed the
ase. [ALMSS92℄ observe that a 
ombination of the analysis of [AS92℄ and that of Se
tion 5implies that there exists a 
onstant Æ > 0 su
h that the Polynomial-Line Codes are (2; Æ)-lo
ally testable, provided that the �eld F is of 
ardinaltity at least d2. As mentioned inSe
tion 7 this translates into a proof of NP � PCP[log; O(1); polylog;
(1)℄ in [ALMSS92℄.By employing the te
hnique of re
ursive proof 
he
king, due to [AS92℄, on su
h proof systems[ALMSS92℄ go on to prove that NP � PCP[log; O(1); O(1);
(1)℄. The lo
al testability ofthe Polynomial-Line 
odes has been further improved in two ways re
ently. [PS94℄ haveshown that the 
odes are (2; Æ)-lo
ally 
he
kable over this works for linear sized �elds aswell, for some Æ > 0. In a di�erent dire
tion [FS94℄ show that the Polynomial-Line 
odesare (2; Æ)-lo
ally 
he
kable for all Æ < 1=8. 22
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ed pointsThe following algorithm may be used to test if a fun
tion f (0) on m evenly spa
ed points {x; x + h; : : : ; x+ (m� 1)h { (where m > d+ 1) agrees with a degree d polynomial.for i = 1 to d+ 1 dofor j = 1 to m� if (i)(x + jh) = f (i�1)(x + (j + 1)h)� f (i�1)(x + jh)endforendforverify f (d+1)(x + jh) = 0, for all j 2 f0; : : : ; m� d� 2g.The 
orre
tness of this algorithm follows from the following well-known fa
t:Fa
t 27 f (i)(x) is a degree d�i polynomial if and only if f (i�1) is a degree d�i+1 polynomial.(Follows from the fa
t that f (i) a
ts as the dis
rete derivative of f (i�1).)This implies that f (d) is a 
onstant if and only if f (0) is a degree d polynomial, implying in turnthat f (d+1) is identi
ally zero if and only if f (0) is a degree d polynomial. Observe further thatthe algorithm performs O(md) additions and subtra
tions and no multipli
ations. Lastly it
an also be 
he
ked that in 
asem = d+2, then algorithm simply veri�es thatPd+1i=0 �if (0)(x+ih) = 0, where �i = (�1)i+1�d+1i �. 25



A.2 Chara
terizationsLemma 28 (axis parallel lines) f : Zmp 7! Zp is a polynomial in m variables of de-gree at most d in ea
h variable if and only if for all i 2 f1; : : : ; mg, �j 2 Zp (j 6= i),f(�1; : : : ; �i�1; xi; : : : ; �m) is a polynomial in xi of degree at most d.Proof [Sket
h℄: It is 
lear that every polynomial of degree d in ea
h variable restri
tedto axis parallel lines, behaves as a univariate polynomial of degree d. The other dire
tion
an be proved by indu
tion on m. The base 
ase m = 1 is obvious. For general m > 1, letfi(x1; : : : ; xm�1) be the fun
tion f(x1; : : : ; xm�1; i). By indu
tion fi is a polynomial of degreed inm�1 variables. Now 
onsider the fun
tion h(x1; : : : ; xm) � Pdi=0 Æ(d)i (xm)fi(x1; : : : ; xm�1)(where Æ(d)i is the unique polynomial of degree d in one variable that is 1 at xm = i and 0 forother values of xm 2 f0; : : : ; dg).It is 
lear by 
onstru
tion that h is a polynomial of degree at most d in ea
h variable. Wenow argue that f and h are identi
al. Fix x1 = �1; : : : ; xm�1 = �m�1. It is 
lear thath(x1; : : : ; xm) = f(x1; : : : ; xm) for xm 2 f0; : : : ; dg. Moreover, both h and f are degree dpolynomials in xm whi
h agree at d + 1 pla
es. Hen
e f and h must agree at all values ofxm. Sin
e this held for any 
hoi
e of �i's, f and h agree everywhere. 2Lemma 29 (general lines) For p � 2d+ 1, f : Zmp 7! Zp is a polynomial in m variablesof total degree at most d if and only if 8x̂; ĥ 2 Zmp ; f(x̂+ t � ĥ) is a univariate polynomial int of degree at most d.Proof: It is 
lear that every polynomial restri
ted to lines must be
ome a degree dpolynomial in the parameter des
ribing the line. Here we prove the other dire
tion of the
hara
terization. We �rst observe that sin
e the set of all lines in
ludes the axis parallellines, we 
an use Lemma 28 to show that f is a polynomial in m variables with degree atmost d in ea
h variable. Having got this weak 
hara
terization, we will now strengthen thisto a tighter one. By indu
tion on the number of variables, we 
an assume that f restri
tedto any value of the last variable xm is a polynomial of total degree at most d in the variablesx1; : : : ; xm�1. Thus f be
omes a fun
tion in x1 through xm of total degree d0 � 2d.Assume for 
ontradi
tion that d0 > d. Now 
onsider the fun
tion f(t � ĥ) for ĥ 2R Zmp .The 
oeÆ
ient of td0 is a polynomial in ĥ of degree d0 whi
h with probability at least 1� d0pshould be non-zero. (Note that to make this probability positive, we need 2d < p.) Thus frestri
ted to this line is a polynomial of degree d0 > d, whi
h violates the given 
ondition onf . 2
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