
De
oding Reed Solomon Codes beyond theError-Corre
tion DiameterMadhu SudanLaboratory for Computer S
ien
e, MITmadhu�l
s.mit.eduAbstra
tWe des
ribe a new algorithm for the de
oding of Reed Solomon 
odes. This algo-rithm was originally des
ribed in [12℄. While the algorithm presented in this arti
leis the same, the presentation is somewhat di�erent. In parti
ular we derive morepre
ise bounds on the performan
e of the algorithm and show the following: For an[n; �n; (1��)n℄q Reed Solomon 
ode, the algorithm in [12℄ 
orre
ts (�(�)�o(1))n errorsin polynomial time, where�(�) = 1� 11 + �� � �k2 � where �� = $r2� + 14 � 12% :We also present the following two (hopefully) useful lower bounds on �(�):8� 2 [0; 1℄ �(�) � 1�s2�+ �24 + �2 � 1�p2�:1 Introdu
tionFor integers n; k and q su
h that a �nite �eld of size q exists, the Reed Solomon 
odes are[n; k; d = n� k℄ 
odes over the alphabet F = GF(q) (the Galois �eld of order q). The 
odemay be obtained by letting a message m = m0 : : :mk�1 denote the 
oeÆ
ients of a degreek � 1 polynomial M(x) = Pk�1j=0 mjxj and letting the en
oding of m be C(m) = 
1 : : : 
nwhere 
i = M(xi) where x1; : : : ; xn are n distin
t elements of F . (It is standard to pi
kn = q � 1, though not ne
essary to prove the distan
e property or for the algorithms wedes
ribe).In this paper we 
onsider the following bounded distan
e de
oding problem:Input: Integers n, k and e; and n pairs f(xi; yi)gni=1, xi; yi 2 F with xi's being distin
t1.Goal: Find all polynomials p1; : : : ; pm of degree k�1 su
h that for every j 2 [m℄, pj(xi) 6= yifor at most e values of i 2 [n℄.1For our algorithm from [12℄ we 
an repla
e this 
ondition with the weaker one that (xi; yi)'s are distin
t.



As 
an be seen easily, this problem 
aptures the bounded distan
e de
oding problem for ReedSolomon 
odes. There is a ri
h history of work asso
iated with this problem. The 
lassi
alwork of Berlekamp-Massey (
f. [2, 9℄), 
orre
ts upto b(d� 1)=2
 errors. Sidelnikov [11℄ andDumer [4℄ have 
onstru
ted algorithms whi
h 
orre
t up to b(d � 1)=2
 + 
 logn errors forany 
onstant 
 [4, 11℄. We give an algorithm that improves over these results when k=n issuÆ
iently small (i.e., less than 1=3). Our algorithm is motivated by an algorithm of Wel
hand Berlekamp [14, 3℄ whi
h 
orre
ts b(d� 1)=2
 + 1 errors. In this arti
le we des
ribe thealgorithm of Wel
h and Berlekamp and use it motivate our de
oding algorithm. We alsodes
ribe a 
ru
ial intermediate step from [1℄ whi
h forms the basis of our algorithm. Ourmain result is summarized below and proven in Lemma 9.Theorem 1 For every �, � The bounded distan
e de
oding problem with parameters n, k =�n and e = �(�)n 
an be solved in polynomial time provided�(�) < 1� 11 + �� � ��2 � where �� = 6664s2� + 14 � 127775 :2 De
oding with univariate rational fun
tions [14, 3℄The idea of Wel
h and Berlekamp [14, 3℄ 
an be informally des
ribed as follows: Theydes
ribe how a \rational fun
tion" in x 
an be used to \explain" the \data" f(xi; yi)gni=1.They then show how to eÆ
iently �nd a rational fun
tion that explains the data and thenshow how to use this rational fun
tion to �nd the (unique) polynomial p whi
h disagreeswith the data in at most e pla
es. We now des
ribe the algorithms more formally.Lemma 2 ([14, 3℄) Given n points f(xi; yi)gni=1 su
h that there exists a degree k � 1 poly-nomial p su
h that yi 6= p(xi) for at most e values of i, the following hold:1. There exist polynomials N(x) and D(x) where deg(N) � k � 1 + e, D is moni
 withdeg(D) = e, su
h that for every i 2 [n℄, N(xi) = yiD(xi). (Informally, we 
ould saythat yi equals the rational fun
tion ND (xi).)2. Su
h a pair of polynomials (N;D) 
an be found in polynomial time.3. For any su
h pair of polynomials (N;D), ND (�) = p(�), provided e � 12(n� k).Remark: As a 
onsequen
e p 
an be found in polynomial time. We just divide the polyno-mials N and D to obtain p.Proof: Let E(x) be an \error-lo
ator" polynomial, i.e., E(xi) = 0 if (but not ne
essarilyonly if) yi 6= p(xi). Noti
e that E has degree at most e and w.l.o.g. we 
an allow it tobe moni
 and have degree exa
tly e. We now noti
e that the polynomials D(�) = E(�) andN(�) = p(�)E(�) satisfy the 
ondition N(xi) = yiD(xi) for every i. This proves Part 1.



To see Part 2, noti
e that if we let the unknowns fnjge+k�1j=0 denote the 
oeÆ
ients of N(�)and let the unknowns fdjgej=0 denote the 
oeÆ
ients of D(�), then the 
onstraints N(xi) =yiD(xi) give linear 
onstraints on the unknowns fnjg's and fdjg's. Also the 
onstraintdeg(D) = e. We do so by setting the linear 
onstraint de = 1. Thus a solution pair (N;D)
an be found eÆ
iently by solving a linear system.2Finally noti
e that there exists a pair (N;D) su
h that ND (�) = p(�), as des
ribed in the proofof Part 1. Thus to prove Part 3, it suÆ
es to prove that for any pair of solutions (N1; D1)and (N2; D2), satisfying Nj(xi) = yiDj(xi) every i 2 [n℄ and j 2 f1; 2g, N1D1 (�) = N2D2 (�). Tosee this, �rst observe that for every i 2 [n℄, we have N1(xi)D2(xi)yi = N2(xi)D1(x1)yi).Futhermore, we 
an 
an
el yi from both sides (even if yi = 0, sin
e in su
h a 
ase we haveN1(xi) = N2(xi) = 0. This yields that for every i, (N1D2)(xi) = (N2D1)(xi). But then bothsides des
ribe polynomials of degree 2e + k � 1 and two sides agree on n points. By the
ondition on n, we have that n > 2e+ k � 1 and thus the polynomials on the two sides areidenti
al, i.e., (N1D2)(�) = (N2D1)(�). This yields the desired 
on
lusion immediately.3 De
oding with algebrai
 
urves in the plane [1, 12℄A slightly di�erent interpretation of the Wel
h-Berlekamp algorithm is that it �nds an alge-brai
 
urve in the plane whi
h \explains" the \data". To be pre
ise, the algorithm �nds afun
tion Q(x; y), where Q(x; y) = D(x)y � N(x), su
h that for every i 2 [n℄, Q(xi; yi) = 0.While this parti
ular s
enario attempts to explain the data by a \linear" polynomial in y- there is no need to restri
t the analysis to this situation. Ar et al. [1℄ 
onsidered su
h ageneralization. They 
onsider the 
ase where the data is \explained" some algebrai
 
urveQ of low degree in y (but not ne
essarily a linear polynomial in y). They show that in su
ha 
ase, if there exists a polynomial p su
h that yi = p(xi) for many values of i (
omparedto degx(Q) and degy(Q)) then p 
an be re
onstru
ted easily. To des
ribe their analysis, thefollowing de�nition is useful.De�nition 3 For positive integers wx and wy, the (wx; wy)-weighted degree of a bivariatepolynomial Q(x; y) = Pi;j qijxiyj is de�ned to be maxfiwx + jwyjqij 6= 0g.Lemma 4 ([1℄) Given n points f(xi; yi)gni=1 s.t. there exists a bivariate polynomial Q sat-isfying:The (1; k � 1) weighted degree of Q is at most D, Q 6� 0 and 8i 2 [n℄; Q(xi; yi) = 0. (1)Then the following hold:1. A polynomial Q satisfying equation (1) 
an be found in polynomial time.2A
tually Berlekamp and Wel
h [14, 3℄ give a mu
h more eÆ
ient solution for this task, but we will notdes
ribe their solution here.



2. If p is a polynomial in x of degree at most k � 1 su
h that yi 6= p(xi) for at moste < n � D values of i then for any polynomial Q satisfying (1), it is the 
ase that(y � p(x)) divides Q(x; y).Remark: As a 
onsequen
e, a small set of polynomials whi
h in
ludes p 
an be found inpolynomial time. We simply fa
tor the polynomial Q obtained in Part 1 above and outputall p su
h that y� p(x) divides Q. The polynomial Q 
an be fa
tored in time polynomial inits degree using the algorithm of Kaltofen [7℄ or Grigoriev [6℄ (see also Kaltofen [8℄).Proof: For Part 1, we observe as in the proof of Lemma 2 that for any i, the 
onditionQ(xi; yi) = Pjl qjlxjyl = 0 is a linear 
onstraint on the unknowns qjl. Thus a solutionsatisfying (1) 
an be found in polynomial time, if one exists.For Part 2, we 
onsider the polynomial g(x)def=Q(x; p(x)). Noti
e that sin
e the (1; k � 1)-weighted degree of Q is D, the degree of g is also at most D. Noti
e further that if forsome i 2 [n℄, yi = p(xi), then g(xi) = Q(xi; p(xi)) = Q(xi; yi) = 0. Thus g is zero onn�e > D points. Thus g is identi
ally 0. Now 
onsider the polynomial Qx(y)def=Q(x; y) (i.e.,the polynomial Q viewed as a polynomial in y with 
oeÆ
ients from the ring of polynomialsin x). By the division theorem for polynomials we have that if Qx(�) = 0, then y� � dividesQx(y). Applying this fa
t to Qx(p(x)) = Q(x; p(x)) = g(x) = 0 we �nd that y� p(x) dividesQ(x; y).Noti
e the 
lose 
orresponden
e between Lemmas 2 and 4. The main di�eren
e between thetwo is Part 1 of Lemma 2, the analog of whi
h is missing in Lemma 4. As a result Lemma 4works 
onditionally, i.e., only when the \data" is explained by a low-degree algebrai
 
urve.Our solution 
omplements this by providing a \triviality" result. Namely, we observe thatevery set of points lies on a low degree algebrai
 
urve; low enough to make Lemma 4 alwaysuseful! We illustrate this observation by a simple exampleExample 5 For any set of points fxi; yigni=1 there exists a non-zero polynomial Q withdegx(Q); degy(Q) � dpne.Proof: Consider the linear system Q(x; y) = Pdpnej=0 Pdpnel=0 qjlxjiyli = 0. For every i thisforms a homogenous linear system. The system has n 
onstraints on (dpn + 1e)2 � (pn +1)2 � n+ 1 unknowns. By just 
ounting the number of unknowns we know that the systemhas a non-zero solution (any homogenous linear system with more variables than unknownshas a non-zero solution).Noti
e that unlike in Part 1 of Lemma 2, we didn't even use the fa
t that the data has someagreement with a degree k � 1 polynomial. Thus the example above is a \triviality" result- it holds for any set of n points. Yet the trivial result 
an be useful as seen next:Example 6 For any set of n distin
t points f(xi; yi)gni=1 the following hold:



1. There exists a bivariate polynomial Q satisfying equation (1) with D = kpn.2. Su
h a polynomial Q 
an be found in polynomial time.3. If p is a polynomial in x of degree at most k � 1 su
h that yi 6= p(xi) for at moste < n� kdpne values of i then for any polynomial Q satisfying (1) with D = kpn, itis the 
ase that (y � p(x)) divides Q(x; y).Proof: Part 1 follows from Example 5. Parts 2 and 3 follow from Parts 1 and 2 of Lemma 4with D = kdpne.Noti
e that Example 6 is already 
orre
ting more errors than guaranteed by Lemma 2 forsome values of n and k (in parti
ular when k grows as o(pn). By some �ne tuning we 
ana
tually get to the point where this algorithm always does at least as well as the Wel
h-Berlekamp algorithm and for rate less than 1=3 it starts 
orre
ting signi�
antly more error.The �ne tuning is performed by minimizing the weighted (1; k� 1) degree of the polynomialQ whi
h is used to explain the data.Lemma 7 Given n and k, let t be the smallest positive integer satisfying:(t� 1)�� t� 1k � 1�+ 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1�� > n:Then, for any set of n distin
t points f(xi; yi)gni=1 the following hold:1. There exists a bivariate polynomial Q satisfying:The (1; k � 1) weighted degree of Q is � t, Q 6� 0 and 8i 2 [n℄; Q(xi; yi) = 0. (2)2. A polynomial Q satisfying (2) 
an be found in polynomial time.3. If p is a polynomial in x of degree at most k�1 su
h that yi 6= p(xi) for at most e < n�tvalues of i then for any polynomial Q satisfying (2), it is the 
ase that (y�p(x)) dividesQ(x; y).Remark: Again as a 
onsequen
e we 
an �nd a list of all polynomials p that agree with thepoints f(xi; yi)g in n� e points in time polynomial in n.Proof: A polynomial Q of (1; k � 1)-weighted degree t is allowed to have a non-zero 
o-eÆ
ient qjl if j + (k � 1)l � t. Counting the number of su
h 
oeÆ
ients we �nd that Qhas b t�1k�1 
Xl=0 (t� (k � 1)l + 1) = (t� 1)�� t� 1k � 1� + 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1��
oeÆ
ients. Sin
e this number is stri
tly greater than n we must have a non-zero solution.This proves Part 1. Parts 2 and 3 follow dire
tly from Lemma 4.



4 Some boundsLet e(k; n) denote the maximum number of errors 
orre
ted by the algorithm of Lemma 7on an [n; k; d℄q Reed Solomon 
ode. Let � = k=n denote the rate of a 
ode and let �(�) 4=limn!1 e(�n; n)=n denote the asymptoti
 error-
orre
ting rate of the algorithm. In thisse
tion we derive the exa
t form of e(k; n) and �(�). We also des
ribe some lower bounds toboth quantities.Lemma 8e(k; n) = n�(k�1)rk;n�&2n� (k � 1)rk;n(rk;n + 1)2(rk;n + 1) '�2where rk;n = 6664s2(n+ 1)k � 1 + 14 � 127775 :Proof: Let t be the smallest integer satisfying(t� 1)�� t� 1k � 1�+ 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1�� > n:By Lemma 7 e(k; n) = n � t � 1. Let t � 1 = r(k � 1) + s, where r and s are integers and0 � s < k � 1. Then b t�1k�1
 = r; and r and s satisfy(r(k � 1) + s)(r + 1)� (k � 1)(r + 1)r2 > n: (3)We �rst determine r based on the above. The 
onstraints 0 � s < k � 1 translate into the
onstraints:r(k�1)(r+1)�r(k�1)(r+1)=2 � n+1 and (r+1)(k�1)(r+1)�r(k�1)(r+1)=2 > n+1:The above, in turn, simplify tor � s2(n+ 1)k � 1 � 14 � 12 and r > s2(n+ 1)k � 1 � 1� 1:The requirement that r be an integer now allows us to determine r pre
isely:r = 6664s2(n+ 1)k � 1 + 14 � 127775 :The value s 
an now be determined from (3) and we get:s = &2(n+ 1)� r(r + 1)(k � 1)2(r + 1) ' :The lemma follows by setting rk;n = r and t = r(k � 1) + s + 1 and using the fa
t thate(k; n) = n� t� 1.The following lemma simpli�es some of the expressions above by examining the error-
orre
tion rate �(�) as a fun
tion of �.
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Figure 1: The new error 
orre
tion bound �(�) plotted against the rate �. Also des
ribed arethe error 
orre
tion radius of the 
ode and the distan
e of the 
ode.Lemma 9 �(�) = 1� 11 + �� � ��2 � where �� = 6664s2� + 14 � 127775 : (4)�(�) 
an be lower bounded as follows:8� 2 [0; 1℄; �(�) � 1�s2�+ �24 + �=2 (5)� 1�p2� (6)Remark: The bound (4) is des
ribed pi
torially in Figure 1. The lower bounds (5) and (6)are 
ompared against the bound (4) in Figure 2.Proof: (4) follows from Lemma 8 by letting �� = limn!1 r�n;n and simplifying the quantitylimn!1 e(�n; n)=n.To prove (5), we �rst show that1� 11 + �� � ��2 � � 1� 11 + �0� � �0�2 �; (7)
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Figure 2: Lower bounds on the error-
orre
tion rate of our algorithm.where �0� = q 2� + 14 � 32 . Noti
e that by the de�nition of �0�, we have�0� � �� � �0� + 1 and 2� = (�0� + 2)(�0� + 1):(7) follows from:11+�0� � 11+�� + �0�2 �� ��2 � � 0( (�� � �0�) � 1(1+�0�)(1+��) � �2� � 0( 1(1+�0�)(1+��) � �2 � 0 (Sin
e �� � �0�)( 1(1+�0�)(1+��) � 1(1+�0�)(2+�0�) (Sin
e 2� = (1 + �0�)(2 + �0�))( 2 + �0� � 1 + ��:where the last inequality follows from the properties of �0�.(5) now follows from the following equalities:1� 11 +q 2� + 14 � 32 � q 2� + 14 � 322 �= 1� 1q 2� + 14 � 12 � q 2� + 14 � 322 �



= 1� q 2� + 14 + 122� � q 2� + 14 � 322 �= 1�s2�+ �24 + �2 :Finally inequality (6) is derived easily as follows:1 + �2 �s2�+ �24 � 1�p2�( s2�+ �24 � p2�+ �2( 2�+ �24 � 2�+ �24 + �p2�
5 Con
lusionsThe algorithm as presented here does generalize naturally to dealing with erasures, for thesimple reason that we made no assumptions about the xi's (we didn't depend on them beingin some spe
i�
 order et
.). However the bounds 
an not be represented elegantly in anyform - so we do not attempt to do so here. We only point out that sin
e the Wel
h-Berlekampalgorithm is a spe
ial 
ase of ours, we do at least as well.There are a number of questions on de
oding Reed Solomon 
odes that remain open. Forinstan
e, is there an algorithm that 
an de
ode from more errors (than (d � 1)=2) when� = k=n > 1=3? A ni
e target would be a de
oding algorithm that works for �(�) � 1�p�.In this 
ase we know (
f. [5, 10℄) that the number of 
odewords within a distan
e of �(�)nis bounded by a polynomial in n. One does expe
t that the problem will be
ome harder as�(�)! 1��. It would be interesting to see if the problem be
omes NP-hard as �(�)! 1��.A
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