
Deoding Reed Solomon Codes beyond theError-Corretion DiameterMadhu SudanLaboratory for Computer Siene, MITmadhu�ls.mit.eduAbstratWe desribe a new algorithm for the deoding of Reed Solomon odes. This algo-rithm was originally desribed in [12℄. While the algorithm presented in this artileis the same, the presentation is somewhat di�erent. In partiular we derive morepreise bounds on the performane of the algorithm and show the following: For an[n; �n; (1��)n℄q Reed Solomon ode, the algorithm in [12℄ orrets (�(�)�o(1))n errorsin polynomial time, where�(�) = 1� 11 + �� � �k2 � where �� = $r2� + 14 � 12% :We also present the following two (hopefully) useful lower bounds on �(�):8� 2 [0; 1℄ �(�) � 1�s2�+ �24 + �2 � 1�p2�:1 IntrodutionFor integers n; k and q suh that a �nite �eld of size q exists, the Reed Solomon odes are[n; k; d = n� k℄ odes over the alphabet F = GF(q) (the Galois �eld of order q). The odemay be obtained by letting a message m = m0 : : :mk�1 denote the oeÆients of a degreek � 1 polynomial M(x) = Pk�1j=0 mjxj and letting the enoding of m be C(m) = 1 : : : nwhere i = M(xi) where x1; : : : ; xn are n distint elements of F . (It is standard to pikn = q � 1, though not neessary to prove the distane property or for the algorithms wedesribe).In this paper we onsider the following bounded distane deoding problem:Input: Integers n, k and e; and n pairs f(xi; yi)gni=1, xi; yi 2 F with xi's being distint1.Goal: Find all polynomials p1; : : : ; pm of degree k�1 suh that for every j 2 [m℄, pj(xi) 6= yifor at most e values of i 2 [n℄.1For our algorithm from [12℄ we an replae this ondition with the weaker one that (xi; yi)'s are distint.



As an be seen easily, this problem aptures the bounded distane deoding problem for ReedSolomon odes. There is a rih history of work assoiated with this problem. The lassialwork of Berlekamp-Massey (f. [2, 9℄), orrets upto b(d� 1)=2 errors. Sidelnikov [11℄ andDumer [4℄ have onstruted algorithms whih orret up to b(d � 1)=2 +  logn errors forany onstant  [4, 11℄. We give an algorithm that improves over these results when k=n issuÆiently small (i.e., less than 1=3). Our algorithm is motivated by an algorithm of Welhand Berlekamp [14, 3℄ whih orrets b(d� 1)=2 + 1 errors. In this artile we desribe thealgorithm of Welh and Berlekamp and use it motivate our deoding algorithm. We alsodesribe a ruial intermediate step from [1℄ whih forms the basis of our algorithm. Ourmain result is summarized below and proven in Lemma 9.Theorem 1 For every �, � The bounded distane deoding problem with parameters n, k =�n and e = �(�)n an be solved in polynomial time provided�(�) < 1� 11 + �� � ��2 � where �� = 6664s2� + 14 � 127775 :2 Deoding with univariate rational funtions [14, 3℄The idea of Welh and Berlekamp [14, 3℄ an be informally desribed as follows: Theydesribe how a \rational funtion" in x an be used to \explain" the \data" f(xi; yi)gni=1.They then show how to eÆiently �nd a rational funtion that explains the data and thenshow how to use this rational funtion to �nd the (unique) polynomial p whih disagreeswith the data in at most e plaes. We now desribe the algorithms more formally.Lemma 2 ([14, 3℄) Given n points f(xi; yi)gni=1 suh that there exists a degree k � 1 poly-nomial p suh that yi 6= p(xi) for at most e values of i, the following hold:1. There exist polynomials N(x) and D(x) where deg(N) � k � 1 + e, D is moni withdeg(D) = e, suh that for every i 2 [n℄, N(xi) = yiD(xi). (Informally, we ould saythat yi equals the rational funtion ND (xi).)2. Suh a pair of polynomials (N;D) an be found in polynomial time.3. For any suh pair of polynomials (N;D), ND (�) = p(�), provided e � 12(n� k).Remark: As a onsequene p an be found in polynomial time. We just divide the polyno-mials N and D to obtain p.Proof: Let E(x) be an \error-loator" polynomial, i.e., E(xi) = 0 if (but not neessarilyonly if) yi 6= p(xi). Notie that E has degree at most e and w.l.o.g. we an allow it tobe moni and have degree exatly e. We now notie that the polynomials D(�) = E(�) andN(�) = p(�)E(�) satisfy the ondition N(xi) = yiD(xi) for every i. This proves Part 1.



To see Part 2, notie that if we let the unknowns fnjge+k�1j=0 denote the oeÆients of N(�)and let the unknowns fdjgej=0 denote the oeÆients of D(�), then the onstraints N(xi) =yiD(xi) give linear onstraints on the unknowns fnjg's and fdjg's. Also the onstraintdeg(D) = e. We do so by setting the linear onstraint de = 1. Thus a solution pair (N;D)an be found eÆiently by solving a linear system.2Finally notie that there exists a pair (N;D) suh that ND (�) = p(�), as desribed in the proofof Part 1. Thus to prove Part 3, it suÆes to prove that for any pair of solutions (N1; D1)and (N2; D2), satisfying Nj(xi) = yiDj(xi) every i 2 [n℄ and j 2 f1; 2g, N1D1 (�) = N2D2 (�). Tosee this, �rst observe that for every i 2 [n℄, we have N1(xi)D2(xi)yi = N2(xi)D1(x1)yi).Futhermore, we an anel yi from both sides (even if yi = 0, sine in suh a ase we haveN1(xi) = N2(xi) = 0. This yields that for every i, (N1D2)(xi) = (N2D1)(xi). But then bothsides desribe polynomials of degree 2e + k � 1 and two sides agree on n points. By theondition on n, we have that n > 2e+ k � 1 and thus the polynomials on the two sides areidential, i.e., (N1D2)(�) = (N2D1)(�). This yields the desired onlusion immediately.3 Deoding with algebrai urves in the plane [1, 12℄A slightly di�erent interpretation of the Welh-Berlekamp algorithm is that it �nds an alge-brai urve in the plane whih \explains" the \data". To be preise, the algorithm �nds afuntion Q(x; y), where Q(x; y) = D(x)y � N(x), suh that for every i 2 [n℄, Q(xi; yi) = 0.While this partiular senario attempts to explain the data by a \linear" polynomial in y- there is no need to restrit the analysis to this situation. Ar et al. [1℄ onsidered suh ageneralization. They onsider the ase where the data is \explained" some algebrai urveQ of low degree in y (but not neessarily a linear polynomial in y). They show that in suha ase, if there exists a polynomial p suh that yi = p(xi) for many values of i (omparedto degx(Q) and degy(Q)) then p an be reonstruted easily. To desribe their analysis, thefollowing de�nition is useful.De�nition 3 For positive integers wx and wy, the (wx; wy)-weighted degree of a bivariatepolynomial Q(x; y) = Pi;j qijxiyj is de�ned to be maxfiwx + jwyjqij 6= 0g.Lemma 4 ([1℄) Given n points f(xi; yi)gni=1 s.t. there exists a bivariate polynomial Q sat-isfying:The (1; k � 1) weighted degree of Q is at most D, Q 6� 0 and 8i 2 [n℄; Q(xi; yi) = 0. (1)Then the following hold:1. A polynomial Q satisfying equation (1) an be found in polynomial time.2Atually Berlekamp and Welh [14, 3℄ give a muh more eÆient solution for this task, but we will notdesribe their solution here.



2. If p is a polynomial in x of degree at most k � 1 suh that yi 6= p(xi) for at moste < n � D values of i then for any polynomial Q satisfying (1), it is the ase that(y � p(x)) divides Q(x; y).Remark: As a onsequene, a small set of polynomials whih inludes p an be found inpolynomial time. We simply fator the polynomial Q obtained in Part 1 above and outputall p suh that y� p(x) divides Q. The polynomial Q an be fatored in time polynomial inits degree using the algorithm of Kaltofen [7℄ or Grigoriev [6℄ (see also Kaltofen [8℄).Proof: For Part 1, we observe as in the proof of Lemma 2 that for any i, the onditionQ(xi; yi) = Pjl qjlxjyl = 0 is a linear onstraint on the unknowns qjl. Thus a solutionsatisfying (1) an be found in polynomial time, if one exists.For Part 2, we onsider the polynomial g(x)def=Q(x; p(x)). Notie that sine the (1; k � 1)-weighted degree of Q is D, the degree of g is also at most D. Notie further that if forsome i 2 [n℄, yi = p(xi), then g(xi) = Q(xi; p(xi)) = Q(xi; yi) = 0. Thus g is zero onn�e > D points. Thus g is identially 0. Now onsider the polynomial Qx(y)def=Q(x; y) (i.e.,the polynomial Q viewed as a polynomial in y with oeÆients from the ring of polynomialsin x). By the division theorem for polynomials we have that if Qx(�) = 0, then y� � dividesQx(y). Applying this fat to Qx(p(x)) = Q(x; p(x)) = g(x) = 0 we �nd that y� p(x) dividesQ(x; y).Notie the lose orrespondene between Lemmas 2 and 4. The main di�erene between thetwo is Part 1 of Lemma 2, the analog of whih is missing in Lemma 4. As a result Lemma 4works onditionally, i.e., only when the \data" is explained by a low-degree algebrai urve.Our solution omplements this by providing a \triviality" result. Namely, we observe thatevery set of points lies on a low degree algebrai urve; low enough to make Lemma 4 alwaysuseful! We illustrate this observation by a simple exampleExample 5 For any set of points fxi; yigni=1 there exists a non-zero polynomial Q withdegx(Q); degy(Q) � dpne.Proof: Consider the linear system Q(x; y) = Pdpnej=0 Pdpnel=0 qjlxjiyli = 0. For every i thisforms a homogenous linear system. The system has n onstraints on (dpn + 1e)2 � (pn +1)2 � n+ 1 unknowns. By just ounting the number of unknowns we know that the systemhas a non-zero solution (any homogenous linear system with more variables than unknownshas a non-zero solution).Notie that unlike in Part 1 of Lemma 2, we didn't even use the fat that the data has someagreement with a degree k � 1 polynomial. Thus the example above is a \triviality" result- it holds for any set of n points. Yet the trivial result an be useful as seen next:Example 6 For any set of n distint points f(xi; yi)gni=1 the following hold:



1. There exists a bivariate polynomial Q satisfying equation (1) with D = kpn.2. Suh a polynomial Q an be found in polynomial time.3. If p is a polynomial in x of degree at most k � 1 suh that yi 6= p(xi) for at moste < n� kdpne values of i then for any polynomial Q satisfying (1) with D = kpn, itis the ase that (y � p(x)) divides Q(x; y).Proof: Part 1 follows from Example 5. Parts 2 and 3 follow from Parts 1 and 2 of Lemma 4with D = kdpne.Notie that Example 6 is already orreting more errors than guaranteed by Lemma 2 forsome values of n and k (in partiular when k grows as o(pn). By some �ne tuning we anatually get to the point where this algorithm always does at least as well as the Welh-Berlekamp algorithm and for rate less than 1=3 it starts orreting signi�antly more error.The �ne tuning is performed by minimizing the weighted (1; k� 1) degree of the polynomialQ whih is used to explain the data.Lemma 7 Given n and k, let t be the smallest positive integer satisfying:(t� 1)�� t� 1k � 1�+ 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1�� > n:Then, for any set of n distint points f(xi; yi)gni=1 the following hold:1. There exists a bivariate polynomial Q satisfying:The (1; k � 1) weighted degree of Q is � t, Q 6� 0 and 8i 2 [n℄; Q(xi; yi) = 0. (2)2. A polynomial Q satisfying (2) an be found in polynomial time.3. If p is a polynomial in x of degree at most k�1 suh that yi 6= p(xi) for at most e < n�tvalues of i then for any polynomial Q satisfying (2), it is the ase that (y�p(x)) dividesQ(x; y).Remark: Again as a onsequene we an �nd a list of all polynomials p that agree with thepoints f(xi; yi)g in n� e points in time polynomial in n.Proof: A polynomial Q of (1; k � 1)-weighted degree t is allowed to have a non-zero o-eÆient qjl if j + (k � 1)l � t. Counting the number of suh oeÆients we �nd that Qhas b t�1k�1 Xl=0 (t� (k � 1)l + 1) = (t� 1)�� t� 1k � 1� + 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1��oeÆients. Sine this number is stritly greater than n we must have a non-zero solution.This proves Part 1. Parts 2 and 3 follow diretly from Lemma 4.



4 Some boundsLet e(k; n) denote the maximum number of errors orreted by the algorithm of Lemma 7on an [n; k; d℄q Reed Solomon ode. Let � = k=n denote the rate of a ode and let �(�) 4=limn!1 e(�n; n)=n denote the asymptoti error-orreting rate of the algorithm. In thissetion we derive the exat form of e(k; n) and �(�). We also desribe some lower bounds toboth quantities.Lemma 8e(k; n) = n�(k�1)rk;n�&2n� (k � 1)rk;n(rk;n + 1)2(rk;n + 1) '�2where rk;n = 6664s2(n+ 1)k � 1 + 14 � 127775 :Proof: Let t be the smallest integer satisfying(t� 1)�� t� 1k � 1�+ 1�� (k � 1)2 �� t� 1k � 1� + 1��� t� 1k � 1�� > n:By Lemma 7 e(k; n) = n � t � 1. Let t � 1 = r(k � 1) + s, where r and s are integers and0 � s < k � 1. Then b t�1k�1 = r; and r and s satisfy(r(k � 1) + s)(r + 1)� (k � 1)(r + 1)r2 > n: (3)We �rst determine r based on the above. The onstraints 0 � s < k � 1 translate into theonstraints:r(k�1)(r+1)�r(k�1)(r+1)=2 � n+1 and (r+1)(k�1)(r+1)�r(k�1)(r+1)=2 > n+1:The above, in turn, simplify tor � s2(n+ 1)k � 1 � 14 � 12 and r > s2(n+ 1)k � 1 � 1� 1:The requirement that r be an integer now allows us to determine r preisely:r = 6664s2(n+ 1)k � 1 + 14 � 127775 :The value s an now be determined from (3) and we get:s = &2(n+ 1)� r(r + 1)(k � 1)2(r + 1) ' :The lemma follows by setting rk;n = r and t = r(k � 1) + s + 1 and using the fat thate(k; n) = n� t� 1.The following lemma simpli�es some of the expressions above by examining the error-orretion rate �(�) as a funtion of �.
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Figure 1: The new error orretion bound �(�) plotted against the rate �. Also desribed arethe error orretion radius of the ode and the distane of the ode.Lemma 9 �(�) = 1� 11 + �� � ��2 � where �� = 6664s2� + 14 � 127775 : (4)�(�) an be lower bounded as follows:8� 2 [0; 1℄; �(�) � 1�s2�+ �24 + �=2 (5)� 1�p2� (6)Remark: The bound (4) is desribed pitorially in Figure 1. The lower bounds (5) and (6)are ompared against the bound (4) in Figure 2.Proof: (4) follows from Lemma 8 by letting �� = limn!1 r�n;n and simplifying the quantitylimn!1 e(�n; n)=n.To prove (5), we �rst show that1� 11 + �� � ��2 � � 1� 11 + �0� � �0�2 �; (7)



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
rate (k/n)

error (e/n)

New Correction Bound
Lower Bound 1: (1 + x/2 - sqrt(x^2/4 + 2x))

Lower Bound 2: (1 - sqrt(2x))

Figure 2: Lower bounds on the error-orretion rate of our algorithm.where �0� = q 2� + 14 � 32 . Notie that by the de�nition of �0�, we have�0� � �� � �0� + 1 and 2� = (�0� + 2)(�0� + 1):(7) follows from:11+�0� � 11+�� + �0�2 �� ��2 � � 0( (�� � �0�) � 1(1+�0�)(1+��) � �2� � 0( 1(1+�0�)(1+��) � �2 � 0 (Sine �� � �0�)( 1(1+�0�)(1+��) � 1(1+�0�)(2+�0�) (Sine 2� = (1 + �0�)(2 + �0�))( 2 + �0� � 1 + ��:where the last inequality follows from the properties of �0�.(5) now follows from the following equalities:1� 11 +q 2� + 14 � 32 � q 2� + 14 � 322 �= 1� 1q 2� + 14 � 12 � q 2� + 14 � 322 �



= 1� q 2� + 14 + 122� � q 2� + 14 � 322 �= 1�s2�+ �24 + �2 :Finally inequality (6) is derived easily as follows:1 + �2 �s2�+ �24 � 1�p2�( s2�+ �24 � p2�+ �2( 2�+ �24 � 2�+ �24 + �p2�
5 ConlusionsThe algorithm as presented here does generalize naturally to dealing with erasures, for thesimple reason that we made no assumptions about the xi's (we didn't depend on them beingin some spei� order et.). However the bounds an not be represented elegantly in anyform - so we do not attempt to do so here. We only point out that sine the Welh-Berlekampalgorithm is a speial ase of ours, we do at least as well.There are a number of questions on deoding Reed Solomon odes that remain open. Forinstane, is there an algorithm that an deode from more errors (than (d � 1)=2) when� = k=n > 1=3? A nie target would be a deoding algorithm that works for �(�) � 1�p�.In this ase we know (f. [5, 10℄) that the number of odewords within a distane of �(�)nis bounded by a polynomial in n. One does expet that the problem will beome harder as�(�)! 1��. It would be interesting to see if the problem beomes NP-hard as �(�)! 1��.AknowledgmentsI am grateful to Dave Forney, Simon Litsyn, Ronny Roth, and Alex Vardy for their valuableomments on the artile [12℄. Their detailed omments motivated and enouraged the writingof this artile.Referenes[1℄ S. Ar, R. Lipton, R. Rubinfeld and M. Sudan. Reonstruting algebrai fun-tions from mixed data. SIAM Journal on Computing, to appear. Preliminary version in
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