
Improved low-degree testing and its applications

Sanjeev Arora∗

Princeton University
Madhu Sudan†

IBM T. J. Watson Research Center

Abstract

NP = PCP(log n, 1) and related results crucially de-
pend upon the close connection between the probability with
which a function passes a low degree test and the distance
of this function to the nearest degree d polynomial. In
this paper we study a test proposed by Rubinfeld and Su-
dan [29]. The strongest previously known connection for
this test states that a function passes the test with probability
δ for some δ > 7/8 iff the function has agreement≈ δ with a
polynomial of degree d. We present a new, and surprisingly
strong, analysis which shows that the preceding statement is
true for δ � 0.5. The analysis uses a version of Hilbert ir-
reducibility, a tool used in the factoring of multivariate poly-
nomials.

As a consequence we obtain an alternate construction for
the following proof system: A constant prover 1-round proof
system for NP languages in which the verifier uses O(log n)
random bits, receives answers of size O(log n) bits, and has
an error probability of at most 2− log1−ε n. Such a proof sys-
tem, which implies the NP-hardness of approximating Set
Cover to within Ω(log n) factors, has already been obtained
by Raz and Safra [28]. Our result was completed after we
heard of their claim.

A second consequence of our analysis is a self
tester/corrector for any buggy program that (supposedly)
computes a polynomial over a finite field. If the program is
correct only on δ fraction of inputs where δ � 0.5, then the
tester/corrector determines δ and generates O( 1

δ ) random-
ized programs, such that one of the programs is correct on
every input, with high probability.
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1 Introduction

The use of algebraic techniques has recently led to new
(probabilistic) characterizations of traditional complexity
classes. These characterizations involve an interaction be-
tween an untrustworthy prover (or many provers) and a
polynomial-time verifier. In MIP= NEXPTIME [7], and
NP = PCP(log n, 1) [6, 5] the verifier has to probabilisti-
cally verify the satisfiability of a boolean formula by read-
ing very few bits in a “proof string” presented by a prover.
In IP=PSPACE [24, 31] the verifier has to probabilistically
verify tautologyhood of a quantified boolean formulae by
interacting with a prover. All these results fundamentally
rely on the same idea: the verifier first arithmetizes (or al-
gebraizes) the boolean formula, which involves viewing a
boolean assignment not as a sequence of bits but as values
of a polynomial [24]. From then on, verifying satisfiability
or tautologyhood involves verifying — using some efficient
algebraic procedures — specific properties of a polynomial
that has been provided by the prover.

In this paper we present an improved analysis of the
low degree test, an algebraic procedure used in the result
NP=PCP(log n, 1). The new analysis is known to lead to
new characterizations of NP in terms of PCP, which in turn
lead to improved results about the hardness of approxima-
tion. Recall that NP=PCP(log n, 1) implies the hardness
of computing approximate solutions to many optimization
problems such as CLIQUE [13, 6], CHROMATIC NUMBER
and SET COVER [25], AND MAX-3SAT [5]. For most of
these problems it implies NP-hardness, but for some —most
notably the problem of approximating SET COVER within a
factor O(log n) and an entire set of problems in [4] — it is
only known to imply quasi-NP-hardness (a quasi-NP-hard
problem is one that has a polynomial-time algorithm only if
NP ⊆ Time(npoly log(n))).

Plugging our improved analysis of the low degree test into
known constructions leads to very efficient constant-prover
1-round proof systems for NP. Such systems imply the NP-
hardness of approximating Set Cover to within a factor of
O(lnn) (see the reduction of [25], adapted for more than
2 provers in [10]). Raz and Safra [28] had before us con-
structed such systems; so our construction can be viewed as
an alternative proof of their result.

In our proof system, a probabilistic polynomial time ver-
ifier checks that a given string is in the language by us-
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ing O(log n) random bits, and one round of interaction
with a constant number of provers during which it receives
O(log n) bit long answers from the provers. If the input is in
the language, the provers can answer in a way that makes the
verifier accept with probability 1. If the input is not in the
language, then regardless of the prover’s answers the ver-
ifier accepts with probability at most 2− log(1−ε) n, for any
ε > 0. The number of provers in our construction grows as
O(1/ε). If we are willing to increase the error probability to
2− log1/3 n then the number of provers is 5. The number of
provers can probably be reduced further using a technique of
Tardos [35], but that still does not lead to a 2-prover proof
system. Getting a 2-prover proof system with O(log n) ran-
domness and answer size but subconstant error probability
remains an open question.

Now we briefly describe low degree tests; see Section 2
for more details. Given an m-variate function f : Fm → F
over a finite field F, the test wishes to determine whether or
not there exists a degree d polynomial that agrees with f in δ
fraction of points in Fm. (The function is presented by value,
and the test has random access into this table of values. Both
d and ρ are inputs to the test.) The low degree test is allowed
to be probabilistic and it has to read as few values of f as
possible.

We are interested in a test described in [29] that works
roughly as follows: Pick a random “line” in Fmand verify
that the restriction of f to this line agrees significantly with
some univariate degree d polynomial. If this is the case, ac-
cept. This test is similar in flavor to all other known low
degree tests, such as the original test in [7] and later ones
in [8, 13, 18]. (Many of those tests check the degree of the
polynomial in each variable, whereas the test we described
checks the total degree.)

Let δ denote the probability with which f passes the low-
degree test. Existing analyses of all low degree tests cannot
say anything meaningful about f if δ < 1/2; in fact the anal-
yses of [13, 18, 29, 6] require δ > 1−O(1/d). A crucial in-
gredient of NP=PCP(log n, 1) was an analysis (actually just
a combination of the analyses of [6, 29]) of the above test
that worked for δ > 1−ε for some fixed ε > 0. This analysis
showed that if a function f passes the test with probability
δ > 1 − ε, then there exists a degree d polynomial that has
agreement ≈ δ with f . (The value of ε for which this is true
was later improved to 1/8 [17].)

In this paper we present an analysis (see Theorem 4) that
continues to say something meaningful about f even when
δ is fairly close to 0. We show that if δ > (md)c/ |F|ε for
some fixed c, ε > 0, then there exists a degree d polynomial
that agrees with f in ≈ δ fraction of the inputs. We remark
that a similar statement had earlier been proved for really
large fields |F| > 2O(m+d+1/δ) [2, 33]. (However, that field
size is too large for most applications.)

We also prove a related result, Theorem 3, which is more
useful for constructing efficient PCP-style verifiers. It says

that every function f that passes the low degree test with
probability δ has an associated small set of polynomials
P1, P2, . . . such that the test fails with high probability if
it encounters a point where f does not agree with one of the
Pi’s. This result is useful because all known verifiers work
by checking the properties of some function f provided by
the prover. If f is a polynomial, the verifier is extremely
unlikely to produce an erroneous answer . Errors creep in
only when f is not a polynomial but has significant agree-
ment with some set of polynomials g1, g2, . . .. In this case,
if the verifier has the bad luck to examine f at a point where
f doesn’t agree with any of g1, g2, . . ., then it could accept
erroneously. Our corollary provides the means to combat
such errors, since any such g1, g2, . . . turn out to be exactly
the set of polynomials P1, P2, . . . , mentioned in Theorem 3.
The verifier therefore subjects f to a low degree test: at any
point where f doesn’t agree agree with any of P1, P2, . . . ,
the test fails with high probability, thus averting an erroneous
accept. A formal proof of this “folklore result” is included
in the full paper, and some pointers appear in Section 4.

Application to program testing/correcting. Suppose we
are given a potentially buggy program that purportedly com-
putes a (unknown) m-variate polynomial over a finite field
F. Program testing/correcting [11] deals with the following
problems: (i) testing: determine δ, the fraction of points at
which this program is correct and (ii) correction: for each in-
put, correct the output of the program in case it is incorrect.
It was open how to do testing if δ < 1/2; our low-degree
test (specifically, a version slightly different from the one
described in the next section in that it doesn’t use a d-oracle)
closes this open problem when |F|ε > poly(md). As for
correction, note that its meaning is unclear when δ < 1/2,
since as many as O(1/δ) polynomials could have agreement
δ with the program. Two notions of correction are possi-
ble, as noted in [1]. The weaker one is that for each input,
the corrector outputs O(1/δ) values, one of which is cor-
rect. Such a corrector is known [32]. The stronger notion is
that the corrector create O( 1

δ ) programs (polynomials) such
that w.h.p. one of them is correct. Finding such a corrector
was an open problem. Our analysis leads to such a corrector.
Details of the proof are omitted from this abstract, but they
are obvious from reading our proofs (specifically, by noting
their “algorithmic” nature).

Past work on constant-prover proof systems. The first
construction of a nontrivial constant prover 1-round proof
system for NP appeared in [23]; others appeared in [16, 10,
34, 14, 27]. These systems could not reduce the error proba-
bility to below a constant while using O(log n) random bits
(the best construction needs O(k log n) random bits to make
the error probability 2−k; see [27]). It was also known [15]
that some obvious ideas (such as “recycling randomness”)
cannot let us get around this. Earlier this year Raz and
Safra [28] found a construction of a proof system achiev-
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ing subconstant error. Our result, though obtained indepen-
dently, was completed a couple of months after we had heard
of the existence of their result (the missing part at the time
was our proof of the bivariate case of Theorem 1). Upon
seeing their manuscript in September 1996, it was clear —
although their earlier announcement didn’t suggest this —
that they also rely on a low degree test, albeit a new one and
with a very different correctness proof than ours.

Paper organization. We state and explain our main theo-
rem (Theorem 1) and its corollaries (Theorems 3 and 4) in
Section 2. We prove the theorem in Section 3. This proof re-
sembles proofs of earlier results [29, 5, 3, 17], in that it has
two parts. First in Section 3.1 we prove the theorem when
m is constant (specifically, m = 2, 3); this uses algebraic
arguments inspired by Sudan’s [32] work on reconstructing
polynomials from very noisy data and Kaltofen’s work on
“Effective Hilbert Irreducibility” [20, 21, 22]. Then in Sec-
tion 3.2 we “bootstrap” to allow larger m. This part uses
probabilistic arguments and relies upon the cases m = 2, 3
(including Theorems 3 and 4 for the cases m = 2, 3). It is
inspired by the “symmetry-based” approach of Arora [3].

2 The Low-degree Test
Let F be a finite field and m, d be integers. An m-

variate polynomial over F is a sum of terms of the form
axj11 x

j2
2 · · ·xjmm , where a ∈ F. The set of such polynomi-

als forms an integral domain, denoted F[x1, . . . , xm]. We
will often view such a polynomial as a function from Fm

to F. The degree of the polynomial is its total degree (thus
j1 + · · ·+ jm is the degree of the above monomial). We will
usually reserve the symbol q for |F|, the cardinality of F.

The distance between two functions f, g : Fm → F, de-
noted ∆(f, g), is the fraction of points in Fm they differ on.
The agreement between the functions is 1−∆(f, g).

The low-degree test is given a function f : Fm → F.
Using randomness, it checks that f looks “locally” like a
degree-d polynomial. Magically, it can infer from this that
f has significant agreement with a degree-d polynomial. To
be more formal we need to define a line in Fm.

A line in Fm is a set of q points with a parametric repre-
sentation of the form
{(u1 + tv1, u2 + tv2, . . . , um + tvm) : t ∈ F}
for some (u1, . . . , um), (v1, . . . , vm) ∈ Fm. We refer to the
point (u1 +av1, u2 +av2, . . . , um+avm) as the point t = a
of the line.

Note that replacing (v1, . . . , vm) by c · (v1, . . . , vm) for
any c ∈ F \ {0} does not change the line. Our convention is
to fix one of the representations as canonical.
Definition 1 Let l = {(u1 + tv1, . . . , um + tvm) : t ∈ F}
be a line, f : Fm → F be a function and g(t) be a univariate
polynomial. Then g describes f at the point t = a of l if

g(a) = f(u1 + av1, u2 + av2, . . . , um + avm).

Note that if f : Fm → F is a degree d polynomial, then on
every line the restriction of f to that line is described by a
univariate degree-d polynomial in the line parameter t. The
converse can also be shown to be true: if on every line in
Fm, the values of f are described by a univariate degree-d
polynomial and F is sufficiently large (q ≥ (d + 1)( p

p−1 ),
where p is the characteristic of the field [17]), then f must
be a degree-d polynomial.

The low degree test is presented with f : Fm → F, and
an integer d. It is also presented a table that is meant to be a
“proof” that f is a degree d polynomial. This table contains,
for each line in Fm, a univariate degree d polynomial that
supposedly describes the restriction of f to that line. We will
use the term d-oracle for any table that contains, for each
line in Fm, a univariate degree d polynomial. (The number
of variables m can be inferred from the context.)

The Low Degree Test:

Pick a random line l in Fm and read the univariate
polynomial, say pl(t), which the given d-oracle con-
tains for this line. Randomly pick a point x on line l
and check whether pl correctly describes f at x. If so,
ACCEPT, else REJECT.
We denote by δd(f,B) the probability that the low degree

test accepts a function f and a d-oracleB. We will prove the
following result about the low degree test.
Theorem 1 (Main) There are positive integers c0, c1, c2,
and c3 such that the following are true. Let f : Fm → F
be any function and d > 0 be any integer.

1. For any δ > 0, if f has agreement δ with some de-
gree d polynomial, then there is a d-oracle B such that
δd(f,B) ≥ δ.

2. If δ > 0 satisfies q > c0(dm/δ)c1 and there is a d-
oracle B such that δd(f,B) ≥ δ, then f has agreement
at least δc3/c2 with some degree d polynomial.

We remark that the first half of this theorem is trivial, since
we can just take the degree d polynomial that has agreement
δ with f , and construct the d-oracle by using the polyno-
mial’s restriction to the line in question. We will prove only
the more nontrivial second half. As mentioned earlier, previ-
ous results show that the statement in the second half is true
for some 0.5 < δ < 1. This paper shows that the statement is
true for δ � 0.5, and in fact for δ as small as dm(c0/q)1/c1 ,
which is tiny if q is (c0dm)2c1 .

2.1 Two Stronger Forms of Theorem 1
Theorem 1 has two stronger forms, one of which will be

useful in constructing proof systems. We state the stronger
forms here.

We will need the (well-known) fact that there are not “too
many” polynomials that have significant agreement with a
given function.
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Proposition 2 Let f : Fm → F be any function. Suppose
integer d > 0 and fraction ρ satisfy ρ > 2

√
d
q . Then there

are at most 2/ρ degree d polynomials that have agreement
at least ρ with f .
2

The first strong form says that “almost all” of the success
probability of the low degree test happens at points where f
agrees with (one of) a small set of polynomials.

Theorem 3 Suppose m is an integer such that the state-
ment of Theorem 1 is true for all m-variate functions. Let
f : Fm → F be any function and d > 0 be any inte-
ger. Let c0, c1, c2 and c3 refer to the same integers that
appeared in Theorem 1 and let ε > 0 be any fraction sat-
isfying q > c0(d/ε)c1 . Let P1, P2, . . . , Pk be all the degree
d polynomials that have agreement at least εc3/c2 with f .
Then with probability at least 1− ε one of the following two
events happens during the low degree test on f (irrespective
of the contents of the d-oracle):

1. The test outputs REJECT.

2. The test picks a point x ∈ Fm such that f(x) = Pi(x)
for some i = 1, . . . , k.

Proof: Suppose the probability mentioned in the theorem
statement is less than 1− ε. We derive a contradiction.

Let S ⊆ Fm be the set of points at which f does not agree
with any of P1, . . . , Pk. Then f |S , the restriction of f to S,
is a function that passes the low degree test with probability
at least ε. Let us extend f |S to a function g : Fm → F by
randomly picking values for g at points in Fm \ S. Since g
passes the low-degree test with probability at least ε, Theo-
rem 1 implies that there is a degree d polynomial P that has
agreement εc3/c2 with g. This agreement must largely be
on points in S, since the restriction of g to Fm \ S is a ran-
dom function. (Note: A simple calculation using Chernoff
bounds shows that a random function has agreement approx-
imately 1/q with every degree-d polynomial.) Hence we
conclude that polynomial P has agreement approximately
εc3/c2 with f |S . Since none of P1, . . . , Pk agrees with f on
S, this polynomial must be be different from each Pi. But
this contradicts the hypothesis that {P1, . . . , Pk} is an ex-
haustive listing of the degree d polynomials that have agree-
ment at least εc3/c2 with f . 2

The second strong form says, heuristically speaking, that
if q > poly( 1

ρ ,
1
ε ,md), then every function that passes the

low degree test with probability ρ has agreement at least ρ−
ε with some degree d polynomial. (Note:Theorem 1 only
guaranteed an agreement ρc3/c2).

Theorem 4 Supposem is an integer such that the statement
of Theorem 1 is true for all m-variate functions. Let f :
Fm → F be any function and d > 0 be any integer. Suppose
there is a d-oracle such that Pr[low degree test accepts] ≥

ρ. Let ε > 0 be any fraction satisfying

q >
64 · 4c3

εc3+3ρc3−1
+ c0(

4dm
ερ

)c1 ,

where c0, c1, c2, c3 refer to the same integers that appeared
in Theorem 1.

Then there is a degree d polynomial that has agreement
ρ− ε with f .
Proof: Suppose we pick a line l randomly from Fm. An
simple averaging argument shows that with probability at
least ε/2, we pick a line on which the success probability
of the low degree test is at least ρ− ε/2. In other words,

Pr
l

[
some univ. deg. d poly. gl describes f
on ρ− ε/2 fraction of points of l

]
≥ ε

2
(1)

Let ε1 = ερ and let P1, . . . , Pk be all the degree d poly-
nomials that have agreement at least 1

c2
( ε14 )c3 with f . Let

ρ1, . . . , ρk be their agreements with f . We wish to show that
ρi ≥ ρ − ε for some i. Let us therefore assume that each
ρi < ρ − ε and show that the probability mentioned in As-
sertion (1) is less than ε/2, thus deriving a contradiction to
Assertion (1).

Where could the univariate degree d polynomial men-
tioned in Assertion (1) come from? There are two cases.
Case (i): gl is the restriction of one of the Pi’s to the line
l. Case (ii): gl is some other polynomial. Note that if case
(ii) happens, then l is a line on which the low degree test is
succeeding with probability ρ − ε/2, and furthermore this
success happens on on points where f doesn’t equal any
of P1, P2, . . . , Pk. By Theorem 3, at most ε1/4 of the suc-
cess probability of the low degree test comes from the points
where f doesn’t equal any of P1, P2, . . . , Pk. By an averag-
ing argument it follows that

Pr
l

[case (ii) happens] ≤ ε1/4ρ ≤ ε/4.

Now we show that Prl[Case (i) happens] < ε/4, thus lead-
ing to the desired contradiction.

For i = 1, 2, . . . , k, let γi be the fraction of points on l at
which polynomial Pi agrees with f . The following bound
on γi follows from a simple application of Chebychev’s in-
equality (proof omitted from this abstract):

Pr
l

[γi − ρi >
ε

2
] ≤ 4ρi

ε2q
for i = 1, . . . , k. (2)

Since we assumed that each γi < ρ − ε, we now conclude
that

Pr
l

[∃ i s.t. γi > ρ− ε/2] ≤ 4ρ
ε2q
× k.

A simple inclusion-exclusion based counting argument
shows that k ≤ 2c2/(ε1/4)c3 . Hence

Pr
l

[∃ i s.t. γi > ρ− ε/2] ≤ 8ρc2
ε2q(ε1/4)c3
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Note that the probability on the LHS is an upperbound on
the Prl[Case (i) happens], and that the RHS is less than
ε/4 for the range in which our parameters lie. Thus
Prl[Case (i) happens] < ε/4. 2

3 Proof of Correctness of Low-degree Test
In this section we prove Theorem 1. For ease of exposition

we first restate Theorem 1. From now on we will reserve the
symbol f for a function from Fm to F which is the subject of
the low degree test.

Definition 2 The line polynomial for f on line l for degree
d, denoted P fd (l), is the univariate degree d polynomial (in
the line parameter t) that describes f on more points of l than
any other degree d polynomial. (We arbitrarily break ties
among different polynomials that describe f equally well on
the line.) The d-success-rate of f on line l, denoted µfd(l), is
defined as

µfd(l) = fraction of points on l where P fd (l) describes f .

The d-success-rate of f at point x ∈ Fm is the fraction of
lines through x whose line polynomial describes f at x.

The d-success rate of f is the average of its d-success rates
on all lines. (Note: By symmetry this is also equal to its
average d-success rate at all points.) 2

Note that the probability that a function f : F2 → F passes
the low degree test is maximised when the accompanying d-
oracle contains, for each line l, the polynomial P fd (l). Hence
it suffices to prove the following.

Theorem 5 (Restatement of Theorem 1 part 2) There are
integers c0, c1 such that the following is true. If f : Fm → F
is any function whose d-success rate is at least δ and q >
1
c0

(dmδ )c1 , then there exists a degree d polynomial that has
agreement at least δc3/c2 with f .

3.1 The Bivariate Case

In this section we prove Theorem 5 for m = 2. Let f :
F2 → F be a function with success-rate at least δ. Our proof
goes in two steps.

(Step 1). Show that there is a polynomial Q ∈ F[z, x, y]
of “not too large degree” and a “reasonably large” set of
points S ⊆ F2 such that for every (a, b) ∈ S, the follow-
ing are true:

Q(f(a, b), a, b) = 0 (3)
d-success rate of f at (a, b) is “non-negligible.” (4)

(Step 2). Show that any Q that satisfies the conditions in
Step 1 has a factor z − g(x, y), such that g ∈ F[x, y] is a
degree d polynomial and for “many” (a, b) ∈ S,

(z − g(x, y)) = 0 at (z, x, y) = (f(a, b), a, b). (5)

By the end of Step 2, we have concluded that f has sig-
nificant agreement with the degree d bivariate polynomial g.
Step 2 uses Theorem 6 which is a version of a family of re-
sults known as Hilbert irreducibility theorems. They study
the preservation of the irreducibility of a multivariate poly-
nomial, when values of most variables are substituted with
constants or linear forms in one or two new variables. We
will need a version which leaves one variable unsubstituted
and all other variables get substituted with a linear form in
one new variable. This specific substitution has been stud-
ied by Kaltofen [21], who bounds the probability with which
the polynomial may factor after the substitution, if the sub-
stitution is performed “randomly”. The bound presented in
[21] is too weak for our purposes. Fortunately, in a later
work Kaltofen [22] presents improved bounds. The bounds
in [22] are presented for a different substitution, but the anal-
ysis easily extends to the substitution studied in [21]. We
summarize this theorem below.
Theorem 6 ([20]) Let Q ∈ F[z, y1, y2, . . . , ym] be a degree
l polynomial that is absolutely irreducible and monic in z.
Then the fraction of (a1, a2, . . . , am, b1, b2, . . . , bm) ∈ F2m

for which the polynomialQ(z, a1t+b1, . . . , amt+bm) in z
and t has a factor of the form z−p(t) is at most 1−O(l3/q).

Step 1 is motivated by Sudan’s [32] technique for recon-
structing univariate polynomials from very noisy data. Su-
dan makes the following observation.
Proposition 7 Let (a1, y1), . . . , (an, yn) be any set of n
pairs from F2, and dz, dx be any positive integers satisfy-
ing dxdx > n. Then there exists a bivariate polynomial
Γ ∈ F[z, x] with degz(Γ) ≤ dz and degx(Γ) ≤ dx, satisfy-
ing

Γ(yi, ai) = 0 for i = 1, . . . , n (6)

Proof: If we let γij be the coefficient of zixj in Γ, then the
contraints in (6) define the following homogeneous linear
system with (1 + dx)(1 + dy) unknowns and n constraints.
(Note that a1, . . . , an, y1, . . . , yn are “constants.”) For k =
1, . . . , n,

dz∑
i=0

dx∑
j=0

γijy
j
ka
i
1 = 0

Since (1 + dx)(1 + dy), the number of variables, exceeds n,
the number of constraints, a nontrivial solution exists. 2

Then Sudan uses the following lemma from Ar et al. [1].
Lemma 8 Let (a1, y1), . . . , (an, yn) ∈ F2 be any sequence
such that for some ρ > 0,

there is a degree d polynomial h ∈ F[x] s.t.
h(ai) = yi for ρn values of i.

}
(7)

Let Γ ∈ F[z, x] be any polynomial satisfying (6). If
degx(Γ) + d · degz(Γ) < ρn, then (z − h(x)) |Γ.
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Proof: The polynomial Γ(h(x), x) has degree at most
degx(Γ) + d · degz(Γ) and has at least ρn roots. So if
degx(Γ) + d · degz(Γ) < ρn, this polynomial must be iden-
tically 0. 2

We need the following generalization of the ideas de-
scribed above.
Lemma 9 Let S1, S2 ⊆ F be any subsets of F and l = |S1|.
Let f : S1 × S2 → F be any function and for each a, b ∈ F ,
let Ca ∈ F[y], Rb ∈ F[x] be degree d polynomials. Suppose
there is a fraction ρ > 2d/

√
l such that for all b ∈ S2, there

exist at least ρl values of a ∈ S1 s.t.

f(a, b) = Ca(b) = Rb(a).

Then there is a polynomial Q ∈ F[z, x, y] satisfying
degz(Q) ≤

√
l, degx(Q) ≤

√
l, degy(Q) ≤ dl3/2 such

that

∀a ∈ S1, Q(Ca(y), a, y) = 0 and (8)
∀b ∈ S2, (z −Rb(x)) |Q(z, x, b) (9)

Proof: Let F[y][z, x] be the ring of polynomials in the formal
variables z and x whose coefficients are from F[y].

We use the same idea as in [32], but work over the ring
F[y] instead of over F. Consider the following sequence
of |S1| pairs from F × F[y]: ((a,Ca(y)) : a ∈ S1).
Note that there exists a polynomial Q ∈ F[y][z, x] with
degz(Q), degx(Q) ≤

√
l such that

Q(Ca(y), a) = 0 ∀a ∈ S1 (10)

The reason is that if we letQij ∈ F[y] be the coefficient of
zjxi inQ, then the constraints in (10) define a homogeneous
system of linear equations over F[y] with (1+degx(Q))(1+
degz(Q)) > l unknowns and l constraints.

√
l∑

i=0

√
l∑

j=0

Qij(Ca(y))jai = 0 ∀a ∈ S1

Since the number of unknowns exceeds the number of con-
straints, a nontrivial solution exists.

Now we claim that we can find a nontrivial solution Q
that in addition is in F[y][z, x] and satisfies degy(Q) ≤
dl3/2. The reason is that Q is obtained by Cramer’s Rule
on a system of l constraints, which calls for inverting an
(l − 1) × (l − 1) matrix. Inverting an (l − 1) × (l − 1)
matrix involves evaluating polynomials of degree l − 1 in
the matrix entries. In this case the matrix entries are degree
d
√
l polynomials in F[y], so matrix inversion produces only

polynomials of degree dl3/2 in y. Hence degy(Q) ≤ dl3/2.
Finally, the fact that Q satisfies condition (9) follows im-

mediately from Lemma 8 and the condition ρ > 2d/
√
l ≥

(d+ 1)/
√
l. 2

The following lemma finishes Step 1 of our proof.

Lemma 10 Let f : F2 → F have d-success rate at least δ,
let t = max{4 log q/δ3, ( 64d

δ3 )2}. If q > 100t2, then there is
a polynomial Q ∈ F[z, x, y] of total degree at most 2t3/2d
and a set of points S ⊆ F2 containing at least δ6/256 frac-
tion of the points such that

1. Q(f(a, b), a, b) = 0 ∀(a, b) ∈ S.

2. The d-success rate of f at each point in S is at least
δ/2

Proof: This proof uses averaging. The main idea is to ro-
tate the coordinate system so that with respect to the new
x and y axes, the conditions of Lemma 9 are satisfied for
ρ = δ6/256. The existence of polynomial Q is then implied
by the conclusion of that lemma. Note that a rotation of co-
ordinates does not affect the total degree of a polynomial,
and we are interested only in the total degree of Q.

Below, when we say “a line in the direction h,” we mean
a line of the form {(u+ t · h) : t ∈ F}. Note that for each
point x ∈ F2 and direction h, there is exactly one line in
direction h that passes through x.

We say that a point x ∈ F2 is good for a pair of directions
(h1, h2) if the line polynomials P fd (l1) and P fd (l2) correctly
describe f at x, where l1, l2 are the lines that pass through x
and lie in directions h1 and h2 respectively.

Let G ⊆ F2 denote the set of points at which the success
rate of f is at least δ/2. Since the overall success rate is
at least δ, averaging shows that at least δ/2 fraction of the
points are in G.

Claim 1: There exist two directions h1, h2 and a set of
points H ⊆ G with size |H| ≥ δ3 |F|2 /8 such that every
point in H is good for (h1, h2).

Proof of Claim 1: Omitted; involves picking two ran-
dom directions h1, h2 and computing the expectation. 2

Let h1, h2, H be as in Claim 1. Rotate the coordinates so
that h1 becomes the x-axis and h2 becomes the y-axis. From
now on, coordinates are stated in this new system. We use
columns and rows to refer to lines parallel to the y and x axes
respectively.

For a, b ∈ F let Rb and Ca denote the line polynomials
in the row {(x, b) : x ∈ F} and the column {(a, y) : y ∈ F}
respectively. By the defining property of H , if (a, b) ∈ H ,
then Ca(b) = Rb(a) = f(a, b).

Let γ = δ3/16. Averaging shows that at least γ of the
rows have at least γ fraction of their points inH . Let S2 ⊆ F
be the set of all such rows. Let t = 4 log q/γ. We claim that
there exists a set S1 consisting of t vertical lines such that
∀b ∈ S2

∃γt/2 values of a ∈ S1 s.t. Ca(b) = Rb(a) = f(a, b).
(11)

The existence of S1 is proved by the probabilistic method.
Pick a set of S1 randomly by picking t lines with repetition,
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and show that w.h.p. the resulting set satisfies, for all b ∈ S2,
|H ∩ (S1 × {b})| ≥ γt/2. (Even though we picked lines
with repetition, the probability that any two are the same is
at most t2/q, which is < 1/100. Hence w.h.p. the set S1 has
no repeated lines.)

Let b ∈ S2. The expected fraction of points in S1 × {b}
that lie in H is at least γ. Hence by the Chernoff bound,

Pr
S1

[|H ∩ (S1 × {b})| < γt/2] ≤ exp(−γt
2

)

= exp(−2 log q) ≤ 1
2q
.

Thus the probability is at least 1 − |S2| /2q − 1/100 ≥ .49
that the randomly chosen set S1 satisfies condition (11).

Thus we have proven the existence of S1, S2 ⊆ F such
that they satisfy the hypothesis of Lemma 9 with ρ = γ/2
and l = t. (Notice that by the definition of t, we have
that ρ ≥ 2d/

√
l.) Let Q ∈ F[z, x, y] be the polyno-

mial whose existence is guaranteed by Lemma 9. Then
degx(Q), degz(Q) ≤

√
t and degy(Q) ≤ dt3/2, and total

degree of Q is 2
√
t+ dt3/2 < 2dt3/2.)

To finish we need to define the set S mentioned in the
lemma. Let

S =
{

(a, b) ∈ F2 : b ∈ S2 and (a, b) ∈ H
}
.

Since each row b2 ∈ S2 has at least γ fraction of its points
in H and |S2| > γ |F|, we have

|S| ≥ γ2 |F|2 =
δ6

256
|F|2 .

Now let (a, b) ∈ S. Since b ∈ S2, the property of Q implies
(z − Rb(x)) | Q(z, x, b) and so Q(Rb(x), x, b) = 0. Since
(a, b) ∈ H , the property of H implies f(a, b) = Ca(b) =
Rb(a). Hence Q(f(a, b), a, b) = 0. Thus the lemma has
been proved. 2

Now we move to Step 2 of our argument.
Lemma 11 Let f : F2 → F be a function, and Q ∈
F[z, x, y] be a polynomial of total degree D and S ⊆ F2

be a set of points of size at least γ · |F|2 such that: (i)
∀(a, b) ∈ S, Q(f(a, b), a, b) = 0. (ii) The d-sucess-rate
of f at every point in S is at least γ.

If |F| > 4D5/γ2, then there is a degree D bivariate poly-
nomial g ∈ F[x, y] that has agreement at least γ4/8D with
f and such that z − g(x, y) is a factor of Q.
Proof: The main idea is to use Lemma 8 to show that the
restriction of Q on “many” lines has a linear factor that de-
scribes f on “many” points of that line. Then we will use
Theorem 6 on “effective Hilbert irreducibility” to conclude
that Q itself must have a linear factor that describes f in
“many” points.

We say a point (a, b) ∈ F2 is nice for a line l in F2 if (i)
Q(f(a, b), a, b) = 0 and (ii) P fd (l), the line polynomial of l,
describes f at (a, b).

Claim 1: When a line l is picked randomly, the expected
fraction of points on it that are nice for it is at least γ2.
Proof: Imagine picking a point (a, b) randomly and then
randomly picking a line l that passes through it. The proba-
bility that the point is nice for l is at least γ · γ = γ2. The
claim now follows by linearity of expectations. 2

Let Q1, . . . , Qk ∈ F[z, x, y] be all the distinct factors
(over the algebraic closure of field F) of Q that involve z.
(Note that k ≤ D.)

Claim 2: One of the Qi’s is of the form z − r(x, y) where
r ∈ F[x, y].
Proof: For a line l let us denote the restriction of Q to l by
Q|l ∈ F[z, t], where t is the line parameter. We define Qi|l
analogously for i = 1, .., k.

Assume for contradiction’s sake that no Qi has the form
z−r(x, y) for some r ∈ F[x, y]. Since eachQi is absolutely
irreducible, Theorem 6 implies that the fraction of lines l
such that the restriction Qi|l has a factor of the type z− p(t)
where p ∈ F[t], is at most O(D3/ |F|). Hence the fraction
of lines on which either of Q1|l, . . . Qk|l has a factor of the
type z− p(t) is at most O(kD3/ |F|). By our assumption on
the values of |F|, γ, and D, this fraction is at most γ2/4. We
show next that this fraction is actually at least γ2/2, which
is a contradiction.

From the statement of Claim 1 and simple averaging we
know that on at least γ2/2 fraction of the lines, at least γ2/2
fraction of the points are nice for them. Let l be such a line.
We show that Q|l(z, t) has a factor of the form z − p(t) for
some p ∈ F[t]. Let h ∈ F[t] be the line polynomial for l
(i.e., h = P fd (l)). Then Q|l(h(t), t) has γ2 |F| /2 roots and
degree only Dd, where Q|l(z, t) is the restriction of Q to l.
But Dd < γ2 |F| /2, so Q|l(h(t), t) must be identically 0.
Hence z − h(t) | Q|l(z, t). 2

The following claim finishes the proof of the lemma. Note
that the polynomial g in the statement of the claim takes its
coefficients from F instead of from the closure field F.
Claim 3: One of the Qi’s is of the form z − g(x, y) where
g ∈ F[x, y] is a degree d polynomial that has agreement at
least γ2/2D with f .
Proof:(of Claim 3) Assume that l ≥ 1 factors of Q are of
the form described in Claim 2, and assume w.l.o.g. that they
are Q1, . . . , Ql. For i = 1, . . . , l, suppose Qi(z, x, y) =
z − pi(x, y) where pi ∈ F[x, y]. From the proof of Claim
2 we know that for at least γ2/2 − O(D3k/ |F|) fraction of
the lines, the following is true (i) the line polynomial P fd (l)
of the line is the restriction of one of the pi’s to the line,
(ii) P fd (l) describes f on at least γ2/2 fraction of points on
l. For simplicity, we use γ2/4 as a lowerbound on γ2/2 −
O(D3k/ |F|).

Thus there must exist some i ∈ [1, l] such thatQi explains
1/l fraction of such lines. We claim that this Qi is the factor
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we are looking for (i.e., g = pi). Note that by choice of
i, polynomial pi has agreement 1

l ·
γ2

2 ·
γ2

4 , with f . This

agreement is at least γ4

8D .
Note that thus far we only know that g ∈ F[x, y] and has

degree at most D. Now we claim that g actually (i) is a
degree d polynomial and (ii) has all its coefficients in F. The
reason we claim (ii) is that that the restriction of g on at least
1
l ·
γ2

4 fraction of lines is in F[t] and γ2

4l > D/ |F|. The reason
that g has degree at most d instead of D is that its restriction
to at least γ

2

4l fraction of the lines is a degree d polynomial

and γ2

4l > D/ |F|. 2

2

Thus we have proved the bivariate case of Theorem 1.
Theorem 12 Let F = GF (q) and f : F2 → F be a func-
tion that has d-success rate at least δ. If q/(log q)5 >
2105d20/δ57, then there is a bivariate degree d polynomial
g that has agreement at least δ33/(255d4 log q) with f .
Proof: Follows from Lemmas 10 and 11. 2

3.2 The Bootstrapping
Section 3.1 showed the correctness of Theorem 1 for the

case of m = 2. An easy generalization of the proof (whose
details we omit here) carries over for larger m, except the
“constants” c1, c2 and c3 then depend on m. In order to
avoid any dependence on m, some other idea is needed. We
describe this now.

This section assumes the truth of Theorem 1 (as well as
Theorems 3 and 4) for m = 2, 3, and proves Theorem 1
for general m. The proof relies on symmetry-based argu-
ments similar to those in [3]. These use the notion of a k-
dimensional subspaces of Fm.
Definition 3 Let m, k ∈ Z+ and k < m. A k-dimensional
subspace of Fm is a set of points with a parametrization of
the form

{u0 + t1 · u1 + t2 · u2 + · · ·+ tk · u1 : t1, t2, . . . , tk ∈ F} ,

for some u1, u2, . . . , uk ∈ Fm. 2
Thus a line is a 1-dimensional subspace, for example. We

will refer to a 2-dimensional subspace as a plane and a 3-
dimensional subspace as a cube. A function defined on a k-
dimensional subspace of Fm is called a degree d polynomial
if the function can be expressed as a degree d polynomial in
the parameters t1, . . . , tk.

Note that each set of k + 1 distinct points in Fm deter-
mines a unique k-dimensional subspace. Likewise, a line
and a point outside it determine a unique plane, two lines
that are not in the same plane determine a unique cube, and
so on. We use the term plane(l, x) to denote the unique
plane containing a line l and a point x etc.

Our argument will rely on symmetry, such as the follow-
ing facts: (i) all points in Fm are part of exactly the same

number of k-dimensional subspaces (ii) All lines in Fm are
part of exactly the same number of k-dimensional subspaces,
etc. We give an illustrative example of a symmetry-based
calculation.
Example 1 Suppose f : Fm → F is any function whose
d-success-rate is exactly β. For any plane s let ts be the av-
erage d-success-rate of f among lines in s. Then symmetry
implies that Es[ts], the average of ts among all planes, is
exactly β. The reason is that

∑
s ts counts every line in Fm

an equal number of times.
The following two lemmas are both conseqeunces of

symmetry-based arguments that we will need. Both can be
shown using straightforward application of Chebychev’s in-
equality. We omit the proofs here.
Lemma 13 (Well-distribution lemma for lines) Let S ⊆
Fm be a set whose size is µ · qm. For every K > 0, at least
1 − 1

K2 fraction of lines in Fm have between µq(1 − K√
µq )

and µq(1 + K√
µq ) points from S.

Lemma 14 (Well-distribution lemma for cubes) For any
α > 0 and m > 3, if any function f : Fm → F has d-
success-rate δ, then in a random cube C,

Pr
cube C

[
Average d-Success-rate of f on
lines in C ≤ (1− α)δ

]
≤ 2
α2δ2|F |

.

Now we try to define a function f̂ that we hope is “almost”
a polynomial and has significant agreement with f .
Definition 4 (f̂l) For any line l we define a function f̂l :
Fm → F as follows. Let P fd (l) denote the univariate degree
d polynomial that best describes f ’s restriction to l (see Defi-
nition 2). Now consider every plane s that contains l. (Note:
since every point x 6∈ l determines a unique plane with l,
the set of planes containing l form a partition of Fm.) Check
whether there is a bivariate polynomial, say g, that agrees
with P fd (l) on line l and that has agreement at least δ/4 with
f on plane s. If so, for every point y ∈ s, we define f̂l(y) to
be the value taken by g at y. If no such bivariate polynomial
exists, we define f̂l(y) arbitrarily in this plane.
Lemma 15 There are constants r, s > 1 such that the fol-
lowing is true for each m > 3. Let f : Fm → F have
d-success-rate at least δ, and q = |F| > ( rδ3 )s. If a line l is
picked randomly, then

El[d-success-rate of f̂l in Fm] ≥ 1− δ2

256 (12)

El[agreement between f and f̂l in Fm] ≥ δ
4 . (13)

Before proving Lemma 15, we first point out how Theo-
rem 1 follows immediately.

Proof:(of Theorem 1; m > 3) We use the probabilistic
method: we pick a line l randomly and show that with
nonzero probability, we get a line such that the polynomial
closest to f̂l has agreement at least δ/24 with f .
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Using an averaging argument along with statement (12)
we see that for any k > 1,

Pr
l

[d-success-rate of f̂l ≥ 1− k δ
2

256
] ≥ 1− 1

k

Using averaging on (13) we see that

Pr
l

[agreement between f and f̂l >
δ

8
] >

δ

8
.

We let k = 10/δ, and conclude that with probability δ/8 −
δ/25.6 the following two events happen (i) d-success-rate of
f̂l > 1− δ/24 and (ii) the agreement between f and f̂l is at
least δ/8.

In particular, there exists at least one line for which the
two events in the preceding paragraph happen. Let l0 be
such a line. The existing analysis of the low degree test [5]
implies that for each δ < 1, every function with d-success-
rate at least 1 − δ/24 has agreement at least 1 − δ/12 with
some degree d polynomial. Let g be this polynomial for f .
Since g and f have agreement at least 1−δ/12 and since f̂l0
and f have agreement at least δ/8, we conclude that f and g
have agreement at least δ/8− δ/12 = δ/24. 2

Now we prove Lemma 15.

Proof: (Lemma 15) By linearity of expectations it suffices
to show that if we pick a pair of lines (l, l′) randomly in Fm,
then

E(l,l′)[d-success-rate of f̂l on l′] ≥ 1− δ2

256 (14)

E(l,l′)[agreement of f̂l and f on l′] ≥ δ
4 . (15)

Let α = 1/32. The main idea why we can “bootstrap”
(i.e., reduce the m-variate case to the trivariate case) is that
the two expectations in statements (14) and (15) are essen-
tially unchanged (except for a “fudge” factor of 1 − 1/

√
q,

which is negligible) if we change the method of picking
(l, l′) as follows: instead of picking a random pair of lines in
Fm, we pick a pair randomly from all noncoplanar pairs of
lines in a fixed cube c in which the average d-success-rate of
f is at least δ(1 − α). The reason why this doesn’t change
the expectation is that when we pick a random pair of lines in
Fm, then with probability 1− q2/qm they are non-coplanar,
in which case they determine a unique cube. Furthermore,
this cube is randomly distributed among all cubes, so with a
further probability at least 1− 1

α2δ2q the d-success-rate of f
in this cube is at least δ(1−α) (Lemma 14). Thus, if we are
willing to ignore a factor (1− 1

qm−2 − 1
α2δ2q ) (which we are,

since this is > 1 − 1/
√
q for a large enough q), it suffices

to compute the expectations in (14) and (15) when (l, l′) is
a random pair of non-coplanar lines in a cube c in which the
d-success-rate of f is at least δ(1− α). We restrict attention
to such (l, l′).

By the trivariate case of Theorem 4, there is a degree d
trivariate polynomial that has agreement at least δ(1 − 2α)

with f on cube c. Let P1 be one such polynomial and let
P2, . . . Pk0 be all the other degree d polynomials that have
agreement at least δ(1− 6α) with f on cube c.

Let c2, c3 be the constants of the same name that occured
in the statement of Theorem 3 for the case m = 3. Let ε =
1/q1/4c3 . Let Pk0+1, . . . , Pk be all the degree d polynomials
whose agreement with f on cube c is between εc3/c2 and
δ(1 − 6α). Proposition 2 shows that the set of polynomials
we have identified thus far is not too big: k0 ≤ 8/δ and
k ≤ 4c2/εc3 . Furthermore, we know by the trivariate case
of Theorem 3 that if we restrict the low degree test on f to
those points of cube c where f doesn’t agree with any of
P1, . . . , Pk, then the success probability is at most ε. This
will be important.

We hope to show ultimately that for “most” lines l, the
function f̂l has high agrement with one of P1, P2, . . . , Pk0 .
For any trivariate polynomial Q and line l, let Q|l denote its
restriction to line l. We likewise define the restriction Q|s
for a plane s. We say that line l is nice if the restrictions
P1|l, P2|l, . . . , Pk|l are all distinct and P fd (l), the univariate
degree d polynomial that has the highest agreement with f
on l, is one of P1|l, P2|l, . . . , Pk0 |l.

Let γ = 4ε/δ = 4/δq1/4c3 .

Claim 1: At least 1− γ fraction of the lines l in cube c
are nice.

Proof of Claim 1: The fraction of lines l for which
Pi|l = Pj |l for some i 6= j is at most

(
k
2

)
× d

q , since for any
fixed i, j, the fraction of lines l for which Pi|l = Pj |l is at
most d/q. Since k ≤ 4c2/εc3 , we have(

k

2

)
× d

q
≤ 8c22dq

2c3/4c3

q
≤ 8dc22√

q
.

Now we estimate the fraction of lines for which P fd (l) is
not one of P1|l, P2|l, . . . , Pk0 |l. Such a line must satisfy one
or more of the following properties.

1. P1|l has agreement less than δ(1 − 4α) with f on line
l. By Lemma 13, the fraction of such lines is at most

1
4α2δq .

2. P1|l has agreement β ≥ δ(1 − 4α) with f on line l
but one of Pk0+1|l, . . . , Pk|l has agreement more than
β. By Lemma 13, the fraction of such lines is at most

1
4α2δq × (k − k0), which is at most c2

δα2q3/4
since k ≤

4c2/εc3 < 4c2q1/4.

3. P1|l has agreement β ≥ δ(1 − 4α) with f on
line l but some univariate polynomial that is not
P1|l, P2|l, . . . , Pk|l has agreement more than β with f
on l. Since the success probability of f on points where
it does not agree with P1|l, . . . , Pk|l is at most ε, the
fraction of lines on which this success probability is
more than δ(1− 4α) is at most ε/δ(1− 4α) < 2ε/δ <
2/δq1/4c3 .

9



Hence the fraction of lines that are not nice is at most

8dc22√
q

+
1

4α2δq
+

2
δ3α2q3/4

+
2

δq1/4c3
.

The last term dominates when q is large enough, so this frac-
tion is at most 4/δq1/4c3 . 2

We say that a plane s in c is well-behaved if (i) each of
P1|s, P2|s, . . . , Pk0 |s has agreement at least δ(1− 8α) with
f on s (ii) Every bivariate polynomial besidesP1|s, . . . , Pk|s
has have agreement less than δ(1− 8α) with f on plane s.

Claim 2: At least 1−γ fraction of planes in c are well-
behaved.

Proof of Claim 2: Each of P1, . . . , Pk0 has agreement
at least δ(1 − 6α) with f on cube c. Picking a random
plane involves picking three points at random from the cube.
Hence we can use pairwise independence (i.e., Chebyshev’s
inequality) to conclude

Pr
s

[
agreement between Pi|s and f
on s is < δ(1− 8α)

]
≤ 4
α2δq2

.

Next, we bound the fraction of planes s such that some bi-
variate polynomial different from P1|s, . . . , Pk|s has agree-
ment at least δ(1− 8α) > δ/2 with f on plane s. Note that
in such a plane the restriction of f to points where it doesn’t
agree with P1, . . . , Pk passes the low degree test with prob-
ability at least δ/2. But the case m = 3 of Theorem 3 and
symmetry implies that the average of this rate over the entire
cube is at most ε. Hence the fraction of such planes is at
most 2ε/δ < 2/δq1/4c3 .

Thus the fraction of planes that are not well-behaved is at
most 4/α2δq2 + 2/δq1/4c3 , which for large enough q is at
most 4/δq1/4c3 . 2

Claim 3: For at least 1 −√γ fraction of lines in cube
c, at least 1−√γ fraction of the planes containing that line
are well-behaved.

Proof of Claim 3: Among all planes that contain any
line l, let σl denote the fraction that are well-behaved. Then
by symmetry we know that El[σl] is exactly the fraction of
well-behaved planes in cube c, which is at least 1 − γ by
Claim 2. Averaging implies that σl ≥ 1 − √γ for at least
1−√γ fraction of l. 2

Now call a line l super if it is nice and if at least 1 −√
γ fraction of the planes containing l are well-behaved. By

Claims 1 and 3, at least 1− γ −√γ fraction of lines in cube
c are super.

Claim 4: If line l is super, then for every line l′ that is
non-coplanar with l,

d-success-rate of f̂l on l′ ≥ 1−√γ (16)

and for a random line l′ noncoplanar with l,

El′

[
agreement between f̂l
and f on cube c

]
≥ δ(1−√γ)(1−8α). (17)

Proof of Claim 4: Recall that the set of planes con-
taining l is a partition of cube c. Since l is nice, P fd (l) is
Pi|l for some i ∈ [1, k0]. In any plane s containing l, the bi-
variate polynomial used to define f̂l in that plane must agree
with Pi|l on l and must have agreement at least δ/2 with
f on s. If s is well-behaved for l, then only Pi|s qualifies.
Hence the agreement between f̂l and f on this plane is at
least δ(1 − 8α). Summing over all planes containing l, we
see that the agreement between f̂l and f on the cube c is at
least (1−√γ) · δ(1− 8α). Now the claim in (17) follows.

Now we prove the claim in (16). Consider any line l′

non-coplanar with l. Every plane s containing l meets l′

in exactly one point, say x. If s is well-behaved, then
f̂l(x) = Pi(x), as already argued. Hence Pi|l′ , the restric-
tion of Pi to l′, has agreement at least 1 −√γ with f on l′.
2

By examining Claim 4 we realize that the Lemma is more
or less proved, since at least 1 − γ − √γ fraction of lines
in c are super. We make q > (232/δ4)4c3 , which makes
1 − √γ > 1 − δ2/512. Now the first expectation is δ(1 −√
γ)(1−γ−√γ)(1−8α) which is at least δ/4. The second

expectation is (1−√γ)(1− γ −√γ) > 1− δ2/256.
2

4 Construction of constant prover protocols
The construction is in two steps. Step 1: Construct a

3 prover protocol in which the number of random bits is
O(log n) and the provers’ answer size is 2logβ n for some
β < 1. Step 2: Use “verifier composition,” a technique
from [6], to compose the verifier in Step 1 with itself. Doing
this enough times reduces the answer size toO(log n), while
keeping the number of provers at O(1).

Both steps rely on a procedure of [5], which uses the low
degree test to reconstruct “many” values of a polynomial us-
ing O(1) provers (this procedure is similar in spirit to many
others that preceded it in literature). This procedure is de-
scribed in Section 4.4 of [3]. The analysis given there relies
on the old result about the low degree test, and therefore only
shows that the procedure fails with probability less than 1/2.
Using our Theorem 3 in the analysis shows that the failure
probability of the procedure is below 1/

√
q or so.

As a consequence of this procedure, Step 1 is easy:
Just repeat the ALMSS protocol O((log n)β) times using
standard pseudorandomness techniques. Instead of mak-
ing queries to O((log n)β) independent provers, use the re-
construction procedure to “Aggregate Queries” (see Section
4.1.2 in [3]) and thus end up with 3 provers. Step 2 is also
standard and follows the general idea of [6] of making the
provers encode their answers using low degree polynomials.

We note that the simple ideas above yield a proof sys-
tem with error probability 2− log0.5−ε n. Reducing error to
2− log1−ε n requires other ideas.
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5 Conclusions
We do not know how to reduce the number of provers in

our constructions to 2. So long as we use the verifier compo-
sition idea of [6], 3 provers appears to be the best possible.
Reducing the number of provers to 2 would imply the NP-
hardness of approximation problems studied in [4].
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