A Complete Classification of the
Approximability of Maximization Problems
Derived from Boolean Constraint Satisfaction

Sanjeev Khanna*

Abstract

In this paper we study the approximability of boolean
constraint satisfaction problems. A problem in this class
consists of some collection of “constraints” (i.e., func-
tions f : {0,1}¥ — {0,1}); an instance of a problem
is a set of constraints applied to specified subsets of n
boolean variables. Schaefer earlier studied the question
of whether one could find in polynomial time a setting of
the variables satisfying all constraints; he showed that
every such problem is either in P or is NP-complete.
We consider optimization variants of these problems
in which one either tries to maximize the number of
satisfied constraints (as in MAX 3SAT or MAX CUT)
or tries to find an assignment satisfying all constraints
which maximizes the number of variables set to 1 (as in
MAX CUT or MAX CLIQUE). We completely classify
the approximability of all such problems. In the first
case, we show that any such optimization problem is
either in P or is MAX SNP-hard. In the second case,
we show that such problems fall precisely into one of
five classes, assuming P # NP: solvable in polynomial-
time, approximable to within constant factors in poly-
nomial time (but no better), approximable to within
polynomial factors in polynomial time (but no better),
not approximable to within any factor but decidable
in polynomial time, and not decidable in polynomial
time. This result proves formally for this class of prob-
lems two results which to this point have only been em-
pirical observations; namely, that NP-hard problems in

*sanjeev@research.bell-labs.com. Fundamental Mathe-
matics Research Department, Bell Labs, 700 Mountain Avenue,
NJ 07974. This work was performed when the author was at the
Department of Computer Science, Stanford University, Stanford,
CA 94305. He was supported by a Schlumberger Foundation Fel-
lowship, an OTL grant, and NSF Grant CCR-9357849.

tmadhu@watson.ibm.com. IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598.

fdpwewatson.ibm.com. IBM Thomas J. Watson Research Cen-
ter, P.O. Box 218, Yorktown Heights, NY 10598.

Madhu Sudanf

David P. Williamson*

MAX SNP always turn out to be MAX SNP-hard, and
that there seem to be no natural maximization problems
approximable to within polylogarithmic factors but no
better.

1 Introduction

In this paper, we study the approximability of op-
timization versions of boolean constraint satisfaction
problems (CSPs). A boolean CSP consists of a collec-
tion F of boolean functions f : {0,1}* — {0,1} called
constraints. An instance of such a problem is a set of
“constraint applications”. Each application is a con-
straint drawn from F and applied to a specified subset
of n boolean variables.

The decision version of a boolean constraint satisfac-
tion problem asks whether there is an assignment to the
variables such that all constraint applications are satis-
fied (that is, for each application the specified boolean
function evaluates to 1 on the given subset of variables).
For a collection of constraints F, we call this prob-
lem SAT(F). Thus, for example, 3SAT is a decision
version of boolean CSP with the constraint functions
fl(xaywz) =zV) \ 2, fZ(ZL”,y,Z) =V) \ 2, and so
on. Schaefer [17] studied the decision version of these
problems and proved a remarkable result: for every such
problem, either it is in P or it is NP-complete. This di-
chotomy is especially interesting in light of Ladner’s the-
orem [12], which states that if P#NP, then there exist
infinitely many problems of complexity between P and
NP-complete. Thus although problems SAT(F) could
in principle display a wide range of complexity, they in
fact fall into distinct and quite separate classes (assum-
ing P#NP). An additional property of Schaefer’s result
is that his characterization of the problems in P is com-
pact. He gives six classes of functions, and if all func-
tions in F fall entirely within any one of these classes,
then SAT(F) is in P, otherwise it is NP-complete.

In this paper, we consider two different maximization
versions of SAT(F) and completely classify the approx-
imability of all such problems. In so doing, we find that
these optimization problems also fall into distinct and
separate classes, bypassing the many intermediate lev-
els of approximability which are possible in principle.
As we describe later, this classification proves formally

for these problems some results which to this point
have only been empirical observations. Furthermore,
our classification of the problems also has a compact
description. For both types of maximization versions of
SAT(F), we refine Schaefer’s classes, and the level of ap-
proximability of a problem for a given F is determined
by which of these classes contain F.

In the first maximization version of SAT(F) that we
consider, for each instance of a problem we are also given
a nonnegative weight w; for each constraint application
1, and we must try to find an assignment to the variables
which maximizes the weight of the satisfied constraint
applications. For any set of constraints F, we call
this associated maximization problem MAX CSP(F),
and we call the class of all such problems MAX CSP.
It follows almost immediately from its definition that
MAX CSP is contained in the well-studied class MAX
SNP. Conversely, it also contains many of its complete
problems. For example, MAX 3SAT and MAX CUT
can be cast as MAX CSP(F) problems. We show that
each problem MAX CSP(F) is either solvable exactly
in polynomial time or is MAX SNP-hard. Thus there
is no problem in this class which has an approximation
scheme but is not solvable in polynomial time. This re-
sult has been obtained independently by Creignou [4];
however our result is stronger in certain technical senses
which we discuss later.

In the second maximization version of SAT(F) that
we consider, for each instance of the problem we are also
given a nonnegative weight w; for each boolean variable,
and we must try to find a boolean assignment of max-
imum weight that satisfies all constraint applications.
For any set of constraints F, we call this associated max-
imization problem MAX ONE(F); for example, MAX
CUT and MAX CLIQUE can be cast as MAX ONE(F)
problems. We show that each problem MAX ONE(F)
must fall into one of five classes, assuming P # NP: first,
it is solvable exactly in polynomial time; second, it can
be approximated to within some constant factor but no
better; third, it can be approximated to within some fac-
tor that is polynomial in the number of variables, but
no better; fourth, it is NP-complete to find a satisfying
assignment of non-zero value; fifth, it is NP-complete to
find any satisfying assignment.

The central idea of our proofs is a new concept we
call an implementation. Given a set of constraints F,
we show that if F has certain properties, then it can be
used to enforce other constraint functions f. We show
that under suitable conditions, implementations can be
composed, so that the constraints of F can be used to
implement the constraints of other problems (such as
MAX CUT or MAX CLIQUE) whose approximability
is well known. The central difficulty of the proofs is
showing that this can be done in an exhaustive way
for all possible sets of constraints F. Our definition of

an implementation here is inspired by the notion of a
gadget in Bellare et al. [3] and we unify their many defi-
nitions (they have different definitions for every f and F
that they consider) into a single one. Our definition has
in turn been used by Trevisan et al. [18] to derive im-
proved hardness of approximation results and improved
approximation algorithms.

Our results prove formally for these classes of prob-
lems some results about approximability which to this
point have only been empirical observations. For ex-
ample, the study of MAX SNP has revealed so far that
every NP-hard MAX SNP problem is also hard to ap-
proximate to within some constant factor. Our result on
MAX CSP serves as a formal basis for this empirical ob-
servation. Similarly, in the search for polynomial-time
approximation algorithms, optimization problems so far
either have exact algorithms, or approximation schemes,
or constant or (poly)logarithmic or polynomial approxi-
mation algorithms — but this list is virtually exhaustive.
There have been no “natural” problems that are approx-
imable to within intermediate factors, such as 2'°8" " or
loglogn and no better. In addition, for many natural
optimization problems the best known approximation
algorithm guarantees logarithmic factor approximabil-
ity, and yet none of them is a mazimization problem.
Once again, our results show that these observations
are not simply due to a lack of knowledge, but have
some formal basis.

One of the original motivations for this work was to
find some simple rules which characterize the approx-
imability of any given optimization problem. However
the very general question, “Given an optimization prob-
lem, determine its approximability” is undecidable by
Rice’s Theorem (cf. [15], page 62)!. Hence we turned
to restricted classes of uniformly presented optimization
problems and this allowed us to achieve our goal. A nat-
ural next step in this research agenda is to broaden the
classes of problems covered by this approach. Khanna
et al. [11] have already extended this line of research
to minimization problems, obtaining a complete classi-
fication for MIN CSP and MIN ONES. Perhaps one of
the most interesting directions to extend this work is to
study the approximability of these problems over a non-
boolean domain. To begin with, a study over a domain
of size 3 itself seems to require new techniques. In an ele-
gant paper, Feder and Vardi [5] highlight many inherent
problems in obtaining an analog of Schaefer’s result over
non-boolean domains. Other possible research direc-
tions include: (1) extending the function families that
are studied (to include, say, functions of bounded range
or functions of unbounded arity); (2) placing restrictions

1 Here we are assuming the optimization problem is being pre-
sented by an arbitrary Turing machine which solves the optimiza-
tion problem. More detailed study of the decidability of the prob-
lem, when the presentation of the optimization problem is more
restricted is carried on in Merkle and the references there [14].

on the nature of the interaction between constraints and
variables (such as bounding the number of times a vari-
able can appear in a constraint). One such restriction
which has been explored by Khanna and Motwani [8] is
the case where the interaction graph of the constraint
applications and the variables is planar.

Due to space limitations, we will focus our at-
tention on presenting the result for the problems
MAX ONE(F). In Section 2, we present some defi-
nitions and state our main results. We also state the
ways in which our result for MAX CSP(F) strengthens
that of Creignou. Section 3 defines implementations and
states some basic properties of implementations. Sec-
tion 4 outlines the proof of our result for MAX ONE(F).
Details of omitted results and proofs may be found in
the full version of this paper [10].

2 Definitions and Main Results

We begin with some definitions. A constraint f is
as defined above, and a constraint application is a pair
(f,(i1,-..,ix)), where the i; € [n] indicate to which k
of the n boolean variables the constraint is applied. We
require that ¢; # i for j # j'. While the distinction
between constraints and constraint applications is im-
portant, we will often blur this distinction in the rest
of this paper. In particular we may often let the con-
straint application C' = (f, (i1,...,ix)) refer just to the
constraint f. In particular, we will often use the expres-
sion “C' € F” when we mean “f € F, where f is the
first part of C”.

For a given set of constraints F, SAT(F),
MAX CSP(F), and MAX ONE(F) are as defined
above. If for a given instance of MAX CSP(F)
(MAX ONE(F)) the weights w; = 1 for all i, we
call this an wnweighted instance of MAX CSP(F)
(MAX ONE(F)). An instance which is not un-
weighted is weighted. We define the class of problems
MAX CSP (MAX ONE) to be the set of all problems in
MAX CSP(F) (MAX ONE(F)) taken over all possible
sets of constraints F.

We now need some definitions from the theory of
approximation algorithms. Given an NPO (NP Op-
timization) problem II and a function « : ZT —
Zt (with «a() > 1), we say that an algorithm
A is an «a-approximation algorithm for II if for ev-
ery instance Z of II of size n, A produces, in time
polynomial in n, a solution s to Z of value in the
range [OPT(Z)/a(n), a(n)OPT(Z)]. We say II is a-
approzimable if such an algorithm exists. We de-
fine APX to be the class of all NPO problems which
have constant-factor approximation algorithms, and
poly-APX to be the class of NPO problems which have
polynomial-factor approximation algorithms.

We also need to define what it means to be hard to
approximate a problem II to within a factor of a. For a

function a : Z* — Z7T with a(-) > 1, an NP maximiza-
tion problem II is hard to approximate to within a factor
of « if there exists a polynomial time reduction f from
SAT to II which maps instances of SAT of length n to
instances of II of length /(n) and for every n and for any
two instances ¢1, ¢ of size n of SAT such that ¢; € SAT
and g5 ¢ SAT, OPT(f(61))/OPT(f(¢2)) > a(l(n)).
Thus a problem IT is APX-hard if there exists a con-
stant function ap > 1 such that II is hard to approxi-
mate to within ap. A problem II is poly-APX-hard if
there exists an € > 0 such that II is hard to approximate
to within nf. A problem is APX-complete (poly-APX-
complete) if it is in APX (poly-APX) and is APX-hard
(poly-APX-hard).

It is usual to define completeness for approximation
classes in terms of reducibility, rather than the hardness
of approximation of the problem. However, Khanna et
al. [9] have shown that these two notions are equivalent
provided the right approximation preserving reductions
are used. We will not go into these definitions here, and
refer the reader to their paper for details.

We now describe the main constraint classes that are
identified by Schaefer’s and our results. We say a con-
straint f is 0-valid (1-valid) if f(0) =1 (f(1) =1). It is
weakly positive (weakly negative) if it can be expressed in
conjunctive normal form, with all the disjuncts having
at most one negated literal (positive literal). A con-
straint f is affine if it can be expressed as a conjunction
of linear equalities over GF(2). And, finally, a constraint
f is 2CNF if it can be expressed in conjunctive normal
form with all disjuncts having at most two literals.

The above six constraint classes can now be used
to describe Schaefer’s result. In what follows we use
phrases such as “F is 0-valid” to imply that “every
function f € F is O-valid”. We stress that when we
say something like “F is 0-valid or 1-valid”, we mean
that “every function in F is 0-valid or every function in
F is 1-valid”.

Theorem 2.1 [Schaefer [17]] For any constraint set F,
SAT(F) is either in P or is NP-complete. Furthermore,
SAT(F) is in P if and only if F is 0-valid or 1-valid or
weakly positive or weakly negative or affine or 2CNF.

We now provide the definitions required to state our
main classification result for MAX CSP. For starters,
observe that for the approximability of MAX CSP(F)
does not change by removing (or adding) functions from
F which are not satisfiable. Hence, given a constraint
set F, we define the constraint set F’ to be the set of
constraints f in F which are satisfiable. We also need
to define one more class of constraints before we can
give our result: we say a constraint f of arity k is 2-
monotone if there exist indices 41,...,4p C {1,...,k}
and ji1,...,jq C {L,...,k} such that f(X1,...,X}) =
(Xil /\"'/\Xip)V(le /\---/\qu).

Theorem 2.2 (MAX CSP Classification) For every
constraint set F, the problem MAX CSP(F) is always
either in P or is APX-complete. Furthermore, it is in P if
and only if F' is 0-valid or 1-valid or 2-monotone.

As stated previously, Theorem 2.2 was independently
discovered by Creignou [4]. One fundamental point
of difference between our result and hers is that we
do not allow the use of variable replication in a con-
straint application. This is enforced by our definition
of constraint application which insists that the indices
i1,...,1r must be distinct. Our theorem shows that
this does not ultimately matter, but this is not obvious
a priori. For instance, a problem whose approximabil-
ity has often been studied is the MAX EXACT kSAT
problem: Given a collection of clauses of length exactly
k, satisfy as many as possible. This problem is known
to be approximable to within 1+ 27%/(1 — 27%). How-
ever this problem cannot be captured as a MAX CSP
problem under Creignou’s notion of constraint applica-
tion. The related problem that she can capture is MAX
kSAT: Given a collection of clauses of length at most k,
satisfy as many as possible. The best known approxi-
mation for this problem is only slightly smaller than 4/3
[19, 6, 7, 2]. Thus replications do end up altering the
approximability of optimization problems and we take
care to study the approximability of problems without
the use of replications.

To give our result for MAX ONE, we need to give two
more classes of constraints. We say a constraint is affine
with width 2 if it can be expressed as a conjunction of
linear equalities over GF(2) with at most two variables
per equality constraint. A constraint f is strongly 0-
valid if it is satisfied by any assignment with less than or
equal to 1 ones. In the theorem below, we use the term
“decidable” to mean that the decision version SAT(F)
is in P.

Theorem 2.3 (MAX ONE Classification) For every
constraint set 7, MAX ONE(F) is either solvable exactly
in P or APX-complete or poly-APX-complete or decidable
but not approximable to within any factor or not decidable.
Furthermore,

1. If F is 1-valid or weakly positive or affine with width
2, then MAX ONE(F) is in P.

2. Else if F is affine then MAX ONE(F) is APX-
complete.

3. Else if F is strongly 0-valid or weakly negative or
2CNF then MAX ONE(F) is poly-APX complete.

4. Else if F is 0-valid then SAT(F) is decidable in P but
finding a solution of positive value is NP-hard.

5. Else finding any feasible solution to MAX ONE(F)
is NP-hard.

3 Implementations

We now describe the main technique used in this pa-
per to obtain hardness of approximation results. Sup-
pose we want to show that for some constraint set F,
the problem MAX CSP(F) is APX-hard. We will start
with a problem that is known to be APX-hard, such
as MAX CUT, which is the same as MAX CSP{X &
Y}). We will then have to reduce this problem to
MAX CSP(F). The main technique we use to do this is
to “implement” the constraint X & Y using constraints
from the constraint set F. We show how to formalize
this notion next and then show how this translates to
approximation preserving reductions.

Definition 3.1 [Implementation] A collection of con-
stralnt applications C1,..., Cm over a set of variables

= {X1,X>,...,X,} and Y = {Yl,Yg,...,Yq} is called
an a-implementation of a constraint f(X) for a positive
integer « iff the following conditions are satisfied:

(a) no assignment of values to X and Y can satisfy more
than « constraints from Cy,...,C),.

(b) for any assignment of values to X such that f(X) is

true, there exists an assignment of values to Y such
that precisely « constraints are satisfied,

(c) for any assignment of values to X such that f(X) is
false, no assignment of values to Y can satisfy more
than (a — 1) constraints.

An implementation which satisfies the following addi-
tional property is called a strict a-implementation.

(d) for any assignment to X which does not satisfy f,
there always exists an assignment to Y such that pre-
cisely (o — 1) constraints are satisfied.

A collection of m constraints is a perfect implementa-
tion of f if it is an m~-implementation of f. A constraint
set F (strictly / perfectly) implements a constraint f if
there exists a (strict / perfect) a-implementation of f us-
ing constraints of F for some o < oo. We refer to the
set X as the constraint variables and the set Y as the
auxiliary variables.

A constraint f l-implements itself strictly and per-
fectly. While properties (a)-(c) have perhaps been used
implicitly elsewhere, property (d) is more strict (hence
the name), but turns out to be critical in composing
implementations together. The following lemma shows
that the implementations of constraints compose to-
gether, if they are strict or perfect.

Lemma 3.2 If F; strictly (perfectly) implements a con-
straint f, and F, strictly (perfectly) implements a con-
straint g € Fy, then (Ff \ {g}) U F, strictly (perfectly)
implements the constraint f.

Proof: Let C4,...,C), be constraint applications
from Fy on variables X , Y giving an «1-implementation
of f with X being the constraint variables. Let

1,---,C,, be constraint applications from F; on vari-
able set X " A yielding an as-implementation of g. Fur-
ther let the first 8 constraints of C1,...,C,,, be appli-
cations of the constraints g.

We create a collection of my + f(ma — 1) con-

straints from ({.7-"f \ {9}) UF, on a set of variables
X,Y,7Z",...,Z's as follows: We include the constraint,

applications CBH; ...,Cy, on variables X Y and for
every constraint application C; on variables V~ (which
is a subset of variables from X ,Y) we place the con-
straints C ;,...,Cy,, ; on variable set V}, Z’j with Z’j
being the auxﬂiary variables.

We now show that this collection of constraints satisi-
fies properties (a)-(c) with @ = ag + B(a2 — 1). Addi-
tionally we show that perfectness and/or strictness is
preserved. We start with properties (a) and (c).

Consider any assignment to X satisfying f. Then
any assignment to Y satisfies at most a; constraints
from the set Ci,...,Cp,. Let v of these be from the
set C1,...,C3. Now for every j € {1,...,3} any as-
signinent to 7' ;j satisfies at most ay of the constraints

1j>+-+»Cmy, ;- Furthermore if the constraint C; was
not satisfied by the assignment to X ,17, then at most
oy — 1 constraints are satisfied. Thus the total num-
ber of constraints satisfied by any assignment is at most
Y(a2)+ (B=7)(e2—1)+(a1—7) = a1+ (a2 —1). This
yields property (a). Property (c) is achieved similarly.

We now show that if the a;- and as-implementations
are perfect we get property (b) with perfectness. In this
case for any assignment to X satisfying f, there exists an
assignment to Y satisfying C1,...,Cp,. Furthermore
for every j € {1,...,3}, there exists an assignments to
Z’j satisfying all the constraints C ;,...,C] Thus

mz 2t
there exists an assignment to X, }7, Z’l, e Z g satisfy-
ing all rny + B(mso — 1) constraints. This yields property
(b) with perfectness.

We now consider the case when the ai- and as-
implementations satisfy property (d) and show that in
this case also the collection of constraints above satis-
fies property (b). Given an assignment to X satisfying f
there exists an assignment to Y satisfying o constraints
from C1,...,Chn,. Say this assigment satisfied v clauses
from the set Cy,...,Cg and a; — v constraints from
the set Cgy1,...,Cm,. Then for every j € {1,...,5}
such that the clauses C; is satisfied by this assignment
to X,Y, there exists an assignment to Z' ;j satisfying
1% clauses from the set Ci ;,...,Cy,, ;. Furthermore,
for the remaining values of j € {1 . ,ﬁ} there exists
an assignment to the variables 7' ;j satisfying as — 1 of

the constraints Cj ;,...,Cy, . (here we are using the

strictness of the as implementations). This setting to

Y,7",..., 75 satisfies yaa + (8 —7) (a2 — 1)+ a1 —7 =

a1+ B(az—1) of the m constraints. This yields property

(b). A similar analysis can be used to show property (d).

|

The following lemma shows a simple monotonicity
property of implementations (proof omitted).

Lemma 3.3 For integers a,a’ with a < o, if F a-
implements f then F «'-implements f. Furthermore
strictness and perfectness are preserved under this trans-
formation.

The next lemma now shows how to use perfect
implementations for showing hardness of weighted
MAX ONE problems.

Lemma 3.4 Given constraint sets Fi,F», such that
the weighted MAX ONE(F,) problem has a «a(n)-
approximation algorithm and every constraint f € F;
can be perfectly implemented by the constraint set o,
then there exist constants c,d such that the weighted
MAX ONE(F;) problem has a a(cn®)-approximation al-
gorithm.

Proof: Let | = |F;| and k be the maximum arity of
any constraint f € F;. Let K be the largest number of
auxiliary variables used in perfectly implementing any
constraint f € F; by Fa. Notice that K is a finite
constant for any fixed Fi, F».

Given an instance Z of MAX ONE(F;) with m con-
straints C4,...,Cy, on n variables Xy,...,X,,, with
n real non-negative weights wy,...,w,, we create an
instance Z' of MAX ONE(F2) as follows: Z’ has the
variables Xi,..., X of 7 and in addition “auxiliary”
variables {YJ}Z 1,j=1- The weights corresponding to
Xi,..., Xy iswy,...,w, (same as in Z) and the auxil-
iary variables Y/ have weight zero. The constraints of Z'
perfectly implement the constraints of Z. In particular
the constraint f;(X;,,...,X;,) of Z is implemented by
a collection of constraints from F» (as dictated by the
perfect implementation of f; by F») on the variables
(Xiia : Xlel aYiK)'

By the deﬁnition of perfect implementations, it is
clear that the every feasible solution to Z can be ex-
tended (by some assignment to the Y variables) into a
feasible solution to Z'. Alternately, every solution to
7' immediately projects on to a solution of Z. Further-
more, the value of the objective function is exactly the
same (by our choice of weights). Thus a S-approximate
solution to 7' gives a [S-approximate solution to Z.

It remains to study this approximation as a func-
tion of the instance size. Observe that the instance
size of 7' is much larger. Let N denote the num-
ber of variables in Z'. Then N is upper bounded
by Km + n, where m is the number of constraints

in Z. But m, in turn, is at most In*. Thus
N < (K + 1)In*, implying that an «(N)-approximate
solution to Z', gives an a((K + 1)in*)-approximate
solution to Z. Thus an «(N)-approximation al-
gorithm for the weighted MAX ONE(F:) problem
yields an a(en?)-approximation for the weighted
MAX ONE(F;)-problem, forc = (K +1)l andd=k. &

Corollary 3.5 If weighted MAX ONE(F;) is APX-hard
and F, perfectly implements every constraint in Fi,
then weighted MAX ONE(F;) is APX-hard. Similarly, if
weighted MAX ONE(F;) is poly-APX-hard and F, per-
fectly implements every constraint in ¥, then weighted
MAX ONE(F3) is poly-APX-hard.

4 The Classification
MAX ONE

In this section, we establish Theorem 2.3. We use the
following shorthand notation for the eight constraints
classes of importance. Let F; denote the class of 1-valid
constraints, F» the weakly positive constraints, F3 the
affine width-2 constraints, F, the affine constraints, F5
the strongly 0-valid constraints, Fg the weakly negative
constraints, 77 the 2CNF constraints and Fg the 0-valid
ones. Theorem 2.3 can be restated as follows. For a con-
straint set F if ¢ is the smallest index such that F C F;,
then if ¢ € {1,2,3} then MAX ONE(F) € P, if i =4
then MAX ONE(F) is APX-complete, if i € {5,6,7}
then MAX ONE(F) is poly-APX-complete, if i = 8
then SAT(F) is in P but MAX ONE(F) is not approx-
imable and if no such ¢ exists then finding any satisfying
assignment for MAX ONE(F) in NP-hard.

Theorem for

4.1 Preliminaries

In this subsection, we prove a few preliminary lem-
mas that we will need in the proof of the theorem, par-
ticularly in Cases 2 and 3. We first show that in these
cases, it is essentially equivalent for us to consider the
weighted or unweighted MAX ONE(F) problem.

We begin with a slightly stronger definition of
polynomial-time solvability of SAT(F) that we will
need. We then show that given this stronger form of
SAT(F) that insofar as APX-hardness and poly-APX-
hardness are concerned, the weighted and unweighted
cases of MAX ONE(F) are equivalent. We conclude
by showing that in Cases 2 and 3 the stronger form of
SAT(F) holds.

Definition 4.1 We say that a constraint satisfaction
problem SAT(F) is strongly decidable if given m con-
straints on n variables Xi,...,X,, and an indexr i €
{1,...,n}, there exists a polynomial time algorithm which
decides if there exists an assignment to X1, ..., X, satis-
fying all m constraints and additionally satisfying the prop-
erty X; = 1.

Lemma 4.2 For every strongly decidable constraint
set F, for every e¢ of the form 1/l for some pos-
itive integer | and for every non-decreasing function
a : Zt — Zt a-approximating the weighted
MAX ONE(F) problem reduces to o'-approximating the
(unweighted) MAX ONE(F) problem, where o'(n) =
a(Ven)

(I+e) -

Proof Sketch: The basic idea of the proof is that
we can replicate variables many times (in proportion
to its weight) and then for every replicated copy of a
variable, we place all the constraints that were placed on
the original copy of the variable. If the original weights
are polynomially bounded then the new instance still
has polynomial size.

The only issue to be taken care of is that the
weights of the original instance need not be polynomi-
ally bounded. To take care of this, we first find the
largest weight element which is set to 1 in some satis-
fying assignment. Here we use the strong decidability
of the family F to find this element. Having done so,
we can essentially ignore elements of larger weight and
also afford to round up the weight of all smaller ele-
ments to integral multiples of €/n times the weight of
this element. This only increases the contribution of
any assignment by a factor of (1 + €). After this trans-
formation, we are reduced to the polynomially bounded
case as desired.]

The ability to work with weighted problems in com-
bination with Lemma 3.4 allows us to use existential
quantification over auxiliary variables and the notion of
perfect implementations of constraints.

As our examination will eventually show, there is re-
ally no essential difference in the approximability of the
weighted and unweighted problems. For now we will
satisfy ourselves by stating this conditionally.

Corollary 4.3 For any strongly decidable constraint set
F, the MAX ONE(F) problem is APX-hard if and only if
the weighted MAX ONE(F) problem is APX-hard. Simi-
larly, the MAX ONE(F) problem is poly-APX-hard if and
only if the weighted MAX ONE(F) problem is poly-APX-
hard.

Before concluding we assert that most problems of
interest to us will be able to use the equivalence between
weighted and unweighted problems.

Lemma 4.4 If F C F; for some j € {1,...,7}, then F
is strongly decidable.

Lastly we describe one more tool that comes in useful
in creating reductions. This is the notion of implement-
ing a property which falls short of being an implemen-
tation of an actual constraint. The target constraints in
the following definitions are the constraints which force

variables to being constants (either 0 or 1). However,
sometimes we are unable to achieve this. So we end
up implementing a weaker form which suffices for our
applications. We next describe this property.

Definition 4.5 [Existential Zero (One)] A constraint
set F can implement the existential zero (one) property
if there exists a set of m constraints fi,..., f,, over n
variables X and an index k € {1,...,n} such that the
following hold:

e There exists an assignment Vji1,...,V, to
Xk41,---, X, such that assigning zero (one) to the
first k variables X, ..., X} satisfies all constraints.

e Conversely, every assignment satisfying all the con-
straints must make at least one of the variables in
X1,..., X} zero (one).

Definition 4.6 Given a constraint f of arity £ and a
set S C {l,...,k}, the constraint f|50) is a con-
straint of arity k — |S| given by f|(s,0)(X1,..., Xp_|5)) =
f(X1,0,0,Xy,...,Xt_|5),0,0), where the zeroes occur
in the indices contained in S. For a constraint set F,
the O-closure of F, denoted F|o is the set of constraints
{fisolf € F,S c{1,...,k}}. (1-closure may be defined
similarly.)

Notice that Flo essentially implements every con-
straint that can be implemented by F U {F'}, except
the constraint {F'}, where F' stands for the unary con-
straint “false”. We define F|; similarly. Then Flo1 =
FloUF]r.

Lemma 4.7 If a constraint set F can implement the ex-
istential zero property, then F perfectly implements every
constraint in the constraint set F|o. Similarly, if a con-
straint set F can implement the existential one property,
then F perfectly implements every constraint in the con-
straint set F|;.

4.2 Proof of Main Theorem
4.2.1 Cases 1,4, and 5

We now begin our proof of Theorem 2.3. We start with
the sub-cases that are easier to prove and then move on
to the more difficult sub-cases. Cases 4 and 5 of Theo-
rem 2.3 are indirect and direct consequences of Schae-
fer’s theorem, respectively; we omit their proofs. Case
1 is relatively simple, and we sketch its proof below.

Lemma 4.8 The weighted MAX ONE(F) problem is in
P if each F is 1-valid or is weakly positive or is affine with
width 2.

Proof Sketch: The first two cases are easy and are
henceforth omitted. In the case that F is affine with
width 2, we reduce the problem of finding a feasible

solution to checking whether a graph is bipartite, and
then use the bipartition to find the optimal solution.
Notice that each constraint corresponds to a conjunc-
tion of constraints of the form X; = X; or X; # Xj.
Create a vertex X; for each variable X; and for each
constraint X; # X;, add an edge (X;,X;). For each
constraint X; = Xj, identify the vertices X; and Xj; if
this creates a self-loop, then clearly no feasible assign-
ment is possible. Check whether the graph is bipartite;
if not, then there is no feasible assignment. If so, then
for each connected component of the graph choose the
larger weight side of the bipartition, and set the corre-
sponding variables to one. []

4.2.2 Case 3: The poly-APX-Complete Case

The proofs of Cases 2 and 3 are much more difficult.
For space reasons, we omit the proof of Case 2 and con-
centrate on Case 3. We first show that the problems in
this case are in poly-APX.

Lemma 4.9 If 7 C F; for some i € {1,2,3,4,5,6,7}
then MAX ONE(F) can be approximated to within a fac-
tor of n.

Proof: Schaefer’s results imply a polynomial-time
algorithm to compute a feasible solution. If the feasible
solution has at least one 1, we are done. Else, iteratively
try setting every variable to one and computing a fea-
sible solution. Note that if F is affine (or 2CNF), then
the constraints obtained by restricting some variable to
be 1 remains affine (or resp. 2CNF), and thus this new
class is still decidable. Lastly, a strongly 0O-valid con-
straint set remains O-valid after this restriction and is
still decidable. If the decision procedure gives no non-
zero solution, then the optimum is zero, else we output
a solution of value at least 1.]

We now turn to showing that this class of problems
is poly-APX-hard. Our goal will be to perfectly imple-
ment the constraint X; + - - - + Xy, for some k > 2. The
following lemma shows that this will imply poly-APX-
hardness.

Lemma 4.10 If f = X; +
MAX ONE({f}) is poly-APX-hard.

+ X, then

Proof: We do a reduction from MAX CLIQUE,
which is known to be poly-APX-hard [1]. Given a graph
G, construct a MAX ONE({f}) instance consisting of
a variable for every vertex in G and the constraint f is
applied to every subset of k vertices in G which does
not induce a clique. It may be verified that the op-
timum number of ones in any satisfying assignment to
the instance created in this manner is max{k—1,w(G)},
where w(G) is the size of the largest clique in G. Given
a solution to the MAX ONE({f}) instance with [> k
ones, the set of vertices corresponding to the variables

set to one form a clique of size [. If [< k, output any sin-
gleton vertex. Thus in all cases we obtain a clique of size
at least [/(k — 1) vertices. Thus the existence of an a-
approximation algorithm for the MAX ONE({f}) prob-
lem implies the existence of a (k—1)a-approximation al-
gorithm to the clique problem. The poly-APX-hardness
of clique now implies the lemma. [|

The following lemma divides the remainder of the
proof into two cases.

Lemma 4.11 If 7 C F; for some i € {5,6,7}, but
F ¢ F; for any j € {1,2,3,4}, then either F perfectly
implements every constraint in F|o.; or F perfectly imple-
ments F|o and every constraint in F is 0-valid.

We show that in the first case, we can perfectly im-
plement X + Y. We will then turn to the case in which
all constraints are O-valid and show that we can either
perfectly implement X; +-- -4 X} or an existential one.
If we can implement an existential one, then we are in
the same situation as the first case. This will complete
the proof of poly-APX-hardness.

Recall that we have a constraint in F that is not
weakly positive and a constraint that is not affine.

Case I : F perfectly implements every constraint in
Floa-

Lemma 4.12 If f is not weakly positive, then the con-
straint set {f}[o,1 perfectly implements either XOR or
X+Y.

Proof: Let C = (X1 +-+-+ X, + Y1+ +Y,) be a
maxterm in f with more than one negation i.e. p > 2.
Substituting a 1 in place of variables X3, X4,...,X,, a
0 in place of variables Y1,Y5,...,Y,, and existentially
quantifying over all variables not in C', we get a con-
straint f' such that (X; + X5) is a maxterm in f'.

By definition of maxterm, f’ must be satisfied when-
ever X1 & Xy = 1. Now if f’ is also satisfied when
X; = X, =0, we get the constraint X1 + Xo, else we
get the constraint XOR(X;, X»). [|

Lemma 4.13 The constraint set {XOR} can perfectly
implement the constraint REP.

Lemma 4.14 Let g be a non-affine constraint. Then
the constraint set {g, REP,XOR}|o,1 can either perfectly
implement the constraint (X +Y) or (X +Y).

Proof: Since g is non-affine, we essentially have the
following situation for three satisfying assignments s, so
and sj3 for g.

90)

S1 O 0 0 01 1 1 1 1

S92 O 0 1.1 0 O 1 1 1

S3 0O 1 0 1 0 1 O 1 1

s1Psaodsg 0 1 1 0 1 0 O 1 O
0 XY Z ZY X 1

(where each column may actually be repeated more than
once). Fixing the above variables to 0’s and 1’s as shown
in the last row, and using replicated copies of three vari-
ables X, Y and Z (and their negations using XOR), we
get a constraint h(X,Y, Z) with the truth-table in Fig-
ure 1.

yz
X 00 01 11 10

Figure 1: Truth-table of the constraint h(X,Y, Z)

The undetermined values in the table are indicated
by the parameters A, B,C and D. The following anal-
ysis shows that for every possible value of these param-
eters, we can indeed perfectly implement an OR con-
straint using the constants 0 and 1.

AXKWY,Z) =Y +2Z

A=0 =
A=1,B=0 = h0,Y,2)=Y +7Z
AB=1,0=0 = h(X,0,2)=X+Z
AB,C=1,D=0 = X, Y,)=X+7
,B,C,D=1 = LY, Z)=Y+2

Lemma 4.15 The constraint set {X + Y,XOR} per-
fectly implements the constraint X + Y.

Proof: To perfectly implement X + Y, we create
an auxiliary variable X’. We now add two constraints,
namely X' + Y, and XOR(X, X'). Clearly, all con-
straints are satisfied only if X + Y is satisfied. []

Thus in all cases we are able to implement the con-
straint X + Y.

Case 11 : F can perfectly implement all constraints in
Flo and all constraints are 0-valid.

We now show that either we can perfectly implement
X +Y, or perfectly implement a 1. If the former occurs,
we are done, and if the latter, we can reduce to the
previous case.

Lemma 4.16 If f is 0-valid and not weakly positive, then
the constraint set {f}|o either perfectly implements X; +
.-+ X, for some k > 2 or it perfectly implements X +Y
or REP.

Proof: Let C' = (X1 +---+ X, + Y1 +--- +Y,) be
a maxterm in f with more than one negation i.e. p > 2
(such a maxterm exists since f is not weakly positive).
Substituting a 0 in place of variables Y1,Y5,...,Y,, and

existentially quantifying over all variables not in C', we
get a constraint g such that (X; + Xo +--- + X)) is a
maxterm in g. Consider an unsatisfying assignment s
for g with the smallest number of 1’s and let £ denote
the number of 1’s in s; we know k& > 0 since the original
constraint O-valid. WLOG assume that s assigns value 1
to the variables X7, X5, ..., X} and 0’s to the remaining
variables. It is easy to see that by fixing the variables
Xit1, Xkt2,- - -, Xp to 0, we get a constraint g’ = (X7 +
Xo+---+Xp). If k> 1, then this perfectly implements
the constraint (X; + --- + Xj) and we are done.

Otherwise k = 1, i.e. there exists an unsatisfying as-
signment s which assigns value 1 to exactly one of the
X;’s, say X1. Now consider a satisfying assignment s’
which assigns 1 to X; and has a minimum number of
1’s among all assignments which assign 1 to X;. The
existence of such an assignment easily follows from C
being a maxterm in g. WLOG assume that s’ = 1107,
Thus the constraint g looks as follows:

X1 X2 X3Xl Xi+1...Xp g()
s1 O 0 00...0 00...0 1
sy 1 0 00...0 00...0 0
s'=s3 1 1 11...1 00...0 1
sqg O 1 el 00...0 ?
Existential quantification over the variables

X3, Xy4,...,X; and fixing the variables X;;; through
X, to 0 yields a constraint g’ which is either (X; + X5)
or REP(X1, X3). The lemma follows. [|

If we can perfectly implement X + Y, then the fol-
lowing lemma shows that we can essentially perfectly
implement a 1, and thus we can reduce to Case I. We
use the constraint function 7(X;) = X; to represent
constraints X; = 1.

Lemma 4.17 If B
MAX ONE(F U {X + Y}) is a-approximable for some
function «, then so is MAX ONE(F U {T}).

Proof: Given an instance 7 of MAX ONE(FU{T})
we construct an instance Z' of MAX ONE(FU{X +Y})
as follows. The variable set of Z' is the same as that of
Z. Every constraint from F in Z is also included in Z'.
The only remaining constraints are of the form X; =1
for some variables X; (imposed by the constraint 7).
We simulate this constraint in Z' with n — 1 constraints
of the form X; + X; for every j € {1,...,n}, j # i.
Every non-zero solution to the resulting instance Z' is
also a solution to Z, since the solution must have X; =
1 or else every X; = 0. Thus the resulting instance
of MAX ONE(F U {X + Y}) has the same objective
function and the same feasible space and is hence at
least as hard as the original problem. []

Now by Lemma 4.16 the only remaining subcase is if
we can perfectly implement REP. The following lemma

shows that in this case we can either perfectly imple-
ment X +Y or X +Y. If we can do the former, we are
done, and if the latter, we can use X + Y to perfectly
implement the T constraint, and reduce to the previous
case. Hence in either case we are finished.

Lemma 4.18 If f is 0-valid constraint and non-affine,
then MAX ONE({f, REP}) perfectly implements either
the constraint (X +Y") or the constraint (X +Y).

Proof: Schaefer [17] shows that if f is a non-affine
constraint, then there exist two satisfying assignments
s1 and sy such that s; @9 is not a satisfying assignment
for f. Using this fact and the fact that f is 0-valid, we
essentially have the following situation:

9()
00...0 00..0 00..0 00..0 1
s 00..0 00..0 11..1 11..1 1
s 00..0 11..1 00..0 11..1 1
s1®sy 00..0 11..1 11..1 00..0 0
00.0 XX..X YY.Y ZZ.Z

Fixing the above variables to 0’s as shown in the last
row, and assigning replicated copies of three variables
X,Y and Z, we get a constraint h(X,Y,Z) with the
truth-table in Figure 1. The lemma now follows using
an analysis identical to the one used in Lemma 4.14. &

Acknowledgments

Many thanks to Nadia Creignou, Oded Goldreich,
Greg Sorkin and Luca Trevisan for their valuable com-
ments.

References

[1] S. AroOrA, C. LunDp, R. MOTWANI, M. SUDAN,
AND M. SzEGEDY. Proof verification and the in-

tractability of approximation problems. Proceed-
ings of the 33rd IEEE FOCS, IEEE, 1992.

[2] T. AsaNno, T. ONO, AND T. HIRATA. Approxi-
mation algorithms for the maximum satisfiability
problem. Scandanavian Workshop on Algorithmic
Theory 96 Proceedings, Lecture Notes in Computer
Science Vol. 1097, ed., Springer-Verlag, 1996.

[3] M. BELLARE, O. GOLDREICH, AND M. SUDAN.
Free bits, PCP and non-approximability — towards
tight results. (Version 3). ECCC Technical Report
number TR95-024, 1995.

[4] N. CrEIGNOU. A Dichotomy Theorem for Maxi-
mum Generalized Satisfiability Problems. Journal
of Computer and System Sciences, 51:3, pp. 511—
522, 1995.

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. FEDER AND M. VARDI. Monotone monadic
SNP and constraint satisfaction. Proceedings of
the 25th ACM STOC, ACM, 1993.

M. GOEMANS AND D. WILLIAMSON. New 3/4-
approximation algorithms for MAX SAT. SIAM
Journal on Discrete Mathematics, 7:656—666, 1994.

M. GOEMANS AND D. WILLIAMSON. Improved
approximation algorithms for maximum cut and

satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42:1115-1145, 1995.

S. KHANNA AND R. MOTWANI. Towards a Syntac-
tic Characterization of PTAS, pp. 329-337. Pro-
ceedings of the 28th ACM STOC, ACM, 1996.

S. KHANNA, R. MOTWANI, M. SUDAN, AND
U. VAZIRANI. On Syntactic versus Computational
Views of Approximation. Proceedings of the 35th
IEEE FOCS, IEEE, 1994, pp. 819-830.

S. KHANNA, M. SUDAN, AND D.P. WILLIAMSON.
A complete classification of the approximability of
maximization problems derived from boolean con-
straint satisfaction. Flectonic Colloquium on Com-
putational Complexity, Technical report no. TR96-
062, 1996.

S. KHANNA, M. SUDAN AND L. TREVISAN. Con-
straint Satisfaction: The Approximability of Mini-
mization Problems. To appear in the Proceedings of
the 12th Annual IEEE Computational Complezity
Conference (CCC), 1997.

R. LADNER. On the structure of polynomial time
reducibility. Journal of the ACM, 22:1, pp. 155—
171, 1975.

C. LunD AND M. YANNAKAKIS. The approxi-
mation of maximum subgraph problems. In Pro-
ceedings of International Colloquium on Automata,
Languages and Programming, ICALP, pp. 40-51,
1993.

W. MERKLE. Structural properties of bounded re-
lations with an application
to NP optimization problems. Technical Report,
Mathematical Institute, University of Heidelberg,
(http://math.uni-heidelberg.de/logic/), De-
cember 1996.

C. PAPADIMITRIOU. Computational Complexity.
Addison Wesley Publishing Company, 1994.

C. PAPADIMITRIOU AND M. YANNAKAKIS. Opti-
mization, approximation and complexity classes.
Journal of Computer and System Sciences, 43, pp.
425-440, 1991.

10

[17]

[18]

T. SCHAEFER. The complexity of satisfiability
problems Proceedings of the 10th ACM STOC,
ACM, 1978.

L. TREVISAN, G. SORKIN, M. SUDAN AND
D. WiLL1AMSON. Gadgets, approximation and lin-
ear programming. Proceedings of the 37th IEEE
FOCS, IEEE, 1996.

M. YANNAKAKIS, On the approximation of maxi-
mum satisfiability. Journal of Algorithms, vol. 17,
pages 475-502, 1994.

