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MAX SNP always turn out to be MAX SNP-hard, andthat there seem to be no natural maximization problemsapproximable to within polylogarithmi fators but nobetter.1 IntrodutionIn this paper, we study the approximability of op-timization versions of boolean onstraint satisfationproblems (CSPs). A boolean CSP onsists of a olle-tion F of boolean funtions f : f0; 1gk ! f0; 1g alledonstraints. An instane of suh a problem is a set of\onstraint appliations". Eah appliation is a on-straint drawn from F and applied to a spei�ed subsetof n boolean variables.The deision version of a boolean onstraint satisfa-tion problem asks whether there is an assignment to thevariables suh that all onstraint appliations are satis-�ed (that is, for eah appliation the spei�ed booleanfuntion evaluates to 1 on the given subset of variables).For a olletion of onstraints F , we all this prob-lem SAT(F). Thus, for example, 3SAT is a deisionversion of boolean CSP with the onstraint funtionsf1(x; y; z) = x _ y _ z, f2(x; y; z) = �x _ y _ z, and soon. Shaefer [17℄ studied the deision version of theseproblems and proved a remarkable result: for every suhproblem, either it is in P or it is NP-omplete. This di-hotomy is espeially interesting in light of Ladner's the-orem [12℄, whih states that if P6=NP, then there existin�nitely many problems of omplexity between P andNP-omplete. Thus although problems SAT(F) ouldin priniple display a wide range of omplexity, they infat fall into distint and quite separate lasses (assum-ing P6=NP). An additional property of Shaefer's resultis that his haraterization of the problems in P is om-pat. He gives six lasses of funtions, and if all fun-tions in F fall entirely within any one of these lasses,then SAT(F) is in P, otherwise it is NP-omplete.In this paper, we onsider two di�erent maximizationversions of SAT(F) and ompletely lassify the approx-imability of all suh problems. In so doing, we �nd thatthese optimization problems also fall into distint andseparate lasses, bypassing the many intermediate lev-els of approximability whih are possible in priniple.As we desribe later, this lassi�ation proves formally



for these problems some results whih to this pointhave only been empirial observations. Furthermore,our lassi�ation of the problems also has a ompatdesription. For both types of maximization versions ofSAT(F), we re�ne Shaefer's lasses, and the level of ap-proximability of a problem for a given F is determinedby whih of these lasses ontain F .In the �rst maximization version of SAT(F) that weonsider, for eah instane of a problem we are also givena nonnegative weight wi for eah onstraint appliationi, and we must try to �nd an assignment to the variableswhih maximizes the weight of the satis�ed onstraintappliations. For any set of onstraints F , we allthis assoiated maximization problem MAX CSP(F),and we all the lass of all suh problems MAX CSP.It follows almost immediately from its de�nition thatMAX CSP is ontained in the well-studied lass MAXSNP. Conversely, it also ontains many of its ompleteproblems. For example, MAX 3SAT and MAX CUTan be ast as MAX CSP(F) problems. We show thateah problem MAX CSP(F) is either solvable exatlyin polynomial time or is MAX SNP-hard. Thus thereis no problem in this lass whih has an approximationsheme but is not solvable in polynomial time. This re-sult has been obtained independently by Creignou [4℄;however our result is stronger in ertain tehnial senseswhih we disuss later.In the seond maximization version of SAT(F) thatwe onsider, for eah instane of the problem we are alsogiven a nonnegative weight wi for eah boolean variable,and we must try to �nd a boolean assignment of max-imum weight that satis�es all onstraint appliations.For any set of onstraints F , we all this assoiated max-imization problem MAX ONE(F); for example, MAXCUT and MAX CLIQUE an be ast as MAX ONE(F)problems. We show that eah problem MAX ONE(F)must fall into one of �ve lasses, assuming P 6= NP: �rst,it is solvable exatly in polynomial time; seond, it anbe approximated to within some onstant fator but nobetter; third, it an be approximated to within some fa-tor that is polynomial in the number of variables, butno better; fourth, it is NP-omplete to �nd a satisfyingassignment of non-zero value; �fth, it is NP-omplete to�nd any satisfying assignment.The entral idea of our proofs is a new onept weall an implementation. Given a set of onstraints F ,we show that if F has ertain properties, then it an beused to enfore other onstraint funtions f . We showthat under suitable onditions, implementations an beomposed, so that the onstraints of F an be used toimplement the onstraints of other problems (suh asMAX CUT or MAX CLIQUE) whose approximabilityis well known. The entral diÆulty of the proofs isshowing that this an be done in an exhaustive wayfor all possible sets of onstraints F . Our de�nition of

an implementation here is inspired by the notion of agadget in Bellare et al. [3℄ and we unify their many de�-nitions (they have di�erent de�nitions for every f and Fthat they onsider) into a single one. Our de�nition hasin turn been used by Trevisan et al. [18℄ to derive im-proved hardness of approximation results and improvedapproximation algorithms.Our results prove formally for these lasses of prob-lems some results about approximability whih to thispoint have only been empirial observations. For ex-ample, the study of MAX SNP has revealed so far thatevery NP-hard MAX SNP problem is also hard to ap-proximate to within some onstant fator. Our result onMAX CSP serves as a formal basis for this empirial ob-servation. Similarly, in the searh for polynomial-timeapproximation algorithms, optimization problems so fareither have exat algorithms, or approximation shemes,or onstant or (poly)logarithmi or polynomial approxi-mation algorithms { but this list is virtually exhaustive.There have been no \natural" problems that are approx-imable to within intermediate fators, suh as 2log� n orlog logn and no better. In addition, for many naturaloptimization problems the best known approximationalgorithm guarantees logarithmi fator approximabil-ity, and yet none of them is a maximization problem.One again, our results show that these observationsare not simply due to a lak of knowledge, but havesome formal basis.One of the original motivations for this work was to�nd some simple rules whih haraterize the approx-imability of any given optimization problem. Howeverthe very general question, \Given an optimization prob-lem, determine its approximability" is undeidable byRie's Theorem (f. [15℄, page 62)1. Hene we turnedto restrited lasses of uniformly presented optimizationproblems and this allowed us to ahieve our goal. A nat-ural next step in this researh agenda is to broaden thelasses of problems overed by this approah. Khannaet al. [11℄ have already extended this line of researhto minimization problems, obtaining a omplete lassi-�ation for MIN CSP and MIN ONES. Perhaps one ofthe most interesting diretions to extend this work is tostudy the approximability of these problems over a non-boolean domain. To begin with, a study over a domainof size 3 itself seems to require new tehniques. In an ele-gant paper, Feder and Vardi [5℄ highlight many inherentproblems in obtaining an analog of Shaefer's result overnon-boolean domains. Other possible researh dire-tions inlude: (1) extending the funtion families thatare studied (to inlude, say, funtions of bounded rangeor funtions of unbounded arity); (2) plaing restritions1Here we are assuming the optimization problem is being pre-sented by an arbitrary Turing mahine whih solves the optimiza-tion problem. More detailed study of the deidability of the prob-lem, when the presentation of the optimization problem is morerestrited is arried on in Merkle and the referenes there [14℄.2



on the nature of the interation between onstraints andvariables (suh as bounding the number of times a vari-able an appear in a onstraint). One suh restritionwhih has been explored by Khanna and Motwani [8℄ isthe ase where the interation graph of the onstraintappliations and the variables is planar.Due to spae limitations, we will fous our at-tention on presenting the result for the problemsMAX ONE(F). In Setion 2, we present some de�-nitions and state our main results. We also state theways in whih our result for MAX CSP(F) strengthensthat of Creignou. Setion 3 de�nes implementations andstates some basi properties of implementations. Se-tion 4 outlines the proof of our result for MAX ONE(F).Details of omitted results and proofs may be found inthe full version of this paper [10℄.2 De�nitions and Main ResultsWe begin with some de�nitions. A onstraint f isas de�ned above, and a onstraint appliation is a pair(f; (i1; : : : ; ik)), where the ij 2 [n℄ indiate to whih kof the n boolean variables the onstraint is applied. Werequire that ij 6= ij0 for j 6= j0. While the distintionbetween onstraints and onstraint appliations is im-portant, we will often blur this distintion in the restof this paper. In partiular we may often let the on-straint appliation C = (f; (i1; : : : ; ik)) refer just to theonstraint f . In partiular, we will often use the expres-sion \C 2 F" when we mean \f 2 F , where f is the�rst part of C".For a given set of onstraints F , SAT(F),MAX CSP(F), and MAX ONE(F) are as de�nedabove. If for a given instane of MAX CSP(F)(MAX ONE(F)) the weights wi = 1 for all i, weall this an unweighted instane of MAX CSP(F)(MAX ONE(F)). An instane whih is not un-weighted is weighted. We de�ne the lass of problemsMAX CSP (MAX ONE) to be the set of all problems inMAX CSP(F) (MAX ONE(F)) taken over all possiblesets of onstraints F .We now need some de�nitions from the theory ofapproximation algorithms. Given an NPO (NP Op-timization) problem � and a funtion � : Z+ !Z+ (with �(�) � 1), we say that an algorithmA is an �-approximation algorithm for � if for ev-ery instane I of � of size n, A produes, in timepolynomial in n, a solution s to I of value in therange [OPT(I)=�(n); �(n)OPT(I)℄. We say � is �-approximable if suh an algorithm exists. We de-�ne APX to be the lass of all NPO problems whihhave onstant-fator approximation algorithms, andpoly-APX to be the lass of NPO problems whih havepolynomial-fator approximation algorithms.We also need to de�ne what it means to be hard toapproximate a problem � to within a fator of �. For a

funtion � : Z+ ! Z+ with �(�) � 1, an NP maximiza-tion problem � is hard to approximate to within a fatorof � if there exists a polynomial time redution f fromSAT to � whih maps instanes of SAT of length n toinstanes of � of length l(n) and for every n and for anytwo instanes �1, �2 of size n of SAT suh that �1 2 SATand �2 62 SAT, OPT(f(�1))=OPT(f(�2)) � �(l(n)).Thus a problem � is APX-hard if there exists a on-stant funtion �� > 1 suh that � is hard to approxi-mate to within ��. A problem � is poly-APX-hard ifthere exists an � > 0 suh that � is hard to approximateto within n�. A problem is APX-omplete (poly-APX-omplete) if it is in APX (poly-APX) and is APX-hard(poly-APX-hard).It is usual to de�ne ompleteness for approximationlasses in terms of reduibility, rather than the hardnessof approximation of the problem. However, Khanna etal. [9℄ have shown that these two notions are equivalentprovided the right approximation preserving redutionsare used. We will not go into these de�nitions here, andrefer the reader to their paper for details.We now desribe the main onstraint lasses that areidenti�ed by Shaefer's and our results. We say a on-straint f is 0-valid (1-valid) if f(�0) = 1 (f(�1) = 1). It isweakly positive (weakly negative) if it an be expressed inonjuntive normal form, with all the disjunts havingat most one negated literal (positive literal). A on-straint f is aÆne if it an be expressed as a onjuntionof linear equalities over GF(2). And, �nally, a onstraintf is 2CNF if it an be expressed in onjuntive normalform with all disjunts having at most two literals.The above six onstraint lasses an now be usedto desribe Shaefer's result. In what follows we usephrases suh as \F is 0-valid" to imply that \everyfuntion f 2 F is 0-valid". We stress that when wesay something like \F is 0-valid or 1-valid", we meanthat \every funtion in F is 0-valid or every funtion inF is 1-valid".Theorem 2.1 [Shaefer [17℄℄ For any onstraint set F ,SAT(F) is either in P or is NP-omplete. Furthermore,SAT(F) is in P if and only if F is 0-valid or 1-valid orweakly positive or weakly negative or aÆne or 2CNF.We now provide the de�nitions required to state ourmain lassi�ation result for MAX CSP. For starters,observe that for the approximability of MAX CSP(F)does not hange by removing (or adding) funtions fromF whih are not satis�able. Hene, given a onstraintset F , we de�ne the onstraint set F 0 to be the set ofonstraints f in F whih are satis�able. We also needto de�ne one more lass of onstraints before we angive our result: we say a onstraint f of arity k is 2-monotone if there exist indies i1; : : : ; ip � f1; : : : ; kgand j1; : : : ; jq � f1; : : : ; kg suh that f(X1; : : : ; Xk) =(Xi1 ^ � � � ^Xip) _ ( �Xj1 ^ � � � ^ �Xjq ).3



Theorem 2.2 (MAX CSP Classi�ation) For everyonstraint set F , the problem MAX CSP(F) is alwayseither in P or is APX-omplete. Furthermore, it is in P ifand only if F 0 is 0-valid or 1-valid or 2-monotone.As stated previously, Theorem 2.2 was independentlydisovered by Creignou [4℄. One fundamental pointof di�erene between our result and hers is that wedo not allow the use of variable repliation in a on-straint appliation. This is enfored by our de�nitionof onstraint appliation whih insists that the indiesi1; : : : ; ik must be distint. Our theorem shows thatthis does not ultimately matter, but this is not obviousa priori. For instane, a problem whose approximabil-ity has often been studied is the MAX EXACT kSATproblem: Given a olletion of lauses of length exatlyk, satisfy as many as possible. This problem is knownto be approximable to within 1 + 2�k=(1� 2�k). How-ever this problem annot be aptured as a MAX CSPproblem under Creignou's notion of onstraint applia-tion. The related problem that she an apture is MAXkSAT: Given a olletion of lauses of length at most k,satisfy as many as possible. The best known approxi-mation for this problem is only slightly smaller than 4=3[19, 6, 7, 2℄. Thus repliations do end up altering theapproximability of optimization problems and we takeare to study the approximability of problems withoutthe use of repliations.To give our result for MAX ONE, we need to give twomore lasses of onstraints. We say a onstraint is aÆnewith width 2 if it an be expressed as a onjuntion oflinear equalities over GF(2) with at most two variablesper equality onstraint. A onstraint f is strongly 0-valid if it is satis�ed by any assignment with less than orequal to 1 ones. In the theorem below, we use the term\deidable" to mean that the deision version SAT(F)is in P.Theorem 2.3 (MAX ONE Classi�ation) For everyonstraint set F , MAX ONE(F) is either solvable exatlyin P or APX-omplete or poly-APX-omplete or deidablebut not approximable to within any fator or not deidable.Furthermore,1. If F is 1-valid or weakly positive or aÆne with width2, then MAX ONE(F) is in P.2. Else if F is aÆne then MAX ONE(F) is APX-omplete.3. Else if F is strongly 0-valid or weakly negative or2CNF then MAX ONE(F) is poly-APX omplete.4. Else if F is 0-valid then SAT(F) is deidable in P but�nding a solution of positive value is NP-hard.5. Else �nding any feasible solution to MAX ONE(F)is NP-hard.

3 ImplementationsWe now desribe the main tehnique used in this pa-per to obtain hardness of approximation results. Sup-pose we want to show that for some onstraint set F ,the problem MAX CSP(F) is APX-hard. We will startwith a problem that is known to be APX-hard, suhas MAX CUT, whih is the same as MAX CSP(fX �Y g). We will then have to redue this problem toMAX CSP(F). The main tehnique we use to do this isto \implement" the onstraint X � Y using onstraintsfrom the onstraint set F . We show how to formalizethis notion next and then show how this translates toapproximation preserving redutions.De�nition 3.1 [Implementation℄ A olletion of on-straint appliations C1; : : : ; Cm over a set of variables~X = fX1; X2; :::; Xpg and ~Y = fY1; Y2; :::; Yqg is alledan �-implementation of a onstraint f( ~X) for a positiveinteger � i� the following onditions are satis�ed:(a) no assignment of values to ~X and ~Y an satisfy morethan � onstraints from C1; : : : ; Cm.(b) for any assignment of values to ~X suh that f( ~X) istrue, there exists an assignment of values to ~Y suhthat preisely � onstraints are satis�ed,() for any assignment of values to ~X suh that f( ~X) isfalse, no assignment of values to ~Y an satisfy morethan (� � 1) onstraints.An implementation whih satis�es the following addi-tional property is alled a strit �-implementation.(d) for any assignment to ~X whih does not satisfy f ,there always exists an assignment to ~Y suh that pre-isely (�� 1) onstraints are satis�ed.A olletion of m onstraints is a perfet implementa-tion of f if it is an m-implementation of f . A onstraintset F (stritly / perfetly) implements a onstraint f ifthere exists a (strit / perfet) �-implementation of f us-ing onstraints of F for some � < 1. We refer to theset ~X as the onstraint variables and the set ~Y as theauxiliary variables.A onstraint f 1-implements itself stritly and per-fetly. While properties (a)-() have perhaps been usedimpliitly elsewhere, property (d) is more strit (henethe name), but turns out to be ritial in omposingimplementations together. The following lemma showsthat the implementations of onstraints ompose to-gether, if they are strit or perfet.Lemma 3.2 If Ff stritly (perfetly) implements a on-straint f , and Fg stritly (perfetly) implements a on-straint g 2 Ff , then (Ff n fgg) [ Fg stritly (perfetly)implements the onstraint f .4



Proof: Let C1; : : : ; Cm1 be onstraint appliationsfrom Ff on variables ~X; ~Y giving an �1-implementationof f with ~X being the onstraint variables. LetC 01; : : : ; C 0m2 be onstraint appliations from Fg on vari-able set ~X 0; ~Z 0 yielding an �2-implementation of g. Fur-ther let the �rst � onstraints of C1; : : : ; Cm1 be appli-ations of the onstraints g.We reate a olletion of m1 + �(m2 � 1) on-straints from (fFf n fgg) [ Fg on a set of variables~X; ~Y ; ~Z 01; : : : ; ~Z 0� as follows: We inlude the onstraintappliations C�+1; : : : ; Cm1 on variables ~X; ~Y and forevery onstraint appliation Cj on variables ~Vj (whihis a subset of variables from ~X; ~Y ) we plae the on-straints C 01;j ; : : : ; C 0m2;j on variable set ~Vj ; ~Z 0j with ~Z 0jbeing the auxiliary variables.We now show that this olletion of onstraints satisi-�es properties (a)-() with � = �1 + �(�2 � 1). Addi-tionally we show that perfetness and/or stritness ispreserved. We start with properties (a) and ().Consider any assignment to ~X satisfying f . Thenany assignment to ~Y satis�es at most �1 onstraintsfrom the set C1; : : : ; Cm1 . Let  of these be from theset C1; : : : ; C� . Now for every j 2 f1; : : : ; �g any as-signment to ~Z 0j satis�es at most �2 of the onstraintsC 01;j ; : : : ; C 0m2;j . Furthermore if the onstraint Cj wasnot satis�ed by the assignment to ~X; ~Y , then at most�2 � 1 onstraints are satis�ed. Thus the total num-ber of onstraints satis�ed by any assignment is at most(�2)+(��)(�2�1)+(�1�) = �1+�(�2�1). Thisyields property (a). Property () is ahieved similarly.We now show that if the �1- and �2-implementationsare perfet we get property (b) with perfetness. In thisase for any assignment to ~X satisfying f , there exists anassignment to ~Y satisfying C1; : : : ; Cm1 . Furthermorefor every j 2 f1; : : : ; �g, there exists an assignments to~Z 0j satisfying all the onstraints C 01;j ; : : : ; C 0m2;j . Thusthere exists an assignment to ~X; ~Y ; ~Z 01; : : : ; ~Z 0� satisfy-ing all m1+�(m2�1) onstraints. This yields property(b) with perfetness.We now onsider the ase when the �1- and �2-implementations satisfy property (d) and show that inthis ase also the olletion of onstraints above satis-�es property (b). Given an assignment to ~X satisfying fthere exists an assignment to ~Y satisfying �1 onstraintsfrom C1; : : : ; Cm1 . Say this assigment satis�ed  lausesfrom the set C1; : : : ; C� and �1 �  onstraints fromthe set C�+1; : : : ; Cm1 . Then for every j 2 f1; : : : ; �gsuh that the lauses Cj is satis�ed by this assignmentto ~X; ~Y , there exists an assignment to ~Z 0j satisfying�2 lauses from the set C 01;j ; : : : ; C 0m2;j . Furthermore,for the remaining values of j 2 f1; : : : ; �g there existsan assignment to the variables ~Z 0j satisfying �2 � 1 ofthe onstraints C 01;j ; : : : ; C 0m2;j (here we are using the

stritness of the �2 implementations). This setting to~Y ; ~Z 01; : : : ; ~Z 0� satis�es �2+(��)(�2�1)+�1� =�1+�(�2�1) of the m onstraints. This yields property(b). A similar analysis an be used to show property (d).The following lemma shows a simple monotoniityproperty of implementations (proof omitted).Lemma 3.3 For integers �; �0 with � � �0, if F �-implements f then F �0-implements f . Furthermorestritness and perfetness are preserved under this trans-formation.The next lemma now shows how to use perfetimplementations for showing hardness of weightedMAX ONE problems.Lemma 3.4 Given onstraint sets F1;F2, suh thatthe weighted MAX ONE(F2) problem has a �(n)-approximation algorithm and every onstraint f 2 F1an be perfetly implemented by the onstraint set F2,then there exist onstants ; d suh that the weightedMAX ONE(F1) problem has a �(nd)-approximation al-gorithm.Proof: Let l = jF1j and k be the maximum arity ofany onstraint f 2 F1. Let K be the largest number ofauxiliary variables used in perfetly implementing anyonstraint f 2 F1 by F2. Notie that K is a �niteonstant for any �xed F1, F2.Given an instane I of MAX ONE(F1) with m on-straints C1; : : : ; Cm on n variables X1; : : : ; Xn, withn real non-negative weights w1; : : : ; wn, we reate aninstane I 0 of MAX ONE(F2) as follows: I 0 has thevariables X1; : : : ; Xn of I and in addition \auxiliary"variables fY ji gm;Ki=1;j=1. The weights orresponding toX1; : : : ; Xn is w1; : : : ; wn (same as in I) and the auxil-iary variables Y ji have weight zero. The onstraints of I 0perfetly implement the onstraints of I. In partiularthe onstraint fi(Xi1 ; : : : ; Xik) of I is implemented bya olletion of onstraints from F2 (as ditated by theperfet implementation of fi by F2) on the variables(Xi1 ; : : : ; Xik ; Y 1i ; : : : ; Y Ki ).By the de�nition of perfet implementations, it islear that the every feasible solution to I an be ex-tended (by some assignment to the Y variables) into afeasible solution to I 0. Alternately, every solution toI 0 immediately projets on to a solution of I. Further-more, the value of the objetive funtion is exatly thesame (by our hoie of weights). Thus a �-approximatesolution to I 0 gives a �-approximate solution to I.It remains to study this approximation as a fun-tion of the instane size. Observe that the instanesize of I 0 is muh larger. Let N denote the num-ber of variables in I 0. Then N is upper boundedby Km + n, where m is the number of onstraints5



in I. But m, in turn, is at most lnk. ThusN � (K + 1)lnk, implying that an �(N)-approximatesolution to I 0, gives an �((K + 1)lnk)-approximatesolution to I. Thus an �(N)-approximation al-gorithm for the weighted MAX ONE(F2) problemyields an �(nd)-approximation for the weightedMAX ONE(F1)-problem, for  = (K+1)l and d = k.Corollary 3.5 If weighted MAX ONE(F1) is APX-hardand F2 perfetly implements every onstraint in F1,then weighted MAX ONE(F2) is APX-hard. Similarly, ifweighted MAX ONE(F1) is poly-APX-hard and F2 per-fetly implements every onstraint in F1, then weightedMAX ONE(F2) is poly-APX-hard.4 The Classi�ation Theorem forMAX ONEIn this setion, we establish Theorem 2.3. We use thefollowing shorthand notation for the eight onstraintslasses of importane. Let F1 denote the lass of 1-validonstraints, F2 the weakly positive onstraints, F3 theaÆne width-2 onstraints, F4 the aÆne onstraints, F5the strongly 0-valid onstraints, F6 the weakly negativeonstraints, F7 the 2CNF onstraints and F8 the 0-validones. Theorem 2.3 an be restated as follows. For a on-straint set F if i is the smallest index suh that F � Fi,then if i 2 f1; 2; 3g then MAX ONE(F) 2 P, if i = 4then MAX ONE(F) is APX-omplete, if i 2 f5; 6; 7gthen MAX ONE(F) is poly-APX-omplete, if i = 8then SAT(F) is in P but MAX ONE(F) is not approx-imable and if no suh i exists then �nding any satisfyingassignment for MAX ONE(F) in NP-hard.4.1 PreliminariesIn this subsetion, we prove a few preliminary lem-mas that we will need in the proof of the theorem, par-tiularly in Cases 2 and 3. We �rst show that in theseases, it is essentially equivalent for us to onsider theweighted or unweighted MAX ONE(F) problem.We begin with a slightly stronger de�nition ofpolynomial-time solvability of SAT(F) that we willneed. We then show that given this stronger form ofSAT(F) that insofar as APX-hardness and poly-APX-hardness are onerned, the weighted and unweightedases of MAX ONE(F) are equivalent. We onludeby showing that in Cases 2 and 3 the stronger form ofSAT(F) holds.De�nition 4.1 We say that a onstraint satisfationproblem SAT(F) is strongly deidable if given m on-straints on n variables X1; : : : ; Xn and an index i 2f1; : : : ; ng, there exists a polynomial time algorithm whihdeides if there exists an assignment to X1; : : : ; Xn satis-fying allm onstraints and additionally satisfying the prop-erty Xi = 1.

Lemma 4.2 For every strongly deidable onstraintset F , for every � of the form 1=l for some pos-itive integer l and for every non-dereasing funtion� : Z+ ! Z+, �-approximating the weightedMAX ONE(F) problem redues to �0-approximating the(unweighted) MAX ONE(F) problem, where �0(n) =�(p�n)(1+�) .Proof Sketh: The basi idea of the proof is thatwe an repliate variables many times (in proportionto its weight) and then for every repliated opy of avariable, we plae all the onstraints that were plaed onthe original opy of the variable. If the original weightsare polynomially bounded then the new instane stillhas polynomial size.The only issue to be taken are of is that theweights of the original instane need not be polynomi-ally bounded. To take are of this, we �rst �nd thelargest weight element whih is set to 1 in some satis-fying assignment. Here we use the strong deidabilityof the family F to �nd this element. Having done so,we an essentially ignore elements of larger weight andalso a�ord to round up the weight of all smaller ele-ments to integral multiples of �=n times the weight ofthis element. This only inreases the ontribution ofany assignment by a fator of (1 + �). After this trans-formation, we are redued to the polynomially boundedase as desired.The ability to work with weighted problems in om-bination with Lemma 3.4 allows us to use existentialquanti�ation over auxiliary variables and the notion ofperfet implementations of onstraints.As our examination will eventually show, there is re-ally no essential di�erene in the approximability of theweighted and unweighted problems. For now we willsatisfy ourselves by stating this onditionally.Corollary 4.3 For any strongly deidable onstraint setF , the MAX ONE(F) problem is APX-hard if and only ifthe weighted MAX ONE(F) problem is APX-hard. Simi-larly, theMAX ONE(F) problem is poly-APX-hard if andonly if the weightedMAX ONE(F) problem is poly-APX-hard.Before onluding we assert that most problems ofinterest to us will be able to use the equivalene betweenweighted and unweighted problems.Lemma 4.4 If F � Fj for some j 2 f1; : : : ; 7g, then Fis strongly deidable.Lastly we desribe one more tool that omes in usefulin reating redutions. This is the notion of implement-ing a property whih falls short of being an implemen-tation of an atual onstraint. The target onstraints inthe following de�nitions are the onstraints whih fore6



variables to being onstants (either 0 or 1). However,sometimes we are unable to ahieve this. So we endup implementing a weaker form whih suÆes for ourappliations. We next desribe this property.De�nition 4.5 [Existential Zero (One)℄ A onstraintset F an implement the existential zero (one) propertyif there exists a set of m onstraints f1; : : : ; fm over nvariables ~X and an index k 2 f1; : : : ; ng suh that thefollowing hold:� There exists an assignment Vk+1; : : : ; Vn toXk+1; : : : ; Xn suh that assigning zero (one) to the�rst k variables X1; : : : ; Xk satis�es all onstraints.� Conversely, every assignment satisfying all the on-straints must make at least one of the variables inX1; : : : ; Xk zero (one).De�nition 4.6 Given a onstraint f of arity k and aset S � f1; : : : ; kg, the onstraint f j(S;0) is a on-straint of arity k� jSj given by f j(S;0)(X1; : : : ; Xk�jSj) =f(X1; 0; 0; X2; : : : ; Xk�jSj; 0; 0), where the zeroes ourin the indies ontained in S. For a onstraint set F ,the 0-losure of F , denoted Fj0 is the set of onstraintsff(S;0)jf 2 F ; S � f1; : : : ; kgg. (1-losure may be de�nedsimilarly.)Notie that Fj0 essentially implements every on-straint that an be implemented by F [ fFg, exeptthe onstraint fFg, where F stands for the unary on-straint \false". We de�ne Fj1 similarly. Then Fj0;1 =Fj0 [ Fj1.Lemma 4.7 If a onstraint set F an implement the ex-istential zero property, then F perfetly implements everyonstraint in the onstraint set Fj0. Similarly, if a on-straint set F an implement the existential one property,then F perfetly implements every onstraint in the on-straint set Fj1.4.2 Proof of Main Theorem4.2.1 Cases 1, 4, and 5We now begin our proof of Theorem 2.3. We start withthe sub-ases that are easier to prove and then move onto the more diÆult sub-ases. Cases 4 and 5 of Theo-rem 2.3 are indiret and diret onsequenes of Shae-fer's theorem, respetively; we omit their proofs. Case1 is relatively simple, and we sketh its proof below.Lemma 4.8 The weighted MAX ONE(F) problem is inP if eah F is 1-valid or is weakly positive or is aÆne withwidth 2.Proof Sketh: The �rst two ases are easy and areheneforth omitted. In the ase that F is aÆne withwidth 2, we redue the problem of �nding a feasible

solution to heking whether a graph is bipartite, andthen use the bipartition to �nd the optimal solution.Notie that eah onstraint orresponds to a onjun-tion of onstraints of the form Xi = Xj or Xi 6= Xj .Create a vertex Xj for eah variable Xj and for eahonstraint Xi 6= Xj , add an edge (Xi; Xj). For eahonstraint Xi = Xj , identify the verties Xi and Xj ; ifthis reates a self-loop, then learly no feasible assign-ment is possible. Chek whether the graph is bipartite;if not, then there is no feasible assignment. If so, thenfor eah onneted omponent of the graph hoose thelarger weight side of the bipartition, and set the orre-sponding variables to one.4.2.2 Case 3: The poly-APX-Complete CaseThe proofs of Cases 2 and 3 are muh more diÆult.For spae reasons, we omit the proof of Case 2 and on-entrate on Case 3. We �rst show that the problems inthis ase are in poly-APX.Lemma 4.9 If F � Fi for some i 2 f1; 2; 3; 4; 5; 6; 7gthen MAX ONE(F) an be approximated to within a fa-tor of n.Proof: Shaefer's results imply a polynomial-timealgorithm to ompute a feasible solution. If the feasiblesolution has at least one 1, we are done. Else, iterativelytry setting every variable to one and omputing a fea-sible solution. Note that if F is aÆne (or 2CNF), thenthe onstraints obtained by restriting some variable tobe 1 remains aÆne (or resp. 2CNF), and thus this newlass is still deidable. Lastly, a strongly 0-valid on-straint set remains 0-valid after this restrition and isstill deidable. If the deision proedure gives no non-zero solution, then the optimum is zero, else we outputa solution of value at least 1.We now turn to showing that this lass of problemsis poly-APX-hard. Our goal will be to perfetly imple-ment the onstraint �X1+ � � �+ �Xk, for some k � 2. Thefollowing lemma shows that this will imply poly-APX-hardness.Lemma 4.10 If f = �X1 + � � � + �Xk, thenMAX ONE(ffg) is poly-APX-hard.Proof: We do a redution from MAX CLIQUE,whih is known to be poly-APX-hard [1℄. Given a graphG, onstrut a MAX ONE(ffg) instane onsisting ofa variable for every vertex in G and the onstraint f isapplied to every subset of k verties in G whih doesnot indue a lique. It may be veri�ed that the op-timum number of ones in any satisfying assignment tothe instane reated in this manner is maxfk�1; !(G)g,where !(G) is the size of the largest lique in G. Givena solution to the MAX ONE(ffg) instane with l � kones, the set of verties orresponding to the variables7



set to one form a lique of size l. If l < k, output any sin-gleton vertex. Thus in all ases we obtain a lique of sizeat least l=(k � 1) verties. Thus the existene of an �-approximation algorithm for the MAX ONE(ffg) prob-lem implies the existene of a (k�1)�-approximation al-gorithm to the lique problem. The poly-APX-hardnessof lique now implies the lemma.The following lemma divides the remainder of theproof into two ases.Lemma 4.11 If F � Fi for some i 2 f5; 6; 7g, butF 6� Fj for any j 2 f1; 2; 3; 4g, then either F perfetlyimplements every onstraint in Fj0;1 or F perfetly imple-ments Fj0 and every onstraint in F is 0-valid.We show that in the �rst ase, we an perfetly im-plement �X + �Y . We will then turn to the ase in whihall onstraints are 0-valid and show that we an eitherperfetly implement �X1+ � � �+ �Xk or an existential one.If we an implement an existential one, then we are inthe same situation as the �rst ase. This will ompletethe proof of poly-APX-hardness.Reall that we have a onstraint in F that is notweakly positive and a onstraint that is not aÆne.Case I : F perfetly implements every onstraint inFj0;1.Lemma 4.12 If f is not weakly positive, then the on-straint set ffgj0;1 perfetly implements either XOR or�X + �Y .Proof: Let C = ( �X1+ � � �+ �Xp+Y1+ � � �+Yq) be amaxterm in f with more than one negation i.e. p � 2.Substituting a 1 in plae of variables �X3; �X4; : : : ; �Xp, a0 in plae of variables Y1; Y2; : : : ; Yq, and existentiallyquantifying over all variables not in C, we get a on-straint f 0 suh that ( �X1 + �X2) is a maxterm in f 0.By de�nition of maxterm, f 0 must be satis�ed when-ever X1 � X2 = 1. Now if f 0 is also satis�ed whenX1 = X2 = 0, we get the onstraint �X1 + �X2, else weget the onstraint XOR(X1; X2).Lemma 4.13 The onstraint set fXORg an perfetlyimplement the onstraint REP.Lemma 4.14 Let g be a non-aÆne onstraint. Thenthe onstraint set fg;REP;XORgj0;1 an either perfetlyimplement the onstraint (X + �Y ) or ( �X + �Y ).Proof: Sine g is non-aÆne, we essentially have thefollowing situation for three satisfying assignments s1; s2and s3 for g. g()s1 0 0 0 0 1 1 1 1 1s2 0 0 1 1 0 0 1 1 1s3 0 1 0 1 0 1 0 1 1s1 � s2 � s3 0 1 1 0 1 0 0 1 00 X Y Z �Z �Y �X 1

(where eah olumn may atually be repeated more thanone). Fixing the above variables to 0's and 1's as shownin the last row, and using repliated opies of three vari-ables X;Y and Z (and their negations using XOR), weget a onstraint h(X;Y; Z) with the truth-table in Fig-ure 1.
x

yz
00      01     11      10

1       B        1       A0

1      C        1       D       0Figure 1: Truth-table of the onstraint h(X;Y; Z)The undetermined values in the table are indiatedby the parameters A;B;C and D. The following anal-ysis shows that for every possible value of these param-eters, we an indeed perfetly implement an OR on-straint using the onstants 0 and 1.A = 0 =) 9 X h(Y; Z) = Y + �ZA = 1; B = 0 =) h(0; Y; Z) = �Y + ZA;B = 1; C = 0 =) h(X; 0; Z) = X + �ZA;B;C = 1; D = 0 =) h(X;Y; 1) = �X + �ZA;B;C;D = 1 =) h(1; Y; Z) = Y + �ZLemma 4.15 The onstraint set fX + �Y ;XORg per-fetly implements the onstraint �X + �Y .Proof: To perfetly implement �X + �Y , we reatean auxiliary variable X 0. We now add two onstraints,namely X 0 + �Y , and XOR(X;X 0). Clearly, all on-straints are satis�ed only if �X + �Y is satis�ed.Thus in all ases we are able to implement the on-straint �X + �Y .Case II : F an perfetly implement all onstraints inFj0 and all onstraints are 0-valid.We now show that either we an perfetly implement�X+ �Y , or perfetly implement a 1. If the former ours,we are done, and if the latter, we an redue to theprevious ase.Lemma 4.16 If f is 0-valid and not weakly positive, thenthe onstraint set ffgj0 either perfetly implements �X1+� � �+ �Xk for some k � 2 or it perfetly implements X+ �Yor REP.Proof: Let C = ( �X1 + � � �+ �Xp + Y1 + � � � + Yq) bea maxterm in f with more than one negation i.e. p � 2(suh a maxterm exists sine f is not weakly positive).Substituting a 0 in plae of variables Y1; Y2; : : : ; Yq , and8



existentially quantifying over all variables not in C, weget a onstraint g suh that ( �X1 + �X2 + � � � + �Xp) is amaxterm in g. Consider an unsatisfying assignment sfor g with the smallest number of 1's and let k denotethe number of 1's in s; we know k > 0 sine the originalonstraint 0-valid. WLOG assume that s assigns value 1to the variablesX1; X2; : : : ; Xk and 0's to the remainingvariables. It is easy to see that by �xing the variablesXk+1; Xk+2; : : : ; Xp to 0, we get a onstraint g0 = ( �X1+�X2+ � � �+ �Xk). If k > 1, then this perfetly implementsthe onstraint ( �X1 + � � �+ �Xk) and we are done.Otherwise k = 1, i.e. there exists an unsatisfying as-signment s whih assigns value 1 to exatly one of theXi's, say X1. Now onsider a satisfying assignment s0whih assigns 1 to X1 and has a minimum number of1's among all assignments whih assign 1 to X1. Theexistene of suh an assignment easily follows from Cbeing a maxterm in g. WLOG assume that s0 = 1i0p�i.Thus the onstraint g looks as follows:X1 X2 X3:::Xi Xi+1:::Xp g()s1 0 0 00:::0 00:::0 1s2 1 0 00:::0 00:::0 0s0 = s3 1 1 11:::1 00:::0 1s4 0 1 ::: 00:::0 ?Existential quanti�ation over the variablesX3; X4; : : : ; Xi and �xing the variables Xi+1 throughXp to 0 yields a onstraint g0 whih is either (X1+ �X2)or REP(X1; X2). The lemma follows.If we an perfetly implement X + �Y , then the fol-lowing lemma shows that we an essentially perfetlyimplement a 1, and thus we an redue to Case I. Weuse the onstraint funtion T (Xi) = Xi to representonstraints Xi = 1.Lemma 4.17 IfMAX ONE(F [ fX + �Y g) is �-approximable for somefuntion �, then so is MAX ONE(F [ fTg).Proof: Given an instane I of MAX ONE(F [fTg)we onstrut an instane I 0 of MAX ONE(F[fX+ �Y g)as follows. The variable set of I 0 is the same as that ofI. Every onstraint from F in I is also inluded in I 0.The only remaining onstraints are of the form Xi = 1for some variables Xi (imposed by the onstraint T ).We simulate this onstraint in I 0 with n� 1 onstraintsof the form Xi + �Xj for every j 2 f1; : : : ; ng, j 6= i.Every non-zero solution to the resulting instane I 0 isalso a solution to I, sine the solution must have Xi =1 or else every Xj = 0. Thus the resulting instaneof MAX ONE(F [ fX + �Y g) has the same objetivefuntion and the same feasible spae and is hene atleast as hard as the original problem.Now by Lemma 4.16 the only remaining subase is ifwe an perfetly implement REP. The following lemma

shows that in this ase we an either perfetly imple-ment �X + �Y or X + �Y . If we an do the former, we aredone, and if the latter, we an use X + �Y to perfetlyimplement the T onstraint, and redue to the previousase. Hene in either ase we are �nished.Lemma 4.18 If f is 0-valid onstraint and non-aÆne,then MAX ONE(ff;REPg) perfetly implements eitherthe onstraint ( �X + �Y ) or the onstraint (X + �Y ).Proof: Shaefer [17℄ shows that if f is a non-aÆneonstraint, then there exist two satisfying assignmentss1 and s2 suh that s1�s2 is not a satisfying assignmentfor f . Using this fat and the fat that f is 0-valid, weessentially have the following situation: g()00:::0 00:::0 00:::0 00:::0 1s1 00:::0 00:::0 11:::1 11:::1 1s2 00:::0 11:::1 00:::0 11:::1 1s1 � s2 00:::0 11:::1 11:::1 00:::0 000:::0 XX:::X Y Y:::Y ZZ:::ZFixing the above variables to 0's as shown in the lastrow, and assigning repliated opies of three variablesX;Y and Z, we get a onstraint h(X;Y; Z) with thetruth-table in Figure 1. The lemma now follows usingan analysis idential to the one used in Lemma 4.14.AknowledgmentsMany thanks to Nadia Creignou, Oded Goldreih,Greg Sorkin and Lua Trevisan for their valuable om-ments.Referenes[1℄ S. Arora, C. Lund, R. Motwani, M. Sudan,and M. Szegedy. Proof veri�ation and the in-tratability of approximation problems. Proeed-ings of the 33rd IEEE FOCS, IEEE, 1992.[2℄ T. Asano, T. Ono, and T. Hirata. Approxi-mation algorithms for the maximum satis�abilityproblem. Sandanavian Workshop on AlgorithmiTheory 96 Proeedings, Leture Notes in ComputerSiene Vol. 1097, ed., Springer-Verlag, 1996.[3℄ M. Bellare, O. Goldreih, and M. Sudan.Free bits, PCP and non-approximability| towardstight results. (Version 3). ECCC Tehnial Reportnumber TR95-024, 1995.[4℄ N. Creignou. A Dihotomy Theorem for Maxi-mum Generalized Satis�ability Problems. Journalof Computer and System Sienes, 51:3, pp. 511{522, 1995.9
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