
A Complete Classi�
ation of theApproximability of Maximization ProblemsDerived from Boolean Constraint Satisfa
tionSanjeev Khanna� Madhu Sudany David P. WilliamsonzAbstra
tIn this paper we study the approximability of boolean
onstraint satisfa
tion problems. A problem in this 
lass
onsists of some 
olle
tion of \
onstraints" (i.e., fun
-tions f : f0; 1gk ! f0; 1g); an instan
e of a problemis a set of 
onstraints applied to spe
i�ed subsets of nboolean variables. S
haefer earlier studied the questionof whether one 
ould �nd in polynomial time a setting ofthe variables satisfying all 
onstraints; he showed thatevery su
h problem is either in P or is NP-
omplete.We 
onsider optimization variants of these problemsin whi
h one either tries to maximize the number ofsatis�ed 
onstraints (as in MAX 3SAT or MAX CUT)or tries to �nd an assignment satisfying all 
onstraintswhi
h maximizes the number of variables set to 1 (as inMAX CUT or MAX CLIQUE). We 
ompletely 
lassifythe approximability of all su
h problems. In the �rst
ase, we show that any su
h optimization problem iseither in P or is MAX SNP-hard. In the se
ond 
ase,we show that su
h problems fall pre
isely into one of�ve 
lasses, assuming P 6= NP: solvable in polynomial-time, approximable to within 
onstant fa
tors in poly-nomial time (but no better), approximable to withinpolynomial fa
tors in polynomial time (but no better),not approximable to within any fa
tor but de
idablein polynomial time, and not de
idable in polynomialtime. This result proves formally for this 
lass of prob-lems two results whi
h to this point have only been em-piri
al observations; namely, that NP-hard problems in�sanjeev�resear
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MAX SNP always turn out to be MAX SNP-hard, andthat there seem to be no natural maximization problemsapproximable to within polylogarithmi
 fa
tors but nobetter.1 Introdu
tionIn this paper, we study the approximability of op-timization versions of boolean 
onstraint satisfa
tionproblems (CSPs). A boolean CSP 
onsists of a 
olle
-tion F of boolean fun
tions f : f0; 1gk ! f0; 1g 
alled
onstraints. An instan
e of su
h a problem is a set of\
onstraint appli
ations". Ea
h appli
ation is a 
on-straint drawn from F and applied to a spe
i�ed subsetof n boolean variables.The de
ision version of a boolean 
onstraint satisfa
-tion problem asks whether there is an assignment to thevariables su
h that all 
onstraint appli
ations are satis-�ed (that is, for ea
h appli
ation the spe
i�ed booleanfun
tion evaluates to 1 on the given subset of variables).For a 
olle
tion of 
onstraints F , we 
all this prob-lem SAT(F). Thus, for example, 3SAT is a de
isionversion of boolean CSP with the 
onstraint fun
tionsf1(x; y; z) = x _ y _ z, f2(x; y; z) = �x _ y _ z, and soon. S
haefer [17℄ studied the de
ision version of theseproblems and proved a remarkable result: for every su
hproblem, either it is in P or it is NP-
omplete. This di-
hotomy is espe
ially interesting in light of Ladner's the-orem [12℄, whi
h states that if P6=NP, then there existin�nitely many problems of 
omplexity between P andNP-
omplete. Thus although problems SAT(F) 
ouldin prin
iple display a wide range of 
omplexity, they infa
t fall into distin
t and quite separate 
lasses (assum-ing P6=NP). An additional property of S
haefer's resultis that his 
hara
terization of the problems in P is 
om-pa
t. He gives six 
lasses of fun
tions, and if all fun
-tions in F fall entirely within any one of these 
lasses,then SAT(F) is in P, otherwise it is NP-
omplete.In this paper, we 
onsider two di�erent maximizationversions of SAT(F) and 
ompletely 
lassify the approx-imability of all su
h problems. In so doing, we �nd thatthese optimization problems also fall into distin
t andseparate 
lasses, bypassing the many intermediate lev-els of approximability whi
h are possible in prin
iple.As we des
ribe later, this 
lassi�
ation proves formally



for these problems some results whi
h to this pointhave only been empiri
al observations. Furthermore,our 
lassi�
ation of the problems also has a 
ompa
tdes
ription. For both types of maximization versions ofSAT(F), we re�ne S
haefer's 
lasses, and the level of ap-proximability of a problem for a given F is determinedby whi
h of these 
lasses 
ontain F .In the �rst maximization version of SAT(F) that we
onsider, for ea
h instan
e of a problem we are also givena nonnegative weight wi for ea
h 
onstraint appli
ationi, and we must try to �nd an assignment to the variableswhi
h maximizes the weight of the satis�ed 
onstraintappli
ations. For any set of 
onstraints F , we 
allthis asso
iated maximization problem MAX CSP(F),and we 
all the 
lass of all su
h problems MAX CSP.It follows almost immediately from its de�nition thatMAX CSP is 
ontained in the well-studied 
lass MAXSNP. Conversely, it also 
ontains many of its 
ompleteproblems. For example, MAX 3SAT and MAX CUT
an be 
ast as MAX CSP(F) problems. We show thatea
h problem MAX CSP(F) is either solvable exa
tlyin polynomial time or is MAX SNP-hard. Thus thereis no problem in this 
lass whi
h has an approximations
heme but is not solvable in polynomial time. This re-sult has been obtained independently by Creignou [4℄;however our result is stronger in 
ertain te
hni
al senseswhi
h we dis
uss later.In the se
ond maximization version of SAT(F) thatwe 
onsider, for ea
h instan
e of the problem we are alsogiven a nonnegative weight wi for ea
h boolean variable,and we must try to �nd a boolean assignment of max-imum weight that satis�es all 
onstraint appli
ations.For any set of 
onstraints F , we 
all this asso
iated max-imization problem MAX ONE(F); for example, MAXCUT and MAX CLIQUE 
an be 
ast as MAX ONE(F)problems. We show that ea
h problem MAX ONE(F)must fall into one of �ve 
lasses, assuming P 6= NP: �rst,it is solvable exa
tly in polynomial time; se
ond, it 
anbe approximated to within some 
onstant fa
tor but nobetter; third, it 
an be approximated to within some fa
-tor that is polynomial in the number of variables, butno better; fourth, it is NP-
omplete to �nd a satisfyingassignment of non-zero value; �fth, it is NP-
omplete to�nd any satisfying assignment.The 
entral idea of our proofs is a new 
on
ept we
all an implementation. Given a set of 
onstraints F ,we show that if F has 
ertain properties, then it 
an beused to enfor
e other 
onstraint fun
tions f . We showthat under suitable 
onditions, implementations 
an be
omposed, so that the 
onstraints of F 
an be used toimplement the 
onstraints of other problems (su
h asMAX CUT or MAX CLIQUE) whose approximabilityis well known. The 
entral diÆ
ulty of the proofs isshowing that this 
an be done in an exhaustive wayfor all possible sets of 
onstraints F . Our de�nition of

an implementation here is inspired by the notion of agadget in Bellare et al. [3℄ and we unify their many de�-nitions (they have di�erent de�nitions for every f and Fthat they 
onsider) into a single one. Our de�nition hasin turn been used by Trevisan et al. [18℄ to derive im-proved hardness of approximation results and improvedapproximation algorithms.Our results prove formally for these 
lasses of prob-lems some results about approximability whi
h to thispoint have only been empiri
al observations. For ex-ample, the study of MAX SNP has revealed so far thatevery NP-hard MAX SNP problem is also hard to ap-proximate to within some 
onstant fa
tor. Our result onMAX CSP serves as a formal basis for this empiri
al ob-servation. Similarly, in the sear
h for polynomial-timeapproximation algorithms, optimization problems so fareither have exa
t algorithms, or approximation s
hemes,or 
onstant or (poly)logarithmi
 or polynomial approxi-mation algorithms { but this list is virtually exhaustive.There have been no \natural" problems that are approx-imable to within intermediate fa
tors, su
h as 2log� n orlog logn and no better. In addition, for many naturaloptimization problems the best known approximationalgorithm guarantees logarithmi
 fa
tor approximabil-ity, and yet none of them is a maximization problem.On
e again, our results show that these observationsare not simply due to a la
k of knowledge, but havesome formal basis.One of the original motivations for this work was to�nd some simple rules whi
h 
hara
terize the approx-imability of any given optimization problem. Howeverthe very general question, \Given an optimization prob-lem, determine its approximability" is unde
idable byRi
e's Theorem (
f. [15℄, page 62)1. Hen
e we turnedto restri
ted 
lasses of uniformly presented optimizationproblems and this allowed us to a
hieve our goal. A nat-ural next step in this resear
h agenda is to broaden the
lasses of problems 
overed by this approa
h. Khannaet al. [11℄ have already extended this line of resear
hto minimization problems, obtaining a 
omplete 
lassi-�
ation for MIN CSP and MIN ONES. Perhaps one ofthe most interesting dire
tions to extend this work is tostudy the approximability of these problems over a non-boolean domain. To begin with, a study over a domainof size 3 itself seems to require new te
hniques. In an ele-gant paper, Feder and Vardi [5℄ highlight many inherentproblems in obtaining an analog of S
haefer's result overnon-boolean domains. Other possible resear
h dire
-tions in
lude: (1) extending the fun
tion families thatare studied (to in
lude, say, fun
tions of bounded rangeor fun
tions of unbounded arity); (2) pla
ing restri
tions1Here we are assuming the optimization problem is being pre-sented by an arbitrary Turing ma
hine whi
h solves the optimiza-tion problem. More detailed study of the de
idability of the prob-lem, when the presentation of the optimization problem is morerestri
ted is 
arried on in Merkle and the referen
es there [14℄.2



on the nature of the intera
tion between 
onstraints andvariables (su
h as bounding the number of times a vari-able 
an appear in a 
onstraint). One su
h restri
tionwhi
h has been explored by Khanna and Motwani [8℄ isthe 
ase where the intera
tion graph of the 
onstraintappli
ations and the variables is planar.Due to spa
e limitations, we will fo
us our at-tention on presenting the result for the problemsMAX ONE(F). In Se
tion 2, we present some de�-nitions and state our main results. We also state theways in whi
h our result for MAX CSP(F) strengthensthat of Creignou. Se
tion 3 de�nes implementations andstates some basi
 properties of implementations. Se
-tion 4 outlines the proof of our result for MAX ONE(F).Details of omitted results and proofs may be found inthe full version of this paper [10℄.2 De�nitions and Main ResultsWe begin with some de�nitions. A 
onstraint f isas de�ned above, and a 
onstraint appli
ation is a pair(f; (i1; : : : ; ik)), where the ij 2 [n℄ indi
ate to whi
h kof the n boolean variables the 
onstraint is applied. Werequire that ij 6= ij0 for j 6= j0. While the distin
tionbetween 
onstraints and 
onstraint appli
ations is im-portant, we will often blur this distin
tion in the restof this paper. In parti
ular we may often let the 
on-straint appli
ation C = (f; (i1; : : : ; ik)) refer just to the
onstraint f . In parti
ular, we will often use the expres-sion \C 2 F" when we mean \f 2 F , where f is the�rst part of C".For a given set of 
onstraints F , SAT(F),MAX CSP(F), and MAX ONE(F) are as de�nedabove. If for a given instan
e of MAX CSP(F)(MAX ONE(F)) the weights wi = 1 for all i, we
all this an unweighted instan
e of MAX CSP(F)(MAX ONE(F)). An instan
e whi
h is not un-weighted is weighted. We de�ne the 
lass of problemsMAX CSP (MAX ONE) to be the set of all problems inMAX CSP(F) (MAX ONE(F)) taken over all possiblesets of 
onstraints F .We now need some de�nitions from the theory ofapproximation algorithms. Given an NPO (NP Op-timization) problem � and a fun
tion � : Z+ !Z+ (with �(�) � 1), we say that an algorithmA is an �-approximation algorithm for � if for ev-ery instan
e I of � of size n, A produ
es, in timepolynomial in n, a solution s to I of value in therange [OPT(I)=�(n); �(n)OPT(I)℄. We say � is �-approximable if su
h an algorithm exists. We de-�ne APX to be the 
lass of all NPO problems whi
hhave 
onstant-fa
tor approximation algorithms, andpoly-APX to be the 
lass of NPO problems whi
h havepolynomial-fa
tor approximation algorithms.We also need to de�ne what it means to be hard toapproximate a problem � to within a fa
tor of �. For a

fun
tion � : Z+ ! Z+ with �(�) � 1, an NP maximiza-tion problem � is hard to approximate to within a fa
torof � if there exists a polynomial time redu
tion f fromSAT to � whi
h maps instan
es of SAT of length n toinstan
es of � of length l(n) and for every n and for anytwo instan
es �1, �2 of size n of SAT su
h that �1 2 SATand �2 62 SAT, OPT(f(�1))=OPT(f(�2)) � �(l(n)).Thus a problem � is APX-hard if there exists a 
on-stant fun
tion �� > 1 su
h that � is hard to approxi-mate to within ��. A problem � is poly-APX-hard ifthere exists an � > 0 su
h that � is hard to approximateto within n�. A problem is APX-
omplete (poly-APX-
omplete) if it is in APX (poly-APX) and is APX-hard(poly-APX-hard).It is usual to de�ne 
ompleteness for approximation
lasses in terms of redu
ibility, rather than the hardnessof approximation of the problem. However, Khanna etal. [9℄ have shown that these two notions are equivalentprovided the right approximation preserving redu
tionsare used. We will not go into these de�nitions here, andrefer the reader to their paper for details.We now des
ribe the main 
onstraint 
lasses that areidenti�ed by S
haefer's and our results. We say a 
on-straint f is 0-valid (1-valid) if f(�0) = 1 (f(�1) = 1). It isweakly positive (weakly negative) if it 
an be expressed in
onjun
tive normal form, with all the disjun
ts havingat most one negated literal (positive literal). A 
on-straint f is aÆne if it 
an be expressed as a 
onjun
tionof linear equalities over GF(2). And, �nally, a 
onstraintf is 2CNF if it 
an be expressed in 
onjun
tive normalform with all disjun
ts having at most two literals.The above six 
onstraint 
lasses 
an now be usedto des
ribe S
haefer's result. In what follows we usephrases su
h as \F is 0-valid" to imply that \everyfun
tion f 2 F is 0-valid". We stress that when wesay something like \F is 0-valid or 1-valid", we meanthat \every fun
tion in F is 0-valid or every fun
tion inF is 1-valid".Theorem 2.1 [S
haefer [17℄℄ For any 
onstraint set F ,SAT(F) is either in P or is NP-
omplete. Furthermore,SAT(F) is in P if and only if F is 0-valid or 1-valid orweakly positive or weakly negative or aÆne or 2CNF.We now provide the de�nitions required to state ourmain 
lassi�
ation result for MAX CSP. For starters,observe that for the approximability of MAX CSP(F)does not 
hange by removing (or adding) fun
tions fromF whi
h are not satis�able. Hen
e, given a 
onstraintset F , we de�ne the 
onstraint set F 0 to be the set of
onstraints f in F whi
h are satis�able. We also needto de�ne one more 
lass of 
onstraints before we 
angive our result: we say a 
onstraint f of arity k is 2-monotone if there exist indi
es i1; : : : ; ip � f1; : : : ; kgand j1; : : : ; jq � f1; : : : ; kg su
h that f(X1; : : : ; Xk) =(Xi1 ^ � � � ^Xip) _ ( �Xj1 ^ � � � ^ �Xjq ).3



Theorem 2.2 (MAX CSP Classi�
ation) For every
onstraint set F , the problem MAX CSP(F) is alwayseither in P or is APX-
omplete. Furthermore, it is in P ifand only if F 0 is 0-valid or 1-valid or 2-monotone.As stated previously, Theorem 2.2 was independentlydis
overed by Creignou [4℄. One fundamental pointof di�eren
e between our result and hers is that wedo not allow the use of variable repli
ation in a 
on-straint appli
ation. This is enfor
ed by our de�nitionof 
onstraint appli
ation whi
h insists that the indi
esi1; : : : ; ik must be distin
t. Our theorem shows thatthis does not ultimately matter, but this is not obviousa priori. For instan
e, a problem whose approximabil-ity has often been studied is the MAX EXACT kSATproblem: Given a 
olle
tion of 
lauses of length exa
tlyk, satisfy as many as possible. This problem is knownto be approximable to within 1 + 2�k=(1� 2�k). How-ever this problem 
annot be 
aptured as a MAX CSPproblem under Creignou's notion of 
onstraint appli
a-tion. The related problem that she 
an 
apture is MAXkSAT: Given a 
olle
tion of 
lauses of length at most k,satisfy as many as possible. The best known approxi-mation for this problem is only slightly smaller than 4=3[19, 6, 7, 2℄. Thus repli
ations do end up altering theapproximability of optimization problems and we take
are to study the approximability of problems withoutthe use of repli
ations.To give our result for MAX ONE, we need to give twomore 
lasses of 
onstraints. We say a 
onstraint is aÆnewith width 2 if it 
an be expressed as a 
onjun
tion oflinear equalities over GF(2) with at most two variablesper equality 
onstraint. A 
onstraint f is strongly 0-valid if it is satis�ed by any assignment with less than orequal to 1 ones. In the theorem below, we use the term\de
idable" to mean that the de
ision version SAT(F)is in P.Theorem 2.3 (MAX ONE Classi�
ation) For every
onstraint set F , MAX ONE(F) is either solvable exa
tlyin P or APX-
omplete or poly-APX-
omplete or de
idablebut not approximable to within any fa
tor or not de
idable.Furthermore,1. If F is 1-valid or weakly positive or aÆne with width2, then MAX ONE(F) is in P.2. Else if F is aÆne then MAX ONE(F) is APX-
omplete.3. Else if F is strongly 0-valid or weakly negative or2CNF then MAX ONE(F) is poly-APX 
omplete.4. Else if F is 0-valid then SAT(F) is de
idable in P but�nding a solution of positive value is NP-hard.5. Else �nding any feasible solution to MAX ONE(F)is NP-hard.

3 ImplementationsWe now des
ribe the main te
hnique used in this pa-per to obtain hardness of approximation results. Sup-pose we want to show that for some 
onstraint set F ,the problem MAX CSP(F) is APX-hard. We will startwith a problem that is known to be APX-hard, su
has MAX CUT, whi
h is the same as MAX CSP(fX �Y g). We will then have to redu
e this problem toMAX CSP(F). The main te
hnique we use to do this isto \implement" the 
onstraint X � Y using 
onstraintsfrom the 
onstraint set F . We show how to formalizethis notion next and then show how this translates toapproximation preserving redu
tions.De�nition 3.1 [Implementation℄ A 
olle
tion of 
on-straint appli
ations C1; : : : ; Cm over a set of variables~X = fX1; X2; :::; Xpg and ~Y = fY1; Y2; :::; Yqg is 
alledan �-implementation of a 
onstraint f( ~X) for a positiveinteger � i� the following 
onditions are satis�ed:(a) no assignment of values to ~X and ~Y 
an satisfy morethan � 
onstraints from C1; : : : ; Cm.(b) for any assignment of values to ~X su
h that f( ~X) istrue, there exists an assignment of values to ~Y su
hthat pre
isely � 
onstraints are satis�ed,(
) for any assignment of values to ~X su
h that f( ~X) isfalse, no assignment of values to ~Y 
an satisfy morethan (� � 1) 
onstraints.An implementation whi
h satis�es the following addi-tional property is 
alled a stri
t �-implementation.(d) for any assignment to ~X whi
h does not satisfy f ,there always exists an assignment to ~Y su
h that pre-
isely (�� 1) 
onstraints are satis�ed.A 
olle
tion of m 
onstraints is a perfe
t implementa-tion of f if it is an m-implementation of f . A 
onstraintset F (stri
tly / perfe
tly) implements a 
onstraint f ifthere exists a (stri
t / perfe
t) �-implementation of f us-ing 
onstraints of F for some � < 1. We refer to theset ~X as the 
onstraint variables and the set ~Y as theauxiliary variables.A 
onstraint f 1-implements itself stri
tly and per-fe
tly. While properties (a)-(
) have perhaps been usedimpli
itly elsewhere, property (d) is more stri
t (hen
ethe name), but turns out to be 
riti
al in 
omposingimplementations together. The following lemma showsthat the implementations of 
onstraints 
ompose to-gether, if they are stri
t or perfe
t.Lemma 3.2 If Ff stri
tly (perfe
tly) implements a 
on-straint f , and Fg stri
tly (perfe
tly) implements a 
on-straint g 2 Ff , then (Ff n fgg) [ Fg stri
tly (perfe
tly)implements the 
onstraint f .4



Proof: Let C1; : : : ; Cm1 be 
onstraint appli
ationsfrom Ff on variables ~X; ~Y giving an �1-implementationof f with ~X being the 
onstraint variables. LetC 01; : : : ; C 0m2 be 
onstraint appli
ations from Fg on vari-able set ~X 0; ~Z 0 yielding an �2-implementation of g. Fur-ther let the �rst � 
onstraints of C1; : : : ; Cm1 be appli-
ations of the 
onstraints g.We 
reate a 
olle
tion of m1 + �(m2 � 1) 
on-straints from (fFf n fgg) [ Fg on a set of variables~X; ~Y ; ~Z 01; : : : ; ~Z 0� as follows: We in
lude the 
onstraintappli
ations C�+1; : : : ; Cm1 on variables ~X; ~Y and forevery 
onstraint appli
ation Cj on variables ~Vj (whi
his a subset of variables from ~X; ~Y ) we pla
e the 
on-straints C 01;j ; : : : ; C 0m2;j on variable set ~Vj ; ~Z 0j with ~Z 0jbeing the auxiliary variables.We now show that this 
olle
tion of 
onstraints satisi-�es properties (a)-(
) with � = �1 + �(�2 � 1). Addi-tionally we show that perfe
tness and/or stri
tness ispreserved. We start with properties (a) and (
).Consider any assignment to ~X satisfying f . Thenany assignment to ~Y satis�es at most �1 
onstraintsfrom the set C1; : : : ; Cm1 . Let 
 of these be from theset C1; : : : ; C� . Now for every j 2 f1; : : : ; �g any as-signment to ~Z 0j satis�es at most �2 of the 
onstraintsC 01;j ; : : : ; C 0m2;j . Furthermore if the 
onstraint Cj wasnot satis�ed by the assignment to ~X; ~Y , then at most�2 � 1 
onstraints are satis�ed. Thus the total num-ber of 
onstraints satis�ed by any assignment is at most
(�2)+(��
)(�2�1)+(�1�
) = �1+�(�2�1). Thisyields property (a). Property (
) is a
hieved similarly.We now show that if the �1- and �2-implementationsare perfe
t we get property (b) with perfe
tness. In this
ase for any assignment to ~X satisfying f , there exists anassignment to ~Y satisfying C1; : : : ; Cm1 . Furthermorefor every j 2 f1; : : : ; �g, there exists an assignments to~Z 0j satisfying all the 
onstraints C 01;j ; : : : ; C 0m2;j . Thusthere exists an assignment to ~X; ~Y ; ~Z 01; : : : ; ~Z 0� satisfy-ing all m1+�(m2�1) 
onstraints. This yields property(b) with perfe
tness.We now 
onsider the 
ase when the �1- and �2-implementations satisfy property (d) and show that inthis 
ase also the 
olle
tion of 
onstraints above satis-�es property (b). Given an assignment to ~X satisfying fthere exists an assignment to ~Y satisfying �1 
onstraintsfrom C1; : : : ; Cm1 . Say this assigment satis�ed 
 
lausesfrom the set C1; : : : ; C� and �1 � 
 
onstraints fromthe set C�+1; : : : ; Cm1 . Then for every j 2 f1; : : : ; �gsu
h that the 
lauses Cj is satis�ed by this assignmentto ~X; ~Y , there exists an assignment to ~Z 0j satisfying�2 
lauses from the set C 01;j ; : : : ; C 0m2;j . Furthermore,for the remaining values of j 2 f1; : : : ; �g there existsan assignment to the variables ~Z 0j satisfying �2 � 1 ofthe 
onstraints C 01;j ; : : : ; C 0m2;j (here we are using the

stri
tness of the �2 implementations). This setting to~Y ; ~Z 01; : : : ; ~Z 0� satis�es 
�2+(��
)(�2�1)+�1�
 =�1+�(�2�1) of the m 
onstraints. This yields property(b). A similar analysis 
an be used to show property (d).The following lemma shows a simple monotoni
ityproperty of implementations (proof omitted).Lemma 3.3 For integers �; �0 with � � �0, if F �-implements f then F �0-implements f . Furthermorestri
tness and perfe
tness are preserved under this trans-formation.The next lemma now shows how to use perfe
timplementations for showing hardness of weightedMAX ONE problems.Lemma 3.4 Given 
onstraint sets F1;F2, su
h thatthe weighted MAX ONE(F2) problem has a �(n)-approximation algorithm and every 
onstraint f 2 F1
an be perfe
tly implemented by the 
onstraint set F2,then there exist 
onstants 
; d su
h that the weightedMAX ONE(F1) problem has a �(
nd)-approximation al-gorithm.Proof: Let l = jF1j and k be the maximum arity ofany 
onstraint f 2 F1. Let K be the largest number ofauxiliary variables used in perfe
tly implementing any
onstraint f 2 F1 by F2. Noti
e that K is a �nite
onstant for any �xed F1, F2.Given an instan
e I of MAX ONE(F1) with m 
on-straints C1; : : : ; Cm on n variables X1; : : : ; Xn, withn real non-negative weights w1; : : : ; wn, we 
reate aninstan
e I 0 of MAX ONE(F2) as follows: I 0 has thevariables X1; : : : ; Xn of I and in addition \auxiliary"variables fY ji gm;Ki=1;j=1. The weights 
orresponding toX1; : : : ; Xn is w1; : : : ; wn (same as in I) and the auxil-iary variables Y ji have weight zero. The 
onstraints of I 0perfe
tly implement the 
onstraints of I. In parti
ularthe 
onstraint fi(Xi1 ; : : : ; Xik) of I is implemented bya 
olle
tion of 
onstraints from F2 (as di
tated by theperfe
t implementation of fi by F2) on the variables(Xi1 ; : : : ; Xik ; Y 1i ; : : : ; Y Ki ).By the de�nition of perfe
t implementations, it is
lear that the every feasible solution to I 
an be ex-tended (by some assignment to the Y variables) into afeasible solution to I 0. Alternately, every solution toI 0 immediately proje
ts on to a solution of I. Further-more, the value of the obje
tive fun
tion is exa
tly thesame (by our 
hoi
e of weights). Thus a �-approximatesolution to I 0 gives a �-approximate solution to I.It remains to study this approximation as a fun
-tion of the instan
e size. Observe that the instan
esize of I 0 is mu
h larger. Let N denote the num-ber of variables in I 0. Then N is upper boundedby Km + n, where m is the number of 
onstraints5



in I. But m, in turn, is at most lnk. ThusN � (K + 1)lnk, implying that an �(N)-approximatesolution to I 0, gives an �((K + 1)lnk)-approximatesolution to I. Thus an �(N)-approximation al-gorithm for the weighted MAX ONE(F2) problemyields an �(
nd)-approximation for the weightedMAX ONE(F1)-problem, for 
 = (K+1)l and d = k.Corollary 3.5 If weighted MAX ONE(F1) is APX-hardand F2 perfe
tly implements every 
onstraint in F1,then weighted MAX ONE(F2) is APX-hard. Similarly, ifweighted MAX ONE(F1) is poly-APX-hard and F2 per-fe
tly implements every 
onstraint in F1, then weightedMAX ONE(F2) is poly-APX-hard.4 The Classi�
ation Theorem forMAX ONEIn this se
tion, we establish Theorem 2.3. We use thefollowing shorthand notation for the eight 
onstraints
lasses of importan
e. Let F1 denote the 
lass of 1-valid
onstraints, F2 the weakly positive 
onstraints, F3 theaÆne width-2 
onstraints, F4 the aÆne 
onstraints, F5the strongly 0-valid 
onstraints, F6 the weakly negative
onstraints, F7 the 2CNF 
onstraints and F8 the 0-validones. Theorem 2.3 
an be restated as follows. For a 
on-straint set F if i is the smallest index su
h that F � Fi,then if i 2 f1; 2; 3g then MAX ONE(F) 2 P, if i = 4then MAX ONE(F) is APX-
omplete, if i 2 f5; 6; 7gthen MAX ONE(F) is poly-APX-
omplete, if i = 8then SAT(F) is in P but MAX ONE(F) is not approx-imable and if no su
h i exists then �nding any satisfyingassignment for MAX ONE(F) in NP-hard.4.1 PreliminariesIn this subse
tion, we prove a few preliminary lem-mas that we will need in the proof of the theorem, par-ti
ularly in Cases 2 and 3. We �rst show that in these
ases, it is essentially equivalent for us to 
onsider theweighted or unweighted MAX ONE(F) problem.We begin with a slightly stronger de�nition ofpolynomial-time solvability of SAT(F) that we willneed. We then show that given this stronger form ofSAT(F) that insofar as APX-hardness and poly-APX-hardness are 
on
erned, the weighted and unweighted
ases of MAX ONE(F) are equivalent. We 
on
ludeby showing that in Cases 2 and 3 the stronger form ofSAT(F) holds.De�nition 4.1 We say that a 
onstraint satisfa
tionproblem SAT(F) is strongly de
idable if given m 
on-straints on n variables X1; : : : ; Xn and an index i 2f1; : : : ; ng, there exists a polynomial time algorithm whi
hde
ides if there exists an assignment to X1; : : : ; Xn satis-fying allm 
onstraints and additionally satisfying the prop-erty Xi = 1.

Lemma 4.2 For every strongly de
idable 
onstraintset F , for every � of the form 1=l for some pos-itive integer l and for every non-de
reasing fun
tion� : Z+ ! Z+, �-approximating the weightedMAX ONE(F) problem redu
es to �0-approximating the(unweighted) MAX ONE(F) problem, where �0(n) =�(p�n)(1+�) .Proof Sket
h: The basi
 idea of the proof is thatwe 
an repli
ate variables many times (in proportionto its weight) and then for every repli
ated 
opy of avariable, we pla
e all the 
onstraints that were pla
ed onthe original 
opy of the variable. If the original weightsare polynomially bounded then the new instan
e stillhas polynomial size.The only issue to be taken 
are of is that theweights of the original instan
e need not be polynomi-ally bounded. To take 
are of this, we �rst �nd thelargest weight element whi
h is set to 1 in some satis-fying assignment. Here we use the strong de
idabilityof the family F to �nd this element. Having done so,we 
an essentially ignore elements of larger weight andalso a�ord to round up the weight of all smaller ele-ments to integral multiples of �=n times the weight ofthis element. This only in
reases the 
ontribution ofany assignment by a fa
tor of (1 + �). After this trans-formation, we are redu
ed to the polynomially bounded
ase as desired.The ability to work with weighted problems in 
om-bination with Lemma 3.4 allows us to use existentialquanti�
ation over auxiliary variables and the notion ofperfe
t implementations of 
onstraints.As our examination will eventually show, there is re-ally no essential di�eren
e in the approximability of theweighted and unweighted problems. For now we willsatisfy ourselves by stating this 
onditionally.Corollary 4.3 For any strongly de
idable 
onstraint setF , the MAX ONE(F) problem is APX-hard if and only ifthe weighted MAX ONE(F) problem is APX-hard. Simi-larly, theMAX ONE(F) problem is poly-APX-hard if andonly if the weightedMAX ONE(F) problem is poly-APX-hard.Before 
on
luding we assert that most problems ofinterest to us will be able to use the equivalen
e betweenweighted and unweighted problems.Lemma 4.4 If F � Fj for some j 2 f1; : : : ; 7g, then Fis strongly de
idable.Lastly we des
ribe one more tool that 
omes in usefulin 
reating redu
tions. This is the notion of implement-ing a property whi
h falls short of being an implemen-tation of an a
tual 
onstraint. The target 
onstraints inthe following de�nitions are the 
onstraints whi
h for
e6



variables to being 
onstants (either 0 or 1). However,sometimes we are unable to a
hieve this. So we endup implementing a weaker form whi
h suÆ
es for ourappli
ations. We next des
ribe this property.De�nition 4.5 [Existential Zero (One)℄ A 
onstraintset F 
an implement the existential zero (one) propertyif there exists a set of m 
onstraints f1; : : : ; fm over nvariables ~X and an index k 2 f1; : : : ; ng su
h that thefollowing hold:� There exists an assignment Vk+1; : : : ; Vn toXk+1; : : : ; Xn su
h that assigning zero (one) to the�rst k variables X1; : : : ; Xk satis�es all 
onstraints.� Conversely, every assignment satisfying all the 
on-straints must make at least one of the variables inX1; : : : ; Xk zero (one).De�nition 4.6 Given a 
onstraint f of arity k and aset S � f1; : : : ; kg, the 
onstraint f j(S;0) is a 
on-straint of arity k� jSj given by f j(S;0)(X1; : : : ; Xk�jSj) =f(X1; 0; 0; X2; : : : ; Xk�jSj; 0; 0), where the zeroes o

urin the indi
es 
ontained in S. For a 
onstraint set F ,the 0-
losure of F , denoted Fj0 is the set of 
onstraintsff(S;0)jf 2 F ; S � f1; : : : ; kgg. (1-
losure may be de�nedsimilarly.)Noti
e that Fj0 essentially implements every 
on-straint that 
an be implemented by F [ fFg, ex
eptthe 
onstraint fFg, where F stands for the unary 
on-straint \false". We de�ne Fj1 similarly. Then Fj0;1 =Fj0 [ Fj1.Lemma 4.7 If a 
onstraint set F 
an implement the ex-istential zero property, then F perfe
tly implements every
onstraint in the 
onstraint set Fj0. Similarly, if a 
on-straint set F 
an implement the existential one property,then F perfe
tly implements every 
onstraint in the 
on-straint set Fj1.4.2 Proof of Main Theorem4.2.1 Cases 1, 4, and 5We now begin our proof of Theorem 2.3. We start withthe sub-
ases that are easier to prove and then move onto the more diÆ
ult sub-
ases. Cases 4 and 5 of Theo-rem 2.3 are indire
t and dire
t 
onsequen
es of S
hae-fer's theorem, respe
tively; we omit their proofs. Case1 is relatively simple, and we sket
h its proof below.Lemma 4.8 The weighted MAX ONE(F) problem is inP if ea
h F is 1-valid or is weakly positive or is aÆne withwidth 2.Proof Sket
h: The �rst two 
ases are easy and arehen
eforth omitted. In the 
ase that F is aÆne withwidth 2, we redu
e the problem of �nding a feasible

solution to 
he
king whether a graph is bipartite, andthen use the bipartition to �nd the optimal solution.Noti
e that ea
h 
onstraint 
orresponds to a 
onjun
-tion of 
onstraints of the form Xi = Xj or Xi 6= Xj .Create a vertex Xj for ea
h variable Xj and for ea
h
onstraint Xi 6= Xj , add an edge (Xi; Xj). For ea
h
onstraint Xi = Xj , identify the verti
es Xi and Xj ; ifthis 
reates a self-loop, then 
learly no feasible assign-ment is possible. Che
k whether the graph is bipartite;if not, then there is no feasible assignment. If so, thenfor ea
h 
onne
ted 
omponent of the graph 
hoose thelarger weight side of the bipartition, and set the 
orre-sponding variables to one.4.2.2 Case 3: The poly-APX-Complete CaseThe proofs of Cases 2 and 3 are mu
h more diÆ
ult.For spa
e reasons, we omit the proof of Case 2 and 
on-
entrate on Case 3. We �rst show that the problems inthis 
ase are in poly-APX.Lemma 4.9 If F � Fi for some i 2 f1; 2; 3; 4; 5; 6; 7gthen MAX ONE(F) 
an be approximated to within a fa
-tor of n.Proof: S
haefer's results imply a polynomial-timealgorithm to 
ompute a feasible solution. If the feasiblesolution has at least one 1, we are done. Else, iterativelytry setting every variable to one and 
omputing a fea-sible solution. Note that if F is aÆne (or 2CNF), thenthe 
onstraints obtained by restri
ting some variable tobe 1 remains aÆne (or resp. 2CNF), and thus this new
lass is still de
idable. Lastly, a strongly 0-valid 
on-straint set remains 0-valid after this restri
tion and isstill de
idable. If the de
ision pro
edure gives no non-zero solution, then the optimum is zero, else we outputa solution of value at least 1.We now turn to showing that this 
lass of problemsis poly-APX-hard. Our goal will be to perfe
tly imple-ment the 
onstraint �X1+ � � �+ �Xk, for some k � 2. Thefollowing lemma shows that this will imply poly-APX-hardness.Lemma 4.10 If f = �X1 + � � � + �Xk, thenMAX ONE(ffg) is poly-APX-hard.Proof: We do a redu
tion from MAX CLIQUE,whi
h is known to be poly-APX-hard [1℄. Given a graphG, 
onstru
t a MAX ONE(ffg) instan
e 
onsisting ofa variable for every vertex in G and the 
onstraint f isapplied to every subset of k verti
es in G whi
h doesnot indu
e a 
lique. It may be veri�ed that the op-timum number of ones in any satisfying assignment tothe instan
e 
reated in this manner is maxfk�1; !(G)g,where !(G) is the size of the largest 
lique in G. Givena solution to the MAX ONE(ffg) instan
e with l � kones, the set of verti
es 
orresponding to the variables7



set to one form a 
lique of size l. If l < k, output any sin-gleton vertex. Thus in all 
ases we obtain a 
lique of sizeat least l=(k � 1) verti
es. Thus the existen
e of an �-approximation algorithm for the MAX ONE(ffg) prob-lem implies the existen
e of a (k�1)�-approximation al-gorithm to the 
lique problem. The poly-APX-hardnessof 
lique now implies the lemma.The following lemma divides the remainder of theproof into two 
ases.Lemma 4.11 If F � Fi for some i 2 f5; 6; 7g, butF 6� Fj for any j 2 f1; 2; 3; 4g, then either F perfe
tlyimplements every 
onstraint in Fj0;1 or F perfe
tly imple-ments Fj0 and every 
onstraint in F is 0-valid.We show that in the �rst 
ase, we 
an perfe
tly im-plement �X + �Y . We will then turn to the 
ase in whi
hall 
onstraints are 0-valid and show that we 
an eitherperfe
tly implement �X1+ � � �+ �Xk or an existential one.If we 
an implement an existential one, then we are inthe same situation as the �rst 
ase. This will 
ompletethe proof of poly-APX-hardness.Re
all that we have a 
onstraint in F that is notweakly positive and a 
onstraint that is not aÆne.Case I : F perfe
tly implements every 
onstraint inFj0;1.Lemma 4.12 If f is not weakly positive, then the 
on-straint set ffgj0;1 perfe
tly implements either XOR or�X + �Y .Proof: Let C = ( �X1+ � � �+ �Xp+Y1+ � � �+Yq) be amaxterm in f with more than one negation i.e. p � 2.Substituting a 1 in pla
e of variables �X3; �X4; : : : ; �Xp, a0 in pla
e of variables Y1; Y2; : : : ; Yq, and existentiallyquantifying over all variables not in C, we get a 
on-straint f 0 su
h that ( �X1 + �X2) is a maxterm in f 0.By de�nition of maxterm, f 0 must be satis�ed when-ever X1 � X2 = 1. Now if f 0 is also satis�ed whenX1 = X2 = 0, we get the 
onstraint �X1 + �X2, else weget the 
onstraint XOR(X1; X2).Lemma 4.13 The 
onstraint set fXORg 
an perfe
tlyimplement the 
onstraint REP.Lemma 4.14 Let g be a non-aÆne 
onstraint. Thenthe 
onstraint set fg;REP;XORgj0;1 
an either perfe
tlyimplement the 
onstraint (X + �Y ) or ( �X + �Y ).Proof: Sin
e g is non-aÆne, we essentially have thefollowing situation for three satisfying assignments s1; s2and s3 for g. g()s1 0 0 0 0 1 1 1 1 1s2 0 0 1 1 0 0 1 1 1s3 0 1 0 1 0 1 0 1 1s1 � s2 � s3 0 1 1 0 1 0 0 1 00 X Y Z �Z �Y �X 1

(where ea
h 
olumn may a
tually be repeated more thanon
e). Fixing the above variables to 0's and 1's as shownin the last row, and using repli
ated 
opies of three vari-ables X;Y and Z (and their negations using XOR), weget a 
onstraint h(X;Y; Z) with the truth-table in Fig-ure 1.
x

yz
00      01     11      10

1       B        1       A0

1      C        1       D       0Figure 1: Truth-table of the 
onstraint h(X;Y; Z)The undetermined values in the table are indi
atedby the parameters A;B;C and D. The following anal-ysis shows that for every possible value of these param-eters, we 
an indeed perfe
tly implement an OR 
on-straint using the 
onstants 0 and 1.A = 0 =) 9 X h(Y; Z) = Y + �ZA = 1; B = 0 =) h(0; Y; Z) = �Y + ZA;B = 1; C = 0 =) h(X; 0; Z) = X + �ZA;B;C = 1; D = 0 =) h(X;Y; 1) = �X + �ZA;B;C;D = 1 =) h(1; Y; Z) = Y + �ZLemma 4.15 The 
onstraint set fX + �Y ;XORg per-fe
tly implements the 
onstraint �X + �Y .Proof: To perfe
tly implement �X + �Y , we 
reatean auxiliary variable X 0. We now add two 
onstraints,namely X 0 + �Y , and XOR(X;X 0). Clearly, all 
on-straints are satis�ed only if �X + �Y is satis�ed.Thus in all 
ases we are able to implement the 
on-straint �X + �Y .Case II : F 
an perfe
tly implement all 
onstraints inFj0 and all 
onstraints are 0-valid.We now show that either we 
an perfe
tly implement�X+ �Y , or perfe
tly implement a 1. If the former o

urs,we are done, and if the latter, we 
an redu
e to theprevious 
ase.Lemma 4.16 If f is 0-valid and not weakly positive, thenthe 
onstraint set ffgj0 either perfe
tly implements �X1+� � �+ �Xk for some k � 2 or it perfe
tly implements X+ �Yor REP.Proof: Let C = ( �X1 + � � �+ �Xp + Y1 + � � � + Yq) bea maxterm in f with more than one negation i.e. p � 2(su
h a maxterm exists sin
e f is not weakly positive).Substituting a 0 in pla
e of variables Y1; Y2; : : : ; Yq , and8



existentially quantifying over all variables not in C, weget a 
onstraint g su
h that ( �X1 + �X2 + � � � + �Xp) is amaxterm in g. Consider an unsatisfying assignment sfor g with the smallest number of 1's and let k denotethe number of 1's in s; we know k > 0 sin
e the original
onstraint 0-valid. WLOG assume that s assigns value 1to the variablesX1; X2; : : : ; Xk and 0's to the remainingvariables. It is easy to see that by �xing the variablesXk+1; Xk+2; : : : ; Xp to 0, we get a 
onstraint g0 = ( �X1+�X2+ � � �+ �Xk). If k > 1, then this perfe
tly implementsthe 
onstraint ( �X1 + � � �+ �Xk) and we are done.Otherwise k = 1, i.e. there exists an unsatisfying as-signment s whi
h assigns value 1 to exa
tly one of theXi's, say X1. Now 
onsider a satisfying assignment s0whi
h assigns 1 to X1 and has a minimum number of1's among all assignments whi
h assign 1 to X1. Theexisten
e of su
h an assignment easily follows from Cbeing a maxterm in g. WLOG assume that s0 = 1i0p�i.Thus the 
onstraint g looks as follows:X1 X2 X3:::Xi Xi+1:::Xp g()s1 0 0 00:::0 00:::0 1s2 1 0 00:::0 00:::0 0s0 = s3 1 1 11:::1 00:::0 1s4 0 1 ::: 00:::0 ?Existential quanti�
ation over the variablesX3; X4; : : : ; Xi and �xing the variables Xi+1 throughXp to 0 yields a 
onstraint g0 whi
h is either (X1+ �X2)or REP(X1; X2). The lemma follows.If we 
an perfe
tly implement X + �Y , then the fol-lowing lemma shows that we 
an essentially perfe
tlyimplement a 1, and thus we 
an redu
e to Case I. Weuse the 
onstraint fun
tion T (Xi) = Xi to represent
onstraints Xi = 1.Lemma 4.17 IfMAX ONE(F [ fX + �Y g) is �-approximable for somefun
tion �, then so is MAX ONE(F [ fTg).Proof: Given an instan
e I of MAX ONE(F [fTg)we 
onstru
t an instan
e I 0 of MAX ONE(F[fX+ �Y g)as follows. The variable set of I 0 is the same as that ofI. Every 
onstraint from F in I is also in
luded in I 0.The only remaining 
onstraints are of the form Xi = 1for some variables Xi (imposed by the 
onstraint T ).We simulate this 
onstraint in I 0 with n� 1 
onstraintsof the form Xi + �Xj for every j 2 f1; : : : ; ng, j 6= i.Every non-zero solution to the resulting instan
e I 0 isalso a solution to I, sin
e the solution must have Xi =1 or else every Xj = 0. Thus the resulting instan
eof MAX ONE(F [ fX + �Y g) has the same obje
tivefun
tion and the same feasible spa
e and is hen
e atleast as hard as the original problem.Now by Lemma 4.16 the only remaining sub
ase is ifwe 
an perfe
tly implement REP. The following lemma

shows that in this 
ase we 
an either perfe
tly imple-ment �X + �Y or X + �Y . If we 
an do the former, we aredone, and if the latter, we 
an use X + �Y to perfe
tlyimplement the T 
onstraint, and redu
e to the previous
ase. Hen
e in either 
ase we are �nished.Lemma 4.18 If f is 0-valid 
onstraint and non-aÆne,then MAX ONE(ff;REPg) perfe
tly implements eitherthe 
onstraint ( �X + �Y ) or the 
onstraint (X + �Y ).Proof: S
haefer [17℄ shows that if f is a non-aÆne
onstraint, then there exist two satisfying assignmentss1 and s2 su
h that s1�s2 is not a satisfying assignmentfor f . Using this fa
t and the fa
t that f is 0-valid, weessentially have the following situation: g()00:::0 00:::0 00:::0 00:::0 1s1 00:::0 00:::0 11:::1 11:::1 1s2 00:::0 11:::1 00:::0 11:::1 1s1 � s2 00:::0 11:::1 11:::1 00:::0 000:::0 XX:::X Y Y:::Y ZZ:::ZFixing the above variables to 0's as shown in the lastrow, and assigning repli
ated 
opies of three variablesX;Y and Z, we get a 
onstraint h(X;Y; Z) with thetruth-table in Figure 1. The lemma now follows usingan analysis identi
al to the one used in Lemma 4.14.A
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