
A tight characterization of NP with 3 query PCPs

Venkatesan Guruswami∗ Daniel Lewin∗ Madhu Sudan∗ Luca Trevisan∗†

Abstract

It is known that there exists a PCP characterization of
NP where the verifier makes 3 queries and has a one-
sided error that is bounded away from 1; and also that 2
queries do not suffice for such a characterization. Thus
PCPs with 3 queries possess non-trivial verification power
and motivate the task of determining the lowest error that
can be achieved with a 3-query PCP. Recently, Håstad [11]
has shown a tight characterization of NP by constructing
a 3-query PCP verifier with “error” arbitrarily close to
1/2. Unfortunately, this verifier makes two-sided error and
Håstad makes essential use of this feature. One-sided error,
on the other hand, is a natural notion to associate with a
proof system, since it has the desirable property that every
rejected proof has a short counterexample. The question of
determining the smallest error for which there exists a 3-
query PCP verifier making one-sided error and accepting
an NP-complete language, however, remained open.

We resolve this question by showing that NP has a 3-
query PCP with a one-sided error that is arbitrarily close
to 1/2. This characterization is tight, i.e., the error cannot
be lower. This result is in seeming contradiction with the re-
sults of Trevisan [15] and Zwick [17] who show that in or-
der to recognize an NP-complete language, the error prob-
ability of a PCP verifier making 3 non-adaptive queries and
having one-sided error must be at least 5/8. We get around
this bottleneck by designing an adaptive 3-query PCP for
NP. Our result yields the first tight analysis of an adaptive
PCP; and reveals a previously unsuspected separation be-
tween the powers of adaptive and non-adaptive PCPs.

Our design and analysis of adaptive PCPs can be ex-
tended to higher number of queries as well and we give an
example of such a proof system with 5 queries. Our adap-
tive verifiers yield proof systems whose error probabilities
match those of previous constructions, while also achieving
one-sidedness in the error. This raises new questions about
the power of adaptive PCPs, which deserve further study.

∗Laboratory for
Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139,
USA. {venkat,danl,madhu,luca}@lcs.mit.edu.
†Research supported by the Italian CNR.

1 Introduction

The construction of efficient probabilistically checkable
proofs (PCPs) has been a subject of active research in
past few years. A sequence of surprising developments
[4, 3, 8, 2, 1, 6, 9, 7, 5] recently culminated in the striking re-
sults of Håstad [11] showing that every language in NP has
a PCP verifier querying 3 bits and having error probability1

arbitrarily close to 1
2 . This characterization of NP is tight

in the sense that no verifier querying 3 bits could achieve
an error strictly smaller than 1

2 . Håstad actually describes
a general machinery for determining the error of PCP veri-
fiers using Fourier analysis — a machinery which could in
principle yield a tight analysis of any given verifier.

In the process of proving this “tight” characterization of
NP, Håstad’s work exposes some of the previously unex-
plored subtleties in the definition of a PCP proof system.
Recall that such a proof system is described by an (r, q)-
restricted PCP verifier, i.e., a probabilistic polynomial time
oracle machine, who on input x, tosses r(|x|) random coins
and makes q(|x|) queries to a proof oracle Π. A language
L ∈ PCPc,s[r, q] if there exists an (r, q)-restricted verifier
V satisfying: (1) (completeness) If x ∈ L, then ∃ Π s.t.
PrR[V Π(x : R) accepts] ≥ c. (2) (soundness) If x 6∈ L,
then ∀ Π PrR[V Π(x : R) accepts] ≤ s (where V Π(x;R)
denotes the computation of V on input x and random string
R with oracle Π). We refer to the ratio s/c as the error of
the verifier. Notice that while the definition allows for the
verifier to make two-sided error, most PCP constructions to
date restricted their attention to verifiers making one-sided
error (or have perfect completeness i.e., have c = 1). There
are several reasons for this: (1) It was not known how to
exploit the power of two-sided error and (2) Verifiers with
one-sided error work better in “composition” and in many
applications to inapproximability results. Moreover, there
is an aesthetically pleasing element to PCP proof systems
with one-sided error: The proof system explicitly exhibits
a flaw in any proof it rejects; and in the case of 3 query
verifiers, the flaw is in the 3 bits queried.

Håstad’s construction, however, yields a verifier making
two-sided error. Specifically, when x ∈ L the verifier makes
an arbitrarily small but non-zero error. This gap is inher-

1We will use this term loosely for the present and formalize it shortly.

1

ent in his construction and leaves open the question: What
is the lowest error that can be achieved in a 3-query PCP
for NP, making one-sided error? This question is especially
relevant to one-sided error, because (only) in this case is it
known that 3 is the smallest number of queries for which the
error can be bounded away from 1. In light of the newly ac-
quired ability to perform (at least in principle) a tight analy-
sis of almost any PCP verifier, it seems feasible to examine
this question: The only challenge seems to be in designing
the right PCP verifier. Yet, the best previous construction of
a PCP verifier that queries three bits and has perfect com-
pleteness only achieves an error probability arbitrarily close
to 3/4 [11].

Trevisan [15] and Zwick [17] show a fundamental barrier
to this quest: They show that any verifier making 3 non-
adaptive queries to the proof oracle, and achieving a one-
sided error better than 5/8 can only recognize languages in
P. This brings up another subtlety in the definition of PCP.
The definition actually allows the queries of the verifier to
be generated adaptively: i.e., the questions asked may de-
pend upon answers to previous questions. Most previous
constructions do not use adaptivity. However, to get a tight
answer to the 3-query question, it seems necessary to build
an adaptive verifier; and the only construction of an adap-
tive PCP verifier in the literature is a construction of Bellare
et al. [5]. Thus this entire area seems relatively unexplored.

We build a new adaptive 3-query verifier for NP. This
verifier is based on a combination of the adaptive verifier of
Bellare et al. [5] and the non-adaptive verifier with perfect
completeness of Håstad [11]. We perform a tight analysis
of this verifier and obtain a somewhat surprising result:

Theorem 1.1 For every ε > 0, NP = PCP1, 12 +ε[log, 3].

The theorem is tight since, as pointed out earlier, any 3-
query verifier for NP must make an error with probability
at least 1

2 . This theorem, therefore, resolves a central ques-
tion relating to PCPs by obtaining a tight characterization
of NP in terms of a 3-query PCP making one-sided error.
The surprising element of the result above is that it shows
that an adaptive verifier can achieve a lower error than any
non-adaptive verifier — thereby establishing a separation
between adaptive and non-adaptive PCPs. Prior to this re-
sult there was no evidence indicating that such a separation
might exist. In fact, on the contrary, Trevisan [14] points out
that adaptive and non-adaptive PCPs actually have the same
power for PCPs with two-sided error. Of technical inter-
est is that we extend (in retrospect, quite easily) the Fourier
analysis method of Håstad to the case of adaptive PCPs.

We move on to examine PCPs with slightly higher num-
ber of queries. This examination is motivated primarily by
the following question: Is it true that every additional query
increases the power of PCPs ? (I.e., is PCP1,s[log, q] ⊆

PCP1,s′ [log, q + 1], for some s′ < s?2) It is easy to see
that 3 additional bits certainly reduce the error. Yet, for one
additional bit we do not know the answer. In fact, prior to
this paper, it was not even known if there exists a non-trivial
q (q ≥ 3) for which this statement is true. To answer such
questions, we prove some more new (but not necessarily
tight) characterizations of NP in terms of PCP. These are
described below, where the notation naPCP below stands
for non-adaptive PCP.

Theorem 1.2 For every ε > 0, the following hold:
1. (4 non-adaptive queries)

NP = naPCP1, 12 +ε[log, 4].

2. (5 adaptive queries) NP = PCP1, 14 +ε[log, 5].
3. (5 non-adaptive queries)

NP = naPCP1, 7
16 +ε[log, 5].

4. (6 non-adaptive queries)
NP = naPCP1, 14 +ε[log, 6].

Part (2) of result is where the main technical work is
done. Parts (1) and (4) are immediate corollaries of the
adaptive protocols in Theorem 1.1 and Part (2) of the theo-
rem above: The non-adaptive verifier is obtained by reading
all possible bits that may be read by the adaptive verifier.
It is interesting to observe that that for several choices of
q, the best known non-adaptive PCP verifier is obtained by
starting from an adaptive one. Part (3) requires some modi-
fication of the verifier of Part (2).

Finally, using the semidefinite programming methodol-
ogy of Karloff and Zwick [12, 17], we also prove the fol-
lowing containment result for 4-query PCP.

Theorem 1.3 For any c, s such that s/c < 0.33,
PCPc,s[log, 4] ⊆ P.

Theorem 1.1, 1.2 and 1.3 together yield some partial answer
to the question posed earlier, since they exhibit some non-
trivial values of q for which q + 1 queries give more power
than q:

For non-adaptive PCP, 4 queries are stronger than 3.
(from Theorem 1.2 (1) and [17].)
For adaptive PCP, 5 queries are stronger than 4. (from
Theorem 1.2 (2) and Theorem 1.3.)
5 non-adaptive queries are stronger than 4 adaptive
queries. (from Theorem 1.3 with c = 1 − ε and the
fact – proved in [16] – that NP ⊆ PCP1−ε,1/4

[
log, 5

]
for any ε > 0.)

These results further highlight some aspects in which
our understanding of PCPs are still not tight. We sum-
marize this with the following open questions: (1) What
is the smallest s for which NP = naPCP1,s[log, 3]? (2)

2This question was posed to us by Oded Goldreich.

2

Is it true that for every q, there exist s′ < s, such that
PCP1,s[log, q] ⊆ P while NP = PCP1,s′ [log, q + 1]? (3)
If NP = PCPc,s[log, q], then is it the case that for every
ε > 0, NP = PCP1,s/c+ε[log, q]? Theorem 1.1 answers
this question positively for q = 3, but leaves it open for
higher values of q.

Organization Section 2 gives some background and de-
scribes the notion of recursive proof checking as needed for
our constructions. Section 3 describes the proof of Theo-
rem 1.1. Section 4 describes the verifier of Theorem 1.2,
Part (2). Highlights of the other PCP constructions are pre-
sented in Section 5 and certain containments of PCP classes
in P are given in Section 6.

2 Background

Our PCP constructions rely on the proof-composition
methodology introduced by Arora and Safra [2] and then
refined in [1, 6, 7, 5, 11]. In this methodology one uses a
verifier by Raz [13] and then “composes” it with an “in-
ner verifier”: the result of the composition is a PCP con-
struction. This methodology is very useful since it reduces
the task of constructing a PCP protocol to the simpler task
of finding inner verifiers. In this section we give a brief
overview of this methodology and we give a formal defini-
tion of an inner verifier.

We first review the properties of Raz’s construction that
will be used in this paper. Raz’s construction of a 2-Prover
1-Round proof system is parameterized by an integer n,
which should be thought of as a fixed large constant. In a
2-Prover 1-Round protocol the verifier has oracle access to
two provers P1 and P2, and can ask one query to each ora-
cle. Upon being queried, P1 answers with a binary string of
length n and P2 answers with a binary string of length 3n
(in contrast, a PCP verifier has oracle access to one proof
oracle and can make a constant number of queries, receiv-
ing one bit for each query). The computations of Raz’s veri-
fier have a particularly nice structure. The verifier computes
queries q1 and q2 for prover P1 and P2 respectively, and also
a function π : {0, 1}3n → {0, 1}n and a set S ⊆ {0, 1}3n
(we omit details on how the queries, the function and the set
are generated). Upon receiving the answers a = P1(q1) and
b = P2(q2), where a ∈ {0, 1}n and b ∈ {0, 1}3n, the veri-
fier accepts iff b ∈ S and π(b) = a. Raz’s verifier chooses
the function π according to the distribution described be-
low. Let Pn denote the set of “projection functions” from
{0, 1}3n to {0, 1}n which project exactly one coordinate out
of 3i− 2, 3i− 1, 3i for any i, 1 ≤ i ≤ n. Then the distribu-
tion of π is the uniform distribution on Pn. The verifier has
perfect completeness and soundness cn, where c < 1 is an
absolute constant [13].

Raz’s verifier is used in PCP constructions in the follow-
ing way. We encode each possible answer of the provers in
Raz’s protocol using a suitable error-correcting code. Addi-
tionally, we define a new verification procedure (which we
call the inner verifier) that, given two strings A and B, the
function π, and the set S, checks whether A is the encod-
ing of an a and B is the encoding of a b such that b ∈ S
and π(b) = a. As an error correcting code we use the
long code of Bellare et al. [5]. The long code of a string
a ∈ {0, 1}n is a string Ea (we let E stand for encoding)
of length 22n whose entries are indexed by the functions
f : {0, 1}n → {0, 1}, such that Ea(f) = f(a). The long
code is extremely wasteful, but since a is of constant length,
we can afford such a redundancy, and it will simplify the
checking procedures. When representing all the answers of
a pair of Raz provers using the long code, we will adopt
some useful conventions. First of all, we represent Boolean
values as elements of {1,−1} rather than {0, 1}. The asso-
ciation is that −1 stands for 1 (or true) and 1 stands for 0
(or false), so that the xor operator becomes integer multi-
plication. In the following we will denote by Fn the set of
functions f : {−1, 1}n → {−1, 1}; also n will always be
the parameter in Raz’s protocol; we will usually letm = 3n
be the length of an answer from prover P2 in Raz’s proto-
col. We say that a string A indexed by functions f ∈ Fn
is 1-folded if A(f) = −A(−f) for every f . Codewords
of the long code are 1-folded; in the rest of the paper we
will restrict to 1-folded functions, this can be done with-
out loss of generality using an access mechanism from [5].
A string B indexed by functions g ∈ Fm is S-consistent,
where S ⊆ {0, 1}m, if g|S ≡ h|S implies B(g) = B(h).
Notice that the long code of an element of S is S-consistent.
An access mechanism described in [11] allows us to restrict
without loss of generality to S-consistent B.

To sum up, we are considering a modification of Raz’s
protocol where all the answers of the two provers are en-
coded using the long code (call the encoded provers LP1

and LP2, where L stands for the use of the long code). We
want to design a verifier that chooses q1, q2, S, π accord-
ing to the same distribution of Raz’s verifier, and then looks
at the string A = LP1(q1) and B = LP2(q2); the access
mechanism guarantees that A and B are 1-folded and B is
S-consistent. Our goal is to test whether it is the case that
A is the long code of some answer a and B is the long code
of some b such that b ∈ S and π(b) = a. An inner veri-
fier is a testing procedure for this task. We clearly want to
read as few bits as possible from A and B, and also have a
good soundness. The definition of soundness for an inner
verifier is somewhat tricky. Intuitively, we would like the
inner verifier to reject with high probability whenever the
conditions that we are testing are not satisfied (i.e. A is not
a codeword of the long code, or B is not a codeword, or B
is the encoding of some b and A is the encoding of some a

3

but we have π(b) 6= a and so on), but this is impossible to
achieve without reading the tables entirely.

The right definition of soundness is that there be (pos-
sibly randomized) decoding procedures that can decode A
and B, independently, into a pair of strings a and b ∈ S
such that π(b) = a, whenever the inner verifier accepts
with sufficiently large probability. We will use a random-
ized decoding procedure Dn that on input a 1-folded string
A : Fn → {−1, 1}, returns an element a = Dn(A) ∈
{−1, 1}n (formally, Dn(A) is a random variable depending
on the internal coin tosses of Dn). We will not describe Dn

here (a definition is given in Appendix A.1), but we remark
that if B is S-consistent then Dm(B) ∈ S with probability
1, and this allows us to concentrate solely on the “projec-
tion” condition π(b) = a in the formal definition of a good
inner verifier below.

Definition 1 (Good Inner Verifier) An inner verifier V
that has input A : Fn → {−1, 1}, B : Fm → {−1, 1}
and π : {−1, 1}m −→ {−1, 1}n is a (c, s, q)-good inner
verifier if the following properties hold: (1) V makes a to-
tal number of at most q queries to A and B; (2) If A is the
long code of a, B is the long code of b, and π(b) = a, then
V (A,B, π) accepts with probability at least c (complete-
ness); (3) for each γ > 0, there exists a γ′ > 0 that possi-
bly depends on γ but is independent of n and m, such that
for all 1-folded strings B, and all sets of 1-folded strings
{Aπ}π∈Pn ,

Pr
[
V (Aπ, B, π) accepts

]
≥ s+ γ =⇒

Pr
[
Dn(Aπ) = π(Dm(B))

]
≥ γ′

where the probabilities are taken over the uniform distribu-
tion of π in Pn and over the internal coin tosses of V and
D.

The above definition is based on the standard definition
of an inner verifier (e.g. from [5]) but it incorporates the
possibility that the decoding procedure be randomized3 and
also allows the soundness condition to be averaged over the
choices of π. The latter is a technicality that is necessary to
use some new results of Håstad [11], and it makes the defi-
nition less elegant as several details of the Raz verifier have
to be taken into account explicitly (for example the fact that
π is a projection, rather than an arbitrary function mapping
{−1, 1}m into {−1, 1}n, and also that π is selected uni-
formly). The following theorem can be proved using stan-
dard techniques.

Theorem 2.1 (Composition Theorem) If there exists a
(c, s, q)-good inner verifier, then for any ε > 0, NP =

3Bellare et al. [5] used a deterministic procedure that returned a list of
candidates, and this was conceptually similar to the randomized decoding
idea that first appeared in [11]. A definition of inner verifier with respect
to a randomized decoding procedure is explicit in [16].

Inner Verifier MBC (A,B, π)
Choose uniformly at random f ∈ Fn, g, h ∈ Fm
if A(f) = 1 then accept iff B(g) = B(g(f ◦ π ∧ h))
if A(f) = −1 then accept iff B(g) = B(g(−f ◦ π ∧ h))

Figure 1. The Inner Verifier based on the
Monomial Basis Check of Bellare et al. [5].

PCPc,s+ε
[

log, q
]
. Moreover, if there exists a (c, s, q)-good

inner verifier that makes at most q queries non–adaptively,
then NP = naPCPc,s+ε

[
log, q

]
.

3 The Adaptive 3-Query Protocol

Among the tasks of designing and analyzing PCP veri-
fiers, the latter used to be the more challenging one, but the
wide applicability of the new analysis techniques based on
Fourier transforms are shifting much of the difficulty on the
design phase. We will spend much of this section motivat-
ing the intuition behind our optimal protocol and describing
the ideas that lead to it.

As defined in the previous section, the inner verification
problem is: given π and given oracle access to 1-folded
strings A and B, test whether there exists a b such that B is
the encoding of b and A is the encoding of π(b). Equiv-
alently, we want to test whether for every f, g1 and g2,
the following properties hold: (1) A(f) = B(f ◦ π); (2)
B(g1 ∧ g2) = B(g1)∧B(g2); (3) B(g1g2) = B(g1)B(g2).
We will call A and B consistent if they satisfy the above
properties.

Assume A and B are consistent, and suppose A(f) = 1:
then B(f ◦ π) = 1 and also for any h B(f ◦ π ∧ h) =
B(f ◦π)∧B(h) = 1∧B(h) = 1. Similarly, if A(f) = −1
then B(−f ◦ π ∧ h) = 1 for every h. So far we used only
the first two properties of consistent stringsA andB. Using
also the third, we deduce that ifA andB are consistent, then
for any f ∈ Fn and any g, h ∈ Fm.

A(f) = 1 implies B(g) = B(g(f ◦ π ∧ h))
and A(f) = −1 implies B(g) = B(g(−f ◦ π ∧ h)) .

(1)
Checking this condition is essentially the Monomial Basis
Check (MBC) of Bellare et al. [5], with the minor twist of
looking at both A and B (Bellare et al. [5] would instead
look only at B, and then test separately whether A is con-
sistent with B). As a first proposal, we consider the test
of Figure 1, which checks the Condition (1) for f , g and h
chosen uniformly at random from their domain. It is possi-
ble to show that the MBC inner verifier is (1, 3/4, 3)-good,

4

Inner Verifier BGSp(A,B, π)
Choose uniformly at random f ∈ Fn, g, h ∈ Fm
With probability p do

if A(f) = 1 then accept iff B(g) = B(g(f ◦ π ∧ h))
if A(f) = −1 then accept iff B(g) = B(g(−f ◦ π ∧ h))

With probability 1− p do
accept iff A(f) = B(g)B(g(f ◦ π))

Figure 2. The Inner Verifier that combines
Monomial Basis Check and Projection Test.

i.e., the soundness is 3/4. We omit the (not too hard) anal-
ysis, that is based on the techniques of [11]. The following
argument shows that the analysis is tight: if A and B are
inconsistent long codes then the MBC verifier accepts with
probability 3/4, and our decoding procedure will have suc-
cess probability zero when working with two inconsistent
Long codes.

Since the worst case for the MBC verifier arises when
A and B are individually correct but inconsistent, we try to
patch the MBC test by adding another test that handles this
case well. A good candidate for this “patching” role is the
Projection Test, where f is taken uniformly from Fn, g is
taken uniformly from Fm, and the test accepts iff A(f) =
B(g)B(g(f ◦π)). Indeed, one can verify that ifA andB are
inconsistent long codes, then with probability 1/2 over the
choices of f and g the Projection Test rejects. Combining
the two verification procedures, we define the BGSp verifier
(see Figure 2) that is very similar to one used in [5]. Omitted
calculations (this time they are quite hard) show that it is
best to set p = 1/3 and that BGS1/3 is a (1, 2/3, 3)-good
verifier, i.e. the soundness is 2/3. Again, the analysis can
be shown to be tight: no setting of p can result in a verifier
with soundness less than 2/3.

A second look at the BGSp verifier reveals that the two
possible tests to be executed are very related: if we pick
h ≡ −1 instead that according to the uniform distribu-
tion, then the Projection Test coincides with the MBC test4.
Therefore, we can view BGSp in the following equivalent
way: it first chooses to pick h according to one out of two
possible distributions (i.e. either the uniform distribution
on Fm or the deterministic choice of setting h(b) = −1
for every b), then it picks f and g uniformly and performs
the MBC test. An alternative approach, that turns out to be
much better, is to “shuffle” the distributions, and to skew the
distribution of h pointwise. This gives rise to the definition
of the B-MBCp verifier (Figure 3, top). The analysis of the
BGSp verifier suggests that it would be good to set p = 1/6

4Recall that B is 1-folded — otherwise the claim would not be true.

Inner Verifier B-MBCp(A,B, π)
Choose uniformly at random f ∈ Fn, g ∈ Fm
Choose at random h ∈ Fm such that ∀b ∈ {−1, 1}m,

Pr[h(b) = 1] = p
if A(f) = 1 then accept iff

B(g) = B(g(f ◦ π ∧ h))
if A(f) = −1 then accept iff

B(g) = B(g(−f ◦ π ∧ h))

Inner Verifier IV3δ(A,B, π)
Set t = d1/δe, ε1 = δ2 and εi = eci−1

Choose p ∈ {ε1, . . . , εt} uniformly at random
Run B-MBCp(A,B, π)

Figure 3. The B-MBCp verifier, a version of the
MBC verifier where h is biased, and our final
Inner Verifier IV3δ.

in B-MBCp. Instead, it turns out that it is better to have p
much smaller. We now see some details of the analysis.

Let A, B, π and p be fixed, and let X = XA,B,π,p be the
random variable whose value is 1 when B-MBCp(A,B, π)
accepts and 0 otherwise5. The acceptance probability of
B-MBCp(A,B, π) is E[X], which equals

E
f,g,h

[(
(1 +A(f))

2

)(
(1 +B(g)B(g(f ◦ π ∧ h)))

2

)
+
(

(1−A(f))
2

)(
(1 +B(g)B(g(−f ◦ π ∧ h)))

2

)]
SinceA is folded, we always have−A(f) = A(−f). Using
the linearity of expectation and the fact that f and −f are
identically distributed in the uniform distribution, we get
E[X] equals

2 E
f,g,h

[(
(1+A(f))

2

)(
(1+B(g)B(g(f◦π∧h)))

2

)]
= 1

2 + 1
2 E
f,g,h

[B(g)B(g(f ◦ π ∧ h))]

+ 1
2 E
f,g,h

[A(f)B(g)B(g(f ◦ π ∧ h))] (2)

(there would also be a term 1
2 E
f

[A(f)] that we omit since it

is zero).
The expressions arising in (2) are extremely hard to

bound, but we are fortunate that their analysis already ap-
peared in the literature! Indeed they are the same expres-
sions arising in a verifier that Håstad [11] constructs in order

5The sample space of XA,B,π,p is given by the possible choices of f ,
g, and h.

5

to prove a (tight) non-approximability result for satisfiable
instances of MAX 3SAT. An equivalent description of the
verifier of Håstad is the following: it asks the queries A(f),
B(g) and B(−g(f ◦ π ∧ h)), where f, g, h are generated as
in B-MBCp, then

ifA(f) = 1 it accepts iffB(g) = −B(−g(f ◦π∧h));
if A(f) = −1 it accepts no matter what is the value of
B(g) and B(−g(f ◦ π ∧ h)).

(see steps (2) and (3) in the definition of the 3Sε verifier [11,
Page 23] and the comments in [11, Remark 4.12].)

Håstad proves that the expectation of B(g)B(g(f ◦ π ∧
h)) can be upper bounded by some arbitrarily small con-
stant, for any B, and he also shows that whenever the ex-
pectation of A(f)B(g)B(g(f ◦ π ∧ h)) is non-negligible,
then also the probability of success of the decoding proce-
dure is non-negligible. In order to bound the expectation of
B(g)B(g(f ◦ π ∧ h)), however, one cannot fix a particular
p, but one has to pick p according to an appropriate distri-
bution; also the bounds hold only if the expectation is also
taken over π. There is a counter-example showing that the
expressions of (2) cannot be bounded without going through
such additional complications. For our purposes, it suffices
to pick p according to the same distribution as in [11, Test
3S, Page 29] and then apply the results proved therein. Our
final verifier IV3δ , described in Figure 3, is the same as
B-MBCp except for the choice of p. The strange distri-
bution of p is the particular one for which Håstad shows
how to bound the expressions of (2). The constant c used
in the definition of ε1, . . . , εt is an absolute constant which
is left unspecified in [11]. Using results from [11], specifi-
cally Lemmas 4.6 and 4.10, we can prove that the soundness
of IV3δ can be made arbitrarily close to 1/2 by choosing δ
small.

Theorem 3.1 For any δ > 0, IV3δ is a (1, 1/2+2δ, 3)-good
inner verifier.

Some details of the proof of Theorem 3.1 are given in the
Appendix. Theorem 1.1 follows from Theorem 3.1 and the
Composition Theorem 2.1.

4 The Adaptive 5-Query Protocol

We now proceed to construct a PCP that makes 5 queries.
The way to exploit the additional queries at our disposal is
to look at two functions f1, f2 ∈ Fn instead of just a sin-
gle f ∈ Fn. In the 3 query protocol, the rationale used
was that if f(a) = 1 then (f ∧ h)(a) = 1 for any h
and similarly for the case when f(a) = −1. Similarly if
f1(a) = f2(a) = 1, then we must have (f1 ∧ h)(a) = 1
and (f2 ∧ h)(a) = 1 for any h, and these two tests can
be performed (instead of just one test (f ∧ h)(a) = 1 as
was done in the 3 query protocol). As one might expect,

this method yields soundness of (1/2)2 = 1/4 while mak-
ing 5 (adaptive) queries (this construction follows the same
idea of recycling one bit as in [16]). We now give a dif-
ferent test that gives no improvement over this test for the
case of 5 adaptive queries, but which, however, has other
applications (which shall be sketched in section 5) that the
originally suggested one does not. We will use as basis for
our test the following fact: if f1(a) = f2(a) = 1, then
(f1 ∧ f2 ∧h)(a) = (f1 ∧−f2 ∧h)(a) = (−f1 ∧ f2 ∧h)(a)
for any h. Thus, we will able to perform two equality tests
while reading five bits, so one expects that the soundness
should be (1/2)2 = 1/4 and indeed we shall prove that to
be the case. In the actual protocol, however, f and h will
belong to different spaces and this will be handled using the
projection function π, and moreover, since we would like
all queried bits (functions) to be unbiased, we will also xor
these functions with an unbiased function g. This yields the
inner verifier of Figure 4. As in the case of the 3 query pro-
tocol, we once again need to pick the bias p at random from
a set of different possibilities for the analysis to work. This
gives us the final inner verifier IV5δ of Figure 4.

We now analyze the soundness of IV5δ . Let Y denote
the indicator random variable for the acceptance of IV5δ ,
so that the probability that IV5δ accepts is just the expecta-
tion of Y over the choices of pf1, f2, g, h. Arithmetization
of the test yields terms of the form E

[
B(Gj1)B(Gj2)

]
,

E
[
A(fi)B(Gj1)B(Gj2)

]
, E

[
A(f1)A(f2)B(G1)B(G4)

]
and E

[
A(f1)A(f2)B(G2)B(G3)

]
. Af-

ter straightforward calculations and arguments of the form
“ E
f1,f2,g,h

[
B(G1)B(G2)

]
= E

f,g,h

[
B(g)B(g · (f ◦ π ∧ h)

]
since the distribution of G1, G2 is identical to the one of
g, g · (f ◦ π ∧ h)”, we get E

[
Y
]

equals

1
4

+
3
4 E
p,f,g,h

[
B(g)B(g · (f ◦ π ∧ h))

]
(3)

+ 1
2 E
p,f,g,h

[
A(f)B(g)B(g · (f ◦ π ∧ h))

]
− 1

4 E
p,f1,f2,g,h

[
A(f1)A(f2)B(g · (f1 ◦ π ∧ f2 ◦ π ∧ h)) ·

·B(g · (−f1 ◦ π ∧ −f2 ◦ π ∧ h))
]

The second term in the RHS above can be upper-bounded
by 4δ using Lemma A.1 as was done for the 3 query proto-
col, and if either of the last two terms has non-negligible ab-
solute value, then the success probability of the randomized
decoding strategies will also be non-negligible (the formal
statements relating to this appear as Lemmas A.2 and A.3 in
the Appendix). The following theorem has a proof similar
to the one of Theorem 3.1.

Theorem 4.1 For any δ > 0, AIV5δ is a (1, 1/4 + 3δ, 5)-
good inner verifier.

Theorem 1.2, Part (2), now follows from Theorem 4.1 and
the Composition Theorem 2.1.

6

Inner Verifier B-V5p (A,B, π)
Choose uniformly at random f1, f2 ∈ Fn, g ∈ Fm
Choose at random h ∈ Fm such that ∀b ∈ {−1, 1}m.Pr[h(b) = 1] = p
Let G1 = g · (f1 ◦ π ∧ f2 ◦ π ∧ h), G2 = g · (f1 ◦ π ∧ −f2 ◦ π ∧ h)
G3 = g · (−f1 ◦ π ∧ f2 ◦ π ∧ h), G4 = g · (−f1 ◦ π ∧ −f2 ◦ π ∧ h)

if A(f1) = 1 and A(f2) = 1 accept iff B(G1) = B(G2) = B(G3)
if A(f1) = 1 and A(f2) = −1 accept iff B(G1) = B(G2) = B(G4)
if A(f1) = −1 and A(f2) = 1 accept iff B(G1) = B(G3) = B(G4)
if A(f1) = −1 and A(f2) = −1 accept iff B(G2) = B(G3) = B(G4)

Inner Verifier IV5δ(A,B, π)
Set t =

⌈
δ−1
⌉
, ε1 = δ2 and εi = εci−1 for 1 < i ≤ t.

Choose p ∈ {ε1, · · · , εt} uniformly at random.
Run B-V5p (A,B, π)

Figure 4. The 5 query adaptive inner verifier with a fixed p and the final inner verifier.

Inner Verifier B-NAV5p (A,B, π)
Choose uniformly at random f1, f2 ∈ Fn, g ∈ Fm
Choose at random h ∈ Fm such that ∀b ∈ {−1, 1}m,

Pr[h(b) = 1] = p
Let G1 = g · (f1 ◦ π ∧ f2 ◦ π ∧ h)

G2 = g · (f1 ◦ π ∧ −f2 ◦ π ∧ h),
G3 = g · (−f1 ◦ π ∧ f2 ◦ π ∧ h)

if A(f1) = 1 and A(f2) = 1 accept iff
B(G1) = B(G2) = B(G3).

if A(f1) = 1 and A(f2) = −1 accept iff B(G1) = B(G2).
if A(f1) = −1 and A(f2) = 1 accept iff B(G1) = B(G3).
if A(f1) = −1 and A(f2) = −1 accept iff B(G2) = B(G3).

Figure 5. The Inner Verifier B-NAV5p

5 Non-adaptive PCP constructions

This section sketches how improved non-adaptive PCPs
may be derived from our adaptive PCP constructions of pre-
vious sections. Employing the naive conversion of adap-
tive PCPs into non-adaptive ones by reading all possi-
ble bits already yields that IV3δ (respectively IV5δ) is a
(1, 1/2 + 2δ, 4)-good (respectively (1, 1/4 + 3δ, 6)-good)
non-adaptive inner verifier, which together with the Com-
position Theorem yields Parts (1) and (4) of Theorem 1.2.

To obtain a good 5 query non-adaptive inner verifier, we
modify the non-adaptive version of B-V5p (that reads 6 bits)
to give the verifier B-NAV5p (see Figure 5) that, instead of
reading all B(Gi) for 1 ≤ i ≤ 4, does not read bit B(G4),
and does not perform any of the tests involving B(G4). As

usual, our final inner verifier NAIV5δ runs B-NAV5p after
picking p at random from a suitable set. In the three cases
when either A(f1) 6= 1 or A(f2) 6= 1 (or both), NAIV5δ
performs only one test, while when A(f1) = A(f2) = 1
it performs two tests. This implies that the soundness of
NAIV5δ is at least 3/4×1/2+1/4×1/4 = 7/16 (which is
the probability of accepting random, but inconsistent, long
codes). One can, however, show, using the same techniques
as that of Section 4, that this bound is achieved, and that
NAIV5δ is a (1, 7

16 + 9δ
4 , 5)-good non-adaptive inner veri-

fier, thereby proving Part (3) of Theorem 1.2.

6 Weakness Results for PCPs

In this section, we prove that PCP classes with certain
query complexity and error probability are weak in the sense
that they can only capture languages in P. We achieve this
goal by providing approximation algorithms for constraint
satisfaction problems and then invoking the following re-
sult.

Fact 1 ([14]) If there exists a polynomial time fac-
tor r approximation algorithm for MAX kCSP, then
PCPc,s

[
log, k

]
⊆ P for any s/c < r.

Existing approx-
imation algorithms in [14, 15, 17] for various MAX kCSP
problems therefore imply that PCPc,s

[
log, 3

]
⊆ P for any

s/c < 1/2, naPCP1,s

[
log, 3

]
⊆ P for any s < 5/8,

PCPc,s
[

log, k
]
⊆ P for any s/c < 21−k, and lastly

naPCP1,s

[
log, k

]
⊆ P for any s < (k + 1)/2k.

Our first result relies on a semidefinite programming re-
laxation of MAX 4CSP using a methodology of Karloff and

7

Zwick [12, 17] and a numerical analysis of the approxima-
tion ratio guaranteed by rounding the SDP solution using a
random hyperplane with certain probability and using a ran-
dom assignment to the variables with the remaining proba-
bility.

Theorem 6.1 There exists a polynomial time algorithm for
approximating MAX 4CSP within a factor of 0.33 of the op-
timum.

Corollary 6.1 For any s/c < 0.33, we have
PCPc,s

[
log, 4

]
⊆ P.

By the above corollary adaptive PCPs making 4 queries
cannot achieve a soundness of 0.33 if they have near-perfect
completeness; however, a 5–query non–adaptive PCP con-
struction with near-perfect completeness and soundness
0.25 is known [16]. Thus, we exhibit the first instance
where adaptive PCPs are strictly less powerful than non-
adaptive PCPs that just make one extra query (unless P 6=
NP).

Finally, we obtain limitations on the power of k query
PCPs for larger values of k, for the special cases of perfect
and near-perfect completeness. The proofs of these state-
ments may be found in the more complete version of the
paper [10].

Theorem 6.2 For an ε > 0, PCP1,3/(2k+1)−ε
[

log, k
]
⊆

P.

Theorem 6.3
We have, for any ε > 0, PCP1−ε,s

[
log, k

]
⊆ P, where

s = 3
2k+2

−O(kε
1/3

2k+2
).

Acknowledgments

We would like to thank Uri Zwick for having provided us
with the code he used in [12, 17].

References

[1] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN,
AND M. SZEGEDY. Proof verification and hardness
of approximation problems. Journal of the ACM,
45(3):501–555, 1998. Preliminary version in Proc. of
FOCS’92.

[2] S. ARORA AND S. SAFRA. Probabilistic checking of
proofs: A new characterization of NP. Journal of the
ACM, 45(1):70–122, 1998.

[3] L. BABAI, L. FORTNOW,
L. LEVIN, AND M. SZEGEDY. Checking computa-
tions in polylogarithmic time. In Proceedings of the
23rd ACM Symposium on Theory of Computing, pages
21–31, 1991.

[4] L. BABAI, L. FORTNOW, AND C. LUND. Non-
deterministic exponential time has two-prover inter-
active protocols. Computational Complexity, 1:3–40,
1991. Preliminary version in Proc. of FOCS’90.

[5] M. BELLARE, O. GOLDREICH, AND M. SUDAN.
Free bits, PCP’s and non-approximability – towards
tight results. SIAM Journal on Computing, 27(3):804–
915, 1998. Preliminary version in Proc. of FOCS’95.

[6] M BELLARE, S. GOLDWASSER, C. LUND, AND
A. RUSSELL. Efficient probabilistically checkable
proofs and applications to approximation. In Proceed-
ings of the 25th ACM Symposium on Theory of Com-
puting, pages 294–304, 1993. See also the errata sheet
in Proc of STOC’94.

[7] M. BELLARE AND M. SUDAN. Improved non-
approximability results. In Proceedings of the 26th
ACM Symposium on Theory of Computing, pages
184–193, 1994.

[8] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA,
AND M. SZEGEDY. Interactive proofs and the hard-
ness of approximating cliques. Journal of the ACM,
43(2):268–292, 1996. Preliminary version in Proc. of
FOCS91.

[9] U. FEIGE AND J. KILIAN. Two prover protocols -
low error at affordable rates. In Proceedings of the
26th ACM Symposium on Theory of Computing, pages
172–183, 1994.

[10] V. GURUSWAMI, D. LEWIN, M. SUDAN AND
L. TREVISAN. A tight characterization of NP with
3 query PCPs. ECCC Technical Report TR98-034,
1998.

[11] J. HÅSTAD. Some optimal inapproximability results.
Technical Report TR97-37, Electronic Colloquium on
Computational Complexity, 1997. Preliminary ver-
sion in Proc. of STOC’97.

[12] H. KARLOFF AND U. ZWICK. A (7/8 − ε)-
approximation algorithm for MAX 3SAT? In Pro-
ceedings of the 38th IEEE Symposium on Foundations
of Computer Science, 1997.

[13] R. RAZ. A parallel repetition theorem. SIAM Jour-
nal on Computing, 27(3):763–803, 1998. Preliminary
version in Proc. of STOC’95.

[14] L. TREVISAN. Positive linear programming, paral-
lel approximation, and PCP’s. In Proceedings of the
4th European Symposium on Algorithms, pages 62–
75. LNCS 1136, Springer-Verlag, 1996.

8

[15] L. TREVISAN. Approximating satisfiable satisfiability
problems. In Proceedings of the 5th European Sym-
posium on Algorithms, pages 472–485. LNCS 1284,
Springer-Verlag, 1997.

[16] L. TREVISAN. Recycling queries in PCPs and in lin-
earity tests. In Proceedings of the 30th ACM Sympo-
sium on Theory of Computing, 1998.

[17] U. ZWICK. Approximation algorithms for constraint
satisfaction problems involving at most three variables
per constraint. In Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, 1998.

A Appendix

A.1 Fourier Transforms and the Long Code

We describe the basic definitions and machinery in-
volved in the Fourier analysis of expressions arising out of
the use of the long code. Recall that boolean functions take
values in {−1, 1} throughout our discussion. We say that
a function A : Fn → {−1, 1} is linear iff A(f)A(g) =
A(fg) for all f, g ∈ Fn. There are 22n linear functions lα,
one for each set α ⊆ {−1, 1}n; it is defined as

lα(f) =
∏
a∈α

f(a) .

(By convention, we say that a product ranging over the
empty set equals 1.)
We will be using the following three standard properties of
linear functions:

lα(f)lβ(f) = lα∆β(f) , lα(f)lα(g) = lα(fg) (4)

E
f
lα(f) =

{
1 If α = ∅
0 otherwise.

It is useful to see a function A : Fn → {−1, 1} as a
real-valued function A : Fn → R. The set of functions
A : Fn → R is a vector space over the reals of dimension
22n . We can define a scalar product between functions as

A ·B =
1

22n

∑
f∈Fn

A(f)B(f) = E
f

[A(f)B(f)] .

The set of linear functions is easily seen to form an or-
thonormal basis for the set of functions A : Fn → {−1, 1}.
This implies that for any function such A we have the
Fourier expansion

A(f) =
∑
α

Âαlα(f), (5)

where Âα = A · lα is the Fourier coefficient of A w.r.t
α. Observe that for a function A : Fn → {−1, 1}, we

Decoding Procedure Dn(A);
/* A : Fn → {−1, 1}, A 1-folded. */

Choose α ⊆ {−1, 1}n with probability Â2
α.

Pick an x ∈ α uniformly at random and return x.

Figure 6. The Decoding Procedure

have −1 ≤ Âα ≤ 1 for any α. Moreover, Parseval’s iden-
tity implies that for every A : Fn → {−1, 1}, we have∑
α Â

2
α = 1.

It can be checked that (a proof of this appears in [11])
(i) if A is 1-folded, then Âα = 0 for all α with |α| even (in
particularA∅ = 0), and (ii) ifA is S-consistent, then α ⊆ S
for any α such that Âα 6= 0.

Given the definitions of Fourier coefficients, we are now
ready to describe the decoding procedure that is used in the
paper. This is done in Figure 6. We remark that the pro-
cedure is well-defined since Parseval’s identity implies that
Â2
α in fact defines a probability distribution, and because

the procedure will never get stuck by picking α = ∅ since
Â∅ = 0.

A.2 Technical Lemmas

We now present the technical lemmas that were used in
the soundness analysis of our inner verifiers of Sections 3
and 4. The proofs of the first two of the following may be
found in [11] as Lemmas 4.6,4,11 and Lemma 4.10 respec-
tively.

Lemma A.1 ([11]) If t =
⌈
δ−1
⌉
, ε1 = δ2 and εi = εci−1

for 1 < i ≤ t, and p ∈ {ε1, · · · , εt} is chosen uniformly at
random, then for all 1-folded B : Fm → {−1, 1}∣∣∣∣ E

π,p,f,g,h

[
B(g)B(g · (f ◦ π ∧ h))

]∣∣∣∣ ≤ 3ε1/2
1 +

1
t
≤ 4δ

Lemma A.2 ([11]) For every γ, p > 0, there exists a con-
stant δ = δγ,p > 0 that depends only on γ, p, such that
for all 1-folded strings B and all sets of 1-folded strings
{Aπ}π∈Pn , if∣∣∣∣ E

π,f,g,h

[
Aπ(f)B(g)B(g · (f ◦ π ∧ h))

]∣∣∣∣ ≥ γ,
then Pr

π

[
Dn(Aπ) = π(Dm(B))

]
≥ δ.

Lemma A.3 For every γ, p > 0, there exists a constant
δ = δγ,p > 0 that depends only on γ, p, such that for all 1-
folded strings B and all sets of 1-folded strings {Aπ}π∈Pn ,

9

if ∣∣∣∣ E
π,f1,f2,g,h

[
Aπ(f1)Aπ(f2)B(G1)B(G4)

]∣∣∣∣ ≥ γ,
then Pr

π

[
Dn(Aπ) = π(Dm(B))

]
≥ δ.

Proof: Using the Fourier expansions of A(fi) and B(Gj)
as in Equation 5, the properties of linear functions (4), and
using linearity of expectation, we transform the given ex-
pectation, for each fixed π ∈ Pn, into∑
α1,α2,β1,β2

Âα1Âα2B̂β1B̂β2 E
f1,f2,g,h

[
lα1(f1)lα2(f2)·

·lβ1(f1 ◦ π ∧ f2 ◦ π ∧ h)lβ2(−f1 ◦ π ∧ −f2 ◦ π ∧ h)lβ1∆β2(g)
]
.

Since g is picked uniformly and independently at random,
the inner expectation is 0 unless β1 = β2 = β (say).
Since f1 and f2 are also picked uniformly and indepen-
dently at random, we can also conclude α1, α2 ⊆ π(β).
Some boolean algebra yields (f1 ◦ π ∧ f2 ◦ π ∧ h) · (−f1 ◦
π ∧−f2 ◦π ∧h) = (−f1f2 ◦π ∧h). Incorporating all this,
our expression simplifies to∑

β
α1,α2⊆π(β)

Âα1Âα2B̂
2
β E

[
lα1(f1)lα2(f2)lβ(−f1f2◦π∧h)

]
.

Since f1(x), f2(x) is chosen independently for different
values of x, the inner expectation can be written as a product
of expectations, one for each x ∈ π(β). For x ∈ π(β),
define βx = {y ∈ β : π(y) = x}. If there exists x0 ∈
α1 − α2, then the expectation

Ex0 = E
[
f1(x0)

∏
y∈βx0

(−f1(x0)f2(x0) ∧ h(y))
]

occurs as one of the factors of the inner expectation, and
since this expectation Ex0 can easily be seen to be 0, the
original expectation will be 0 as well. This implies α1 ⊆
α2, and similarly we get α2 ⊆ α1, yielding α1 = α2 when-
ever the inner expectation is non-zero. This, together with
some simplifications (see [10] for more details), will imply
that our expectation is bounded from above by

∑
β,α

α⊆π(β)

|Âα|B̂2
β

∏
x∈α

(
(−1)βx

2
− (1− 2ε)βx

2

)
∏

x∈π(β)−α

(
(−1)βx

2
+

(1− 2ε)βx

2

)
The last expression is the same as the one arising in

Lemma 4.10 of [11], and if the expectation of this expres-
sion over the choice of π is at least γ, it has been shown in
[11] that the decoding procedure has probability of success
at least δ = δγ,p. 2

A.3 Proof of Theorem 3.1

The Proof: The statements about query complexity and
completeness are clear, we verify the soundness claim. Re-
call that the probability of acceptance of IV3δ is

1
2

+
1
2 E
p,f,g,h

[
B(g)B(g(f ◦ π ∧ h))

]
+

+ 1
2 E
p,f,g,h

[
A(f)B(g)B(g(f ◦ π ∧ h))

]
.

By Lemma A.1,∣∣∣∣ E
π,p,f,g,h

[
B(g)B(g · (f ◦ π ∧ h))

]∣∣∣∣ ≤ 3ε1/2
1 +

1
t
≤ 4δ

and hence if Pr
[
V (Aπ, B, π) accepts

]
≥ 1/2+2δ+γ, we

must have∣∣∣∣ E
π,p,f,g,h

[
A(f)B(g)B(g(f ◦ π ∧ h))

]∣∣∣∣ ≥ 2γ

and invoking Lemma A.2, we can conclude that
Pr
π

[
Dn(Aπ) = π(Dm(B))

]
≥ η where η > 0 depends

upon γ but is independent of n,m. This concludes the proof
that IV3δ is a (1, 1/2 + 2δ, 3)-good inner verifier. 2

A.4 Free bits and our PCP constructions

Informally, a PCP system with query complexity q is said
to have free bit complexity f for some f ≤ q if after reading
some f bits, the verifier can uniquely determine the val-
ues of the remaining q − f query bits that will make it ac-
cept. The notation FPCPc,s

[
log, f

]
stands for a PCP sys-

tem with logarithmic randomness, completeness c, sound-
ness s and free bit complexity f . The free bit complexity of
a PCP is an extremely important one since it has direct ap-
plications to proving the hardness of approximating Vertex
Cover as is formalized in the following lemma:

Lemma A.4 ([5]) If NP ⊆ FPCPc,s
[

log, f
]
, then ap-

proximating Vertex Cover up to a factor of 1 + c−s
2f−c − ε

is NP-hard for any ε > 0.

The best hardness result known for vertex cover is 7/6−
ε, for any ε > 0, and is obtained using the above lemma
with the two free bit PCP construction of Håstad [11], which
has completeness 1 − ε and soundness 1/2, for any ε > 0.
We now prove that we can achieve the same soundness
while also guaranteeing perfect completeness, thereby an-
swering in the affirmative a question raised in [5].

Theorem A.1 For any ε > 0, we have NP ⊆
FPCP1,1/2+ε

[
log, 2

]
.

10

Proof: We just observe that the inner verifier IV3δ uses
just two free bits. This is because, once A(f) and B(g)
are read, the verifier “knows” the values it expects for the
other bits it reads. The theorem now follows employing the
soundness bound noted in Theorem 3.1. 2

By lemma A.4, we are able to match the best known
hardness result for approximating Vertex Cover while only
using perfect completeness, indicating that non–perfect
completeness is not inherent at least for the best known re-
sult today on Vertex Cover. We also note the following re-
sult:

Theorem A.2 For any ε > 0, we have NP ⊆
FPCP1,1/4+ε

[
log, 3

]
.

Proof: Follows from the fact that the inner verifier IV5δ
uses only 3 free bits. 2

11

