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Abstract

Given an error-correcting code over strings of length n
and an arbitrary input string also of length n, the list decod-
ing problem is that of finding all codewords within a specified
Hamming distance from the input string. We present an im-
proved list decoding algorithm for decoding Reed-Solomon
codes. The list decoding problem for Reed-Solomon codes
reduces to the following “curve-fitting” problem over a fieldF : Given n points f(xi:yi)gni=1, xi; yi 2 F , and a degree
parameter k and error parameter e, find all univariate poly-
nomials p of degree at most k such that yi = p(xi) for all but
at most e values of i 2 f1; : : : ; ng. We give an algorithm that
solves this problem for e < n � pkn, which improves over
the previous best result [22], for every choice of k and n. Of
particular interest is the case of k=n > 13 , where the result
yields the first asymptotic improvement in four decades [15].

The algorithm generalizes to solve the list decoding prob-
lem for other algebraic codes, specifically alternant codes (a
class of codes including BCH codes) and algebraic-geometric
codes. In both cases, we obtain a list decoding algorithm that
corrects up to n �pn(n� d0) errors, where n is the block
length and d0 is the designed distance of the code. The im-
provement for the case of algebraic-geometric codes extends
the methods of [19] and improves upon their bound for every
choice ofnandd0. We also present some other consequences of
our algorithm including a solution to a weighted curve fitting
problem, which is of use in soft-decision decoding algorithms
for Reed-Solomon codes.

1 Introduction

An error correcting code C of block length n, rate k, and
distanced over a q-ary alphabet� ([n; k; d]q code, for short) is
a mapping from �k (the message space) to �n (the codeword
space) such that any pair of strings in the range of C differ in at
least d locations out of n. Reed-Solomon codes are a classical,
and commonly used, construction of error-correcting codes�Laboratory for
Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139,
USA. email: fvenkat,madhug@theory.lcs.mit.edu.

that yield [n; k + 1; d = n � k]q codes for any k < n � q.
The alphabet� for such a code is a finite fieldF . The message
specifies a polynomial of degree k over F in some formal
variable x (by giving its k + 1 coefficients). The mappingC maps this code to its evaluation at n distinct values of x
chosen from F (hence it needs q = jF j � n). The distance
property follows immediately from the fact that two degree k
polynomials can agree in at most k places.

The decoding problem for an [n; k; d]q code is the problem
of finding a codeword in �n that is within a distance of e from
a “received” word R 2 �n. In particular it is interesting to

study the error-rate �def= e=n that can be corrected as a function

of the message rate �def= k=n. For a family of Reed-Solomon
codes of constant message rate and constant error rate, the
two brute-force approaches to the decoding problem (compare
with all codewords, or look at all words in the vicinity of the
received word) take time exponential inn. It is therefore a non-
trivial task to solve the decoding problem in polynomial time
in n. Surprisingly, a classical algorithm due to Peterson [15]
manages to solve this problem in polynomial time, as long ase < n�k2 (i.e. achieves � = (1 � �)=2). Faster algorithms,
with running time O(n2) or better, are also well-known: in
particular the classical algorithms of Berlekamp and Massey
(see [14] for a description) achieve such running time bounds.
It is also easily seen that if e � n�k2 then there may exist
several different codewords within distance e of a received
word, and so the decoding algorithm cannot possibly always
recover the “correct” message if it outputs only one solution.

This motivates the list decoding problem, first defined in [6]
(see also [7]) and sometimes also termed the bounded-distance
decoding problem, that asks, given a received word R 2 �n,
to reconstruct a list of all codewords within a distance e from
the received word. List decoding offers a potential for re-
covery from errors beyond the traditional “error-correction”
bound (i.e., the quantity d=2) of a code. Loosely, we refer to
a list decoding algorithm reconstructing all codewords within
distance e of a received word as an “e error-correcting” algo-
rithm. Again we can study � = e=n as a function of � = k=n.
Till recently, no asymptotic benefits were achieved using the
list decoding approach to recover from errors. The only im-
provements known over the algorithm of [15] were decoding
algorithms due to Sidelnikov [20] and Dumer [5] which correct

1



n�k2 + �(logn) errors, i.e., achieve � = (1� �)=2 + o(1).
Recently, Sudan [22], building upon previous work of Ar et
al. [1], presented a polynomial time list decoding algorithm
for Reed-Solomon codes correcting at least n�p2kn errors,
thus achieving � = 1 � p2�. (For an exact description of
the number of errors corrected by this algorithm, see [23] or
Figure 1.) A more efficient list decoding algorithm, running in
time O(n2 log2 n), correcting the same number of errors has
also been given by Roth and Ruckenstein [17]. For � ! 0,
this algorithm corrects an error rate � ! 1, thus allowing for
nearly twice as many errors as the classical approach. For
codes of rate greater than 1=3, however, this algorithm does
not improve over the algorithm of [15]. This case is of interest
since applications in practice tend to use codes of high rates.
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Figure 1. Error-correcting capacity plotted against the
rate of the code for known algorithms.

In this paper we present a new polynomial-time algorithm
for list-decoding of Reed-Solomon codes that corrects up to

(exactly)
jn�pnkk errors (and thus achieves � = 1�p�).

Thus our algorithm has a better error-correction rate than previ-
ous algorithms for every choice of� 2 (0; 1); and in particular,
for � > 1=3 our result yields the first asymptotic improvement
in the error-rate �, since the original algorithm of [15]. (See
Figure 1 for a graphical depiction of the relative error handled
by our algorithm in comparison to previous ones.)

We solve the decoding problem by solving the following
(more general) curve fitting problem: Given n pairs of ele-
ments f(x1; y1); : : : ; (xn; yn)g where xi; yi 2 F , a degree
parameter k and an error parameter e, find all univariate poly-
nomials p such that p(xi) = yi for at least n � e values ofi 2 f1; : : : ; ng. Our algorithm solves this curve fitting prob-
lem for e < n�pnk. Our algorithm is based on the algorithm
of [22] in that it uses properties of algebraic curves in the plane.
The main modification is in the fact that we use the proper-
ties of “singularities” of these curves. As in the case of [22]
our algorithm uses the notion of plane curves to reduce our

problem to a bivariate polynomial factorization problem overF (actually only a root-finding problem for univariate polyno-
mials over the rational function field F (X)). This task can be
solved deterministically over finite fields in time polynomial
in the size of the field or probabilistically in time polynomial
in the logarithm of the size of the field and can also be solved
deterministically over the rationals and reals [10, 12, 13]. Thus
our algorithm ends up solving the curve-fitting problem over
fairly general fields.

It is interesting to contrast our algorithm with results which
show bounds on the number of codewords that may exist with
a distance of e from a received word. One such result, due
to Goldreich et al. [9], shows that the number of solutions to
the list decoding problem is bounded by a polynomial in n ife < n�pn(n� d). (A similar result has also been shown by
Radhakrishnan [16].) Our algorithm proves this best known
combinatorial bound “constructively” in that it produces a list
of all such codewords in polynomial time. More recently,
Justesen [11] has obtained upper bounds on the number of
errors e = ec;d;n for which the output of a list decoding
algorithm has at most c solutions for a constant c. The results
of Justesen show that in the limit of large c, ec;d;n=n converges
to 1�p1� d=n as we fix d=n and letn!1. These bounds
are of interest in that they hint at a potential limitation to further
improvements to the list decoding approach.

Finally we point out that the main focus of this paper is on
getting polynomial time algorithms maximizing the number of
errors that may be corrected.

Extensions to Algebraic-Geometric Codes Algebraic-
geometric codes are a class of algebraic codes that include
the Reed-Solomon codes as a special case. These codes are
of significant interest because they yield explicit construction
of codes that beat the Gilbert-Varshamov bound over small al-
phabet sizes [24] (i.e., achieve higher value of d for infinitely
many choices of n and k than that given by the probabilistic
method). Decoding algorithms for algebraic-geometric codes
are typically based on decoding algorithms for Reed-Solomon
codes. In particular, Shokrollahi and Wasserman [19] gener-
alize the algorithm of Sudan [22] for the case of algebraic-
geometric codes. Specifically, they provide algorithms for
factoring polynomials over some algebraic function fields; and
then show how to decode using this factoring algorithm. Using
a similar approach, we extend our decoding algorithm to the
case of algebraic-geometric codes and obtain a list decoding
algorithm correcting an [n; k; d]q algebraic-geometric code for
up to e < n �pn(n� d) errors, improving the previously
known bound of n �p2n(n� d) � g + 1 errors (here g is
the genus of the algebraic curve underlying the code). This
algorithm uses a root-finding algorithm for univariate polyno-
mials over algebraic function fields as a subroutine and some
additional algorithmic assumptions about the underlying alge-
braic structures: The assumptions are described precisely in
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Section 4.

Other extensions One aspect of interest with decoding al-
gorithms is how they tackle a combination of erasures (i.e,
some letters are explicitly lost in the transmission) and er-
rors. Our algorithm generalizes naturally to this case. An-
other interesting extension of our algorithm is the solution
to a weighted version of the curve-fitting problem1: Given
a set of n pairs f(xi; yi)g and associated non-negative in-
teger weights w1; : : : ; wn, find all polynomials p such thatPi:p(xi)=yi wi > pk �Pni=1w2i . This generalization is of
interest in “soft-decision” decoding of Reed-Solomon codes.

2 Reed-Solomon Decoding

We fix some notation first. In what follows F is a field
and we will assume arithmetic over F to be of unit cost. [n]
will denote the set f1; : : : ; ng. For a vector ~x 2 Fn andi 2 [n], the notation ~xi will denote the ith coordinate of ~x.�(~x; ~y) is the Hamming distance between strings ~x and ~y, i.e.,jfij~xi 6= ~yigj.
Definition 1 (Reed-Solomon codes) For parameters n; k
and a field F of cardinality n + 1, let � be a primitive nth
root of unity in F (i.e., �n = 1 and �i 6= 1 for i 2 [n � 1]).
The Reed-Solomon code with parameters n and k over the
alphabet F with root �, denoted Crs;F;�;n;k, is the func-
tion mapping the messagesF k+1 to code space Fn, given by(Crs;F;�;n;k(~m))j =Pki=0 ~mi+1(�j)i, for ~m 2 F k+1.

Problem 1 (Reed-Solomon decoding)
INPUT: String ~y 2 Fn; parameters k and e; and � 2 F .
OUTPUT: All messages ~m 2 F k+1 such that�(Crs;F;�;n;k(~m); ~y) � e.
Problem 2 (Polynomial reconstruction)
INPUT: Integersk; t andn points f(xi; yi)gni=1 wherexi; yi 2F .
OUTPUT: All univariate polynomials p of degree at most k
such that yi = p(xi) for at least t values of i 2 [n].
As pointed out earlier the Reed-Solomon code decoding prob-
lem reduces easily to the polynomial reconstruction problem.

2.1 Informal description of the algorithm

Our algorithm is based on the algorithm of [22], and so we
review that algorithm first. The algorithm has two phases: In1The evolution of the solution to the “curve-fitting” problem is some-
what interesting. The initial solutions of Peterson [15] did not explicitly
solve the curve fitting problem at all. The solution provided by Welch and
Berlekamp [27, 3] do work in this setting, even though the expositions there
do not mention the curve fitting problem (see in particular, the description
in [8]). Their problem statement, however, disallows repeated values of xi.
Sudan’s [22] allows for repeated xi’s but does not allow for repeated pairs of(xi; yi). Our solution generalizes this one more step by allowing a weighting
of (xi; yi)!

the first phase it finds a polynomial Q in two variables which
“fits” the points (xi; yi), where fitting implies Q(xi; yi) = 0
for all i 2 [n]. Then in the second phase it finds all small
degree roots of Q i.e finds all polynomials p of degree at mostk such that Q(x; p(x)) � 0 or equivalently y � p(x) is a
factor of Q(x; y); and these polynomials p form candidates
for the output. The main assertions are that (1) if we allow Q
to have a sufficiently large degree then the first phase will be
successful in finding such a bivariate polynomial, and (2) ifQ
and p have low degree in comparison to the number of points
where yi � p(xi) = Q(xi; yi) = 0, then y � p(x) will be a
factor of Q.

Our algorithm has a similar plan. We will find Q of low
weighted degree that “fits” the points. But now we will expect
more from the “fit”. It will not suffice thatQ(xi; yi) is zero —
we will require that every point (xi; yi) is a “singularity” ofQ.
Informally, a singularity is a point where the curve given byQ(x; y) = 0 intersects itself. We will make this notion formal
as we go along. In our first phase the additional constraints
will force us to raise the allowed degree of Q. However we
gain (much more) in the second phase. In this phase we look
for roots of Q and now we know that p passes through many
singularities of Q, rather than just points onQ. In such a case
we need only half as many singularities as regular points, and
this is where our advantage comes from.

Pushing the idea further, we can forceQ to intersect itself at
each point (xi; yi) as many times as we want: in the algorithm
described below, this will be a parameter r. There is no limit
on what we can choose r to be: only our running time increases
with r. We will choose r sufficiently large to handle as many
errors as feasible. (In the weighted version of the curve fitting
problem, we force the polynomial Q to pass through different
points a different number ri times, where ri is proportional to
the weight of the point.)

Finally, we come to the question of how to define “singu-
larities”. Traditionally, one uses the partial derivatives ofQ to
define the notion of a singularity. This definition is, however,
not good for us since the partial derivatives over fields with
small characteristic are not well-behaved. So we avoid this
direction and define a singularity as follows: We first shift our
coordinate system so that the point (xi; yi) is the origin. In
the shifted world, we insist that all the monomials of Q with
a non-zero coefficient be of sufficiently high degree. This will
turn out to be the correct notion. (The algorithm of [22] can be
viewed as a special case, where the coefficient of the constant
term of the shifted polynomial is set to zero.)

We first define the shifting method precisely: For a polyno-
mial Q(x; y) and �; � 2 F we will say that the shifted poly-
nomial Q�;�(x; y) is the polynomial given by Q�;�(x; y) =Q(x + �; y + �) Notice that shifting does not change the
weighted degree for any weighting. Also, observe that follow-
ing explicit relation between the coefficients fqijg of Q and
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the coefficients f(q�;�)ijg of Q�;� holds:(q�;�)ij =Xi0�iXj0�j�i0i��j0j�qi0;j0�i0�i�j0�j:
In particular observe that the coefficients are obtained by a
linear transformation of the original coefficients.

2.2 Algorithm

Definition 2 (weighted degree) For non-negative weightsw1; w2, the (w1; w2)-weighted degree of the monomialxiyj is
defined to be iw1+ jw2. For a bivariate polynomialQ(x; y),
and non-negative weights w1; w2, the (w1; w2)-weighted de-
gree ofQ, denoted (w1; w2)-wt-deg(Q), is the maximum over
all monomials with non-zero coefficients inQ of the (w1; w2)-
weighted degree of the monomial.

We now describe our algorithm for the polynomial reconstruc-
tion problem.

Input: n; k; t, f(xi; yi)gni=1, where xi; yi 2 F .

Parameters: r, l:rdef=1 + $kn+pk2n2 + 4(t2 � kn)2(t2 � kn) %;
and ldef= rt� 1.

Step 1: Find a polynomialQ(x; y) such that (1; k)-wt-deg(Q) � l, i.e., find values
for its coefficients fqj1j2gj1;j2�0:j1+kj2�l such that the
following conditions hold:

1. At least one qj1;j2 is non-zero

2. For every i 2 [n], ifQ(i) is the shift ofQ to (xi; yi),
then all coefficients ofQ(i) of total degree less thanr are 0. More specifically:8i 2 [n]; 8 j1; j2 � 0; s.t. j1 + j2 < r;q(i)j1j2def= Xj01�j1 Xj02�j2�j01j1��j02j2�qj01;j02xj01�j1i yj02�j2i = 0:

Step 2: Find all polynomials p 2 Fq[X] of degree at mostk such that p is a root of Q (i.e, y � p(x) is a factor ofQ(x; y)). For each such polynomial p check if p(xi) =yi for at least t values of i 2 [n], and if so, include p in
output list.

Remark: Step 2 above can be performed in polynomial time
by using the bivariate polynomial factorization algorithm of
Grigoriev [10] or Kaltofen [12] (that work over the finite fields
as well as the rationals) or by using the more efficient root-
finding algorithm of Shokrollahi [18] (for the finite field case).

2.3 Analysis of the Algorithm

We now proceed to prove our main result on polynomial
reconstruction, stated as Theorem 7 at the end of this section.
We will first prove a few necessary lemmas. In what followsQ can be any polynomial returned in Step 1 of the algorithm.

Lemma 3 If (xi; yi) is an input point and p is any poly-
nomial such that yi = p(xi), then (x � xi)r dividesg(x)def=Q(x; p(x)).
Proof: Let p0(x) be the polynomial given by p0(x) =p(x + xi) � yi. Notice that p0(0) = 0. Hencep0(x) = xp00(x), for some polynomial p00(x). Now, considerg0(x)def=Q(i)(x; p0(x))We first argue that g0(x�xi) = g(x).
To see this, observe thatg(x) = Q(x; p(x)) = Q(i)(x� xi; p(x)� yi) =Q(i)(x� xi; p0(x� xi)) = g0(x� xi):
Now, by construction, Q(i) has no coefficients of total degree
less than r. Thus by substituting y = xp00(x) for y, we are
left with a polynomial g0 such that xr divides g0(x). Shifting
back we have (x� xi)r divides g0(x� xi) = g(x). 2
Lemma 4 If p(x) is a polynomial of degree at most k such
that yi = p(xi) for at least t values of i 2 [n] and rt > l,
then y � p(x) divides Q.

Proof: Consider the polynomial g(x) = Q(x; p(x)). By
the definition of weighted degree, and the fact that the (1; k)-
weighted degree of Q is at most l, we have that g is a
polynomial of degree at most l. By Lemma 3, for everyi such that yi = p(xi), we know that (x � xi)r dividesg(x). Thus if S is the set of i such that yi = p(xi),
then

Qi2S (x � xi)r divides g(x). (Notice in particular thatxi 6= xj for any pair i 6= j 2 S, since then we would have(xi; yi) = (xi; p(xi)) = (xj ; p(xj)) = (xj ; yj).) By the
hypothesis jSj � t, and hence we have a polynomial of de-
gree at least rt dividing g which is a polynomial of degree at
most l < rt. This can happen only if g � 0. Thus we find
that p(x) is a root of Q(x; y) (where the latter is viewed as a
polynomial in y with coefficients from the ring of polynomials
in x). By the division algorithm, this implies that y � p(x)
divides Q(x; y). 2
All that needs to be shown now is that a polynomial Q as
sought for in Step 1 does exist. The lemma below shows this
conditionally.

Lemma 5 If n�r+12 � < l(l+2)2k , then a polynomialQas sought
in Step 1 does exist (and can be found in polynomial time by
solving a linear system).
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Proof: Notice that the computational task in Step 1 is that of
solving a homogeneous linear system. A non-trivial solution
exists as long as the rank of the system is strictly smaller
than the number of unknowns. The rank of the system may
be bounded from above by the number of constraints, which
is n�r+12 �. The number of unknowns equals the number of
monomials of (1; k)-weighted degree at most l and this number
equalsb lkcXj2=0 l�kj2Xj1=0 1 = b lkcXj2=0(l + 1� kj2)= (l + 1)�� lk�+ 1�� k2� lk��� lk�+ 1�� �� lk�+ 1��l + 1� l2�� lk � l + 22 ;
and the result follows. 2
Lemma 6 If n; k; t satisfy t2 > kn, then for the choice ofr; l made in our algorithm, n�r+12 � < l(l+2)2k and rt > l both
hold.

Proof: Since ldef= rt � 1 in our algorithm, rt > l certainly
holds. Using l = rt�1, we now need to satisfy the constraintn�r + 12 � < (rt� 1)(rt + 1)2k
which simplifies to r2t2 � 1 > kn(r2 + r) or, equivalently,r2(t2 � kn)� knr � 1 > 0:
Hence it suffices to pick r to be an integer greater than the
larger root of the above quadratic, and therefore pickingr = 1 + $kn+pk2n2 + 4(t2 � kn)2(t2 � kn) %
suffices, and this is exactly the choice made in the algorithm.2
Theorem 7 The polynomial reconstruction problem problem
can be solved in time polynomial in n, provided t > pkn, for
every field F , using as a subroutine an algorithm for finding
roots of a univariate polynomial over the rational function fieldF (X).
Proof: Follows from Lemma 4, Lemma 5, and Lemma 6. 2
Corollary 8 Given a family of Reed-Solomon codes of mes-
sage rate �, an error-rate of � = 1�pk can be list-decoded
in polynomial time.

Remark: Since r affects the running time of our algorithm,
we point out that if one is given t2 � (1 + �)kn, for some
constant � > 0, then r may be set to some constant depending
on � alone (and independent of n; k; t), assuming the rate k=n
of the code is a constant. In this case, therefore, the number
of polynomials output will be at most a constant (that depends
on �).
3 Some easy extensions

We start by describing some easy consequences and ex-
tensions of the algorithm of Section 2. The first three results
are just applications of the curve-fitting algorithm. The fourth
result revisits the curve-fitting algorithm to get a solution to a
weighted curve-fitting problem.

3.1 Alternant codes

We first describe a generalization of Reed Solomon codes
termed alternant codes that includes a wide family of codes
such as BCH codes, Goppa codes etc.

Definition 9 (Alternant Codes ([14], x12.2)) For positive in-
tegers m; k0; n, prime power q, vector ~� of distinct ele-
ments �1; : : : ; �n 2 GF(qm), and vector ~v of nonzero
elements v1; : : : ; vn 2 GF(qm), the Generalized Reed-
Solomon code GRSk0(~�;~v) is the code whose messages cor-
respond to polynomials p 2 GF(qm)[x] of degree < k0
and where the encoding of the message p is the string(v1p(�1); : : : ; vnp(�n)). The alternant code Ak0(~�;~v) is
the intersection of GRSk0(~�;~v) with GF(q)n.

It is obvious that the Generalized Reed-Solomon code has
distance at least d0 = n � k0 + 1. Thus this holds also for
the alternant code. We term this the designed distance of
the alternant code. The actual rate and distance of the code
are harder to determine. The rate lies somewhere betweenn�m(n� k0) and k0 and thus the distance d lies between d0
andmd0. Playing with the vector ~v might alter the rate and the
distance (which is presumably why it is used as a parameter).

The decoding algorithm of the previous section can be used
to decode alternant codes as well. Given a received word(r1; : : : ; rn) 2 GF(q)n, we use as input to the polynomial
reconstruction problem the pairs f(xi; yi)gni=1, where xi =�i and yi = ri=vi are elements of GF(qm). The list of
polynomials output includes all possible codewords from the
alternant code. Thus the decoding algorithm for the earlier
section is really a decoding algorithm for alternant codes as
well; with the caveat that its performance can only be compared
with the designed distance, rather than the actual distance.
The following theorem summarizes the scope of the decoding
algorithm.
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Theorem 10 Let A be an [n; k; d]q alternant code with de-
signed distance d0 (and thus satisfying dm � d0 � d). Then
there exists a polynomial time list decoding algorithm for A
decoding up to e < n�pn(n� d0) errors.

(We note that decoding algorithms given in classical texts
seem to correct d0=2 errors. We are unaware of the more recent
work on this topic.)

3.2 Other models of error

The algorithm of Section 2 is also capable of dealing with
other notions of corruption of information. A much weaker
notion of corruption (than an “error”) in data transmission
is that of an “erasure”: Here a transmitted symbol is either
simply “lost” or received in obviously corrupted shape. We
now note that the decoding algorithm of Section 2 handles
the case of errors and erasure naturally. Suppose n symbols
were transmitted and n0 � n were received and s symbols got
erased. (We stress that the problem definition specifies that
the receiver knows which symbols are erased.) The problem
just reduces to a polynomial reconstruction problem on n0
points. An application of Theorem 7 yields that e errors can
be corrected provided e < n0 �pn0k. Thus we get:

Theorem 11 The list-decoding problem for [n; k + 1; d]q
Reed-Solomon codes allowing for e errors and s erasures
can be solved in polynomial time, provided e + s < n �p(n � s)k.

The classical results of this nature show that one can solve
the decoding problem if 2e + s < n � k. To compare the
two results we restate both result. The classical result can be
rephrased as n � (s + e) > n� s + k2 ;
while our result requires thatn� (s+ e) >p(n � s)k:
By the AM-GM inequality it is clear that the second one holds
whenever the first holds.

3.3 Decoding with uncertain receptions

Consider the situation when, instead of receiving a single
word y = y1; y2; : : : ; yn, for each i 2 [n] we receive a list ofl possibilities yi1; yi2; : : : ; yil such that one of them is correct
(but we do not know which one). Once again, as in normal list
decoding, we wish to find out all possible codewords which
could have been possibly transmitted, except that now the
guarantee given to us is not in terms of the number of errors
possible, but in terms of the maximum number of uncertain

possibilities at each position of the received word. Let us call
this problem decoding from uncertain receptions. One can
prove, along the lines of the proof of Theorem 7, that:

Theorem 12 List decoding from uncertain receptions on a[n; k + 1; d = n � k]q Reed-Solomon code can be done in
polynomial time provided the number of “uncertain possibili-
ties” l at each position i 2 [n] is (strictly) less than n=k.

3.4 Weighted curve fitting

Another natural extension of the algorithm of Section 2 is to
the case of weighted curve fitting. This case is somewhat moti-
vated by a decoding problem called the soft-decision decoding
problem (see [26] for a formal description), as one might use
the reliability information on the individual symbols in the re-
ceived word more flexibly by encoding them appropriately as
the weights below instead of declaring erasures. At this point
we do not formalize the explicit connection between the two.
Instead we just state the weighted curve fitting problem and
describe our solution to this problem.

Problem 3 (Weighted polynomial reconstruction)
INPUT: n points f(x1; y1); : : : ; (xn; yn)g, n non-negative in-
teger weights w1; : : : ; wn, and parameters k and t.
OUTPUT: All polynomials p such that

Pi:p(xi)=yi wi is at
least t.

The algorithm of Section 2 can be modified as follows:
In Step 1, we could find a polynomial Q which has a sin-
gularity of order wir at the point (xi; yi). Thus we would
now have

Pni=1 �rwi+12 �
constraints. If a polynomial p passes

through the points (xi; yi) for i 2 S, then y � p(x) will ap-
pear as a factor ofQ(x; y) provided

Pi2S rwi is greater than(1; k)-wt-deg(Q). Optimizing over the weighted degree ofQ yields the following theorem.

Theorem 13 The weighted polynomial reconstruction prob-
lem can be solved in time polynomial in the sum of wi’s pro-
vided t >pkPni=1w2i .

Remark: The fact that the algorithm runs in time pseudo-
polynomial in wi’s should not be a serious problem. Given
any vector of real weights, one can truncate and scale the wi’s
without too much loss in the value of t for which the problem
can be solved.

4 Algebraic-Geometric Codes

We now describe the extension of our algorithm to the
case of algebraic-geometric codes. Much of the work in-
volved here is mainly in ferreting out the axioms satisfied
by these constructions. We do so in Section 4.1. The algo-
rithm then follows along the lines of the algorithm of Shokrol-
lahi and Wasserman [19], modulo some algorithmic assump-
tions about the underlying structures. (Such assumptions are
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inevitable: the class of algebraic geometric codes are vast
and not all of them have constructive algorithms associated
with them. Our assumptions are nearly the same as those
of [19].) Our algorithm yields an algorithm for list decod-
ing which corrects up to e < n �pn(n � d) errors in an[n; k; d]q code, improving the result of [19], which corrects up
to e < n�p2n(n� d)� g + 1 errors.

4.1 Definitions

An algebraic-geometric code is built over a structure termed
an algebraic function field. An algebraic function field is
described by a six-tuple A = (Fq;X ;X ;K; g; ord), where:Fq is a finite field with q elements, with Fq denoting its

algebraic closure.X is a set of points (typically some subset of (variety in)Fql, but this will be irrelevant to us).X is a subset of X , called the rational points of X .K is a set of functions from X to Fq [ f1g (where 1
is a special symbol representing an undefined value). It is
usually customary to refer to just K as the function field
(and letting the other components of A be implicit).ord : K � X ! Z. ord(f; x) is called the order of the
function f at point x.g is a non-negative integer called the genus of A.

The components ofA always satisfy the following properties:

1. K is a field extension ofFq : K is endowed with operations+ and� giving it a field structure. Furthermore, for f; g 2K, the functions f + g and f � g satisfy f(x) + g(x) =(f+g)(x) and (f �g)(x) = f(x)�g(x), provided f(x)
and g(x) are defined. Finally, corresponding to every� 2 Fq, there exists a function � 2 K s.t. �(x) = �
for every X 2 X . (In what follows we let �f denote the
function � � f .)

2. Rational points: For every f 2 K and x 2 X , f(x) 2Fq [ f1g.

3. Order properties: (The order is a common generalization
of the degree of a function as well as its zeroes. Infor-
mally, the quantity

Px2X :ord(f;x)>0 ord(f; x) is analo-

gous to the degree of a function. If ord(f; x) < 0, then
the negative of ord(f; x) is the number of zeroes f has
at the point x. The following axioms may make a lot of
sense when this is kept in mind.)
For every f; g 2 K �f0g,�; � 2 Fq, x 2 X : the order
function ord satisfies:

(a) f(x) = 0 () ord(f; x) < 0; f(x) =1 () ord(f; x) > 0.

(b) ord(f � g; x) = ord(f; x) + ord(g; x).

(c) ord(�f + �g; x) � maxford(f; x); ord(g; x)g.

4. Distance property: If
Px2X ord(f) < 0, then f � 0.

(This property is just the generalization of the well-known
theorem showing that a degree d polynomial may have at
most d zeroes.)

5. Rate property: Observe that, by Property 3(c) above, the
set of functions _i;x = ff jord(f; x) � ig form a vector
space over Fq , for any x 2 X and i 2 Z. Of particular
interest will be functions which may have positive order at
only one pointx0 2 X and nowhere else. LetLi;x denote
the set ff 2 Kjord(f; x) � i ^ ord(f; y) � 0; 8y 2X � fxgg. Since Li;x = _i;x \ (\y2X�fxg_0;y), we
have that L is also a vector space over Fq. The rate
property is that for every i 2 Z, x 2 X , Li;x is a vector
space of dimension at least i � g + 1. (This property
is obtained from the famed Riemann-Roch theorem for
the actual realizations of A, and in fact the dimension is
exactly i� g + 1 if i > 2g � 2.)

The following lemma shows how to construct a code from an
algebraic function field, given n + 1 rational points.

Lemma 14 If there exists an algebraic function fieldA = (Fq;X ;X ;K; g; ord) with n + 1 distinct ratio-
nal points x0;x1; : : : ; xn, then the linear space C =f(f(x1); : : : ; f(xn))jf 2 Lk+g�1;x0g form an [n; k0; d0]q
code for some k0 � k and d0 � n� k � g + 1.

Proof: For i � 1, by Property 2, we have that f(xi) 2Fq[f1g, and by Property 3a we have that f(xi) 6=1. ThusC � Fnq . By Property 4, the map ev : Lk+g�1;x0 �! Fnq
given by f 7! (f(x1); f(x2); : : : ; f(xn)) is one-one, and
hence dim(C) = dim(Lk+g�1;x0). By Property 5, this im-
plies C has dimension at least k, yielding k0 � k. Finally,
consider f1 6= f2 2 Lk+g�1;x0 that agree in k + g places. Iff1 and f2 agree at xi, then (f1 � f2)(xi) = 0 and thus by
Property 3a, ord(f1�f2; xi) < 0. Furthermore, we have that
for every x 2 X � fx0g, ord(f1 � f2; x) � 0. Finally atx0 we have ord(f1 � f2; x0) � k + g � 1. Thus summing
over all x 2 X , we have

Px2X ord(f1�f2; x) < 0 and thusf1 � f2 � 0 using Property 4 above. This yields the distance
property as required. 2

Codes constructed as above and achieving d=n; k=n > 0
(in the limit of large n) are known for constant alphabet size q.
In fact, such codes achieving bounds better than those known
by probabilistic constructions are known for q � 49 [24].

4.2 The Decoding Algorithm

We now describe the extension of our algorithm to the
case of algebraic-geometric codes. As usual we will try to
describe the data points f(xi; yi)g by some polynomial Q.
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We follow [19] and letQ be a polynomial in a formal variabley with coefficients from K (i.e., Q[y] 2 K[y]). Now given
a value of yi 2 Fq , Q[yi] will yield an element of K. By
definition such an element of K has a value at xi 2 X and
just as in [19] we will also require Q(xi; yi) = Q[yi](xi) to
evaluate to zero. We, however, will require more and insist
that (xi; yi) “behave” like a zero of multiplicity r of Q; sincexi 2 X and yi 2 Fq, we need to be careful in specifying
the conditions to achieve this. We, as in [19], also insist thatQ has a small (but positive) order l at x0 for any substitution

of y with a function in K of order at most �def= k + g � 1 at
the point x0. Having found such a Q, we then look for rootsh 2 K of Q.

What remains to be done is to explicitly express the condi-
tions (i) (xi; yi) behaves like a zero of order r of Q for 1 �i � n, and (ii) ord(Q[f ]; x0) � l for any f 2 L�;x0 , wherel is a parameter that will be set later (and which will play the
same role as the l in our decoding algorithm for Reed-Solomon
codes). To do so, we assume that we are explicitly given func-
tions �1; : : : ; �l�g+1 such that ord(�j; x0) � j + g � 1 and

such that ord(�j; x0) < ord(�j+1; x0). Let sdef= j l�g� k
. We

will then look for coefficients qj1;j2 such thatQ[y] = sXj2=0 l�g+1��j2Xj1=1 qj1j2�j1yj2 : (1)

By explicitly setting up Q as above, we impose the constraint
(ii) above. To get constraint (i) we need to “shift” our basis.
This is done exactly as before with respect to yi, however,xi 2 X and hence a different method is required to handle it.
The following lemmas show how this may be achieved.

Lemma 15 For every f; g 2 K, and x 2 X , there exist�0; �0 2 Fq, (�0; �0) 6= (0; 0) such thatord(�0f + �0g; x) < maxford(f; x); ord(g; x)g:
Proof: Notice that if ord(f; x) 6= ord(g; x), then there is
nothing to prove. So we assume ord(f; x) = ord(g; x) =i. Let f�1 be the multiplicative inverse of f in K. Thenord(f �f�1; x) = 0 and hence ord(f�1; x) = �i and finallyord(g � f�1; x) = 0. Let (f � f�1)(x) = � and (g �f�1)(x) = �. By Property 3a, �; � 62 f0;1g, and since x
is a rational point, �; � 2 Fq . Thus we find that (�f � f�1 ��g � f�1)(x) = 0. Thus ord(�f � f�1 � �g � f�1; x) < 0
and so ord(�f � �g; x) < i as required. 2
Lemma 16 Given functions �1; : : : ; �p of distinct orders atx0 2 X satisfying �j 2 Lj+g�1;x0 and a rational point xi 6=x0, there exist functions  1; : : : ;  p 2 K with ord( j; xi) �1�j and such that there exist�xi;j1;j3 2 Fq for 1 � j1; j3 �p such that �j1 =Ppj3=1 �xi;j1;j3 j3 .

Proof: We prove a stronger statement by induction on p:
If �1; : : : ; �p are linearly independent (over Fq) functions
such that ord(�j ; xi) � m for j 2 [p], then there are func-
tions  1; : : : ;  p such that ord( j; xi) � m + 1 � j that
generate the �j’s over Fq . Note that this will imply our
lemma as �1; �2; : : : ; �p are linearly independent using Prop-
erty 3(c) and the fact that the �j’s have distinct pole orders
at x0. W.l.o.g. assume that �1 is a function with largest
order at xi. We let  1 = �1. Applying Lemma 15 to
every pair (�1; �j) for 2 � j � p, we obtain functions�0j such that �0j = �j if ord(�j ; xi) < ord(�1; xi), or�0j = �j�1 + �j�j for �j; �j 2 Fq � f0g if ord(�j; xi) =ord(�1; xi). Hence for 2 � j � p, �1; �0j generate �j. Now�02; �03; : : : ; �0p are linearly independent (since�1; �2; : : : ; �p
are) and ord(�0j ; xi) � m � 1 for 2 � j � p, so the induc-
tive hypothesis applied to the functions �02; : : : ; �0p now yields 2; : : : ;  p as required. 2

We are now ready to express condition (i) on (xi; yi) being
a zero of order at least r. Using the above lemma and (1), we
know that Q(x; y) has the formQ(x; y) = sXj2=0 l�g+1Xj3=1 l�g+1�j2�Xj1=1 qj1;j2�xi;j1;j3  j3;xi(x)yj2 :
The shifting to yi is achieved by definingQ(i)(x; y)def=Q(x; y + yi). The terms in Q(i)(x; y) that are
divisible by yp contribute p towards the multiplicity of (xi; 0)
as a zero of Q(i), or, equivalently, the multiplicity of (xi; yi)
as a zero of Q. We haveQ(i)(x; y) = sXj4=0 l�g+1Xj3=1 q(i)j3;j4 j3;xi(x)yj4 ; (2)

whereq(i)j3;j4def= sXj2=j4 l�g+1��j2Xj1=1 �j2j4�yj2�j4i � qj1;j2�xi;j1;j3 :
Since ord( j3;xi ; xi) � �(j3 � 1), we can achieve our con-
dition on (xi; yi) being a zero of multiplicity at least r by

insisting that q(i)j3;j4 = 0 for all j3 � 1, j4 � 0 such thatj4 + j3 � 1 < r. Having developed the necessary machin-
ery, we now proceed directly to the formal specification of our
algorithm.

Implicit Parameters: n; x0; x1; : : : ; xn 2 X ; k; g.

Assumptions: We assume that we “know” functions f�j1 2Kjj1 2 [l � g + 1]g of distinct orders at x0 withord(�j1 ; x0) � j1+g�1, as well as functions f j3;xi 2Kjj3 2 [l � g + 1]; i 2 [n]g such that for any i 2 [n],
the functions f j3;xigj3 satisfyord( j3;xi ; xi) � 1�j3.
The notion of “knowledge” is explicit in the following two
objects that we assume are available to our algorithm.
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1. The set f�xi;j1;j3 2 Fqji 2 [n]; j1; j3 2[l � g + 1]g such that for every i; j1, �j1 =Pj3 �xi;j1;j3 j3;xi . This assumption is a very rea-
sonable one since Lemma 16 essentially describes
an algorithm to compute this set given the ability to
perform arithmetic in the function field K.

2. A polynomial-time algorithm to find roots (in K)
of polynomials in K[y] where the coefficients (ele-
ments ofK) are specified as a formal sum of �j1’s.
(The cases for which such algorithms are known are
described in [19, 18].)

The Algorithm:

Inputs: n, k, y1; : : : ; yn 2 Fq .

Algorithm Parameters: r, l:rdef=1+$2gt+�n+p(2gt+�n)2�4(g2�1)(t2��n)2(t2��n) %;
and ldef= rt� 1. (Recall that �def= k + g � 1.)

Step 1: Find Q[y] 2 K[y] of the form Q[y] =Psj2=0Pl�g+1��j2j1=1 qj1j2�j1yj2 , i.e find values of the
coefficients fqj1;j2g such that the following conditions
hold:

1. At least one qj1;j2 is non-zero.

2. For every i 2 [n], 8j3; j4, j3 � 1, j4 � 0 such thatj3 + j4 � r,q(i)j3;j4def= sXj2=j4 l�g+1��j2Xj1=1 �j2j4�yj2�j4i � qj1;j2�xi;j1;j3 = 0:
Step 2: Find all roots h 2 Lk+g�1;x0 of the polynomialQ 2K[y]. For each such h, check if h(xi) = yi for at least t

values of i 2 [n], and if so, include h in output list. (This
step can be performed by either completely factoring Q
using algorithms presented in [19], or more efficiently by
using the root-finding algorithm of [18].)

4.3 Analysis of the Algorithm

We start by looking at Q[h]. Recall that for any h 2 K,Q[h] 2 K. By the condition (2) which we imposed on Q, we
have Q[h] 2 Ll;x0 whenever h 2 Lk+g�1;x0 .

Lemma 17 For i 2 [n], if h 2 K satisfies h(xi) = yi, thenord(Q[h]; xi) � �r.

Proof: We have, for any such i, Q[h](x) = Q(x; h(x)) =Q(i)(x; h(x) � yi) = Q(i)(x; h(x) � h(xi)) and using (2),
this yieldsQ[h](x) = sXj4=0 l�g+1Xj3=1 q(i)j3;j4 j3;xi(x)(h(x)� h(xi))j4 :

Since q(i)j3;j4 = 0 for j3 + j4 � r, ord( j3;xi ; xi) � 1� j3,

and if h(i) 2 K is defined by h(i)(x)def=h(x) � h(xi), thenord((h(i))j4 ; xi) � �j4, we get ord(Q[h]; xi) � �r as
desired. 2
Lemma 18 If h 2 Lk+g�1;x0 is such that h(xi) = yi for
at least t values of i 2 [n] and rt > l, then y � h dividesQ[y] 2 K[y].
Proof: Using Lemma 17, we get

Pi2[n] ord(Q[h]; xi) ��rt < �l. Since Q[h] 2 Ll;x0 , we havePx2X ord(Q[h]; x) < 0, implying Q[h] � 0. Thus h is
a root of Q[y] and hence y � h divides Q[y]. 2
Lemma 19 If n�r+12 � < (l�g)(l�g+2)2� , then aQ[y] as sought
in Step 1 does exist (and can be found in polynomial time by
solving a linear system).

Proof: The proof follows that of Lemma 5. The computa-
tional task in Step 1 is once again that of solving a homoge-
neous linear system. A non-trivial solution exists as long as the
number of unknowns exceeds the number of constraints. The
number of constraints in the linear system is n�r+12 �, while
the number of unknowns equalssXj2=0(l � g + 1� �j2) � (l � g)(l � g + 2)2� : 2
Lemma 20 If n; k; t; g satisfy t2 > (k+g�1)n, then for the

choice of r; l made in the algorithm, n�r+12 � < (l�g)(l�g+2)2(k+g�1)
and rt > l both hold.

Proof: Analogous to the proof of Lemma 6. 2
Our main theorem now follows from Lemmas 18-20.

Theorem 21 Let C be an [n; k; d]q algebraic-geometric code
over an algebraic function field K of genus g (with d =n � k � g + 1). Then there exists a polynomial time
list decoding algorithm for C that works for up to e <n � pn(k + g � 1) = n � pn(n � d) errors (provided
the assumptions of the algorithm of Section 4.2 are satisfied).
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