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Abstract

The error probability of Probabilistically Checkable Proof
(PCP) systems can be made exponentially small in the number
of queries by using sequential repetition. In this paper we are
interested in determining the precise rate at which the error
goes down in an optimal protocol, and we make substantial
progress toward a tight resolution of this question. A PCP
verifier uses �q amortized query bits if, for some t, it makes �qt
queries and has error probability at most 2�t. A PCP charac-
terization of NP using 2:5 amortized query bits is known [26],
and, unless P=NP, no such characterization is possible using 1
amortized query bits [7]. We present a PCP characterization
of NP that uses roughly 1.5 amortized query bits. Our result
has two main implications.
Separating PCP from 2-Provers 1-Round: In the 2-Provers
1-Round (2P1R) model the verifier has access to two oracles
(or provers) and can make one query to each oracle. Each
answer is a string of l bits (l is called the answer size). A
2P1R protocol with answer size l can be simulated by a PCP
that reads 2l bits; we show that the converse does not hold forl � 7, unless P=NP. No such separation was known before.
The Max kCSP problem: The Boolean constraint satisfaction
problem with constraints involving at most k variables, usually
called Max kCSP, is known to be hard to approximate within
a factor 2�:4k [26], and a 2 � 2�k-approximation algorithm
is also known [25]. We prove that Max kCSP is NP-hard to
approximate within a factor of roughly 2�2k=3.

1 Introduction

PCP characterizations of NP [6, 5, 12, 4, 3, 8, 13, 9, 7, 15, 16,
26] are the best known tool to prove results about the hard-
ness of approximation of combinatorial optimization prob-
lems. Progress in this area has been driven by the goal of
characterizing NP via increasingly more efficient PCP veri-
fiers, under various formalizations of the notion of efficiency,
and we now stand on a point where PCP constructions are
known that are optimal with respect to some trade-off of these
parameters.

The most important efficiency parameters in PCP construc-
tions are the number of queries that the verifier asks to the
oracle proof and the soundness. The soundness of a verifier is�fmadhu,lucag@theory.lcs.mit.edu. MIT Laboratory for Com-
puter Science. 545 Technology Square, Cambridge MA 02139.

the probability that it accepts a “proof” of a wrong statement,
that is, the error probability in the case of “no-instances”. The
verifier may make errors also in the case of yes-instances, i.e.
it may reject the valid proof of a correct statement. In this
paper we will restrict ourselves to protocols that accept valid
proofs with probability at least1�", where " > 0 is a constant
that can be made arbitrarily small independently of the other
parameters of interest (almost-perfect completeness), therefore
whenever we will use the term “error” this should always be
interpreted as “soundness”.

One direction of research is to concentrate on protocols
using a minimal amount of queries (i.e. 3) and then reduce
the soundness as much as possible. An optimal protocol of
this kind has been constructed by Håstad in [16], where he
describes a verifier that makes 3 queries, has almost perfect
completeness, and soundness 1/2.

A somewhat orthogonal line of research is to fix some small
error probability and ask what is the minimal number of queries
that suffice to characterize NP with a PCP protocol having that
error. Iterating Håstad’s protocol t times we get a PCP sys-
tem that asks 3t queries, has almost perfect completeness and
soundness 2�t. Is it possible to achieve error 2�t with signifi-
cantly less than 3t queries? This question has some interesting
applications, that will be described later. For starters, we can
observe that at least t queries are necessary (see [7]); therefore
the optimal protocol will have query complexity �qt for some1 < �q � 3. �q is the amortized query complexity of the PCP.

One possible approach to creating PCPs with low amortized
query complexity is to iterate a basic protocol several times,
while recycling queries between various iterations. This ap-
proach is similar to the approaches used to reduce error in
PCPs when measuring other resources: in particular, random-
ness and “free bits”. In the former case, the methods used for
recycling randomness while reducing error in general proba-
bilistic computation [1, 17] turns out to be quite useful and are
used, for instance, in [3, 28, 2]. In the latter case (minimizing
“free bits”) also, the notion of recycling can be analyzed and
the works of [9, 7, 14, 15] show that this method leads to sig-
nificant benefits. Our task, however differs from the previous
cases in some critical aspects. For instance, in the context of
recycling randomness, a random bit is counted as a “recycled”
bit, if it is obtained by applying some (arbitrary) function to
the previously used random bits. In contrast, while recycling
queries, the recycled query has to be identical to a previously
issued query. The contrast between recycling free bits and



query bits is exhibited by the following example: In the case
of free bits, the known analyses yield protocols in which the
error decreases as a polynomial in the number of iterations
(and this suffices!); in the case of recycling queries, the error
of the protocol needs to go down exponentially in the number
of iterations.

Despite these difficulties, the idea of repeating a basic pro-
tocol several times with recycling of queries has been pur-
sued by Trevisan [26] with some success. His analysis yields
query-efficient Linearity Tests and PCP constructions. The
PCP verifier of [26] has error 1=4 and makes 5 queries (there-
fore, the amortized query complexity is 2:5.) The verifier
repeats twice the 3-query verifier of Håstad [16]; one query
is recycled between the two executions. Other, possibly more
efficient, recycling schemes were also described in [26] and
one of them was analyzed for the simpler problem of Linearity
Testing, resulting in a linearity tester having amortized query
complexity 1:5.

The latter result mentioned above, however, does not im-
mediately translate to the context of PCP constructions. (An
intrinsic reason for this is given by a lower bound of Bellare et
al. [7] — this is discussed further in the next section.) In this
paper we abstract a new “proof-composition” technique based
on the recent work of Håstad in [15]. We then create a new ver-
ifier to use with the composition technique by modifying the
verifier of Trevisan [26]. The result is a family of PCP verifiers
that, for any k, make 3k+2queries “non-adaptively” and have
error 2�2k. The term non-adaptive implies that the queries
are chosen purely as a function of the input and the random
coins and are not a function of answers to previous queries.
This aspect is needed for one the applications given below.
In order to state our main result more formally, recall that a
probabilistically checkable proof system is described by an(r; q)-restricted non-adaptive PCP verifier, i.e., a probabilistic
polynomial time oracle machine, who on inputx, tosses r(jxj)
random coins and makes q(jxj) non-adaptive queries to a proof
oracle P . A language L 2 naPCPc;s[r; q] (“na” stands for
non-adaptive queries) if there exists an (r; q)-restricted non-
adaptive verifier V satisfying: (1) (completeness) If x 2 L,
then 9 P s.t. PrR[V P (x : R) accepts ] � c. (2) (soundness)
If x 62 L, then 8 P PrR[V P (x : R) accepts ] � s (whereV P (x;R) denotes the computation of V on input x and ran-
dom string R with oracle P ). Our PCP construction proves
the following theorem.

Theorem 1 (Main) For every " > 0 and positive integer k,NP = naPCP1�";2�2k[log; 3k + 2].
The amortized query complexity of our family of protocols
tends to 1:5. The two main consequences of our result are
described below.

PCP VERSUS 2-PROVERS 1-ROUND. In a 2-Provers 1-Round
(2P1R) protocol the verifier has access to two oracles (or

provers) P and Q representing a membership proof of an
NP statement. The verifier is allowed to make only one query
to each oracle; upon being queried, the oracle answers with
a string of l bits (l is said to be the answer size of the pro-
tocol.) The query complexity of such a 2P1R proof system
is defined to be 2l. The completeness and soundness of this
proof system are defined in the usual way and thus the notion
of amortized query complexity also extends naturally. (The
amortized query complexity is �q if the query complexity is �qk
and the soundness error is 2�k.)

It is clear that a 2P1R protocol can be simulated by a PCP
system with no larger query complexity, but the 2P1R seems to
be a weaker model. In particular, it is non-trivial to show that
the error of 2P1R proof systems can be reduced by increasing
answer sizes, while an analogous result is quite straightforward
for PCPs. The former question was a subject of significant
attention in the past and was finally resolved by Raz [21]; and
an ensuing 2P1R protocol for NP turns out to be a critical
ingredient in many efficient constructions of PCPs (including
ours). Despite this significant difference in behavior and utility
of 2P1R proof systems and PCPs, no separation between the
two was known. The only limitation known on the power of
2P1R proof systems is due to Serna et al. [23], who show a
lower bound of 2 on the amortized query complexity of any
2P1R proof system recognizing an NP-complete language.
The results of [23] are even stronger since they imply that
even a PCP that can query two entries from a non-Boolean
proof (each entry being a string of l bits) can only recognize
languages in P as long as the error is less than 2�l.

By constructing a PCP verifier for NP with amortized query
complexity of 1.5, we derive a separation between PCPs and
2P1R. In fact the separation actually holds for any answer
size l � 7. In the full version of this paper, we describe
a generalization of the 2P1R model and of the 2-query non-
Boolean PCP model. In this model the verifier accesses a
binary table but can only read two “blocks” of l consecutive
bits. (This model was proposed to us by Shafi Goldwasser and
Amit Sahai.) We extend the result of Serna et al. to this model
as well, thereby concluding that the separation between PCPs
and 2P1R is due to the “locality” of the access mechanism of
the latter model.

APPLICATIONS TO THE MAX kCSP PROBLEM. For an integerk > 1, the Max kCSP is the Boolean constraint satisfaction
problem with constraints involving at most k variables (see
[18, 10, 25, 24, 27, 19, 29, 30].) Max kCSP was known to be
hard to approximate within 2�:4k [26], our result implies that
it is hard to approximate within a factor of roughly 2�2k=3.
The best known algorithm has an approximation ratio 2�(k�1)
[25] (note that a random solution is 2�k-approximate.)



2 Techniques: Previous Works and Our Con-
tribution

2.1 The standard proof composition paradigm
and limitations

All the recent constructions of Probabilistically Checkable
Proofs rely on the proof-composition methodology, invented
by Arora and Safra [4]. The main idea is to construct two
proof systems, that optimize different efficiency parameters,
and then combine them together in order to build a composed
system that is efficient under all the parameters. Composition
is done between an “outer verifier” V out that is typically a
2-Provers 1-Round (2P1R) protocol1 and an “inner” verifierV in. The verifier of the composed system V comp expects a
proof that be the entry-wise encoding of the proof of V out
using an error correcting code. V comp simulates the behav-
ior of V out, chooses two entries of the proof, and then calls
as a “subroutine” V in to determine whether the encoding of
these entries “look like” being encodings of something thatV out would have accepted. Therefore the properties of V in
are the following: it knows the acceptance predicate of V out,
and it has oracle access to two strings that are allegedly en-
codings of answers that V out would have accepted. V in tests
whether this is the case. An inner verifier with, say, almost
perfect completeness and soundness 1=2, has the following
properties:

Whenever the conditions are satisfied, then V in accepts
with probability 1� ";

Whenever V in accepts with probability > 1=2, the strings
it is accessing are “close” to being correct encodings of
consistent answers.

It is not immediate to come up with a usable formalization of
the second property. One way is to define a decoding pro-
cedure that given a string, that is an alleged encoding of an
answer, returns a possible answer for the 2P1R protocol. V in
satisfies the second condition if whenever it accepts a pair of
strings with probability > 1=2 the decoding procedure, ap-
plied independently to the two strings, will produce consistent
answers. This is still a bit too much restrictive. In the most
useful formulation, the decoding procedures are randomized
and the guarantee is that if V in accepts with probability greater
than 1=2+� then the decoding procedures produce a consistent
pair of strings with probability at least �0, where �0 depends
only on �. Such a decoding procedure is implicit in the work
of Bellare et al. [8]. In what follows, a recursive composition
scheme using a randomized decoding procedure and a 2P1R
outer verifier will be called the canonical composition method-
ology. Observe that the definition of inner verifier depends on
the error correcting code and the decoding procedure that is1The 2-Prover 1-Round construction of Raz [21] is currently the standard
one for this application.

being used. An inner verifier has to test both that the two
strings are valid codewords (or, at least, “close” to being valid
codewords) of the error-correcting code being used (codeword
test) and that the decodings of the strings are likely to be con-
sistent answers of the outer verifier (consistency test). Each of
this tasks gives rise to different difficulties and limitations.

EFFICIENT CODEWORD TEST. Much of the recent progress in
designing inner verifiers and so PCP constructions came from
improved ways of testing whether the given strings are correct
codeword of the used error correcting code. The current stan-
dard for the error correcting code is the Long code introduced
by Bellare, Goldreich and Sudan [7]. The encoding with the
Long code of a message a 2 f0; 1gn is the evaluation of f(a)
for any f : f0; 1gn ! f0; 1g. Therefore the length of the
Long code of a is 22n. The best known methodology to an-
alyze codeword tests for the Long code uses Fourier analysis
on f0; 1gn. This technique was introduced and applied with
great success by Håstad in his recent works on PCP construc-
tions [14, 16]. Trevisan [26] uses this techniques to show how
to test the Hadamard code and the Long code with roughly
1.5 amortized query bit. These constructions could not be
extended to a full PCP constructions, due to an inherent bot-
tleneck in the consistency test that holds for any inner verifier
in the canonical composition methodology, that we describe
next.

EFFICIENT CONSISTENCY TEST. It is not hard to see that proof
systems designed with the canonical composition methodol-
ogy cannot achieve an amortized query complexity better than
2. Let A and B be the two strings given in input to the inner
verifier, qA and qB be the number of queries that the verifier
asks to A and B respectively, and q = qA + qB be the total
query complexity. If A and B are random Long codes, and
the verifier has perfect or almost perfect completeness, then
there is a probability 2�minfqA;qBg � 2�q=2 that the verifier
accepts (we will have to subtract a factor " for the case of
almost perfect completeness.) A slightly more involved ar-
gument shows that 1 amortized free bit is also a lower bound
for the canonical composition methodology (see [7].) Free
bits are an efficiency parameter of PCPs that is motivated by
applications to proving hardness of approximation for the Max
Clique problem. The number of free bits of a PCP system is
always no more than the number of query bits. In systems
designed to optimize free bits, the number of queries can be
doubly exponentially larger than the number of free bits, or
more. Bellare et al. [7] have shown that a protocol with a
certain number �q of amortized query bits can always be trans-
formed into another that has �q � 1 (average) amortized free
bits, so the lower bound of one amortized free bit implies the
lower bound of two amortized query bits.



2.2 Overcoming the limitations: A new compo-
sition theorem

The free bit lower bound has been overcome in a recent work
by Håstad [15], where for any " > 0 he describes a construc-
tion that uses " amortized free bits. To avoid the lower bound,
Håstad considers an inner verifier that looks at tables A andB1; : : : ; Bk, where each pair (A;Bi) would have been a pos-
sible input for an inner verifier in the canonical composition
methodology. The advantage of working with several tables
is that the decoding of A can now be done as a function ofB1; : : : ; Bk, and so the argument showing that 2 amortized
query bits are a lower bound does not hold any more. Håstad
does not present his result with respect to an explicit compo-
sition theorem and, in his proof, it is hard to distinguish the
protocol-specific difficulties from the ones related to the gen-
eral idea of using several tables. One of the main contributions
of our work is to extract the explicit composition theorem from
the work of [15] and then adapt it to our purpose. The novel
ingredient in this composition theorem is a new definition of
an outer verifier that makes several queries, specifically k + 1
where the parameter k is a positive integer. A verifier with
similar soundness conditions was used to avoid a related lower
bound (but not for use in composition of proofs) in the work
of Feige on Set Cover [11]. The composition theorem com-
poses such an outer verifier with inner verifiers that look at
several tables A;B1; : : : ; Bk. The composition theorem and
the associated properties of the inner verifier are described in
Section 3.

The composition theorem reduces the task of construct-
ing an efficient PCP verifier (with respect to amortized query
complexity) to the task of constructing the appropriate inner
verifier. At this point we need to deviate from the work of
Håstad, as argued next: The “inner verifier” of Håstad first
reads a certain number of (free) bits l from A, and then ap-
plies a codeword test on each Bi, using l=k free bits in each
codeword test. A separate analysis shows that each codeword
test has error probability at most p = pk;l, and then a union
bound establishes that the probability that one or more tests
fail is at most kp. The final soundness will be a little more than
this bound. The bad news of this method is that the free bit
complexity of the composed verifier is 2k times greater than
the free bit complexity of the codeword test (each codeword
test uses l=k free bit, and the total number of free bits is 2l,
including the bits read in A) and the error is worse than the
error of the codeword test. However the amortized free bit
complexity of the codeword test can be made arbitrarily small,
and despite the increase that happens during the composition,
the final amortized free bit complexity can still be made ar-
bitrarily small. In our case, however we can not afford such
luxuries. Since a codeword test must use at least one amortized
query bit, the multiplicative factors involved in the composi-
tion can not be hidden any more, and the composition scheme

of Håstad would blow the amortized query complexity out of
control.

The second part of our work is thus a new inner verifier
that is obtained by iterating k times (with recycling) a 5 query
protocol of [26] (which is, in turn, a 2-fold iteration, with
recycling, of the 3-query protocol of [16]). The novelty in
this verifier is that in each iteration it uses a different B-table,
while recycling the queries made on the A-table. In contrast,
the basic protocol of [26] would expect two tables A and B
and would read 2 bits in A and 3 bits in B; therefore our
iterated protocol reads 3k + 2 bits. A tight analysis shows
that the soundness of the iterated protocol is 2�2k. We stress
the following point of difference from [15]: As in [15] we dok tests, one for each Bi; each test has individually soundnessp = 1=4, however our analysis of the soundness of the iterated
verifier does not give an error kp, but rather pk, that is, the
error goes down exponentially in k, instead of growing with k
as in [15]. Details of this inner verifier are given in Section 5.

OPEN QUESTIONS. The eventual goal in this line of work is
to find, for any " > 0, a PCP characterization of NP where
the verifier has amortized query complexity 1 + ". Since
this result would also imply a characterization of NP with" amortized free bits for any " > 0, and since only a very
complicated proof is known of this latter result [14, 15], we do
not expect this goal to be easy to achieve. Towards this goal,
it would be interesting to first find a codeword test having
amortized query complexity 1+ ". Tests are presented in [26]
which are conjectured to have such efficiency. As discussed
in [26], the Fourier analysis of such protocols cannot prove an
amortized query complexity better than 1:5 unless the proof
is somehow “specialized” on the Fourier spectrum of Boolean
functions.2 Progress in this direction promises to have exciting
mathematical content. Once a codeword test with a better
Fourier analysis will be known, the techniques of the present
paper (the way of splitting queries between tables, and our
composition theorem) should suffice to extend the result to a
full PCP construction.

3 Our New Composition Scheme

In this section we introduce our new definition of outer veri-
fier, an appropriate corresponding notion of inner verifier, and
describe the composition theorem. (The actual construction
of the outer verifier, the inner verifier and the proof of the
composition theorems are deferred to later sections.)

As mentioned earlier all known constructions use the ver-
ifier of Raz [21] as the outer verifier. We will also use it in
order to derive our new outer verifier.2Current proof techniques use properties of the Fourier spectrum of
Boolean functions which are shared by all the functions of unit `2 norm;
one can show that techniques of this kind do not suffice to go below 1:5
amortized query bits.



Recall that the verifier of Raz works in the following way: it
generates, according to a certain distribution, a triple (p; q; �)
where p is a query to the oracle P , q is a query to the oracleQ and � is a function mapping from the domain of answers ofQ to the domain of answers of P . The verifier asks query p to
oracle P , receiving a certain answer a, and then asks query q
to oracle Q, receiving answer b, and it accepts iff �(b) = a.
When the canonical composition method is used,the composed
verifier expects a proof that be the entry-wise Long code of
all the answers of P and Q. The composed verifier generates
a triple (p; q; �) according to the same distribution of Raz’s
verifier, will look at the tablesA andB, being the encoding of
the answers to p and q respectively, and will execute the inner
verification procedure on them. Thus, the inner verification
procedure is given � and has access to A and B and the task
is to determine whether B is the Long code of some b and A
is the Long code of some a such that �(b) = a.3

At the same abstract level, our outer verifier generates k
triples (p; qi; �1); : : : ; (p; qk; �k), where p is a random query
to P drawn according to the distribution of Raz’s verifier and(p; qi; �i) are sampled on the marginal distribution of the
triples of Raz’s verifier given that the first entry is p. The
verifier queries p to P receiving a as an answer, and queriesq1; : : : ; qk to Q receiving b1; : : : ; bk as answers. We say that
the verifier strongly accepts if a = �1(b1) = � � ��k(bk),
we say that it weakly accepts when at least two of the valuesa; �1(b1); : : : ; �k(bk) are the same, and we say that it rejects
when the values a; �1(b1); : : : ; �k(bk) are all different. On
input a valid statement and a correct proof, our verifier strongly
accepts with probability one. On input an invalid statement,
and for every pair of proofs, our verifier rejects with high
probability. The composed verifier looks at the table A that
is the encoding of the answer to p and to B1; : : : ; Bk, that
are respectively the encodings of the answers to q1; : : : ; qk,
and then executes the inner verification procedure. Therefore
an inner verifier with completeness c and soundness s has to
accept with probability at least c encodings of answers that
would make the outer verifier strongly accept, and if the in-
ner verifier accepts with probability s + � its proofs, then a
decoding procedure should produce decodings that make the
outer verifier at least weakly accept with probability at least�0, where �0 depends only on �.

Before formalizing the above discussion we need to intro-
duce some notation in order to specify the encoding scheme
used. From now on Boolean functions will be defined with
values in f1;�1g rather than f0; 1g. The association is that�1 stands for 1 (or true) and 1 stands for 0 (or false). Observe
that multiplication in f1;�1g acts as Boolean xor in f0; 1g.
For an integer k, we denote by [k] the set f1; : : : ; kg. For3Normally, the acceptance condition of Raz’s verifier is described as
“�(b) = a and h(b) = 1”, where h is a boolean function generated by
the verifier together with p; q; �. Following [26], we avoid this additional
complication by encoding � into h.

two sets � and � we denote by ��� = (� [ �) � (� \ �)
their symmetric difference. Recall that � is commutative and
associative.

For an integer n, we denote by Fn the set of functionsf : [n] ! f1;�1g. The operator � denotes composition of
functions, i.e. if f 2 Fn and � : [m]! [n] then the functionf � � 2 Fm is defined as (f � �)(b) = f(�(b)) for anyb 2 [m].

We say that a function A : Fn ! f1;�1g is linear iffA(f)A(g) = A(fg) for all f; g 2 Fn. There are 2n linear
functions. There is a linear function l� for any set � �f1;�1gn; it is defined asl�(f) = Ya2� f(a) :
By convention, we say that a product ranging over the empty
set equals 1. The Long code is the set of linear functions whose
support is a singleton, i.e. LONGn = flfag : a 2 [n]g. We
say that lfag is the Long code of a. Thus, the Long code
is formed by n codewords of length 2n. This definition is
equivalent to the definition mentioned earlier in Section 2, but
will be more convenient in our analysis.

Finally, we need a notion analogous to that of folding from
[7]. Observe that if A = lfag is a codeword of the Long
code, then A(f) = f(a) = �(�f(a)) = �A(�f) for anyf ; for any function A : Fn ! f1;�1g we will define a new
function A0 that satisfies such a property. The definition of A0
is as follows:A0(f) = � A(f) If f(1) = 1�A(�f) If f(1) = �1:
We stress that, for any f , A0(f) can be evaluated with one
query to A, moreover A0 is equal to A if A is a codeword of
the Long code.

We are now ready to define our outer and inner verifier and
the composition theorem.

Definition 2 (k-Outer Verifier) A k-outer verifier for a lan-
guage L with soundness c and completeness s, and answer
size l is a randomized polynomial time oracle algorithm V
that is given oracle access to two oracles P and Q with the
properties that for every input string x,

[EFFICIENCY] each oracle answers a query with at most l
bits. The verifier uses at most O(log(jxj)) random bits.

[ORACLE ACCESS] After tossing its random coins, the ver-
ifier generates queries p; q1; : : : ; qk and functions�1; : : : ; �k : [m] ! [n]. The verifier queries p to P re-
ceiving answer a and q1; : : : ; qk to Q receiving answersb1; : : : ; bk.

[COMPLETENESS] If x 2 L, there exists oracles P and Q
such that with probability at least c V strongly accepts.

[SOUNDNESS] If x 62 L, for every oracles P;Q, V rejects
with probability at least 1� s.



A 1-outer verifier corresponds to the standard notion of canon-
ical inner verifier, as in [8, 9, 7]. For any k, we are able to
construct k-outer verifiers.

Theorem 3 (Construction of k-outer verifiers) For everyk � 1 and for every s > 0, there exists a k-outer veri-
fier with perfect completeness, soundness s and answer sizeO(logk=s).
The proof is postponed to Section 4.

Definition 4 (k-Inner Verifier) A k-inner verifier is a ran-
domized oracle algorithm V that is given a sequence of func-
tions �1; : : : ; �k where �j : f1;�1gm ! f1;�1gn, and has
oracle access to a function A : Fn ! f1;�1g and to a se-
quence of functions B1; : : : ; Bk whereBj : Fm ! f1;�1g.

Definition 5 (Decoding Procedure) A decoding procedure is
a randomized algorithm Dn such that on input a functionA : Fn ! f1;�1g an element of [n].
Definition 6 (Good Inner Verifier) A k-inner verifier V is(c; s; q)-good with respect to a decoding procedure D if for
any �1; : : : ; �k : [m] ! [n], any A : Fn ! f1;�1g, and
any B1; : : : ; Bk : Fm ! f1;�1g, the following properties
hold.

[NUMBER OF QUERIES]V makes at total number of at mostq non-adaptive oracle queries.

[COMPLETENESS] if A is the Long code of a, and Bi is the
long code of bi, and �i(bi) = a, thenPr[V (A0; B01; : : : ; B0k; �1; : : : ; �k)accepts] � c :
[SOUNDNESS] For any constant � > 0, there is a posi-
tive constant �0 > 0 independent of m, n, (but possibly
dependent on �) such that

If Pr[V (A0; B01; : : : ; B0k; �1; : : : ; �k)accepts] � s+ �
Then Pr� D(A); �1(D(B1)); : : : ; �k(D(Bk))

not all different

� � �0 :
Our Composition Theorem is as follows. (The proof is

deferred to Section 4.3.)

Theorem 7 If there exists a (c; s; q)-good k-inner verifier V
with respect to a decoding procedure D then for any " > 0NP = naPCPc;s+"[log; q].
4 Construction of k-Outer Verifiers and the

Composition Theorem

In this section we shall prove Theorem 3 and Theorem 7. Our
construction of outer verifiers uses the 2-Prover 1-Round pro-
tocol of Raz [21] (indeed, a slight revisitation of it), therefore
we will start reviewing its construction, even though it has
appeared in several places, including [7, 16].

4.1 A 1-Outer Verifier

It is a consequence of the PCP Theorem [3] that there exists
a polynomial time reduction that given an instance ' of 3SAT
generates an instance '̂ of 3SAT such that if ' is satisfiable
then also '̂ is satisfiable, and if ' is not satisfiable then every
assignment satisfies less then a fraction � of the clauses of '̂,
where � < 1 is an absolute constant. Using a reduction of
Papadimitriou and Yannakakis [20] (see also further elabora-
tion by Feige [11]) we can make sure that every variable in'̂ occurs in exactly the same number of clauses. (This will
not be really necessary for our purposes, but will simplify the
exposition.) The transformation of ' in '̂ defines a simple
2-Prover 1-Round proof system: on input a formula ' withN variables and M variables, the verifier has oracle access to
two tables P : [N ]! B and Q : [M ]! [7] that are suppos-
edly two encodings of the same satisfying assignment for '̂.
Specifically, for every variable x, P (x) contains the value of x
in the assignment, and for every clause C, Q(C) contains the
values of the three variables occurring in C according to the
same assignment (the value is encoded as a number between
1 and 7, that is the index of the partial assignment in the lex-
icographic order among the assignments that satisfy C). The
verifier picks at random a clause C in '̂ and one of the three
variables occurring in C (say, x, the i-th variable in C) and
reads a = P (x) and b = Q(C). If b encodes a satisfying as-
signment b1; b2; b3 for C and bi = a then the verifier accepts,
otherwise it rejects. It is easy to show that this verifier has
perfect completeness and soundness 1� (1� �)=3 < 1.

The soundness of the previously described protocol can be
reduced by iterating the protocol several times in parallel. The
protocol obtained by t parallel repetitions does the following:
it picks at random clauses C1; : : : ; Ct (possibly with repeti-
tions), and picks a variable xj for every clause Cj . Prover P
is supposed to contain an assignment to every t-tuple of vari-
ables, and Q an assignment to the variables occurring in everyt-tuple of clauses (encoded as an element of [7]t). The ver-
ifier asks (a1; : : : ; at) = P (x1; : : : ; xt) and (b1; : : : ; bt) =Q(C1; : : : ; Ct) and checks that �(b1; : : : ; bt) = (a1; : : : ; at)
where � : [7]t ! f0; 1gt is the function that “extracts” (or
“projects”) from the values of all the variables occurring inC1; : : : ; Ct the values of x1; : : : ; xt. We notice that since ev-
ery variable occurs in exactly the same number of clauses (and
every clause contains exactly the same number of variables)
the verifier generates the same distribution if it first picks at
random t variables x1; : : : ; xt and then a clausesCi for everyxi, whereCi is chosen uniformly among the clauses where xi
occurs.

Raz proves that the verifier obtained by making t parallel
repetitions has soundness 2�
(t) and, by definition, it has per-
fect completeness and answer size t log 7. From now on, we
will abstract all the details of Raz verifier that are not necessary
for our proof, and we will use the following description of it
(see Figure 1): it has oracle access to tables P 2 f0; 1gn�N



Verifier V out ('; P;Q)
Randomly pick p 2 [N ]
Pick (q; �) according to D(p)
Let a = P (p) and b = Q(q)
accept iff �(b) = a

Figure 1. A description of the 2-Provers 1-Round
protocol of Raz [21].

Verifier V kout('; P;Q)
Randomly pick p 2 [N ]
Sample k pairs (q1; �1); : : : ; (qk; �k) from D(p)
Let a = P (p) and bj = Q(qj) for j = 1; : : : ; k
strongly accept if a = �1(b1) = � � � = �k(bk)
weakly accept if the valuesa; �1(b1); : : : ; �k(bk) are not all different
reject if the valuesa; �1(b1); : : : ; �k(bk) are all different

Figure 2. Our k-outer verifier.

and Q 2 f0; 1gm�M . It first picks a random entry in P (i.e.
a uniformly distributed number p between 1 and N ) and then
decides the query q for P and the projection function �; we
make no assumption on how q and� are selected given that p is
selected, and we call their distributionD(p). For every � > 0,
such a verifier exists with perfect completeness, soundness �
and answer size maxfm;ng = O(log1=�).
4.2 Construction of k-Outer Verifiers

Our k-outer verifier is depicted in Figure 2.
We want to prove that whenever the k-outer verifier accepts

with probability larger than � then the formula is satisfiable.
We will prove the latter statement by using the soundness con-
dition of Raz’s verifier, and showing how to construct proofs
for Raz verifier that make it accept with sufficiently large prob-
ability.

Let P and Q be proofs that the k-inner verifier weakly
accepts with probability at least s, that isE[P (p); �1(Q(q1)); : : : ; �k(Q(qk)) not all different ] � s;
where the expectation is over the choices of p 2 [N ] and(qi; �i)’s from D(p). We will consider the pair of proofs(P 0; Q) where P 0 is constructed randomly as follows:

For every p 2 [N ], we sample k � 1 pairs (qi; �i), i 2[k � 1], from D(p), and then we select a random element

a from the multiset P (p); �1(Q(q1)); : : : ; �k(Q(qk�1)),
and we let P 0(p) = a.

Now we claim that Raz’s verifier accepts (P 0; Q) with
probability at least s=k2, where the probability is taken both
over the verifier’s coin tosses and over the construction of P 0.

We first observe that the probability that Raz’s verifier ac-
cepts is equal to the probability that the following experiment
succeeds:

Pick randomly p 2 [N ]; sample k � 1 pairs (qi; �i),i 2 [k � 1], from D(p); choose at random another pair(q; �) from D(p); choose at random an element a fromP (p); �1(Q(q1)); : : : ; �k�1(Qk�1(qk�1)) and accept iffa = �(Q(q)).
This probability is clearly the same as the probability that

the following random process succeeds.

Pick randomly p 2 [N ]; sample k pairs (qi; �i), i 2 [k],
fromD(p); pick a random j 2 [k]; pick a random elementa in the multiset fP (p)g[f�i(Q(qi))gi 6=j and accept iffa = �j(Q(qj)).

Conditioned upon the k-outer verifier weakly accepting
when it selects p; (q1; �1); : : : ; (qk; �k), the previous process
accepts with probability at least 1=k2. It follows that Raz’s
verifier accepts with probability at least s=k2. This acceptance
probability is expected over the choices of P 0, but there must
be a choice of P 0 for which the acceptance probability is at
least that much.

4.3 The Composition Theorem

We now come to the proof of the Composition Theorem. LetV in be a (c; s; q)-good k-inner verifier, and let " > 0 be
fixed. The PCP verifier V comp that we are claiming to exist
will expect as a proof a pair of tables LP and LQ that be
the entry-wise encoding with the Long code of a valid pair of
proof oraclesP andQ for the k-outer verifier. We will use a k-
outer verifier with perfect completeness and soundness �; we
will specify � later but we anticipate that it will be a constant
depending only on ". We denote by FP (q) (respectivelyFQ(q)) the folding of the q-th entry of LP (respectively,LQ). Notice that even though V comp has only oracle access
to LP and LQ, it can simulate an oracle access to FP andFQ as described in Section 3.

The V comp verifier is described in Figure 3. It picks queriesp; q1; : : : ; qk and projections�1; : : : ; �k as thek-outer verifier
would, and then it executes the inner verification procedure.

Claim 8 V comp has completeness c and query complexity q.

PROOF: V comp accesses the proof only by running V in, and
by hypothesis V in reads at most q bits. When LP and LQ
are valid proof, the input that is passed to V in satisfies the
completeness condition of V in. Therefore V in accepts with



Verifier V comp(';LP;LQ)
Randomly pick p 2 [N ]
Sample k pairs (q1; �1); : : : ; (qk; �k) from D(p)
Let A = FP (p) and Bj = FQ(qj) for j = 1; : : : ; k
Run V in(A;B1; : : : ; Bk; �1; : : : ; �k)
Figure 3. The composed verifier that uses a k-
inner verifier V in.

probability at least c over its coin tosses, for every particular
coin toss of V comp. This implies that V comp accepts with
probability at least c. 2
Claim 9 V comp has soundness at least s + ".

PROOF: We have to prove that when V comp accepts its oracle
proofs LP and LQ with probability at least s + " then '
is satisfiable. Using the soundness condition of the k-outer
verifier, in order to show that ' is satisfiable it is enough to
exhibit oracle proofs P and Q that would make the k-outer
verifier weakly accept with probability at least �.

Let LP , LQ and ' be such thatPr[V comp(';LP;LQ) accepts ] � s + " (1)

and let N and M be the number of entries of LP and LQ,
respectively. Given LP and LQ, we define oracle proofs P
and Q for the k-outer verifier with the following randomized
procedure:
(1) Independently for p 2 [N ]: set P (p) = D(FP (p)).
(2) Independently for q 2 [M ]: set Q(q) = D(FQ(q)).
Remember thatD is a randomized algorithm. In the above def-
inition of P andQ the executions of D have to be independent
each time.

An averaging argument using (1) shows that for at least
a fraction "=2 of the random choices of V comp, i.e. for at
least a fraction "=2 of the p; (q1; �1); : : : ; (qk; �k), the inner
verifier accepts with probability at least s + "=2; we call G
the set of such good k+1-tuples. By the soundness condition
of the inner verifier we have that there exists some constant� = �"=2 such that for every (p; (q1; �1); : : : ; (qk; �k)) 2 G,
it is the case that the probability over the choices D that the
multisetfP (p); �1(Q(q1)); : : : ; �k(Q(qk))g contains at least
two identical elements is at least �.

For a multisetS, let I(S) denote the event that it contains at
least two identical elements. The probability that the k-outer
verifier weakly accepts P and Q (expected over the way P
and Q are chosen) isPrP;Q;p;f(qi ;�i)gi [I(fP (p); �1(Q(q1)); : : : ; �k(Q(qk))g)]� PrP;Q � I(fP (p); �1(Q(q1)); : : : ; �k(Q(qk))g)

given (p; (q1; �1); : : : ; (qk; �k)) 2 G �

Innerk;"(A;B1; : : : ; Bk; �1; : : : ; �k)
Choose uniformly at randomf1; f2 2 Fn and g1; : : : ; gk 2 Fm
For i = 1; 2 and j = 1; : : : ; k

choose at random ei;j 2 Fm such that8b 2 f1;�1gm:Pr[ei;j(b) = 1] = 1� "
if for all i = 1; 2 and j = 1; : : : ; kA(fi)Bj(gj) = Bj((fi � �j)gjei;j)

then accept
else reject

Figure 4. The inner verifier.�Prp;f(qi;�i)gi [(p; (q1; �1); : : : ; (qk; �k)) 2 G]� "2� > �
This completes the proof of the Composition Theorem. 2
5 Main Result

In this section we describe the inner verifier used in our paper
and give an outline of its analysis.

5.1 The Inner Verifier

For any k and " > 0, our inner verifier Innerk;" is described
in Figure 4. Innerk;" is obtained by iterating a basic 3-query
inner verifier by Håstad [16]. The basic protocol would access
two tables A and B, would pick a function f uniformly from
the domain of A, a function g uniformly from the domain ofB, and a function e from the domain of B but with a non-
uniform distribution; the verifier would accept if and only ifA(f)B(g) = B((f��)ge). By recycling queries, we manage
to execute 2k iterations of the basic protocol while using only3k+ 2 queries instead of 6k queries. Specifically, each of the
two queries that we ask on A is used k times, and some of
the queries that we ask on B are used twice. The recycling
mechanism that we employ in Innerk;" is similar to the one
used in the K2;k test of [26]. The latter was, however, only a
codeword test, and so it had as input a single table.

5.2 Background on Fourier Analysis

To analyze the properties (i.e., the soundness) of this verifier,
we need to resort to Fourier analysis. We give some back-
ground here. Recall the definition of linear functions from
Section 3.

For a function � : f1;�1gm ! f1;�1gn and a set � �f1;�1gm we define �(�) = f�(b) : b 2 �g



We can see a function A : Fn ! f1;�1g as a real-valued
function A : Fn ! R. The set of functions A : Fn ! R is
a vector space over the reals of dimension 22n . We define the
following scalar product between functions.A �B = 122n Xf2FnA(f)B(f) = Ef [A(f)B(f)] :

The set of linear functions is easily seen to form an or-
thonormal basis for the set of functions A : Fn ! R. This
implies that for any function A : Fn !R we haveA(f) =X� Â�l�(f) where Â� = A � l�
Parseval’s identity implies that for every A : f1;�1gn !f1;�1g it holds

P� Â2� = 1.
Finally, from the definition of folding (i.e., for every f ,A0(f) = �A0(�f)) it follows that Â0� = 0 for any � of even

size, in particular for � = ;.

5.3 The Decoding Procedure

The decoding procedure D is based on the fact that, by Parse-
val’s identity, the squares of the Fourier coefficients Â�’s andB̂�’s sum to 1 and can hence be thought of as a probability
distribution.

For a table A : f0; 1gn ! f0; 1g, the decoding procedure
is defined as follows:

Pick a set � � [n] with probability Â2�; pick a random
element a 2 �, return a. (Notice that this is well defined
only when Â; = 0, which is true for a folded A.)

The claims about the number of queries made by the inner
verifier and about its completeness property are easily verified.
Hence we turn our attention to its soundness.

5.4 The Analysis

We let k and " be fixed for the rest of this section.

Proposition 10 The acceptance probability of Innerk;" is122kPS�[2]�[k] TS whereTS 4=E24 Y(i;j)2SA(fi)Bj(gj)Bj((fi � �j)gjei;j)35 ;
where the expectation is taken over f1; f2, gj’s and ei;j’s.

This proposition is proven as in [26]; it follows from the
arithmetization of the acceptance condition of the inner ver-
ifier, which is a function of the A(fi)’s, Bj(gj)’s etc. To
analyze the expression above, we need to analyze the TS ’s.
Of course when S is empty then TS is 1. We prove that if

TS is high for any other set S then the success probability of
the decoding procedure is high. We divide the analysis into
two cases, depending on whether none or at least one of the

sets VS4=fj : (1; j) 2 Sg and WS4=fj : (2; j) 2 Sg have
odd cardinality. We state without proof the main intermediate
steps of our analysis. A complete proof can be found in a
preliminary full version of this paper [22]

Lemma 11 For any non-empty set S � [2] � [k], if TS ��, then the decoding procedure of Section 5.3 leads to weak
acceptance with probability at least �ck2 , where c is a constant
depending only on ".

Theorem 12 For any k and ", Innerk;" is a ((1 � 2")2k;2�2k; 3k + 2)-good inner verifier with respect to (D1; D2)
(the decoding procedure defined in Section 5.3.)

PROOF: The verifier certainly makes 3k + 2 non-adaptive
queries. If the input of the verifier satisfies the completeness
conditions, then let A be the long code of a andBi be the long
code of bi (we also have �i(bi) = a.) The test accepts if and
only if ei;j(bj) = 1 for all (i; j) 2 [2] � [k], an event that
happens with probability (1� 2")2k.

Let A, B1; : : : ; Bk and �1; : : : ; �k be such that Innerk;"
accepts with probability at least 2�2k+ �. Then, from Propo-
sition 10, there must be at least one non-empty S � [2]� [k]
such thatE24 Y(i;j)2SA(fi)Bj(gj)Bj((f � �j)gjei;j)35 � �;
where the expectation is over the choices of the functions f1,f2, gj’s and ei;j’s. Then, by Lemma 11, we have that the
decoding procedure of Section 5.3 succeeds with probability
at least 12 �2ck2 = poly(�)
where c is a constant that depends only on ". 2
Theorem 1 follows from Theorem 7 and Theorem 12.

Acknowledgments

We thank Shafi Goldwasser and Amit Sahai for coming up
with the model of PCPs that read two consecutive blocks of
data. We thank Oded Goldreich for valuable comments.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn)
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[15] J. Håstad. Clique is hard to approximate within n1�".
FOCS, 1996.
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