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tWe 
onsider the existen
e of pairs of probability ensembles whi
h may be eÆ
iently distin-guished given k samples but 
annot be eÆ
iently distinguished given k0 < k samples. It is wellknown that in any su
h pair of ensembles it 
annot be that both are eÆ
iently 
omputable (andthat su
h phenomena 
annot exist for non-uniform 
lasses of distinguishers, say, polynomial-size
ir
uits). It was also known that there exist pairs of ensembles whi
h may be eÆ
iently distin-guished based on two samples but 
annot be eÆ
iently distinguished based on a single sample.In 
ontrast, it was not known whether the distinguishing power in
reases when one moves fromtwo samples to polynomially-many samples.We show the existen
e of pairs of ensembles whi
h may be eÆ
iently distinguished given k+1samples but 
annot be eÆ
iently distinguished given k samples, where k 
an be any fun
tionbounded above by a polynomial in the se
urity parameter.In the 
ourse of establishing the above result, we prove several te
hni
al lemmas regardingpolynomials and graphs. We believe that these may be of independent interest.
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1 Introdu
tionComputational indistinguishability, introdu
ed by Goldwasser and Mi
ali [7℄ and de�ned in fullgenerality by Yao [12℄, is a 
entral 
on
ept of 
omplexity theory. Two probability ensembles,fXngn2N and fYngn2N, where both Xn and Yn range over f0; 1gn, are said to be indistinguishableby a 
omplexity 
lass if for every ma
hine M in the 
lass the di�eren
e dM (n) def= jPr(M(Xn) =1)�Pr(M(Yn)=1)j is a negligible fun
tion in n (i.e., de
reases faster than 1=p(n) for any positivepolynomial p).Observe that in the de�nition re
alled above, the distinguishing ma
hine (i.e., M) obtains asingle sample (from either distribution), and 
asts its \verdi
t" based on this sample. An im-portant and natural question is what happens when the distinguishing ma
hine is given severalindependently 
hosen samples. It is well known that in several 
ases (see below), 
omputationalindistinguishability is preserved also when many samples are given to the distinguisher. That is,in these 
ases, if two ensembles are 
omputationally indistinguishable by a single sample then theyare also 
omputationally indistinguishable by (polynomially) many samples. Two important 
aseswhere this happens are:1. When the two probability ensembles are polynomial-time 
omputable, and one 
onsidersprobabilisti
 polynomial-time distinguishers. (An ensemble fZngn2N is polynomial-time 
om-putable if there exists a probabilisti
 polynomial-time sampling algorithm, S, su
h that S(1n)and Zn are identi
ally distributed.)2. When one 
onsiders 
omputational indistinguishability with respe
t to the 
lass of non-uniform polynomial-size 
ir
uits.In both 
ases the proof amounts to using the multi-sample distinguisher to derive a single-sampledistinguisher, by in
orporating 
opies of the two ensembles into the single-sample distinguisher (
f.,[5, 4℄). This is possible using the fa
t that the 
lass of distinguishers is able to generate samplesfrom ea
h of the two ensembles.However, it has been shown that the above may fail in 
ertain other 
ases (
f., [3, 8, 6℄).Spe
i�
ally, there exists a pair of (non-eÆ
iently 
omputable) ensembles whi
h, on one hand,are 
omputationally indistinguishable by (uniform) probabilisti
 polynomial-time algorithms whi
htake a single sample, while on the other hand, 
an be distinguished in polynomial-time given twosamples.It has been unknown whether separations as the above may exists between distinguishabilitybased on, say, 2 samples and 3 samples. Furthermore, it was not known if there is a separationbetween 2 samples and polynomially many samples.We show a separation between k samples and k + 1 samples, for any polynomially-boundedfun
tion k : N 7! N . That is, there exist a pair of probability ensembles whi
h are (polynomial-time) indistinguishable based on k samples and yet 
an be distinguished (in polynomial-time) givenk + 1 samples.2 Formal SettingIn this paper we 
all P = fPngn2N a probability ensemble if, for some polynomially-bounded lengthfun
tion ` : N 7!N , Pn is a distribution on the set of strings of length `(n). The 
orresponding (tothe length fun
tion `) uniform ensemble, denoted U = fUngn2N, has ea
h Un uniformly distributedover f0; 1g`(n). A fun
tion, � :N 7! [0; 1℄, is 
alled negligible if for every positive polynomial p and all1



suÆ
iently large n's, �(n) < 1=p(n). The latter de�nition is naturally 
oupled with the asso
iationof eÆ
ient 
omputation with polynomial-time algorithms: An event \o

urs negligibly" if it 
annotbe observed after a feasible (i.e., expe
ted polynomial) number of trials.De�nition 2.1 (indistinguishability by k samples): Let k : N 7!N be any polynomially boundedfun
tion, and P = fPngn2N and Q = fQngn2N be a pair of probability ensembles. The ensembles Pand Q are said to be indistinguishable by k samples if for every probabilisti
 polynomial-time ma
hineM the fun
tion dM (n) def= jPr(M(P k(n)n ) = 1)� Pr(M(Qk(n)n ) = 1)jis negligible, where P k(n)n (resp., Qk(n)n ) represents k(n) independent 
opies of Pn (resp., Qn).A \strong" negation of the notion of indistinguishability is presented by the notion of distinguisha-bility. A fun
tion, � :N 7! [0; 1℄, is 
alled noti
eable if there exists a positive polynomial p so thatfor all suÆ
iently large n's, �(n) > 1=p(n).De�nition 2.2 (distinguishability by k samples): Let k :N 7!N , P = fPngn2N and Q = fQngn2Nbe as in De�nition 2.1 above. The ensembles P and Q are said to be distinguishable by k samples ifthere exists a probabilisti
 polynomial-time ma
hine M so that the fun
tion dM , de�ned as above,is noti
eable.We stress that the two notions do not 
omplement one another, but rather leave a gap in-between, sin
e the underlying notions of negligible and noti
eable are not 
omplementary. Clearly,a negligible fun
tion is not noti
eable, but there are fun
tions � : N 7! [0; 1℄ whi
h are neithernegligible nor noti
eable (e.g., �(n) = 1 if n is even and 0 otherwise).Theorem 2.3 (main result): Let k : N 7!N be any polynomially bounded fun
tion. Then, thereexists a probability ensemble, P = fPngn2N, where Pn ranges over strings of length �(n), so that1. Indistinguishability by k samples: The ensemble fPngn2N is indistinguishable from the uniformensemble, U = fUngn2N, by k samples. Furthermore, for any probabilisti
 Turing ma
hineM that takes k samples, and for all suÆ
iently large n's,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) represents k(n) independent 
opies of Pn (resp., Un).2. Polynomial-time distinguishability by k + 1 samples: The ensemble fPngn2N is distinguishablefrom the uniform ensemble U by k + 1 samples. Furthermore, there exists a deterministi
polynomial-time ma
hine M su
h that for all suÆ
iently large n's,jPr(M(P k(n)+1n ) = 1)� Pr(M(Uk(n)+1n ) = 1)j > 13where P k(n)+1n (resp., Uk(n)+1n ) represents k(n) + 1 independent 
opies of Pn (resp., Un).Furthermore, Pn 
an be generated by a probabilisti
 
ir
uit of size polynomial in n. In 
ase oneonly wishes to fool probabilisti
 polynomial-time distinguishers (in item 1), the nth 
ir
uit 
an be
onstru
ted in time e(n), where e : N 7!N is any fun
tion whi
h grows faster than 2n
, for every
 > 0. 2



Thus, with respe
t to uniform 
omputations (and general ensembles whi
h may not be polynomial-time 
omputable), the \sample hierar
hy" is stri
t. We 
omment that one may also 
onstru
t apair of probability ensembles, P = fPngn2N and Q = fQngn2N su
h that both satisfy the abovetheorem and furthermorejPr(M(P k(n)+1n ) = 1)� Pr(M(Qk(n)+1n ) = 1)j > 1� 2�
(n)where M is as in Item 2 above.3 Proof of Main ResultWe prove Theorem 2.3 by �rst studying a problem 
on
erning univariate polynomials of low degreeover a big �nite �eld.3.1 Typi
al PolynomialsStandard Notations: Let F be a �nite �eld. Denote by Fd the set of univariate polynomials ofdegree at most d over F.Less Standard Notations: For x = (x1; :::; xk) 2 Fk (i.e., ea
h xi in F), we extend the de�nitionof polynomials so that, for any polynomial p, we have p(x) = (p(x1); :::; p(xk)).Motivating Dis
ussion. The main distributions 
onsidered in this paper are (x; p(x)) for x
hosen at random from F for some �xed 
hoi
e of the polynomial p 2 Fk0 . and the uniformdistribution (x; y), i.e., x; y are 
hosen uniformly and independently from F. It is our goal to saythat for some 
hoi
e of k0 and k, the distributions are indistinguishable given k samples. Furtherwe would want to say that the distributions are distinguishable given k00 > k samples. In order todo so we 
onsider a probabilisti
 distinguishing algorithm M and let f denote the probability thatM a

epts a k-tuple 
hosen from one of the two distributions. Thus f : (Fk)2 7! [0; 1℄.It is 
lear that for every f : (Fk)2 7! [0; 1℄,Ex2Fk;p2Fk�1(f(x; p(x))) � Ex;y2Fk(f(x; y)):Equality would hold if x was uniformly sele
ted among the set of k-sequen
es 
onsisting of kdistin
t elements of F. For su
h x's, the sequen
e p(x) is uniformly sele
ted over Fk, given that p isuniformly distributed in Fk�1. It is appealing to 
onje
ture that there exists a polynomial p 2 Fk�1so that Ex2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))However, as shown below (see Proposition 3.5), this is false. Instead, we 
onsider degree k polyno-mials whi
h are examined at k arguments (rather than at k + 1 arguments). In this 
ase, we show(see Lemma 3.2) that for every f : (Fk)2 7! [0; 1℄ most polynomials p 2 Fk satisfyEx2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))We 
all su
h polynomials (f; k)-typi
al. More generally,De�nition 3.1 (typi
al fun
tions): Let k 2 N , � 2 [0; 1℄ and f : Fk � Fk 7! [0; 1℄. A fun
tiong : F 7! F is 
alled (f; k; �)-typi
al if���Ex2Fk(f(x; g(x))) � Ex;y2Fk(f(x; y))��� < �3



Following the above dis
ussion we will 
onsider an arbitrary f : (Fk)2 7! [0; 1℄ and prove1. For some absolute 
onstant 
 > 0 the following holds. For every �nite �eld F, k < jFj
 andevery f : (Fk)2 7! [0; 1℄ all but at most an jFj�
 fra
tion of the degree k polynomials are(f; k; jFj�
)-typi
al. (We stress that 
 will be a small real number, in parti
ular at most 1.)This is shown in Lemma 3.2.2. For every �nite �eld F and every k < pjFj=10 there exists a (polynomial-time 
omputable)fun
tion f : (Fk)2 7! [0; 1℄ so that no degree k � 1 polynomial is (f; k; 0:4)-typi
al. This isshown in Proposition 3.5.Using the above, Theorem 2.3 is proven by standard diagonalization. The high level plan is asfollows. Using parameter n, we 
onsider F = GF(2n), and wish to fool the �rst t(n) (e.g., t(n) = n)probabilisti
 ma
hines whi
h takes k(n) samples. These ma
hines give rise to t(n) fun
tions fi asabove, and by Item 1 there exists a degree k(n) polynomial, denoted p, whi
h is (fi; k(n); 2�
(n))-typi
al for all i's. Using p, we de�ne the n-th distribution, denoted Pn, as (x; p(x)) where xis uniformly distributed over F, and infer that none of the above ma
hines 
an distinguish k(n)samples taken from Pn from k(n) samples taken from the uniform distribution over pairs F�F. Onthe other hand, by Item 2 (substituting k for k(n) + 1), there exists a polynomial-time algorithmwhi
h distinguishes k(n) + 1 samples from Pn from k(n) + 1 samples taken from the uniformdistribution. For details see Se
tion 3.4.3.2 Almost all degree k polynomials are k-typi
alThe most involved te
hni
al part of this work is proving that for any f : (Fk)2 7! [0; 1℄ most degreek polynomials are (f; k; jFj�
(1))-typi
al. That is,Lemma 3.2 There exists a 
onstant 
 > 0 so that for every f : (Fk)2 7! [0; 1℄, setting � def=Ex;y2Fk(f(x; y)) and � def= k1=

�jFj
 the following holdsPrp2Fk (jEx2Fk(f(x; p(x)))� �j > �) < �The lemma is proven in the next se
tion. As a warm-up we prove that for any su
h f mostdegree 2k � 1 polynomials are (f; k; jFj�
(1))-typi
al. This suÆ
es to establish a weaker version ofTheorem 2.3 (i.e., separating distinguishability by k samples from distinguishability by 2k samples).Lemma 3.3 Let f : (Fk)2 7! [0; 1℄, and � def= Ex;y2Fk(f(x; y)). Then, for any � > 0Prp2F2k�1 (jEx2Fk(f(x; p(x)))� �j > �) < 2k2�2 � jFjProof: Consider the probability spa
e of all possible 
hoi
es of p 2 F2k�1 with uniform distribution.De�ne random variables (over this probability spa
e) so that �x def= f(x; p(x)), for every x 2 Fk.The 
laim of the lemma 
an be rephrased asPrp2F2k�1 0������� Xx2Fk �x � jFjk � ������� > � � jFjk1A < 2k2�2 � jFj (1)4



This will be established by applying Chebyshev's inequality to the �x's. Spe
i�
ally, we will showthat the expe
ted value of the sum of the �x's is approximately jFjk ��, and that with high probabilitythe sum of the �x's is 
lose to its expe
ted value. In showing the latter we will use the fa
t thatthe �x's are \almost pairwise independent" (as in [1, Se
. 4.3℄).Fa
t 3.3.1: j jFjk � � � Px2Fk E(�x) j < k22�jFj � jFjk :Proof: For every x = (x1; :::; xk) 2 Fk with jfx1; :::; xkgj = k, we haveE(�x) = Ep2F2k�1(f(x; p(x)))= Ey2Fk(f(x; y))sin
e for su
h an x = (x1; :::; xk) the values p(x1); :::; p(xk) are uniformly and independently dis-tributed in F. Observe that the fra
tion of x's 
onsisting of k distin
t xi's is at least 1� �k2� � jFj�1,and so Xx2Fk E(�x) = jFjk � Ex;y2Fk(f(x; y)) �  k2! � jFjk�1= jFjk �  ��  k2! � jFj�1!as 
laimed. 2Fa
t 3.3.2: Pr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < 2k2�2 � jFjProof: We �rst observe that for every x 2 Fk, for all but at most a �k2�=jFj fra
tion of the y's inFk, the random variables �x and �y are independent. This follows sin
e these random variablesare independent whenever the sequen
es x and y have no 
ommon element. (Here we use thehypothesis that the probability spa
e is uniform over the set of polynomials of degree 2k � 1 overF. For su
h a random polynomial p and disjoint sets fx1; : : : ; xkg and fy1; : : : ; ykg, the sequen
ep(x1); :::; p(xk); p(y1); :::; p(yk) is uniformly distributed over F2k.) Now applying Chebyshev's in-equality (
f., [1℄), we havePr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < var(Px2Fk �x)(�=2)2 � jFj2k< 4 �Px var(�x)�2 � jFj2k + 4 �Px6=y 
ov(�x; �y)�2 � jFj2kNow, using the fa
t that for a random variable Z 2 [0; 1℄ var(Z) � 14 , we may bound the �rst termabove by 4 � jFjk � 1=4�2�jFj2k = 1�2�jFjk � 1�2�jFj . As for the se
ond term, let Ix denote the set of y's forwhi
h �x and �y are sto
hasti
ally independent. By the above observation we have jIxjjFkj > 1� k2�1jFj ,and by de�nition 
ov(�x; �y) = 0 for every y 2 Ix. Thus, the se
ond term is bounded by4 �Xx6=y 
ov(�x; �y)�2 � jFj2k < 4 � Xx2Fk Xy2Fk 
ov(�x; �y)�2 � jFj2k5



< 4 � Xx2Fk jFk n Ixj � (1=4)�2 � jFj2k< k2 � 1�2 � jFjThe 
laimed bound follows by 
ombining the bounds for the two terms above and adding in theprobability that the variables �x and �y are not sto
hasti
ally independent. Spe
i�
ally:Pr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < k2 � 1�2 � jFj + 1�2 � jFj + �k2�jFj < 2k2jFj :2We may assume that k2�2�jFj � 1 and � < 1 (or else the lemma holds va
uously). It follows thatk22jFj � �22 < �2 . Thus, 
ombining the two fa
ts, the lemma follows. Spe
i�
ally, by Fa
t 3.3.1j jFjk � � � Px2Fk E(�x) j < �2 � jFjk, and using Fa
t 3.3.2 { Eq. (1) follows.Instantiating the above lemma (using � = jFj�1=3), we haveCorollary 3.4 Let f be as above, and k � 12pjFj=2. Then for all but a jFj�1=6 fra
tion of p's inF2k�1 jEx2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))j < jFj�1=3That is, all but a jFj�1=6 fra
tion of the degree 2k� 1 polynomials over F are (f; k; jFj�1=3)-typi
al.3.3 No degree k � 1 polynomial is k-typi
alIn 
ontrast to Lemma 3.2 (as well as to the weaker Lemma 3.3), we haveProposition 3.5 There exists an (eÆ
iently 
omputable) fun
tion f so that for any polynomialp 2 Fk�1 jEx2Fk(f(x; p(x)))� 0:5j > 0:5 � k2jFj (2)���Ex;y2Fk(f(x; y))� 0:5��� < k2jFj (3)The above proposition assumes that f is given an expli
it representation of the �eld F. In thesequel we will use the proposition with F = GF(2n) for some n 2 N . In su
h a 
ase, an expli
itrepresentation of F is an irredu
ible polynomial of degree n over GF(2). When applying the propo-sition we use the fa
t that su
h an irredu
ible polynomial 
an be determined in time polynomial inn [11℄.Proof: Consider any easily re
ognizable set, S, 
ontaining exa
tly half the elements of F. Considerthe algorithm f , whi
h given k pairs, denoted (x1; y1); :::; (xk ; yk), �nds a (typi
ally unique) degreek�1 polynomial p0 satisfying p0(xi) = yi, for i = 1; :::; k. (In 
ase there are several possibilities, thealgorithm sele
ts p0 arbitrarily among them.) The algorithm outputs 1 if p0(0) 2 S and 0 otherwise.(Here is where we use the hypothesis that S is an easily re
ognizable set.)Consider any p 2 Fk�1, and suppose that the algorithm is given k random pairs with yi = p(xi).With probability greater than 1 � k2 � jF j�1, we have k distin
t xi's, and so the extrapolated6



polynomial (i.e., p0) equals p. In su
h a 
ase the algorithm's output is determined by the predi
atep(0) 2 S, and so is identi
ally zero or identi
ally one. Thus, Eq. (2) follows.However, for any k distin
t xi's, when the yi's are uniformly sele
ted, the value of the extrap-olated degree k � 1 polynomial p0 at any �xed point (e.g., p0(0)) is uniformly distributed. Thus,with probability at least 1 � k2 � jF j�1, the algorithm's output is uniformly distributed in f0; 1g,and Eq. (3) follows.3.4 Using Typi
al PolynomialsUsing Lemma 3.3 and Proposition 3.5, we 
an prove the existen
e of probability ensembles whi
hare indistinguishable from the uniform ensemble by k samples but distinguishable from it by 2ksamples. More generally, we have the following lemma.Lemma 3.6 Let t : N 7!N be any non-de
reasing and unbounded fun
tion, and k; k0 : N 7!N betwo polynomially-bounded fun
tions so that k(n) < k0(n) for every n. Suppose that for some 
 > 0and any fun
tion f : (GF(2n)k(n))2 7! [0; 1℄ all but at most a 1=2t(n) fra
tion of the degree k0(n)�1polynomials over GF(2n) are (f; k(n); 2�
n)-typi
al. Then, there exists probability ensembles, P =fPngn2N and Q = fQngn2N, where Pn (resp. Qn) ranges over strings of length 2n and 
an begenerated by a probabilisti
 
ir
uit of size poly(n), so that1. The ensemble P is indistinguishable from the uniform ensemble, U = fUngn2N, by k samples.Furthermore, for any probabilisti
 Turing ma
hine M that takes k samples,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) are as in Theorem 2.3. Same for Q.2. The ensemble P is distinguishable from the uniform ensemble U by k0 samples. Furthermore,there exists a deterministi
 polynomial-time ma
hine M su
h thatjPr(M(P k0(n)n ) = 1)� Pr(M(Uk0(n)n ) = 1)j > 12 � 2�
(n)Same for Q. Furthermore,jPr(M(P k0(n)n ) = 1)� Pr(M(Qk0(n)n ) = 1)j > 1� 2�
(n)Theorem 2.3 follows by 
ombining the above lemma (using k0(n) = k(n) + 1) with Lemma 3.2,whereas a weaker statement with k0(n) = 2k(n) follows by 
ombining the above lemma with Corol-lary 3.4. In both 
ases we may set t : N 7!N to be any non-de
reasing and unbounded fun
tionso that t(n) < 2n=O(1) (e.g., t(n) = n or t(n) = logn will do, alas the hypothesis holds even fort(n) = 2n=O(1)).Proof: We 
onstru
t Pn by 
onsidering the �rst t(n) ma
hines in an enumeration of probabilisti
Turing ma
hines. For ea
h su
h ma
hine, M , we de�ne fM(�; �) def= Pr(M(�; �) = 1).1 By thehypothesis, for ea
h su
h M , all but at most 1=2t(n) of the polynomials, p, of degree k0(n)� 1 overF = GF(2n) satisfy jEx2Fk(n)(fM (x; p(x)))� Ex;y2Fk(n)(fM (x; y))j � 2�
n (4)1 We slightly abuse notation here. The input toM is a sequen
e of k pairs, (�1; �1); :::; (�k; �k), and so we a
tuallyhave fM (�1; :::; �k; �1; :::; �k) = Pr(M((�1; �1); :::; (�k; �k))=1).7



Thus, for more than half of the polynomials, p, of degree k0(n)� 1 over F it holds that for ea
h ofthe �rst t(n) ma
hines, M ,jEx2Fk(n)(Pr(M(x; p(x))=1)) � Ex;y2Fk(n)(Pr(M(x; y)=1))j � 2�
n (5)In parti
ular, let �x an arbitrary polynomial p 2 Fk0(n)�1 satisfying Eq. (5) (for all these M 's) sothat p(0) is one of the �rst 2n�1 elements of F (by some standard enumeration). Su
h a polynomialdoes exist sin
e exa
tly half of the polynomials satisfy the latter 
ondition and less than half donot satisfy the former. Similarly, we �x q 2 Fk0(n)�1 satisfying Eq. (5) so that q(0) is one of thelast 2n�1 elements of F.Using this polynomial p, we de�ne Pn to be uniformly distributed over f(x; p(x)) : x 2 GF(2n)g.Similarly, Qn is de�ned to be uniformly distributed over f(x; q(x)) : x 2 GF(2n)g.By Eq. (5), Item 1 of the lemma holds. To establish Item 2, we use the algorithm of Proposi-tion 3.5: We extrapolate a degree k0(n)� 1 polynomial, based on the given k0(n) samples, and testwhether its free term is one of the �rst 2n�1 elements of F. Clearly, the answer is almost always yeswhen given k0(n) samples from Pn, whereas it is almost always no when given k0(n) samples fromQn. (Here \almost always" means with probability 1�2�
(n).) The answer is yes with probability12 when given k0(n) samples from the uniform distribution over f0; 1g2n. The lemma follows.4 Proof of Lemma 3.2Our proof 
onsists of the following four steps:1. We 
onsider a bipartite graph in whi
h edges link left-side verti
es of the form (x; y) 2 (Fk)2with right-side verti
es p 2 Fk i� p(x) = y. We 
laim that for any f : (Fk)2 7! [0; 1℄, foralmost all p 2 Fk the average of f over the neighbors of p approximates the average of f overall (Fk)2.2. We 
onsider an auxiliary multi-graph (having parallel edges and self-loops) over the vertexset Fk with edges representing paths of length 2 in the former graph. We show that a goodupper bound on the se
ond eigenvalue of the auxiliary graph implies the former 
laim.3. Reversing the well-known 
onne
tion between eigenvalues and rapid-mixing, we show thatthe rapid-mixing of a random walk on a graph implies a good upper bound on the se
ondeigenvalue of the graph. (This part has appeared impli
itly in many works.)4. Finally, we show that a random walk on the auxiliary graph is suÆ
iently rapidly mixing (toyield a good enough bound on the se
ond eigenvalue).Initial simpli�
ation. We assume throughout that k2 < jFj (as otherwise Lemma 3.2 holdsva
uously). Re
all that Lemma 3.2 asserts that for some �0; Æ0 def= O(k1=
 � jFj�
), all but at most an�0 fra
tion of the k degree polynomials are (f; k; Æ0)-typi
al. This statement refers to expe
tationtaken over all x's in F k. As we have seen in the previous se
tion, it is more 
onvenient to 
onsideronly x = (x1; :::; xk)'s 
onsisting of distin
t xi's. Let F(k) denote the set of su
h sequen
es, that isF(k) def= f(x1; :::; xk) 2 Fk : xi 6= xj (8i 6= j)g (6)Then, Lemma 3.2 would follow if we establish, for �1 = �0 and Æ1 = Æ0 � k2jFj , that all but at most a�1 fra
tion of the k degree polynomials satisfyjEx2F(k)(f(x; p(x)))� Ex2F(k);y2Fk(f(x; y))j � Æ1 (7)8



(Lemma 3.2 follows sin
e the di�eren
e between expe
tation taken over x 2 Fk and expe
tationtaken over x 2 F(k) is at most �k2� � jFj�1.) From this point on, we 
onsider probability spa
es wherex is uniformly distributed over F(k).The bipartite graph GF;k. We 
onsider a bipartite graph, denoted GF;k, with vertex set UF;k [VF;k, where UF;k def= F(k) � Fk and VF;k def= Fk. The edge set of the graph, denoted E � UF;k �VF;k, 
onsists of pairs ((x; y); p) where p(x) = y. Clearly, ea
h vertex p 2 VF;k has exa
tly jF(k)jneighbours; spe
i�
ally, its neighbour set, denoted �(p), equals f(x; p(x)) : x 2 F(k)g. Using thefa
t that x 
onsists of distin
t elements, we know that ea
h vertex (x; y) 2 UF;k has exa
tly jFjneighbours, 
orresponding to the jFj degree k polynomials p's that satisfy p(x) = y. Thus, Eq. (7)
an be rephrased as asserting that all but at most an �1 fra
tion of v 2 VF;k satisfy������ 1j�(v)j Xu2�(v) f(u)� 1jUF;kj Xu2UF;k f(u)������ � Æ1 (8)Thus, our aim is to establish Eq. (8).4.1 It suÆ
es to show that GF;k is a good extra
torFollowing Zu
kerman [13℄, we observe that the above holds (i.e., at most an �1 fra
tion of v 2VF;k violate Eq. (8)) in 
ase GF;k is an (�2; Æ2)-extra
tor, with �2 = �1=2 and Æ2 = Æ1. In whatfollows, we use the variation distan
e to measure the distan
e between distributions, where fordistributions D1;D2 on a �nite spa
e X the variation distan
e between D1 and D2 is de�ned to be12Px2X jPrX2RD1 [X = x℄� PrX2RD2 [X = x℄j.De�nition 4.1 (extra
tor): The regular bipartite graph with edge set E � U � V is 
alled an(�; Æ)-extra
tor if for every set V 0 � V of 
ardinality at least � � jV j, the distribution indu
ed on U byuniformly sele
ting v 2 V 0 and u 2 �(v) is Æ-
lose in variation distan
e to the uniform distributionon U .Lemma 4.2 [13℄: Suppose that a regular bipartite graph with edge set E � U � V is an (�; Æ)-extra
tor. Then, for every f : U 7! [0; 1℄, for all but at most a 2� fra
tion of v 2 V������ 1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u)������ � ÆProof: Assuming to the 
ontrary that the 
on
lusion does not hold, we let V 0 be a set of at least� � jV j verti
es v's for whi
h, without loss of generality,1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u) > ÆThis implies that Eu2�(v)(f(u))� Eu2U(f(u)) > Æ holds for every v 2 V 0. Thus,Ev2V 0;u2�(v)(f(u))� Eu2U(f(u)) > Æ9



Letting X denote the distribution indu
ed on U by uniformly sele
ting v 2 V 0 and u 2 �(v), andby Y the uniform distribution on U , we have E(f(X)) � E(f(Y )) > Æ. De�ning S � U so thatx 2 S i� Pr(X = x) > Pr(Y = x), and using the fa
t that f ranges over [0; 1℄, we havePr(X 2 S)� Pr(Y 2 S) = Xx2S (Pr(X = x)� Pr(Y = x))� Xx2U (Pr(X = x)� Pr(Y = x)) � f(x)= E(f(X)) � E(f(Y )) > ÆHowever, this 
ontradi
ts the lemma's hypothesis, whi
h asserts that the distribution X (i.e.,uniformly sele
ting v 2 V 0 and u 2 �(v)) is Æ-
lose to Y (i.e., the uniform distribution on U).Corollary 4.3 Let �2; Æ2 def= k1=
2
�jFj
 and suppose 
 � 1=2. If GF;k is an (�2; Æ2)-extra
tor thenLemma 3.2 follows.Proof: By Lemma 4.2 and the setting of the parameters, the hypothesis implies Eq. (8), whi
hin turn (by the above dis
ussion) implies Lemma 3.2. (Note, �0 = �1 = 2�2 � k1=
 � jF�
j=
 andÆ0 = Æ1 + k2 � jFj�1 � k1=
 � jF�
j=
.)4.2 The auxiliary graph AF;k and the relevan
e of its eigenvaluesIn order to show that GF;k is a good extra
tor, we 
onsider an auxiliary multi-graph with vertexset VF;k and edge set 
orresponding to all possible paths of length 2 in GF;k. That is, for everyv; u 2 VF;k and every path of length 2 in GF;k between v and u (passing through a vertex in UF;k),we introdu
e an edge in the auxiliary multi-graph. We stress that this multi-graph, denoted AF;k,has jF(k)j self-loops per ea
h vertex, and that it is regular (with degree jF(k)j � jFj).Let A denote the normalized adja
en
y matrix of AF;k (i.e., AF;k's adja
en
y matrix dividedby its degree), and let �F;k denote the se
ond largest (in absolute value) eigenvalue of A. Then wehaveLemma 4.4 Let � def= �F;k be as above. Then GF;k is an (�1=3; �1=3)-extra
tor.Proof: Let � def= �1=3, and suppose for 
ontradi
tion that GF;k is not an (�; �)-extra
tor. Then,there exists a set V 0 � VF;k of 
ardinality at least � � jVF;kj so that the distribution indu
ed onUF;k by uniformly sele
ting v 2 V 0 and u 2 �(v) is �-far (in variation distan
e) from the uniformdistribution on UF;k. Denoting by pu the probability assigned to vertex u 2 UF;k, the 
ontradi
tionhypothesis yields Xu2UF;k jpu � jUF;kj�1j > 2� (9)On the other hand, denoting by �(x) the neighbor set of any vertex x in GF;k, we havepu = 1jV 0j � Xv2V 0 j�(v) \ fugjj�(v)j = j�(u) \ V 0jjV 0j � (jUF;kj � j�(u)j=jVF;kj) (10)Considering a random walk of length 2 in GF;k, starting at a uniformly sele
ted vertex v 2 V 0, wehave 10



Prv2V 0;u2�(v);v02�(u)[v0 2 V 0℄ = Xu2UF;k pu � Prv02�(u)[v0 2 V 0℄= Xu2UF;k pu � j�(u) \ V 0jj�(u)j= Xu2UF;k p2u � jV 0j � jUF;kjjVF;kjLooking at the same walk as a random edge in AF;k, and denoting by �0(v) the neighbor multisetof a vertex v in AF;k, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0℄ = jV 0jjVF;kj � Prv2V 0;v02�0(v)[v0 2 V 0℄= jV 0j2jVF;kj2 � jUF;kj � Xu2UF;k(jUF;kj�1 + (pu � jUF;kj�1))2= jV 0j2jVF;kj2 �0�1 + jUF;kj � Xu2UF;k(pu � jUF;kj�1)21AThus, using Eq. (9) and setting N def= jUF;kj, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0℄ � jV 0j2jVF;kj2 �  1 +N � minxi�0 ;Pi xi>2�( NXi=1 x2i)!> jV 0j2jVF;kj2 � (1 + (2�)2)However, as we shall shortly see, this 
ontradi
ts the Expander Mixing Lemma (
f., Corollary 2.5in [1, Chap. 9℄)2, by whi
h�����Prv2VF;k;v02�0(v)[v; v0 2 V 0℄� jV 0j2jVF;kj2 ����� < � � jV 0jjVF;kjSpe
i�
ally, we obtain jV 0j2jVF;kj2 � (2�)2 < � � jV 0jjVF;kj , and so � � (2�)2 < �. This, however, 
ontradi
ts oursetting of � = �1=3. The lemma follows.Corollary 4.5 Suppose that for some 
onstant 
, �F;k � k3=
(2
�jFj
)3 . Then Lemma 3.2 holds with
onstant 
.2The Expander Mixing Lemma refers to arbitrary sets A;B of verti
es in a regular graph G = (V;E) of normalizedeigenvalue �. It asserts that the absolute di�eren
e between j(A�B)\EjjEj and jAjjV j � jBjjV j is at most � � pjAj�jBjjV j .
11



4.3 Reversing the eigenvalue 
onne
tionIt is well-known that good upper bounds on the se
ond eigenvalue of a (regular) graph yield rapidmixing (i.e., fast 
onvergen
e of a random walk to the uniform distribution). The 
onverse isless known, holds as well, and has been used in various papers. In parti
ular, the fa
t that thetra
e of the tth power of the (normalized) adja
en
y matrix is the sum of the the tth powers of itseigenvalues [2℄, 
an be used to derive su
h a bound (Noga Alon, private 
ommuni
ation).3 For sakeof self
ontainment, we provide a proof of the desired result.Lemma 4.6 Consider a regular 
onne
ted graph on N verti
es, let A be its normalized adja
en
ymatrix and �2 denote the absolute value of the se
ond eigenvalue of A. Let t be an integer and �tdenote an upper bound on the maximum, taken over all possible start verti
es v, of the di�eren
ein Norm2 between the distribution indu
ed by a t-step random walk starting at v and the uniformdistribution. Then �2 � (N ��t)1=t.Proof: Sin
e A is real, symmetri
 and has non-negative entries, all its eigenvalues are real, andit has a full orthogonal eigenspa
e. In other words, if its eigenvalues are �1 � �2 � � � � �n, then ithas a 
orresponding set of orthonormal eigenve
tors ~e1; : : : ; ~en (i.e., ea
h is a unit ve
tor in Norm2and every pair is orthogonal). Furthermore the highest eigenvalue �1 = 1 and the 
orrespondingeigenve
tor ~e1 = pN � (N�1; :::; N�1).Consider the (probability) ve
tor ~p def= (N�1; :::; N�1)+N�1 � ~e2. We �rst show that ~p is indeeda probability ve
tor, and thus it 
an be expressed as a 
onvex 
ombination of the unit ve
tors Æv,v 2 f1; : : : ; ng, where Æv is one in the v-th 
oordinate and zero otherwise. Firstly, ea
h entry of ~pis non-negative sin
e the absolute value of any entry in ~e2 is at most 1 (as the Norm2 of ~e2 equals1). Se
ondly, the sum of the entries of ~p equals 1 sin
e ~e2 is a zero-sum ve
tor (as it is orthogonalto ~e1).Re
all that the hypothesis guarantees that any random walk starting at v 
onverges qui
kly, forany vertex v. Spe
i�
ally it says that kAtÆv � (N�1; : : : ; N�1)k � �t. Now using the fa
t that ~p isin the 
onvex hull of the ve
tors fÆvgv, we get kAt~p� (N�1; : : : ; N�1)k � �t. On the other hand,kAt~p� (N�1; : : : ; N�1)k = 1N � kAt ~e2k= 1N � �t2and so �t2N � �t. The lemma follows.Corollary 4.7 Suppose that for any vertex v in AF;k, the di�eren
e in Norm2 between the distri-bution indu
ed by a O(k)-step random walk starting at v and the uniform distribution is at mostO(k)O(k) � jFj�(2k+1). Then, Lemma 3.2 follows.Proof: By Lemma 4.6, we have �F;k � (jFj�k)1=O(k), and by Corollary 4.5 we are done.3In this 
ase one may use a upper bound on the t-step \return probability" of random walks. Thus, an upperbound on the max-norm deviation of a t-step random walk from any start vertex implies an upper bound on these
ond eigenvalue. The hypothesis is thus weaker than the one we use below.
12



4.4 Showing that the auxiliary graph is rapid-mixingWe 
on
lude the proof of Lemma 3.2 by establishing the hypothesis of Corollary 4.7. That is, we
onsider an arbitrary �xed polynomial p0 2 Fk = VF;k and a random walk of length t def= O(k) onAF;k starting at p0, and prove that su
h a walk 
onverges to the uniform distribution. That is,Lemma 4.8 Let p0 2 Fk be any vertex in AF;k, and t = 3k+1. Then, the Norm2 di�eren
e betweenthe distribution indu
ed by a t-step random walk starting at p0 and the uniform distribution is atmost O(k)O(k) � jFj�(2k+1).Proof: For i = 1; :::; t, we denote by pi a random variable representing the distribution after isteps of this walk. Note that pi is derived from pi�1 by the following two step random pro
ess:1. Uniformly sele
t �i = (�i;1; :::; �i;k) 2 F(k).2. Uniformly sele
t a polynomial pi among the jFj polynomials p satisfying p(�i) = pi�1(�i).Expressing these degree k polynomials as polynomials in a formal variable x, we havepi(x) = pi�1(x) + ri � kYj=1(x� �i;j)where ri is uniformly sele
ted in F (11)Using the symmetri
 fun
tions�j(z1; :::; zk) def= (�1)j XS�[k℄ ; jSj=jYi2S zi;we have pi(x) = pi�1(x) + ri � kXj=0�j(�i) � xj (12)Swit
hing to ve
tor notation, we write ea
h pi as a (k+1)-dimensional ve
tor of random variables,denoted pi, and so have pi = pi�1 + ri � (�0(�i); �1(�i); :::; �k(�i))> (13)Denoting �� def= (�0(�); �1(�); :::; �k(�))>, we have pi = pi�1 + ri � ��i , and sopt = p0 + tXi=1 ri � ��i (14)Finally, we move to matrix notation: Letting M(�1; :::; �t) denote the (k+1)-by-t matrix in whi
h��i is the ith 
olumn, and r def= (r1; :::; rt)>, we havept = p0 +M(�1; :::; �t) � r (15)Sin
e t � k+1 and r is uniformly distributed in Ft, the random variable pt is uniformly distributedin Fk provided that the matrix M(�1; :::; �t) has full rank. Thus, the Norm2 (as well as any othernorm) distan
e of pt from the uniform probability distribution (over Fk) is bounded above by twi
e13



the probability that M(�1; :::; �t) is not of full rank, where the probability is taken over the 
hoi
esof the �i's. Thus,Fa
t 4.8.1: The lemma follows if the probability, over �i's 
hosen uniformly and independently fromF(k), that the matrixM(�1; :::; �t) does not have full rank is bounded above by (2k)O(k) � jFj�(2k+1).On the other hand, the hypothesis of Fa
t 4.8.1 follows by establishing that with high probability,as long as the matrix does not have full rank, its rank in
reases with any additional 
olumn. Letus establish the latter fa
t �rst. That is,Fa
t 4.8.2: Let �1; :::; �i 2 F(k) be �xed so that the matrix M(�1; :::; �i) does not have fullrank. Then, for uniformly 
hosen � 2 F(k), with probability at least 1 � 2k � jFj�1, the matrixM(�1; :::; �i; �) has higher rank than the matrix M(�1; :::; �i).Proof: We use the well known fa
t by whi
h the rank of a matrix is r if and only if it 
ontainsan r-by-r sub-matrix having a non-zero determinant. Suppose that M(�1; :::; �i) has rank r � k,and let A denote a 
orresponding r-by-r (non-singular) sub-matrix. Let j be an arbitrary row notin
luded in A (su
h a row exists as r < k+ 1), and using the formal variables z = (z1; :::; zk) (withea
h z` ranging over F), 
onsider the formal matrix F (z1; :::; zk) def= M(�1; :::; �i; z). A
tually, we
onsider the (r + 1)-by-(r + 1) sub-matrix, denoted F 0(z1; :::; zk), of F (z1; :::; zk) en
ompassing thesub-matrix A, the jth row and the last 
olumn (of F ). Re
all that the �rst r 
olumns of F 0(z) areelements of F, whereas the last 
olumn 
ontains r + 1 distin
t symmetri
 fun
tions �`(z)'s. Thatis, the elements of the last 
olumn are homogeneous polynomials in distin
t degrees in the rangef0; 1; :::; kg. Developing the determinant of F 0(z1; :::; zk) a

ording to the last 
olumn we have1. The determinant of F 0(z1; :::; zk) is a polynomial in z1; :::; zk of total degree at most k.2. The determinant of F 0(z1; :::; zk) is not zero. This follows by noting that(a) the expression obtained for the determinant 
ontains the term det(A) � �j(z), wheredet(A) 2 F n f0g denotes the determinant of A);(b) whereas the term above is of degree j no other term in the expression has degree j.Thus, by S
hwartz's Lemma [10℄, the probability that for uniformly 
hosen � 2 Fk, the determinantof F 0(�) is zero is bounded above by k=jFj. However, in our 
ase � is uniformly 
hosen in F(k),and so the bad event o

urs with probability at most 1=Pr�2Fk [� 2 F(k)℄ < 2 times bigger. The
urrent fa
t follows. 2Using Fa
t 4.8.2, the probability that the matrix M(�1; :::; �t) does not have full rank is boundedabove by kXi=0 ti! � (2k � jFj�1)t�i < 2t � (2k � jFj�1)t�k= 25k+2 � k2k+1 � jFj�(2k+1)Using Fa
t 4.8.1, the lemma follows.A
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