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1 IntrodutionComputational indistinguishability, introdued by Goldwasser and Miali [7℄ and de�ned in fullgenerality by Yao [12℄, is a entral onept of omplexity theory. Two probability ensembles,fXngn2N and fYngn2N, where both Xn and Yn range over f0; 1gn, are said to be indistinguishableby a omplexity lass if for every mahine M in the lass the di�erene dM (n) def= jPr(M(Xn) =1)�Pr(M(Yn)=1)j is a negligible funtion in n (i.e., dereases faster than 1=p(n) for any positivepolynomial p).Observe that in the de�nition realled above, the distinguishing mahine (i.e., M) obtains asingle sample (from either distribution), and asts its \verdit" based on this sample. An im-portant and natural question is what happens when the distinguishing mahine is given severalindependently hosen samples. It is well known that in several ases (see below), omputationalindistinguishability is preserved also when many samples are given to the distinguisher. That is,in these ases, if two ensembles are omputationally indistinguishable by a single sample then theyare also omputationally indistinguishable by (polynomially) many samples. Two important aseswhere this happens are:1. When the two probability ensembles are polynomial-time omputable, and one onsidersprobabilisti polynomial-time distinguishers. (An ensemble fZngn2N is polynomial-time om-putable if there exists a probabilisti polynomial-time sampling algorithm, S, suh that S(1n)and Zn are identially distributed.)2. When one onsiders omputational indistinguishability with respet to the lass of non-uniform polynomial-size iruits.In both ases the proof amounts to using the multi-sample distinguisher to derive a single-sampledistinguisher, by inorporating opies of the two ensembles into the single-sample distinguisher (f.,[5, 4℄). This is possible using the fat that the lass of distinguishers is able to generate samplesfrom eah of the two ensembles.However, it has been shown that the above may fail in ertain other ases (f., [3, 8, 6℄).Spei�ally, there exists a pair of (non-eÆiently omputable) ensembles whih, on one hand,are omputationally indistinguishable by (uniform) probabilisti polynomial-time algorithms whihtake a single sample, while on the other hand, an be distinguished in polynomial-time given twosamples.It has been unknown whether separations as the above may exists between distinguishabilitybased on, say, 2 samples and 3 samples. Furthermore, it was not known if there is a separationbetween 2 samples and polynomially many samples.We show a separation between k samples and k + 1 samples, for any polynomially-boundedfuntion k : N 7! N . That is, there exist a pair of probability ensembles whih are (polynomial-time) indistinguishable based on k samples and yet an be distinguished (in polynomial-time) givenk + 1 samples.2 Formal SettingIn this paper we all P = fPngn2N a probability ensemble if, for some polynomially-bounded lengthfuntion ` : N 7!N , Pn is a distribution on the set of strings of length `(n). The orresponding (tothe length funtion `) uniform ensemble, denoted U = fUngn2N, has eah Un uniformly distributedover f0; 1g`(n). A funtion, � :N 7! [0; 1℄, is alled negligible if for every positive polynomial p and all1



suÆiently large n's, �(n) < 1=p(n). The latter de�nition is naturally oupled with the assoiationof eÆient omputation with polynomial-time algorithms: An event \ours negligibly" if it annotbe observed after a feasible (i.e., expeted polynomial) number of trials.De�nition 2.1 (indistinguishability by k samples): Let k : N 7!N be any polynomially boundedfuntion, and P = fPngn2N and Q = fQngn2N be a pair of probability ensembles. The ensembles Pand Q are said to be indistinguishable by k samples if for every probabilisti polynomial-time mahineM the funtion dM (n) def= jPr(M(P k(n)n ) = 1)� Pr(M(Qk(n)n ) = 1)jis negligible, where P k(n)n (resp., Qk(n)n ) represents k(n) independent opies of Pn (resp., Qn).A \strong" negation of the notion of indistinguishability is presented by the notion of distinguisha-bility. A funtion, � :N 7! [0; 1℄, is alled notieable if there exists a positive polynomial p so thatfor all suÆiently large n's, �(n) > 1=p(n).De�nition 2.2 (distinguishability by k samples): Let k :N 7!N , P = fPngn2N and Q = fQngn2Nbe as in De�nition 2.1 above. The ensembles P and Q are said to be distinguishable by k samples ifthere exists a probabilisti polynomial-time mahine M so that the funtion dM , de�ned as above,is notieable.We stress that the two notions do not omplement one another, but rather leave a gap in-between, sine the underlying notions of negligible and notieable are not omplementary. Clearly,a negligible funtion is not notieable, but there are funtions � : N 7! [0; 1℄ whih are neithernegligible nor notieable (e.g., �(n) = 1 if n is even and 0 otherwise).Theorem 2.3 (main result): Let k : N 7!N be any polynomially bounded funtion. Then, thereexists a probability ensemble, P = fPngn2N, where Pn ranges over strings of length �(n), so that1. Indistinguishability by k samples: The ensemble fPngn2N is indistinguishable from the uniformensemble, U = fUngn2N, by k samples. Furthermore, for any probabilisti Turing mahineM that takes k samples, and for all suÆiently large n's,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) represents k(n) independent opies of Pn (resp., Un).2. Polynomial-time distinguishability by k + 1 samples: The ensemble fPngn2N is distinguishablefrom the uniform ensemble U by k + 1 samples. Furthermore, there exists a deterministipolynomial-time mahine M suh that for all suÆiently large n's,jPr(M(P k(n)+1n ) = 1)� Pr(M(Uk(n)+1n ) = 1)j > 13where P k(n)+1n (resp., Uk(n)+1n ) represents k(n) + 1 independent opies of Pn (resp., Un).Furthermore, Pn an be generated by a probabilisti iruit of size polynomial in n. In ase oneonly wishes to fool probabilisti polynomial-time distinguishers (in item 1), the nth iruit an beonstruted in time e(n), where e : N 7!N is any funtion whih grows faster than 2n, for every > 0. 2



Thus, with respet to uniform omputations (and general ensembles whih may not be polynomial-time omputable), the \sample hierarhy" is strit. We omment that one may also onstrut apair of probability ensembles, P = fPngn2N and Q = fQngn2N suh that both satisfy the abovetheorem and furthermorejPr(M(P k(n)+1n ) = 1)� Pr(M(Qk(n)+1n ) = 1)j > 1� 2�
(n)where M is as in Item 2 above.3 Proof of Main ResultWe prove Theorem 2.3 by �rst studying a problem onerning univariate polynomials of low degreeover a big �nite �eld.3.1 Typial PolynomialsStandard Notations: Let F be a �nite �eld. Denote by Fd the set of univariate polynomials ofdegree at most d over F.Less Standard Notations: For x = (x1; :::; xk) 2 Fk (i.e., eah xi in F), we extend the de�nitionof polynomials so that, for any polynomial p, we have p(x) = (p(x1); :::; p(xk)).Motivating Disussion. The main distributions onsidered in this paper are (x; p(x)) for xhosen at random from F for some �xed hoie of the polynomial p 2 Fk0 . and the uniformdistribution (x; y), i.e., x; y are hosen uniformly and independently from F. It is our goal to saythat for some hoie of k0 and k, the distributions are indistinguishable given k samples. Furtherwe would want to say that the distributions are distinguishable given k00 > k samples. In order todo so we onsider a probabilisti distinguishing algorithm M and let f denote the probability thatM aepts a k-tuple hosen from one of the two distributions. Thus f : (Fk)2 7! [0; 1℄.It is lear that for every f : (Fk)2 7! [0; 1℄,Ex2Fk;p2Fk�1(f(x; p(x))) � Ex;y2Fk(f(x; y)):Equality would hold if x was uniformly seleted among the set of k-sequenes onsisting of kdistint elements of F. For suh x's, the sequene p(x) is uniformly seleted over Fk, given that p isuniformly distributed in Fk�1. It is appealing to onjeture that there exists a polynomial p 2 Fk�1so that Ex2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))However, as shown below (see Proposition 3.5), this is false. Instead, we onsider degree k polyno-mials whih are examined at k arguments (rather than at k + 1 arguments). In this ase, we show(see Lemma 3.2) that for every f : (Fk)2 7! [0; 1℄ most polynomials p 2 Fk satisfyEx2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))We all suh polynomials (f; k)-typial. More generally,De�nition 3.1 (typial funtions): Let k 2 N , � 2 [0; 1℄ and f : Fk � Fk 7! [0; 1℄. A funtiong : F 7! F is alled (f; k; �)-typial if���Ex2Fk(f(x; g(x))) � Ex;y2Fk(f(x; y))��� < �3



Following the above disussion we will onsider an arbitrary f : (Fk)2 7! [0; 1℄ and prove1. For some absolute onstant  > 0 the following holds. For every �nite �eld F, k < jFj andevery f : (Fk)2 7! [0; 1℄ all but at most an jFj� fration of the degree k polynomials are(f; k; jFj�)-typial. (We stress that  will be a small real number, in partiular at most 1.)This is shown in Lemma 3.2.2. For every �nite �eld F and every k < pjFj=10 there exists a (polynomial-time omputable)funtion f : (Fk)2 7! [0; 1℄ so that no degree k � 1 polynomial is (f; k; 0:4)-typial. This isshown in Proposition 3.5.Using the above, Theorem 2.3 is proven by standard diagonalization. The high level plan is asfollows. Using parameter n, we onsider F = GF(2n), and wish to fool the �rst t(n) (e.g., t(n) = n)probabilisti mahines whih takes k(n) samples. These mahines give rise to t(n) funtions fi asabove, and by Item 1 there exists a degree k(n) polynomial, denoted p, whih is (fi; k(n); 2�
(n))-typial for all i's. Using p, we de�ne the n-th distribution, denoted Pn, as (x; p(x)) where xis uniformly distributed over F, and infer that none of the above mahines an distinguish k(n)samples taken from Pn from k(n) samples taken from the uniform distribution over pairs F�F. Onthe other hand, by Item 2 (substituting k for k(n) + 1), there exists a polynomial-time algorithmwhih distinguishes k(n) + 1 samples from Pn from k(n) + 1 samples taken from the uniformdistribution. For details see Setion 3.4.3.2 Almost all degree k polynomials are k-typialThe most involved tehnial part of this work is proving that for any f : (Fk)2 7! [0; 1℄ most degreek polynomials are (f; k; jFj�
(1))-typial. That is,Lemma 3.2 There exists a onstant  > 0 so that for every f : (Fk)2 7! [0; 1℄, setting � def=Ex;y2Fk(f(x; y)) and � def= k1=�jFj the following holdsPrp2Fk (jEx2Fk(f(x; p(x)))� �j > �) < �The lemma is proven in the next setion. As a warm-up we prove that for any suh f mostdegree 2k � 1 polynomials are (f; k; jFj�
(1))-typial. This suÆes to establish a weaker version ofTheorem 2.3 (i.e., separating distinguishability by k samples from distinguishability by 2k samples).Lemma 3.3 Let f : (Fk)2 7! [0; 1℄, and � def= Ex;y2Fk(f(x; y)). Then, for any � > 0Prp2F2k�1 (jEx2Fk(f(x; p(x)))� �j > �) < 2k2�2 � jFjProof: Consider the probability spae of all possible hoies of p 2 F2k�1 with uniform distribution.De�ne random variables (over this probability spae) so that �x def= f(x; p(x)), for every x 2 Fk.The laim of the lemma an be rephrased asPrp2F2k�1 0������� Xx2Fk �x � jFjk � ������� > � � jFjk1A < 2k2�2 � jFj (1)4



This will be established by applying Chebyshev's inequality to the �x's. Spei�ally, we will showthat the expeted value of the sum of the �x's is approximately jFjk ��, and that with high probabilitythe sum of the �x's is lose to its expeted value. In showing the latter we will use the fat thatthe �x's are \almost pairwise independent" (as in [1, Se. 4.3℄).Fat 3.3.1: j jFjk � � � Px2Fk E(�x) j < k22�jFj � jFjk :Proof: For every x = (x1; :::; xk) 2 Fk with jfx1; :::; xkgj = k, we haveE(�x) = Ep2F2k�1(f(x; p(x)))= Ey2Fk(f(x; y))sine for suh an x = (x1; :::; xk) the values p(x1); :::; p(xk) are uniformly and independently dis-tributed in F. Observe that the fration of x's onsisting of k distint xi's is at least 1� �k2� � jFj�1,and so Xx2Fk E(�x) = jFjk � Ex;y2Fk(f(x; y)) �  k2! � jFjk�1= jFjk �  ��  k2! � jFj�1!as laimed. 2Fat 3.3.2: Pr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < 2k2�2 � jFjProof: We �rst observe that for every x 2 Fk, for all but at most a �k2�=jFj fration of the y's inFk, the random variables �x and �y are independent. This follows sine these random variablesare independent whenever the sequenes x and y have no ommon element. (Here we use thehypothesis that the probability spae is uniform over the set of polynomials of degree 2k � 1 overF. For suh a random polynomial p and disjoint sets fx1; : : : ; xkg and fy1; : : : ; ykg, the sequenep(x1); :::; p(xk); p(y1); :::; p(yk) is uniformly distributed over F2k.) Now applying Chebyshev's in-equality (f., [1℄), we havePr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < var(Px2Fk �x)(�=2)2 � jFj2k< 4 �Px var(�x)�2 � jFj2k + 4 �Px6=y ov(�x; �y)�2 � jFj2kNow, using the fat that for a random variable Z 2 [0; 1℄ var(Z) � 14 , we may bound the �rst termabove by 4 � jFjk � 1=4�2�jFj2k = 1�2�jFjk � 1�2�jFj . As for the seond term, let Ix denote the set of y's forwhih �x and �y are stohastially independent. By the above observation we have jIxjjFkj > 1� k2�1jFj ,and by de�nition ov(�x; �y) = 0 for every y 2 Ix. Thus, the seond term is bounded by4 �Xx6=y ov(�x; �y)�2 � jFj2k < 4 � Xx2Fk Xy2Fk ov(�x; �y)�2 � jFj2k5



< 4 � Xx2Fk jFk n Ixj � (1=4)�2 � jFj2k< k2 � 1�2 � jFjThe laimed bound follows by ombining the bounds for the two terms above and adding in theprobability that the variables �x and �y are not stohastially independent. Spei�ally:Pr0������� Xx2Fk �x � Xx2Fk E(�x)������ > �2 � jFjk1A < k2 � 1�2 � jFj + 1�2 � jFj + �k2�jFj < 2k2jFj :2We may assume that k2�2�jFj � 1 and � < 1 (or else the lemma holds vauously). It follows thatk22jFj � �22 < �2 . Thus, ombining the two fats, the lemma follows. Spei�ally, by Fat 3.3.1j jFjk � � � Px2Fk E(�x) j < �2 � jFjk, and using Fat 3.3.2 { Eq. (1) follows.Instantiating the above lemma (using � = jFj�1=3), we haveCorollary 3.4 Let f be as above, and k � 12pjFj=2. Then for all but a jFj�1=6 fration of p's inF2k�1 jEx2Fk(f(x; p(x))) � Ex;y2Fk(f(x; y))j < jFj�1=3That is, all but a jFj�1=6 fration of the degree 2k� 1 polynomials over F are (f; k; jFj�1=3)-typial.3.3 No degree k � 1 polynomial is k-typialIn ontrast to Lemma 3.2 (as well as to the weaker Lemma 3.3), we haveProposition 3.5 There exists an (eÆiently omputable) funtion f so that for any polynomialp 2 Fk�1 jEx2Fk(f(x; p(x)))� 0:5j > 0:5 � k2jFj (2)���Ex;y2Fk(f(x; y))� 0:5��� < k2jFj (3)The above proposition assumes that f is given an expliit representation of the �eld F. In thesequel we will use the proposition with F = GF(2n) for some n 2 N . In suh a ase, an expliitrepresentation of F is an irreduible polynomial of degree n over GF(2). When applying the propo-sition we use the fat that suh an irreduible polynomial an be determined in time polynomial inn [11℄.Proof: Consider any easily reognizable set, S, ontaining exatly half the elements of F. Considerthe algorithm f , whih given k pairs, denoted (x1; y1); :::; (xk ; yk), �nds a (typially unique) degreek�1 polynomial p0 satisfying p0(xi) = yi, for i = 1; :::; k. (In ase there are several possibilities, thealgorithm selets p0 arbitrarily among them.) The algorithm outputs 1 if p0(0) 2 S and 0 otherwise.(Here is where we use the hypothesis that S is an easily reognizable set.)Consider any p 2 Fk�1, and suppose that the algorithm is given k random pairs with yi = p(xi).With probability greater than 1 � k2 � jF j�1, we have k distint xi's, and so the extrapolated6



polynomial (i.e., p0) equals p. In suh a ase the algorithm's output is determined by the prediatep(0) 2 S, and so is identially zero or identially one. Thus, Eq. (2) follows.However, for any k distint xi's, when the yi's are uniformly seleted, the value of the extrap-olated degree k � 1 polynomial p0 at any �xed point (e.g., p0(0)) is uniformly distributed. Thus,with probability at least 1 � k2 � jF j�1, the algorithm's output is uniformly distributed in f0; 1g,and Eq. (3) follows.3.4 Using Typial PolynomialsUsing Lemma 3.3 and Proposition 3.5, we an prove the existene of probability ensembles whihare indistinguishable from the uniform ensemble by k samples but distinguishable from it by 2ksamples. More generally, we have the following lemma.Lemma 3.6 Let t : N 7!N be any non-dereasing and unbounded funtion, and k; k0 : N 7!N betwo polynomially-bounded funtions so that k(n) < k0(n) for every n. Suppose that for some  > 0and any funtion f : (GF(2n)k(n))2 7! [0; 1℄ all but at most a 1=2t(n) fration of the degree k0(n)�1polynomials over GF(2n) are (f; k(n); 2�n)-typial. Then, there exists probability ensembles, P =fPngn2N and Q = fQngn2N, where Pn (resp. Qn) ranges over strings of length 2n and an begenerated by a probabilisti iruit of size poly(n), so that1. The ensemble P is indistinguishable from the uniform ensemble, U = fUngn2N, by k samples.Furthermore, for any probabilisti Turing mahine M that takes k samples,jPr(M(P k(n)n ) = 1)� Pr(M(Uk(n)n ) = 1)j < 2�
(n)where P k(n)n (resp., Uk(n)n ) are as in Theorem 2.3. Same for Q.2. The ensemble P is distinguishable from the uniform ensemble U by k0 samples. Furthermore,there exists a deterministi polynomial-time mahine M suh thatjPr(M(P k0(n)n ) = 1)� Pr(M(Uk0(n)n ) = 1)j > 12 � 2�
(n)Same for Q. Furthermore,jPr(M(P k0(n)n ) = 1)� Pr(M(Qk0(n)n ) = 1)j > 1� 2�
(n)Theorem 2.3 follows by ombining the above lemma (using k0(n) = k(n) + 1) with Lemma 3.2,whereas a weaker statement with k0(n) = 2k(n) follows by ombining the above lemma with Corol-lary 3.4. In both ases we may set t : N 7!N to be any non-dereasing and unbounded funtionso that t(n) < 2n=O(1) (e.g., t(n) = n or t(n) = logn will do, alas the hypothesis holds even fort(n) = 2n=O(1)).Proof: We onstrut Pn by onsidering the �rst t(n) mahines in an enumeration of probabilistiTuring mahines. For eah suh mahine, M , we de�ne fM(�; �) def= Pr(M(�; �) = 1).1 By thehypothesis, for eah suh M , all but at most 1=2t(n) of the polynomials, p, of degree k0(n)� 1 overF = GF(2n) satisfy jEx2Fk(n)(fM (x; p(x)))� Ex;y2Fk(n)(fM (x; y))j � 2�n (4)1 We slightly abuse notation here. The input toM is a sequene of k pairs, (�1; �1); :::; (�k; �k), and so we atuallyhave fM (�1; :::; �k; �1; :::; �k) = Pr(M((�1; �1); :::; (�k; �k))=1).7



Thus, for more than half of the polynomials, p, of degree k0(n)� 1 over F it holds that for eah ofthe �rst t(n) mahines, M ,jEx2Fk(n)(Pr(M(x; p(x))=1)) � Ex;y2Fk(n)(Pr(M(x; y)=1))j � 2�n (5)In partiular, let �x an arbitrary polynomial p 2 Fk0(n)�1 satisfying Eq. (5) (for all these M 's) sothat p(0) is one of the �rst 2n�1 elements of F (by some standard enumeration). Suh a polynomialdoes exist sine exatly half of the polynomials satisfy the latter ondition and less than half donot satisfy the former. Similarly, we �x q 2 Fk0(n)�1 satisfying Eq. (5) so that q(0) is one of thelast 2n�1 elements of F.Using this polynomial p, we de�ne Pn to be uniformly distributed over f(x; p(x)) : x 2 GF(2n)g.Similarly, Qn is de�ned to be uniformly distributed over f(x; q(x)) : x 2 GF(2n)g.By Eq. (5), Item 1 of the lemma holds. To establish Item 2, we use the algorithm of Proposi-tion 3.5: We extrapolate a degree k0(n)� 1 polynomial, based on the given k0(n) samples, and testwhether its free term is one of the �rst 2n�1 elements of F. Clearly, the answer is almost always yeswhen given k0(n) samples from Pn, whereas it is almost always no when given k0(n) samples fromQn. (Here \almost always" means with probability 1�2�
(n).) The answer is yes with probability12 when given k0(n) samples from the uniform distribution over f0; 1g2n. The lemma follows.4 Proof of Lemma 3.2Our proof onsists of the following four steps:1. We onsider a bipartite graph in whih edges link left-side verties of the form (x; y) 2 (Fk)2with right-side verties p 2 Fk i� p(x) = y. We laim that for any f : (Fk)2 7! [0; 1℄, foralmost all p 2 Fk the average of f over the neighbors of p approximates the average of f overall (Fk)2.2. We onsider an auxiliary multi-graph (having parallel edges and self-loops) over the vertexset Fk with edges representing paths of length 2 in the former graph. We show that a goodupper bound on the seond eigenvalue of the auxiliary graph implies the former laim.3. Reversing the well-known onnetion between eigenvalues and rapid-mixing, we show thatthe rapid-mixing of a random walk on a graph implies a good upper bound on the seondeigenvalue of the graph. (This part has appeared impliitly in many works.)4. Finally, we show that a random walk on the auxiliary graph is suÆiently rapidly mixing (toyield a good enough bound on the seond eigenvalue).Initial simpli�ation. We assume throughout that k2 < jFj (as otherwise Lemma 3.2 holdsvauously). Reall that Lemma 3.2 asserts that for some �0; Æ0 def= O(k1= � jFj�), all but at most an�0 fration of the k degree polynomials are (f; k; Æ0)-typial. This statement refers to expetationtaken over all x's in F k. As we have seen in the previous setion, it is more onvenient to onsideronly x = (x1; :::; xk)'s onsisting of distint xi's. Let F(k) denote the set of suh sequenes, that isF(k) def= f(x1; :::; xk) 2 Fk : xi 6= xj (8i 6= j)g (6)Then, Lemma 3.2 would follow if we establish, for �1 = �0 and Æ1 = Æ0 � k2jFj , that all but at most a�1 fration of the k degree polynomials satisfyjEx2F(k)(f(x; p(x)))� Ex2F(k);y2Fk(f(x; y))j � Æ1 (7)8



(Lemma 3.2 follows sine the di�erene between expetation taken over x 2 Fk and expetationtaken over x 2 F(k) is at most �k2� � jFj�1.) From this point on, we onsider probability spaes wherex is uniformly distributed over F(k).The bipartite graph GF;k. We onsider a bipartite graph, denoted GF;k, with vertex set UF;k [VF;k, where UF;k def= F(k) � Fk and VF;k def= Fk. The edge set of the graph, denoted E � UF;k �VF;k, onsists of pairs ((x; y); p) where p(x) = y. Clearly, eah vertex p 2 VF;k has exatly jF(k)jneighbours; spei�ally, its neighbour set, denoted �(p), equals f(x; p(x)) : x 2 F(k)g. Using thefat that x onsists of distint elements, we know that eah vertex (x; y) 2 UF;k has exatly jFjneighbours, orresponding to the jFj degree k polynomials p's that satisfy p(x) = y. Thus, Eq. (7)an be rephrased as asserting that all but at most an �1 fration of v 2 VF;k satisfy������ 1j�(v)j Xu2�(v) f(u)� 1jUF;kj Xu2UF;k f(u)������ � Æ1 (8)Thus, our aim is to establish Eq. (8).4.1 It suÆes to show that GF;k is a good extratorFollowing Zukerman [13℄, we observe that the above holds (i.e., at most an �1 fration of v 2VF;k violate Eq. (8)) in ase GF;k is an (�2; Æ2)-extrator, with �2 = �1=2 and Æ2 = Æ1. In whatfollows, we use the variation distane to measure the distane between distributions, where fordistributions D1;D2 on a �nite spae X the variation distane between D1 and D2 is de�ned to be12Px2X jPrX2RD1 [X = x℄� PrX2RD2 [X = x℄j.De�nition 4.1 (extrator): The regular bipartite graph with edge set E � U � V is alled an(�; Æ)-extrator if for every set V 0 � V of ardinality at least � � jV j, the distribution indued on U byuniformly seleting v 2 V 0 and u 2 �(v) is Æ-lose in variation distane to the uniform distributionon U .Lemma 4.2 [13℄: Suppose that a regular bipartite graph with edge set E � U � V is an (�; Æ)-extrator. Then, for every f : U 7! [0; 1℄, for all but at most a 2� fration of v 2 V������ 1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u)������ � ÆProof: Assuming to the ontrary that the onlusion does not hold, we let V 0 be a set of at least� � jV j verties v's for whih, without loss of generality,1j�(v)j Xu2�(v) f(u)� 1jU j Xu2U f(u) > ÆThis implies that Eu2�(v)(f(u))� Eu2U(f(u)) > Æ holds for every v 2 V 0. Thus,Ev2V 0;u2�(v)(f(u))� Eu2U(f(u)) > Æ9



Letting X denote the distribution indued on U by uniformly seleting v 2 V 0 and u 2 �(v), andby Y the uniform distribution on U , we have E(f(X)) � E(f(Y )) > Æ. De�ning S � U so thatx 2 S i� Pr(X = x) > Pr(Y = x), and using the fat that f ranges over [0; 1℄, we havePr(X 2 S)� Pr(Y 2 S) = Xx2S (Pr(X = x)� Pr(Y = x))� Xx2U (Pr(X = x)� Pr(Y = x)) � f(x)= E(f(X)) � E(f(Y )) > ÆHowever, this ontradits the lemma's hypothesis, whih asserts that the distribution X (i.e.,uniformly seleting v 2 V 0 and u 2 �(v)) is Æ-lose to Y (i.e., the uniform distribution on U).Corollary 4.3 Let �2; Æ2 def= k1=2�jFj and suppose  � 1=2. If GF;k is an (�2; Æ2)-extrator thenLemma 3.2 follows.Proof: By Lemma 4.2 and the setting of the parameters, the hypothesis implies Eq. (8), whihin turn (by the above disussion) implies Lemma 3.2. (Note, �0 = �1 = 2�2 � k1= � jF�j= andÆ0 = Æ1 + k2 � jFj�1 � k1= � jF�j=.)4.2 The auxiliary graph AF;k and the relevane of its eigenvaluesIn order to show that GF;k is a good extrator, we onsider an auxiliary multi-graph with vertexset VF;k and edge set orresponding to all possible paths of length 2 in GF;k. That is, for everyv; u 2 VF;k and every path of length 2 in GF;k between v and u (passing through a vertex in UF;k),we introdue an edge in the auxiliary multi-graph. We stress that this multi-graph, denoted AF;k,has jF(k)j self-loops per eah vertex, and that it is regular (with degree jF(k)j � jFj).Let A denote the normalized adjaeny matrix of AF;k (i.e., AF;k's adjaeny matrix dividedby its degree), and let �F;k denote the seond largest (in absolute value) eigenvalue of A. Then wehaveLemma 4.4 Let � def= �F;k be as above. Then GF;k is an (�1=3; �1=3)-extrator.Proof: Let � def= �1=3, and suppose for ontradition that GF;k is not an (�; �)-extrator. Then,there exists a set V 0 � VF;k of ardinality at least � � jVF;kj so that the distribution indued onUF;k by uniformly seleting v 2 V 0 and u 2 �(v) is �-far (in variation distane) from the uniformdistribution on UF;k. Denoting by pu the probability assigned to vertex u 2 UF;k, the ontraditionhypothesis yields Xu2UF;k jpu � jUF;kj�1j > 2� (9)On the other hand, denoting by �(x) the neighbor set of any vertex x in GF;k, we havepu = 1jV 0j � Xv2V 0 j�(v) \ fugjj�(v)j = j�(u) \ V 0jjV 0j � (jUF;kj � j�(u)j=jVF;kj) (10)Considering a random walk of length 2 in GF;k, starting at a uniformly seleted vertex v 2 V 0, wehave 10



Prv2V 0;u2�(v);v02�(u)[v0 2 V 0℄ = Xu2UF;k pu � Prv02�(u)[v0 2 V 0℄= Xu2UF;k pu � j�(u) \ V 0jj�(u)j= Xu2UF;k p2u � jV 0j � jUF;kjjVF;kjLooking at the same walk as a random edge in AF;k, and denoting by �0(v) the neighbor multisetof a vertex v in AF;k, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0℄ = jV 0jjVF;kj � Prv2V 0;v02�0(v)[v0 2 V 0℄= jV 0j2jVF;kj2 � jUF;kj � Xu2UF;k(jUF;kj�1 + (pu � jUF;kj�1))2= jV 0j2jVF;kj2 �0�1 + jUF;kj � Xu2UF;k(pu � jUF;kj�1)21AThus, using Eq. (9) and setting N def= jUF;kj, we havePrv2VF;k;v02�0(v)[v; v0 2 V 0℄ � jV 0j2jVF;kj2 �  1 +N � minxi�0 ;Pi xi>2�( NXi=1 x2i)!> jV 0j2jVF;kj2 � (1 + (2�)2)However, as we shall shortly see, this ontradits the Expander Mixing Lemma (f., Corollary 2.5in [1, Chap. 9℄)2, by whih�����Prv2VF;k;v02�0(v)[v; v0 2 V 0℄� jV 0j2jVF;kj2 ����� < � � jV 0jjVF;kjSpei�ally, we obtain jV 0j2jVF;kj2 � (2�)2 < � � jV 0jjVF;kj , and so � � (2�)2 < �. This, however, ontradits oursetting of � = �1=3. The lemma follows.Corollary 4.5 Suppose that for some onstant , �F;k � k3=(2�jFj)3 . Then Lemma 3.2 holds withonstant .2The Expander Mixing Lemma refers to arbitrary sets A;B of verties in a regular graph G = (V;E) of normalizedeigenvalue �. It asserts that the absolute di�erene between j(A�B)\EjjEj and jAjjV j � jBjjV j is at most � � pjAj�jBjjV j .
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4.3 Reversing the eigenvalue onnetionIt is well-known that good upper bounds on the seond eigenvalue of a (regular) graph yield rapidmixing (i.e., fast onvergene of a random walk to the uniform distribution). The onverse isless known, holds as well, and has been used in various papers. In partiular, the fat that thetrae of the tth power of the (normalized) adjaeny matrix is the sum of the the tth powers of itseigenvalues [2℄, an be used to derive suh a bound (Noga Alon, private ommuniation).3 For sakeof selfontainment, we provide a proof of the desired result.Lemma 4.6 Consider a regular onneted graph on N verties, let A be its normalized adjaenymatrix and �2 denote the absolute value of the seond eigenvalue of A. Let t be an integer and �tdenote an upper bound on the maximum, taken over all possible start verties v, of the di�erenein Norm2 between the distribution indued by a t-step random walk starting at v and the uniformdistribution. Then �2 � (N ��t)1=t.Proof: Sine A is real, symmetri and has non-negative entries, all its eigenvalues are real, andit has a full orthogonal eigenspae. In other words, if its eigenvalues are �1 � �2 � � � � �n, then ithas a orresponding set of orthonormal eigenvetors ~e1; : : : ; ~en (i.e., eah is a unit vetor in Norm2and every pair is orthogonal). Furthermore the highest eigenvalue �1 = 1 and the orrespondingeigenvetor ~e1 = pN � (N�1; :::; N�1).Consider the (probability) vetor ~p def= (N�1; :::; N�1)+N�1 � ~e2. We �rst show that ~p is indeeda probability vetor, and thus it an be expressed as a onvex ombination of the unit vetors Æv,v 2 f1; : : : ; ng, where Æv is one in the v-th oordinate and zero otherwise. Firstly, eah entry of ~pis non-negative sine the absolute value of any entry in ~e2 is at most 1 (as the Norm2 of ~e2 equals1). Seondly, the sum of the entries of ~p equals 1 sine ~e2 is a zero-sum vetor (as it is orthogonalto ~e1).Reall that the hypothesis guarantees that any random walk starting at v onverges quikly, forany vertex v. Spei�ally it says that kAtÆv � (N�1; : : : ; N�1)k � �t. Now using the fat that ~p isin the onvex hull of the vetors fÆvgv, we get kAt~p� (N�1; : : : ; N�1)k � �t. On the other hand,kAt~p� (N�1; : : : ; N�1)k = 1N � kAt ~e2k= 1N � �t2and so �t2N � �t. The lemma follows.Corollary 4.7 Suppose that for any vertex v in AF;k, the di�erene in Norm2 between the distri-bution indued by a O(k)-step random walk starting at v and the uniform distribution is at mostO(k)O(k) � jFj�(2k+1). Then, Lemma 3.2 follows.Proof: By Lemma 4.6, we have �F;k � (jFj�k)1=O(k), and by Corollary 4.5 we are done.3In this ase one may use a upper bound on the t-step \return probability" of random walks. Thus, an upperbound on the max-norm deviation of a t-step random walk from any start vertex implies an upper bound on theseond eigenvalue. The hypothesis is thus weaker than the one we use below.
12



4.4 Showing that the auxiliary graph is rapid-mixingWe onlude the proof of Lemma 3.2 by establishing the hypothesis of Corollary 4.7. That is, weonsider an arbitrary �xed polynomial p0 2 Fk = VF;k and a random walk of length t def= O(k) onAF;k starting at p0, and prove that suh a walk onverges to the uniform distribution. That is,Lemma 4.8 Let p0 2 Fk be any vertex in AF;k, and t = 3k+1. Then, the Norm2 di�erene betweenthe distribution indued by a t-step random walk starting at p0 and the uniform distribution is atmost O(k)O(k) � jFj�(2k+1).Proof: For i = 1; :::; t, we denote by pi a random variable representing the distribution after isteps of this walk. Note that pi is derived from pi�1 by the following two step random proess:1. Uniformly selet �i = (�i;1; :::; �i;k) 2 F(k).2. Uniformly selet a polynomial pi among the jFj polynomials p satisfying p(�i) = pi�1(�i).Expressing these degree k polynomials as polynomials in a formal variable x, we havepi(x) = pi�1(x) + ri � kYj=1(x� �i;j)where ri is uniformly seleted in F (11)Using the symmetri funtions�j(z1; :::; zk) def= (�1)j XS�[k℄ ; jSj=jYi2S zi;we have pi(x) = pi�1(x) + ri � kXj=0�j(�i) � xj (12)Swithing to vetor notation, we write eah pi as a (k+1)-dimensional vetor of random variables,denoted pi, and so have pi = pi�1 + ri � (�0(�i); �1(�i); :::; �k(�i))> (13)Denoting �� def= (�0(�); �1(�); :::; �k(�))>, we have pi = pi�1 + ri � ��i , and sopt = p0 + tXi=1 ri � ��i (14)Finally, we move to matrix notation: Letting M(�1; :::; �t) denote the (k+1)-by-t matrix in whih��i is the ith olumn, and r def= (r1; :::; rt)>, we havept = p0 +M(�1; :::; �t) � r (15)Sine t � k+1 and r is uniformly distributed in Ft, the random variable pt is uniformly distributedin Fk provided that the matrix M(�1; :::; �t) has full rank. Thus, the Norm2 (as well as any othernorm) distane of pt from the uniform probability distribution (over Fk) is bounded above by twie13



the probability that M(�1; :::; �t) is not of full rank, where the probability is taken over the hoiesof the �i's. Thus,Fat 4.8.1: The lemma follows if the probability, over �i's hosen uniformly and independently fromF(k), that the matrixM(�1; :::; �t) does not have full rank is bounded above by (2k)O(k) � jFj�(2k+1).On the other hand, the hypothesis of Fat 4.8.1 follows by establishing that with high probability,as long as the matrix does not have full rank, its rank inreases with any additional olumn. Letus establish the latter fat �rst. That is,Fat 4.8.2: Let �1; :::; �i 2 F(k) be �xed so that the matrix M(�1; :::; �i) does not have fullrank. Then, for uniformly hosen � 2 F(k), with probability at least 1 � 2k � jFj�1, the matrixM(�1; :::; �i; �) has higher rank than the matrix M(�1; :::; �i).Proof: We use the well known fat by whih the rank of a matrix is r if and only if it ontainsan r-by-r sub-matrix having a non-zero determinant. Suppose that M(�1; :::; �i) has rank r � k,and let A denote a orresponding r-by-r (non-singular) sub-matrix. Let j be an arbitrary row notinluded in A (suh a row exists as r < k+ 1), and using the formal variables z = (z1; :::; zk) (witheah z` ranging over F), onsider the formal matrix F (z1; :::; zk) def= M(�1; :::; �i; z). Atually, weonsider the (r + 1)-by-(r + 1) sub-matrix, denoted F 0(z1; :::; zk), of F (z1; :::; zk) enompassing thesub-matrix A, the jth row and the last olumn (of F ). Reall that the �rst r olumns of F 0(z) areelements of F, whereas the last olumn ontains r + 1 distint symmetri funtions �`(z)'s. Thatis, the elements of the last olumn are homogeneous polynomials in distint degrees in the rangef0; 1; :::; kg. Developing the determinant of F 0(z1; :::; zk) aording to the last olumn we have1. The determinant of F 0(z1; :::; zk) is a polynomial in z1; :::; zk of total degree at most k.2. The determinant of F 0(z1; :::; zk) is not zero. This follows by noting that(a) the expression obtained for the determinant ontains the term det(A) � �j(z), wheredet(A) 2 F n f0g denotes the determinant of A);(b) whereas the term above is of degree j no other term in the expression has degree j.Thus, by Shwartz's Lemma [10℄, the probability that for uniformly hosen � 2 Fk, the determinantof F 0(�) is zero is bounded above by k=jFj. However, in our ase � is uniformly hosen in F(k),and so the bad event ours with probability at most 1=Pr�2Fk [� 2 F(k)℄ < 2 times bigger. Theurrent fat follows. 2Using Fat 4.8.2, the probability that the matrix M(�1; :::; �t) does not have full rank is boundedabove by kXi=0 ti! � (2k � jFj�1)t�i < 2t � (2k � jFj�1)t�k= 25k+2 � k2k+1 � jFj�(2k+1)Using Fat 4.8.1, the lemma follows.AknowledgmentsOded Goldreih is grateful to Bernd Meyer for disputing his false belief that 2 samples are alwaysas powerful as polynomially-many samples. We thank Noga Alon for useful disussions. We thankthe anonymous referee for numerous omments and bringing the work in [11℄ to our attention.14
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