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Abstract

Given an error-correcting code over strings of length n
and an arbitrary input string also of length n, the list decod-
ing problemisthat of finding all codewordswithin a specified
Hamming distance from the input string. We present an im-
proved list decoding algorithm for decoding Reed-Solomon
codes. The list decoding problem for Reed-Solomon codes
reduces to the following “ curve-fitting” problem over a field
F: Given n points {(z;.y;)}'—;, x;,y; € F, and a degree
parameter £ and error parameter e, find all univariate poly-
nomials p of degree at most & such that y; = p(«;) for all but
at most e valuesof i € {1,...,n}. Wegivean algorithmthat
solves this problem for ¢ < n — \/kn, which improves over
the previous best result [22], for every choice of £ and r.. Of
particular interest is the case of k/n > % where the result
yields the first asymptotic improvement in four decades[15].

The algorithm generalizes to solve the list decoding prob-
lem for other algebraic codes, specifically alternant codes (a
class of codesincluding BCH codes) and algebraic-geometric
codes. In both cases, we obtain a list decoding algorithm that
correctsup to n — /n(n — d’) errors, where n is the block
length and d’ is the designed distance of the code. The im-
provement for the case of algebraic-geometric codes extends
the methods of [ 19] and improves upon their bound for every
choiceof n andd’. Wealso present someother consequences of
our algorithmincluding a solution to a weighted curve fitting
problem, which is of use in soft-decision decoding algorithms
for Reed-Solomon codes.

1 Introduction

An error correcting code C of block length n, rate k&, and
distanced over ag-ary alphabet X ([n, k, d], code, for short) is
amapping from ¥ (the message space) to =" (the codeword
space) such that any pair of stringsin therange of C differ in at
least d locations out of . Reed-Solomon codesareaclassical,
and commonly used, construction of error-correcting codes
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that yield [n,k + 1,d = n — k], codesforany k < n < g.
The alphabet ¥ for such acodeisafinitefield 7. The message
specifies a polynomial of degree & over F' in some formal
variable x (by giving its k + 1 coefficients). The mapping
C maps this code to its evaluation at » distinct values of z
chosen from F' (henceit needs ¢ = |F'| > n). The distance
property follows immediately from the fact that two degree k&
polynomials can agreein at most & places.

The decoding problem for an[n, k, d], codeisthe problem
of finding acodewordin X that iswithin adistance of ¢ from
a“received” word R € X". In particular it is interesting to

study the error-rate e /n that can be corrected asafunction

of the message rate s /n. For afamily of Reed-Solomon
codes of constant message rate and constant error rate, the
two brute-force approachesto the decoding problem (compare
with all codewords, or look at al words in the vicinity of the
received word) taketime exponential inn. Itisthereforeanon-
trivial task to solve the decoding problem in polynomial time
in n. Surprisingly, a classical algorithm due to Peterson [15]
manages to solve this problem in polynomial time, aslong as
e < 25k (i.e. achievese = (1 — «)/2). Faster agorithms,
with running time O(n?) or better, are also well-known: in
particular the classical algorithms of Berlekamp and Massey
(see [14] for adescription) achieve such running time bounds.
It is also easily seen that if ¢ > 2=£ then there may exist
several different codewords within distance e of a received
word, and so the decoding algorithm cannot possibly always
recover the “ correct” messageif it outputs only one solution.

Thismotivatesthelist decoding problem, first definedin [6]
(seedso[7]) and sometimesalso termed the bounded-distance
decoding problem, that asks, given a received word R € 7,
to reconstruct alist of all codewords within a distance e from
the received word. List decoding offers a potential for re-
covery from errors beyond the traditional “error-correction”
bound (i.e., the quantity d/2) of a code. Loosely, we refer to
alist decoding algorithm reconstructing all codewords within
distance e of areceived word asan “e error-correcting” algo-
rithm. Againwecanstudy ¢ = ¢/n asafunction of k = k/n.
Till recently, no asymptotic benefits were achieved using the
list decoding approach to recover from errors. The only im-
provements known over the algorithm of [15] were decoding
algorithms dueto Sidelnikov [20] and Dumer [5] which correct



2=k + O(logn) erors, i.e, achievee = (1 — k)/2 + o(1).
Recently, Sudan [22], building upon previous work of Ar et
a. [1], presented a polynomial time list decoding algorithm
for Reed-Solomon codes correcting at least n — /2kn errors,
thus achieving e = 1 — v/2x. (For an exact description of
the number of errors corrected by this algorithm, see [23] or
Figure 1.) A moreefficient list decoding algorithm, runningin
time O(n?log® n), correcting the same number of errors has
also been given by Roth and Ruckenstein [17]. For x — 0,
this algorithm corrects an error rate ¢ — 1, thus allowing for
nearly twice as many errors as the classical approach. For
codes of rate greater than 1/3, however, this algorithm does
not improve over the algorithm of [15]. Thiscaseis of interest
since applicationsin practice tend to use codes of high rates.
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Figure 1. Error-correcting capacity plotted against the
rate of the code for known algorithms.

In this paper we present a new polynomial-time algorithm
for list-decoding of Reed-Solomon codes that corrects up to
(exactly) {n - \/%J errors (and thus achievese = 1 — \/k).
Thus our algorithm has a better error-correction rate than previ-
ousalgorithmsfor every choiceof x € (0, 1); andinparticular,
for k > 1/3 our result yields the fir st asymptotic improvement
in the error-rate ¢, since the original algorithm of [15]. (See
Figure 1 for agraphical depiction of the relative error handled
by our algorithm in comparison to previous ones.)

We solve the decoding problem by solving the following
(more general) curve fitting problem: Given n pairs of ele-
ments {(z1,¥1), ..., (¥n, yn)} Where z;,y; € I, adegree
parameter k& and an error parameter e, find all univariate poly-
nomials p such that p(z;) = y; for at least n — e values of
i€ {1,...,n}. Our agorithm solves this curve fitting prob-
lemfore < n—+/nk. Our agorithmisbased onthealgorithm
of [22] inthat it uses properties of algebraic curvesinthe plane.
The main modification is in the fact that we use the proper-
ties of “singularities’ of these curves. Asin the case of [22]
our algorithm uses the notion of plane curves to reduce our

problem to a bivariate polynomial factorization problem over
I (actually only aroot-finding problem for univariate polyno-
mials over therational function field F'(X)). Thistask can be
solved deterministically over finite fields in time polynomial
in the size of the field or probabilistically in time polynomial
in the logarithm of the size of the field and can also be solved
deterministically over therationalsand reals[10, 12, 13]. Thus
our algorithm ends up solving the curve-fitting problem over
fairly general fields.

It isinteresting to contrast our algorithm with resultswhich
show bounds on the number of codewordsthat may exist with
a distance of e from a received word. One such result, due
to Goldreich et al. [9], shows that the number of solutions to
the list decoding problem is bounded by a polynomial in n if
e < n—+/n(n —d). (A similar result hasalso been shown by
Radhakrishnan [16].) Our algorithm proves this best known
combinatorial bound “constructively” in that it produces alist
of all such codewords in polynomial time. More recently,
Justesen [11] has obtained upper bounds on the number of
errors e = e, 4, for which the output of a list decoding
algorithm has at most ¢ solutions for a constant ¢. The results
of Justesenshow that inthelimit of largec, e.. 4 ,, /n converges
tol—y/1 — d/naswefixd/nandletn — oco. Thesebounds
areof interestinthat they hint at apotential limitation to further
improvements to the list decoding approach.

Finally we point out that the main focus of this paper ison
getting polynomial time al gorithms maximizing the number of
errors that may be corrected.

Extensions to Algebraic-Geometric Codes  Algebraic-
geometric codes are a class of algebraic codes that include
the Reed-Solomon codes as a special case. These codes are
of significant interest because they yield explicit construction
of codesthat beat the Gilbert-Var shamovbound over small al-
phabet sizes [24] (i.e., achieve higher value of d for infinitely
many choices of n and & than that given by the probabilistic
method). Decoding algorithms for algebrai c-geometric codes
aretypically based on decoding al gorithms for Reed-Solomon
codes. In particular, Shokrollahi and Wasserman [19] gener-
alize the algorithm of Sudan [22] for the case of algebraic-
geometric codes. Specifically, they provide algorithms for
factoring polynomials over somealgebraic function fields; and
then show how to decode using thisfactoring algorithm. Using
a similar approach, we extend our decoding algorithm to the
case of algebraic-geometric codes and obtain a list decoding
algorithmcorrectingan|[n, &, d], algebraic-geometric codefor
uptoe < n— y/n(n — d) errors, improving the previously
known bound of n — \/2n(n — d) — g + 1 errors (here g is
the genus of the algebraic curve underlying the code). This
algorithm uses a root-finding algorithm for univariate polyno-
mials over algebraic function fields as a subroutine and some
additional algorithmic assumptions about the underlying alge-
braic structures: The assumptions are described precisely in



Section 4.

Other extensions One aspect of interest with decoding al-
gorithms is how they tackle a combination of erasures (i.e,
some letters are explicitly lost in the transmission) and er-
rors. Our algorithm generalizes naturally to this case. An-
other interesting extension of our algorithm is the solution
to a weighted version of the curve-fitting problem’: Given
aset of n pairs {(#;,y;)} and associated non-negative in-
teger weights w1, . .., w,, find al polynomials p such that
D ip(eiymy, Wi > VK)o wi. This generdization is of

interest in “ soft-decision” decoding of Reed-Solomon codes.

2 Reed-Solomon Decoding

We fix some notation first. In what follows F' is a field

and we will assume arithmetic over F' to be of unit cost. [n]
will denote the set {1,...,n}. For avector & € '™ and
i € [n], the notation #; will dencte the ith coordinate of &.
A(#, i) isthe Hamming distance between strings # and /, i €.,
[{il: # gi}].
Definition 1 (Reed-Solomon codes) For parameters n, k
and a field /' of cardinality n + 1, let « be a primitive nth
root of unity in F (i.e, o” = 1 anda® # 1 for i € [n — 1]).
The Reed-Solomon code with parameters n and & over the
alphabet F' with root «, denoted Cis 7, n %, iS the func-
tion mapping the messages F*** to code space £, given by
(Cos. o k(1); = by Mip1(ad )i, for m € FF+L,

Problem 1 (Reed-Solomon decoding)

INPUT: SIring & € F'™; parametersk and e; and «« € F.
OuTpuT:  All messages m € F**! such that
A(CtRS,Foz n k(m)a gj S €.

yE,Te,

Problem 2 (Polynomial reconstruction)

INPUT: Integersk, t andn points{(z;, y;) }7-, wherez;, y; €
.

OutpuT: All univariate polynomials p of degree at most &
suchthat y; = p(=;) for at least ¢ valuesof i € [n].

As pointed out earlier the Reed-Solomon code decoding prob-
lem reduces easily to the polynomial reconstruction problem.

2.1 Informal description of the algorithm

Our algorithm is based on the algorithm of [22], and so we
review that algorithm first. The algorithm has two phases: In

1The evolution of the solution to the “curve-fitting” problem is some-
what interesting. The initial solutions of Peterson [15] did not explicitly
solve the curve fitting problem at all. The solution provided by Welch and
Berlekamp [27, 3] do work in this setting, even though the expositions there
do not mention the curve fitting problem (see in particular, the description
in [8]). Their problem statement, however, disallows repeated vaues of x;.
Sudan’s[22] alows for repeated =;’s but does not allow for repeated pairs of
(2, yi). Our solution generalizesthis one more step by allowing aweighting

of (x4, y:)!

the first phase it finds a polynomial () in two variables which
“fits” the points (x;, y; ), wherefitting implies Q(z;,y;) = 0
for al ¢ € [n]. Then in the second phase it finds al small
degreerootsof () i.efindsall polynomials p of degree at most
k such that Q(z,p(x)) = 0 or equivalently y — p(x) is a
factor of Q(«, y); and these polynomials p form candidates
for the output. The main assertions are that (1) if we alow ¢
to have a sufficiently large degree then the first phase will be
successful in finding such a bivariate polynomial, and (2) if ¢}
and p have low degree in comparison to the number of points
wherey; — p(#;) = Q(x;,y;) = 0, theny — p(«) will bea
factor of ().

Our algorithm has a similar plan. We will find ¢ of low
weighted degree that “fits” the points. But now we will expect
more from the “fit”. It will not sufficethat Q(x;, y;) iszero—
wewill require that every point (z;, y;) isa“singularity” of ).
Informally, a singularity is a point where the curve given by
Q(z,y) = 0 intersectsitself. Wewill make thisnotion formal
aswe go along. In our first phase the additional constraints
will force us to raise the allowed degree of ). However we
gain (much more) in the second phase. In this phase we |ook
for roots of () and now we know that p passes through many
singularities of @, rather than just pointson (). In such a case
we need only half as many singularities as regular points, and
thisis where our advantage comes from.

Pushing theideafurther, we canforce () to intersect itself at
eachpoint (z;, y; ) asmany timesaswewant: inthe algorithm
described below, this will be a parameter . Thereis no limit
onwhat we can chooser tobe: only our running timeincreases
with . We will choose r sufficiently large to handle as many
errors asfeasible. (In the weighted version of the curve fitting
problem, we force the polynomial ¢) to pass through different
points a different number r; times, where r; is proportional to
the weight of the point.)

Finally, we come to the question of how to define “singu-
larities”. Traditionally, one usesthe partial derivatives of () to
define the notion of asingularity. This definition is, however,
not good for us since the partial derivatives over fields with
small characteristic are not well-behaved. So we avoid this
direction and define asingularity asfollows. Wefirst shift our
coordinate system so that the point (z;, y;) is the origin. In
the shifted world, we insist that al the monomials of ¢ with
anon-zero coefficient be of sufficiently high degree. Thiswill
turn out to be the correct notion. (The algorithm of [22] can be
viewed as aspecia case, where the coefficient of the constant
term of the shifted polynomial is set to zero.)

Wefirst define the shifting method precisely: For apolyno-
mial Q(»,y)and «, 3 € F wewill say that the shifted poly-
nomial ()« s(z,y) isthe polynomial given by @, s(x,y) =
Q(z + o,y + 3) Notice that shifting does not change the
weighted degree for any weighting. Also, observethat follow-
ing explicit relation between the coefficients {¢;; } of ) and



the coefficients { (¢ 5)i; } of Qo s holds:

QOzﬁ zy—ZZ()( )QZ']'OZ ZB]_]
>0y

In particular observe that the coefficients are obtained by a
linear transformation of the original coefficients.

2.2 Algorithm

Definition 2 (weighted degree) For non-negative weights
wy, wa, the(wy , ws )-weighted degree of the monomial z%y/ is
defined to be iw; + jw,. For abivariate polynomial Q(x, y),
and non-negative weights w , w3, the (w1, w)-weighted de-
greeof (), denoted (w1 , wa)-wt-deg(Q), isthe maximumover
all monomialswith non-zero coefficientsin @ of the (w1, w2)-
weighted degree of the monomial.

We now describe our algorithm for the polynomial reconstruc-
tion problem.

t, {(xla yi)}?:l'Wherexia Yi S F
— Parameters: 7, {:

— Input: n, k,

KEAN kn 4+ /kZn2 + 412 — kn)
= 207 — kn) !

and 1% — 1.

Step 1. Find a polynomial
Q(z,y) suchthat (1, k)-wt-deg(Q) < [, i.e, find values

for its coefficients {g;,;, }, j.> 0., +%j.<1 Such that the
following conditions hold:

1. Atleastoneg;, ;, isnon-zero

2. Foreveryi € [n],if Q%) istheshiftof Q to (x;, y;),
then all coefficientsof Q%) of total degreelessthan
r are 0. More specifically:

VZE[H] V1,2 > 0,8t j1+ja <1,

]1)]2def Z Z (h)( )th2 Zl lezé—jz 0.

J1251 552352

Step 2: Find al polynomials p € F,[X] of degree at most
k suchthat p isaroot of @ (i.e, y — p(x) isafactor of
Q(z,y)). For each such polynomial p check if p(x;) =
y; for at least t values of ¢ € [n], and if so, include p in
output list.

Remark: Step 2 above can be performed in polynomial time
by using the bivariate polynomial factorization algorithm of
Grigoriev [10] or Kaltofen [12] (that work over thefinite fields
as well as the rationals) or by using the more efficient root-
finding algorithm of Shokrollahi [18] (for thefinite field case).

2.3 Analysisof the Algorithm

We now proceed to prove our main result on polynomial
reconstruction, stated as Theorem 7 at the end of this section.
We will first prove a few necessary lemmas. In what follows
() can be any polynomial returned in Step 1 of the algorithm.

Lemma3 If (z;,y;) is an input point and p is any poly-
nomial such that v, = p(«;), then (¢ — z;)" divides
def

9(2) = Q(z, p(2)).

Proof: Let p/(x) be the polynomial given by p'(z) =
p(z + ;) — y;.  Notice that p’(0) = 0. Hence
p'(x) = xp”(x), for some polynomial p"/(x). Now, consider

7' (2) QW (x, p/(x)) Wefirst arguethat ¢’ (z — z;) = g(x).
To seethis, observe that

g9(x) = Q(z, p(x)) = QU (x — zi, p(x) — y;) =

QU(x — 2,/ (2 — 1)) = o (x — 1)

Now, by construction, (%) has no coefficients of total degree
less than . Thus by substituting y = «p”(z) for y, we are
left with a polynomial ¢’ such that #" divides ¢'(x). Shifting
back we have (¢ — x;)" divides ¢'(x — ;) = g(z). |

Lemma4 If p(x) is a polynomial of degree at most & such
that y; = p(x;) for at least ¢ valuesof ¢ € [n] and 7t > |,
then y — p(z) divides Q.

Proof: Consider the polynomial g(z) = Q(x, p(x)). By
the definition of weighted degree, and the fact that the (1, &)-
weighted degree of () is at most I, we have that ¢ is a
polynomial of degree at most I. By Lemma 3, for every
i such that y; = p(x;), we know that (z — =;)" divides
g(x). Thus if S is the set of ¢ such that y; = p(x;),
then [ [, 4(= — ;)" divides g(x). (Noticein particular that
x; # x; for any pair ¢ # j € S, since then we would have
(wi,9:) = (wi,p(wi)) = (2, p(x;)) = (2j,y;)) By the
hypothesis |.5| > ¢, and hence we have a polynomial of de-
gree at least r¢ dividing ¢ which is a polynomial of degree at
most [ < rt. This can happen only if ¢ = 0. Thus we find
that p(x) isaroot of Q(z, y) (where the latter is viewed as a
polynomial in y with coefficientsfrom the ring of polynomials
in z). By the division algorithm, thisimplies that y — p(=)
dividesQ(x, y). O

All that needs to be shown now is that a polynomial () as
sought for in Step 1 does exist. The lemma below shows this
conditionally.

Lemmab Ifn(’";’l) < M , thenapolynomial ) as sought

in Sep 1 does exist (and can be found in polynomial time by
solving a linear system).



Proof: Noticethat the computational task in Step 1 isthat of
solving a homogeneous linear system. A non-trivial solution
exists as long as the rank of the system is strictly smaller
than the number of unknowns. The rank of the system may
be bounded from above by the number of constraints, which
isn("t'). The number of unknowns equals the number of
monomialsof (1, k)-weighted degreeat most / and thisnumber

equals

Le) i—kj £
Z Z 1= Z(l—l—l—ka)

= ool =)=z e (] )

{ {
> — 1 (+1— -
> ([¢]+1) (+1-3)
[ 1+2
> - ——
iy k 2’
and the result follows. 0O

Lemma6 If n, k, t satisfy t> > kn, then for the choice of
r, I madein our algorithm, n("+') < 42 and 1t > 7 both
hold.

Proof:  Since 1Yt — 1 in our algorithm, ¢ > [ certainly
holds. Using! = rt — 1, we now need to satisfy the constraint

n(r—;l) _ (= 12)§:t+ 1)

which simplifiesto r%? — 1 > kn(r? + r) or, equivalently,
r2(t* — kn) — knr — 1 > 0.

Hence it suffices to pick » to be an integer greater than the
larger root of the above quadratic, and therefore picking

- kn + \/k2n2 +4(t% — kn)
"= 2012 — kn)

suffices, and this is exactly the choice made in the algorithm.
|

Theorem 7 The polynomial reconstruction problem problem
can be solved in time polynomial in n, provided ¢ > \/kn, for
every field F', using as a subroutine an algorithm for finding
rootsof a univariate polynomial over therational functionfield
F(X).

Proof: Followsfrom Lemma4, Lemmab, and Lemma6. O

Corollary 8 Given a family of Reed-Solomon codes of mes-
sagerate x, an error-rate of ¢ = 1 — \/k can be list-decoded
in polynomial time.

Remark: Since r affects the running time of our algorithm,
we point out that if one is given t2 > (1 + ¢)kn, for some
constant e > 0, then » may be set to some constant depending
on ¢ alone (and independent of n, k, ¢), assumingtherate k /n
of the code is a constant. In this case, therefore, the number
of polynomials output will be at most a constant (that depends
one).

3 Some easy extensions

We start by describing some easy consequences and ex-
tensions of the algorithm of Section 2. The first three results
arejust applications of the curve-fitting algorithm. The fourth
result revisits the curve-fitting algorithm to get a solution to a
weighted curve-fitting problem.

3.1 Alternant codes

We first describe a generalization of Reed Solomon codes
termed aternant codes that includes a wide family of codes
such as BCH codes, Goppa codes etc.

Definition 9 (Alternant Codes ([14], §12.2)) For positivein-
tegers m, ko, n, prime power ¢, vector & of distinct ele-
ments aq,...,an € GF(¢™), and vector ¢ of nonzero
elements vy, ...,v, € GF(¢™), the Generalized Reed-
Solomon code GRSy, (&, ¥) is the code whose messages cor-
respond to polynomials p € GF(¢™)[z] of degree < kg
and where the encoding of the message p is the string
(vip(a1), ..., vnp(ay)). The alternant code Ay, (&, v) is
the intersection of GRSy, (&, ¥) with GF(¢)”.

It is obvious that the Generalized Reed-Solomon code has
distance at least d = n — kg + 1. Thus this holds also for
the alternant code. We term this the designed distance of
the alternant code. The actua rate and distance of the code
are harder to determine. The rate lies somewhere between
n —m(n — ko) and ko and thus the distance d lies between d’
and md’. Playing with the vector ¥ might alter therate and the
distance (which is presumably why it is used as a parameter).

The decoding al gorithm of the previous section can be used
to decode aternant codes as well. Given a received word
(r1,...,m) € GF(¢)", we use as input to the polynomial
reconstruction problem the pairs {(z;, ¥;)}"_,, where z; =
a; and y; = r;/v; are elements of GF(¢™). The list of
polynomials output includes al possible codewords from the
aternant code. Thus the decoding algorithm for the earlier
section is really a decoding algorithm for alternant codes as
well; withthe caveat that its performance can only be compared
with the designed distance, rather than the actual distance.
The following theorem summarizes the scope of the decoding
algorithm.



Theorem 10 Let .A be an [n, k, d], alternant code with de-
signed distance d’ (and thus satisfying % < d < d). Then
there exists a polynomial time list decoding algorithm for .4
decodinguptoe < n — /n(n — d') errors.

(We note that decoding algorithms given in classical texts
seemto correct d’ /2 errors. Weare unaware of the more recent
work on thistopic.)

3.2 Other moddsof error

The algorithm of Section 2 is also capable of dealing with
other notions of corruption of information. A much weaker
notion of corruption (than an “error”) in data transmission
is that of an “erasure”: Here a transmitted symbol is either
simply “lost” or received in obviously corrupted shape. We
now note that the decoding algorithm of Section 2 handles
the case of errors and erasure naturally. Suppose n symbols
weretransmitted and n’ < n were received and s symbols got
erased. (We stress that the problem definition specifies that
the receiver knows which symbols are erased.) The problem
just reduces to a polynomia reconstruction problem on n’
points. An application of Theorem 7 yields that ¢ errors can
be corrected provided ¢ < n’ — +/n’k. Thus we get:

Theorem 11 The list-decoding problem for [n, k& + 1,d],
Reed-Solomon codes allowing for e errors and s erasures
can be solved in polynomial time, provided ¢ + s < n —

V(n—s)k.

The classical results of this nature show that one can solve
the decoding problem if 2¢ + s < n — k. To compare the
two results we restate both result. The classical result can be
rephrased as

- k
n—(5—1—6)>%,

while our result requires that

n—(s+e)>(n—sk.

By the AM-GM ineguality it is clear that the second one holds
whenever the first holds.

3.3 Decoding with uncertain receptions

Consider the situation when, instead of receiving a single
word y = y1,y2, - - -, Yn, fOr eachi € [n] wereceive alist of
[ possibilitiesy;1, yia, . . ., yi1 such that one of them is correct
(but we do not know which one). Onceagain, asin normal list
decoding, we wish to find out all possible codewords which
could have been possibly transmitted, except that now the
guarantee given to us is not in terms of the number of errors
possible, but in terms of the maximum number of uncertain

possibilities at each position of the received word. Let us call
this problem decoding from uncertain receptions. One can
prove, along the lines of the proof of Theorem 7, that:

Theorem 12 List decoding from uncertain receptions on a
[n,k+1,d = n — k], Reed-Solomon code can be done in
polynomial time provided the number of “ uncertain possibili-
ties” [ at each positioni € [n] is(strictly) lessthan n/k.

34 Weighted curvefitting

Another natural extension of thealgorithm of Section2isto
the case of weighted curvefitting. This caseissomewhat moti-
vated by adecoding problem called the soft-decision decoding
problem (see [26] for aformal description), as one might use
thereliability information on the individual symbolsin the re-
ceived word more flexibly by encoding them appropriately as
the weights below instead of declaring erasures. At this point
we do not formalize the explicit connection between the two.
Instead we just state the weighted curve fitting problem and
describe our solution to this problem.

Problem 3 (Weighted polynomial reconstruction)
INPUT: n points {(x1,¥1), - - ., (%n, yn)}, n NON-Negative in-
teger weights wy, . . ., w,, and parameters k and .
OuTpuT: All polynomials p such that >
least t.

The algorithm of Section 2 can be modified as follows:
In Step 1, we could find a polynomia ¢ which has a sin-
gularity of order w;r at the point (z;,y;). Thus we would
now have }"", ("4*") constraints. If apolynomial p passes
through the points (z;, y;) for i € S, theny — p(x) will ap-
pear asafactor of Q(x, y) provided ), ¢ rw; isgreater than
(1, k)-wt-deg(Q). Optimizing over the weighted degree of
( yields the following theorem.

(e =y w; 1S at

Theorem 13 The weighted polynomial reconstruction prob-
lem can be solved in time polynomial in the sum of w;’s pro-

videdt > \/k >, w?.

Remark: The fact that the algorithm runs in time pseudo-
polynomial in w;'s should not be a serious problem. Given
any vector of real weights, one can truncate and scalethe w;’s
without too much lossin the value of ¢ for which the problem
can be solved.

4 Algebraic-Geometric Codes

We now describe the extension of our algorithm to the
case of algebraic-geometric codes. Much of the work in-
volved here is mainly in ferreting out the axioms satisfied
by these constructions. We do so in Section 4.1. The algo-
rithm then follows along the lines of the algorithm of Shokrol-
lahi and Wasserman [19], modulo some algorithmic assump-
tions about the underlying structures. (Such assumptions are



inevitable: the class of algebraic geometric codes are vast
and not all of them have constructive algorithms associated
with them. Our assumptions are nearly the same as those
of [19].) Our agorithm yields an algorithm for list decod-
ing which correctsup to e < n — y/n(n — d) errorsin an
[n, k, d], code, improving theresult of [19], which correctsup

toe < n—+/2n(n—d)— g+ 1errors.

4.1 Definitions

Analgebraic-geometric codeis built over astructuretermed
an algebraic function field. An algebraic function field is

described by asix-tuple A = (F,, X', X, K, g, ord), where:

- F, isafinite field with ¢ elements, with F, denoting its
algebraic closure.

— X isaset of points (typically some subset of (variety in)
7, but thiswill be irrelevant to us).

— X isasubset of .V, called therational points of .

— K isaset of functions from X' to F, U {oo} (where oo
isaspecia symbol representing an undefined value). It is
usually customary to refer to just K as the function field
(and letting the other components of A be implicit).

— ord : K x X — Z. ord(f,z) iscalled the order of the
function f at point x.

— g isanon-negative integer called the genus of A.
The components of A always satisfy the following properties:

1. K isafield extension of 7,: K isendowed with operations
+ and * givingit afield structure. Furthermore, for f, g €
K, thefunctions f + ¢ and f * ¢ satisfy f(z) + g(z) =
(f+9)(x) and (fxg)(x) = f(x)*g(x). provided f(z)
and g(x) are defined. Finally, corresponding to every
« € F,, thereexists afunction « € K st. a(z) = «
for every X € X. (In what follows we et o f denote the
function « x f.)

2. Rational points: For every f € K andz € X, f(x) €
FaU{oo}.

3. Order properties: (The order is a common generalization
of the degree of a function as well as its zeroes. Infor-
mally, the quantity eryzord(m»o ord(f, ») isanalo-
gous to the degree of afunction. If ord(f, z) < 0, then
the negative of ord(f, #) is the number of zeroes f has
at the point =. The following axioms may make a lot of
sensewhen thisis kept in mind.)

Forevery f,g € K —{0},«, 3 € F,, z € X: theorder
function ord satisfies:

@ f(zr) = 0 < ord(f,z) < 0; f(z) =
o0 <= ord(f,x) > 0.

(b) ord(f * g, 2) = ord(f, ) + ord(g, z).

(€) ord(af + Bg,x) < max{ord(f, x),ord(g,z)}.

4. Distance property: If >° _+ord(f) < 0, then f = 0.
(Thisproperty isjust thegeneralization of thewell-known
theorem showing that a degree d polynomial may have at
most d zeroes.)

5. Rate property: Observe that, by Property 3(c) above, the
set of functions V; , = { flord(f, ) < i} form avector
space over F,, forany = € X andi € Z. Of particular
interest will befunctionswhich may have positive order at
only onepoint z, € X andnowhereelse. Let L; » denote
theset {f € Klord(f,z) < iAord(f,y) < 0,Vy €
X —{z}}. Snce Liz =VizN (myey_{x}voyy), we
have that L is also a vector space over F,. The rate
property isthat for every i € Z,xz € X, L; , isavector
space of dimension at least : — ¢ + 1. (This property
is obtained from the famed Riemann-Roch theorem for
the actual realizations of .4, and in fact the dimension is
exactlyi — g+ 1ifi > 29 — 2)

The following lemma shows how to construct a code from an
algebraic function field, given n + 1 rational points.

Lemmal4 If there exists an algebraic function field
A = (F,,X, X, K, g,ord) with n + 1 distinct ratio-
nal points zg;xi,...,2,, then the linear space C =
(1), FE))f € Lipgore,} forman [n k', d,

codefor somek’ > kandd >n—k — g+ 1.

Proof: For ¢ > 1, by Property 2, we have that f(z;) €
F,U{oo}, and by Property 3awe havethat f(x;) # oo. Thus
C C Fy. By Property 4, themapev : Lytg15, — F
given by f — (f(z1), f(z2),..., f(xy)) is one-one, and
hence dim(C) = dim(Ly44-1.0,). By Property 5, thisim-
plies C has dimension at least k, yielding &/ > k. Finaly,
consider fi # fo € Lyyy—1.0, that agreein k + ¢ places. If
f1 and f, agree at x;, then (f1 — f2)(#;) = 0 and thus by
Property 3a, ord( f1 — f2, #;) < 0. Furthermore, we have that
for every x € X — {zo}, ord(f1 — f2,2) < 0. Finaly at
zg we haveord(f; — f2,20) < k+ ¢ — 1. Thus summing
overal z € X,wehave" ord(fi — fo,x) < 0 andthus
f1 — f2 = 0 using Property 4 above. Thisyields the distance
property as required. m]

Codes constructed as above and achieving d/n, k/n > 0
(inthelimit of large n) are known for constant alphabet sizeg.
In fact, such codes achieving bounds better than those known
by probabilistic constructions are known for ¢ > 49 [24].

4.2 The Decoding Algorithm
We now describe the extension of our algorithm to the

case of algebraic-geometric codes. As usual we will try to
describe the data points {(x;, y;)} by some polynomia ).



Wefollow [19] and let () be apolynomial in aformal variable
y with coefficients from K (i.e, Q[y] € K[y]). Now given
avaueof y; € F,, Q[y;] will yield an element of K. By
definition such an element of KX hasavalueat z; € X and
just asin [19] we will also require Q(z;, v;) = Q[y:](#;) to
evaluate to zero. We, however, will require more and insist
that (x;, y;) “behave” like azero of multiplicity » of @; since
z; € X andy; € F,, we need to be careful in specifying
the conditions to achieve this. We, asin [19], also insist that
() hasasmall (but positive) order [ at x, for any substitution

of y with afunction in K of order at most o™, +g—1la
the point . Having found such a (2, we then look for roots
he K of Q.

What remains to be done isto explicitly express the condi-
tions (i) (x;, v;) behaves like a zero of order » of ) for 1 <
i < n,and (i) ord(Q[f], z0) < lforany f € L, »,, where
[ is aparameter that will be set later (and which will play the
samerole asthe! in our decoding a gorithm for Reed-Solomon
codes). To do so, we assumethat we are explicitly given func-
tions ¢+, ..., ¢1_g41 suchthatord(¢;, #0) < j+ g —1and

such that ord(¢;, o) < ord(¢j41,%0). Let def{l gJ We
will then look for coefficients ¢;, ;, such that

s l—g+l—aj2

=2 2

j2=0 ji=1

Qj1j2¢j1yj2. (1)

By explicitly setting up (7 as above, we impose the constraint
(ii) above. To get constraint (i) we need to “shift” our basis.
This is done exactly as before with respect to y;, however,
x; € X and hence a different method is required to handle it.
The following lemmas show how this may be achieved.

Lemmal5 For every f,g € K, and z € X, there exist
o, Bo € Fy, (o, Bo) # (0, 0) such that

ord(agf + Bog, ®) < max{ord(f, x),ord(g,z)}.

Proof: Natice that if ord(f,z) # ord(g, z), then there is
nothing to prove. So we assume ord(f,z) = ord(g,z) =
i. Let f~! be the multiplicative inverse of f in K. Then
ord(f* f~1, x) = 0Oandhenceord(f~!, z) = —i andfinaly
ord(g » f~12) = 0. Let (f» f~)(z) = o and (g *
F~Y(z) = 3. By Property 33, o, 3 ¢ {0,00}, and since z
isarational point, o, 3 € F,. Thuswefind that (3f  f~! —
ag* [~ (x) = 0. Thusord(Bf * f~1 —ag* f~12) <0
andsoord(3f — avg, ) < i asrequired. o

Lemma16 Given functions ¢4, ..., ¢, of distinct orders at
xo € X satisfying¢; € Lj44-1 0, andarational point z; #
xo, thereexist functions 1, . . ., ¢, € K withord(v;, z;) <
1—j andsuchthat thereexist o, ;, j, € Fyforl < ji, 3 <
p such that ¢j1 = Z?g:l Ozx“]'h]'al/)ja.

Proof: We prove a stronger statement by induction on p:

If ¢1,...,¢, are linearly independent (over F,) functions
such that ord(¢;, ;) < m for j € [p], then there are func-
tions 41, ..., 1, such that ord(¢;,z;) < m+ 1 — j that

generate the ¢;'s over F,. Note that this will imply our
lemmaas¢1, ¢4, . . ., ¢, arelinearly independent using Prop-
erty 3(c) and the fact that the ¢;’s have distinct pole orders
at xo. W.l.o.g. assume that ¢, is a function with largest
order at x;. We let ¢»1 = ¢;. Applying Lemma 15 to
every pair (¢1,¢;) for 2 < j < p, we obtain functions
¢7 such that ¢f = ¢; if ord(¢;, ;) < ord(¢é1,x;), o
¢; = ajo1 + Bi¢; fora;, B € Fy — {0} if ord(¢;, z;) =
ord(¢>1, ;). Hencefor 2 < j < p, ¢>1,¢> generate ¢;. Now
05, 955, By arel|nearly|ndependent(smce¢>1,¢>2, cey Bp
are) and ord(¢>§,xi) < m—1for2 < j < p, sotheinduc-
tive hypothesisappliedto thefunctions ¢, . . ., ¢;, now yields
Pa, ..., 1, asrequired. m]

We are now ready to express condition (i) on (z;, y; ) being
azero of order at least ». Using the above lemmaand (1), we
know that Q(x, y) hasthe form

s l—g4+1 l—g+1—j2a '
= Z Z Z Qj1,52%;,51,53 1/)j3,17:(x)y]2'
j2=0 js=1 ji=1

The shifting to y; is achieved by defining
QW (x, y)défQ(x, y+ y:). Thetermsin QU)(x, y) that are
divisible by  contribute p towards the multiplicity of («;, 0)
asazero of Q1), or, equivalently, the multiplicity of (x;, y;)
asazero of (). We have

s l—g+1

Z Z q](a)y]41/)]3v )y] ) (2)

Ja=0 js=1

Q()xy

where

@) d ; s l—g+l—ajz o
€ 2—J4
]3,]4 Z Z ( )y] "1, 52 Y5155

J2=Ja Ji=1 Ja

Sinceord(t;, »,, ;) < —(js — 1), we can achieve our con-
dition on (;, y;) being a zero of multiplicity at least » by

insisting that ¢\’ = 0 for al j3 > 1, j; > 0 such that
ja + 33 — 1 < r. Having developed the necessary machin-
ery, we now proceed directly to the formal specification of our

algorithm.

Implicit Parameters. n; xg, z1,...,x, € X k; g.

Assumptions: We assume that we “know” functions {¢;, €
Kl|j1 € [l — g+ 1]} of distinct orders at z¢ with
ord(¢;,,x0) < j1+g—1,aswell asfunctions{¢;, », €
Kljs € [l — g +1],i € [n]} suchthat for any i € [n],
thefunctions{v;, ., };, satisfy ord(¢/;, o,, ;) < 1—js.
Thenation of “knowledge” isexplicitinthefollowing two
objects that we assume are available to our algorithm.



1. The set {axujlij’r € fq|l [n], 71,05 €
[l — g + 1]} such that for every 7, j1, ¢;, =
D s YoijrjaVja,e, - Thisassumptionisavery rea-
sonable one since Lemma 16 essentially describes
an algorithm to compute this set given the ability to
perform arithmetic in the function field K.

2. A polynomial-time algorithm to find roots (in K)
of polynomialsin K [y] where the coefficients (ele-
ments of K') are specified asaformal sumof ¢;,’s,
(The casesfor which such algorithms are known are
described in [19, 18].)

The Algorithm:

— Inputs: n, k, 41, ...,yn € Fy.

— Algorithm Parameters: r, [:

def ) 2gt+an+y/(2gt+an)?—4(g2—1)(t>—an)
"= 2(t2—an) ’
def def

and 1%t — 1. (Recall that a 'k + g — 1)

Step1: Find Q[y] € Ky of the form Qly] =
>0 o i TR ), 5,65,97, (e find values of the
coefficients {¢;, ;, } such that the following conditions
hold:

1. Atleastoneg;, ;, isnon-zero.
2. Foreveryi € [n],Vjs, ja, js > 1, ja > 0 suchthat
Js+ja <,

s l—g+l-aj2

]3)7]4def Z Z

2—ja
( )1%7 951,52 Xy 51,58 = 0.
J2=Ja Ji=1 ']4

Step 2: Findall rootsh € Ly44—1 «, Of thepolynomia @) €
Ky]. For each such h, check if h(x;) = y; for at least ¢
valuesof ¢ € [n], andif so, include £ in output list. (This
step can be performed by either completely factoring @@
using algorithms presentedin [19], or more efficiently by
using the root-finding algorithm of [18].)

4.3 Analysisof the Algorithm

We start by looking at (?[h]. Recall that for any h € K,
Q[h] € K. By the condition (2) which we imposed on (), we
have Q[h] € L; », whenever h € Lyyg1 2,-

Lemmal7 Fori € [n],if h € K satisfies h(z;) = v, then
ord(Q[h], ;) < —r.

Proof: Wehave, for any such ¢, Q[h](z) = Q(z, h(z)) =
QU(e, h(x) — yi) = QU(x, h(x) — h(x;)) and using (2),
thisyields

s l—g+1

Z Z q]a,h%av

Ja=0 js=1

2)(h(x) = ;).

Sinceq@' = 0for js + ja < 7, ord(¥j, o:, 25) < 1 — js,

and if h()) € K is defined by h()(z)% h(x) — h(x;), then
ord((h()4 &) < —js, we get ord(Q[h],x;) < —r as
desired. 0

Lemmal8 If h € Lyyg—1 0, issuchthat h(z;) = y; for
at least ¢ values of ¢ € [n] and rt > [, then y — h divides
Qly] € K[y).

Proof: Using Lemma 17, we get Z ord(Q[h],xi) <
—-rt < =l Since Q[h] € Ll,xu, we have

Y wexord(Q[h], x) < 0, implying Q[h] = 0. Thus h is
aroot of Q[y] and hencey — h divides Q[y]. m]

Lemma19 Ifn("1) < U=0U=9%2) thena[y] assought
in Sep 1 does exist (and can be found in polynomial time by
solving a linear system).

Proof: The proof follows that of Lemma 5. The computa-
tional task in Step 1 is once again that of solving a homoge-
neouslinear system. A non-trivial solution existsaslong asthe
number of unknowns exceeds the number of constraints. The
number of constraints in the linear system is n("%"), while
the number of unknowns equals

3 PR R (Y EYET R
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LemmaZ20 Ifn, k,t, gsatisfyt? > (k+ g — 1)n, thenfor the
choice of r, I made in the algorithm, n("1') < %
and rt > [ both hold.

Proof: Analogous to the proof of Lemma 6. m|

Our main theorem now follows from Lemmas 18-20.

Theorem 21 Let C bean [n, k, d], algebraic-geometric code
over an algebraic function field K of genus g (with d =
n —k — g+ 1). Then there exists a polynomial time
list decoding algorithm for C that works for up to e <

n—+/nk+g—1) = n—+/n(n—d) erors (provided

the assumptions of the algorithm of Section 4.2 are satisfied).
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