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Abstract

Given an error-correcting code over strings of length » and an arbitrary input string also of length »,
thelist decoding problemisthat of finding all codewords within a specified Hamming distance from the
input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The
list decoding problem for Reed-Solomon codes reduces to the following “ curve-fitting” problem over a
field F': Given n points{(z;.y;) 7, i, y; € F, and adegree parameter k and error parameter e, find
al univariate polynomials p of degree a most & such that y; = p(«x;) for al but a most e values of
i € {1,...,n}. Wegive an algorithm that solves this problem for ¢ < n — \/kn, which improves over
the previous best result [27], for every choice of £ and n. Of particular interest isthe case of k/n > %,
where the result yields the first asymptotic improvement in four decades [21].

The agorithm generalizes to solve the list decoding problem for other algebraic codes, specifically
alternant codes (a class of codes including BCH codes) and algebraic-geometry codes. In both cases,
we obtain a list decoding algorithm that corrects up to n — /n(n — d') errors, where n is the block
length and d’ isthe designed distance of the code. The improvement for the case of agebraic-geometry
codes extends the methods of [24] and improves upon their bound for every choice of » and d’. We
also present some other conseguences of our agorithm including a solution to a weighted curve fitting

problem, which may be of use in soft-decision decoding a gorithms for Reed-Solomon codes.
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1 Introduction

An error correcting code C of block length V, rate &', and distance D over a g-ary alphabet X ([N, K, D],
code, for short) is a mapping from L/ (the message space) to XV (the codeword space) such that any pair
of stringsin the range of C differ in at least D locations out of N*. We focus on linear codes so that the
set of codewords form a linear subspace of YN Reed-Solomon codes are aclassical, and commonly used,
construction of linear error-correcting codes that yield [N = n, K = k + 1, D = n — k], codes for any
k < n < q. Theaphabet X for such acodeisafinitefield F'. The message specifies apolynomial of degree
at most £ over F' in some formal variable = (by givingits k£ + 1 coefficients). The mapping C maps this
code to its evaluation at n distinct values of 2 chosen from F' (henceit needs ¢ = |F'| > n). The distance
property followsimmediately from the fact that two degree k& polynomials can agree in at most & places.

The decoding problem for an [N, K, D], codeis the problem of finding acodeword in %V that iswithin
adistanceof e froma*“received” word R € ¥V In particular it isinteresting to study the error-rate ey /N
that can be corrected as a function of the information rate md:efl(/N . For afamily of Reed-Solomon codes
of constant message rate and constant error rate, the two brute-force approaches to the decoding problem
(compare with all codewords, or look at all wordsin the vicinity of the received word) take time exponential
in N. Itistherefore anon-trivia task to solve the decoding problem in polynomial timein N. Surprisingly,
a classica agorithm due to Peterson [21] manages to solve this problem in polynomial time, as long as
e < =L1L (e achievese = (1 — k)/2). Faster agorithms, with running time O(N'2) or better, are also
well-known: in particular the classical agorithms of Berlekamp and Massey (see [2, 19] for adescription)
achieve such running time bounds. It is also easily seen that if ¢ > W then there may exist severa
different codewords within distance e of a received word, and so the decoding algorithm cannot possibly
always recover the “correct” message if it outputsonly one solution.

This motivates the list decoding problem, first defined in [7] (see aso [8]) and sometimes also termed
the bounded-distance decoding problem, that asks, given a received word R € YN to reconstruct a list
of all codewords within a distance e from the received word. List decoding offers a potential for recovery
from errors beyond the traditional “error-correction” bound (i.e., the quantity D/2) of a code. Loosely,
we refer to a list decoding algorithm reconstructing al codewords within distance e of a received word
as an “e error-correcting” algorithm. Again, for afamily of [N = n, K = k +1,D = n — k|, Reed-

Solomon codes, we can study € = e/n asafunctionof x = (k + 1)/n = k/n. Till recently, no significant

YUsually an error correcting code is defined as a set of codewords, but for ease of exposition we describe it in terms of the

underlying mapping, which also specifiesthe encoding method, rather than just the set of codewords.



benefits were achieved using the list decoding approach to recover from errors. The only improvements
known over the algorithm of [21] were decoding a gorithms due to Sidelnikov [25] and Dumer [6] which
correct 2% + O(log n) errors, i.e., achieve ¢ = (1 — x)/2 + o(1). Recently, Sudan [27], building upon
previouswork of Ar et a. [1], presented a polynomial time list decoding a gorithm for Reed-Solomon codes
correcting more than (n — k)/2 errors, provided & < n/3. The exact description of the number of errors
¢,. corrected by thisalgorithm israther complicated and can be found in [28] or Figure 1. One lower bound
on the number of errors corrected is n — v/2kn, thus achievinge = ¢, > 1 — V2k. A more efficient list
decoding algorithm, running in time O(n? log? n), correcting the same number of errors has been given by
Roth and Ruckenstein [23]. For x — 0, thisalgorithm corrects an error rate e — 1, thusallowing for nearly
twice as many errors as the classical approach. For codes of rate greater than 1/3, however, this agorithm
does not improve over the algorithm of [21]. This case is of interest since applicationsin practice tend to

use codes of high rates.
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Figure 1: Error-correcting capacity plotted against the rate of the code for known agorithms.

In this paper we present a new polynomial-time algorithm for list-decoding of Reed-Solomon codes (in

fact Generalized Reed-Solomon codes, to be defined in Section 2) that corrects up to (exactly) [n —vnk - 1}



errors (and thus achieves ¢ = 1 — /k). Thus our algorithm has a better error-correction rate than previous
agorithmsfor every choiceof x € (0,1); andinparticular, for x > 1/3 our result yieldsthefirst asymptotic
improvement in the error-rate ¢, since the origina algorithm of [21]. (See Figure 1 for agraphica depiction
of therelative error handled by our algorithm in comparison to previous ones.)

We solve the decoding problem by solving the following (more general) curve fitting problem: Given n
pairs of elements {(z1,41),-.-,(@n,yn)} Wherez;, y; € F', adegree parameter & and an error parameter
e, find all univariate polynomials p such that p(z;) = y; for at least n — e valuesof i € {1,...,n}. Our
algorithm solves this curve fitting problem for ¢ < n — /nk. Our algorithm is based on the algorithm of
[27] in that it uses properties of algebraic curves in the plane. The main modificationisin the fact that we
use the properties of “singularities’ of these curves. Asin the case of [27] our algorithm uses the notion of
plane curves to reduce our problem to a bivariate polynomial factorization problem over F' (actualy only
aroot-finding problem for univariate polynomials over therational function field /'( X')). Thistask can be
solved deterministically over finite fields in time polynomia in the size of the field or probabilistically in
time polynomial in the logarithm of the size of the field and can aso be solved deterministically over the
rationals and reals [14, 17, 18]. Thus our agorithm ends up solving the curve-fitting problem over fairly
generd fields.

It isinteresting to contrast our agorithm with results which show bounds on the number of codewords
that may exist with a distance of e from a received word. One such result, due to Goldreich et al. [13],
showsthat the number of solutionsto the list decoding problem for a code with block length » and minimum
distance d, is bounded by apolynomia inn aslongase < n — y/n(n — d). (A similar result has al'so been
shown by Radhakrishnan[22].) Our agorithm provesthisbest known combinatorial bound “ constructively”
inthat it producesalist of al such codewordsin polynomial time. More recently, Justesen [16] has obtained
upper bounds on the maximum number of errorse = e, 4, for which the output of alist decoding algorithm
can be guaranteed to have at most ¢ solutions, for constant ¢. The results of Justesen show that in the limit
of largec, €. 4., /n convergesto 1 — /1 — d/n aswefix d/n and let n — oo. These bounds are of interest
in that they hint at a potentia limitation to further improvements to the list decoding approach.

Finally we point out that the main focus of this paper is on getting polynomial time a gorithms maxi-

mizing the number of errors that may be corrected, and not optimizing the runtime of any of our algorithms.

Extensionsto Algebraic-Geometry Codes Algebraic-geometry codes are a class of algebraic codes that
include the Reed-Solomon codes as a special case. These codes are of significant interest because they

yield explicit construction of codes that beat the Gilbert-Varshamov bound over small aphabet sizes [29]



(i.e., achieve higher value of d for infinitely many choices of » and & than that given by the probabilistic
method). Decoding algorithmsfor algebrai c-geometry codes are typically based on decoding a gorithmsfor
Reed-Solomon codes. In particular, Shokrollahi and Wasserman [24] generalize the a gorithm of Sudan [27]
for the case of agebraic-geometry codes. Specifically, they provide agorithms for factoring polynomias
over some agebraic function fields; and then show how to decode using this factoring algorithm. Using a
similar approach, we extend our decoding algorithm to the case of algebraic-geometry codes and obtain a
list decoding algorithm correcting an [n, k, d], algebraic-geometry codefor uptoe < n—+/n(n — d) errors,
improving the previously known bound of n—/2n(n — d)—g+1 errors (here g isthe genus of thealgebraic
curve underlying the code). This agorithm uses a root-finding a gorithm for univariate polynomials over
algebraic function fields as a subroutine and some additional a gorithmic assumptions about the underlying

algebraic structures: The assumptions are described precisely in Section 4.

Other extensions One aspect of interest with decoding algorithms is how they tackle a combination of
erasures (i.e, some letters are explicitly lost in the transmission) and errors. Our algorithm generalizes
naturally to this case. Another interesting extension of our agorithm is the solution to a weighted version
of the curve-fitting problem?: Given aset of n pairs {(=;, y;)} and associated non-negative integer weights
w1, ..., wy, find al polynomials p suchthat >=;. )=, wi > m This generalization may be
of interest in “ soft-decision” decoding of Reed-Solomon codes.

2 Generalized Reed-Solomon Decoding

We fix some notation first. In what follows /' isafield and we will assume arithmetic over F' to be of unit
cost. [n] will denotetheset {1,...,n}. For avector # € I and: € [n], the notation Z; will denote the :th

coordinate of . A(Z, ) isthe Hamming distance between strings # and 7/, i.e., |{:|Z; # ¥:}|.

Definition 1 (Generalized Reed-Solomon codes) For parameters n, & and a field F' of cardinality ¢, a
vector @ of distinct elements oy, as, ..., a, € F (hence we need n < ¢), and a vector # of non-zero

elements vy, ...,v, € F, the Generalized Reed-Solomon code GRS, 1 ##, is the function mapping the

2The evolution of the solution to the “ curve-fitting” problem is somewhat interesting. The initial solutions of Peterson [21] did
not explicitly solve the curve fitting problem at all. The solution provided by Welch and Berlekamp [32, 3] do work in this setting,
even though the expositions there do not mention the curvefitting problem (seein particular, the descriptionin [12]). Their problem
statement, however, disallows repeated values of z;. Sudan’s[27] allows for repeated =;’s but does not allow for repeated pairs of

(z3, ys ). Our solution generalizesthis one more step by allowing aweighting of (z;, y:)!



messages F*+! to code space F", given by GRS, x.5.5(17); = vj - S5 o i1 (@ ), for i € F*+! and

1<j<n

Problem 1 (Generalized Reed-Solomon decoding)
INPUT: Field I, n, k, @, 7 € I specifyingthecode GRS, .« 7. AVvector § € F* and error parameter e.

OuTPUT: All messages € F*+1 such that A(GRS g, 1.a.2(m), §) < e.

Problem 2 (Polynomial reconstruction)
INPUT: Integersk,t and n points{(z;, y;)}7-, wherez;, y; € F.
OuTpuT: All univariate polynomials p of degree at most & such that y; = p(«;) for at least ¢ values of

i € [n].
Thefollowing propositionis easy to establish:

Proposition 2 The generalized Reed-Solomon decoding problem reduces to the polynomial reconstruction

problem.

Proof: Itiseasily verified that theinstance (F, n, k, @, ¥, , e) of the GRS decoding problem reducesto the

instance (k,n — e, n,{(a;,y;/v;)}", ) of the polynomial reconstruction problem. I

2.1 Informal description of thealgorithm

Our agorithm is based on the algorithm of [27], and so we review that algorithm first. The agorithm has
two phases: In thefirst phaseit finds apolynomial ¢) in two variableswhich “fits” the points (z;, y;), where
fitting implies Q(z;,y;) = 0 for al ¢ € [n]. Then in the second phase it finds all small degree roots of
@) i.efinds al polynomials p of degree at most k& such that Q (=, p(z)) = 0 or equivaently y — p(z) isa
factor of Q)(«,y); and these polynomias p form candidates for the output. The main assertions are that
(1) if we dlow @) to have a sufficiently large degree then the first phase will be successful in finding such
a bivariate polynomial, and (2) if ¢) and p have low degree in comparison to the number of points where
yi — pla;) = Q(z;,y;) = 0, theny — p(x) will beafactor of Q).

Our agorithm has asimilar plan. We will find ) of low weighted degree that “fits’ the points. But now
wewill expect more fromthe“fit”. It will not sufficethat Q(z;, y;) iszero— wewill requirethat every point
(z;,y;) isa“singularity” of ). Informally, a singularity is a point where the curve given by Q(z,y) = 0
intersectsitself. Wewill make thisnotion formal aswe go along. In our first phase the additional constraints

will force usto raise the allowed degree of (). However we gain (much more) in the second phase. In this
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phase we look for roots of ¢) and how we know that p passes through many singularities of ¢, rather than
just pointson ). In such a case we need only half as many singularitiesas regular points, and thisis where
our advantage comes from.

Pushing the idea further, we can force ) to intersect itself at each point (z;, y;) a many times as we
want: in the algorithm described bel ow, thiswill be a parameter ». Thereis no limit on what we can choose
r to be: only our running timeincreases with ». We will choose r sufficiently large to handle as many errors
asfeasible. (In theweighted version of the curvefitting problem, we force the polynomial ¢ to pass through
different points a different number r; times, where r; is proportional to the weight of the point.)

Finally, we come to the question of how to define “singularities’. Traditionally, one uses the partia
derivatives of () to define the notion of a singularity. This definition is, however, not good for us since the
partia derivatives over fields with small characteristic are not well-behaved. So we avoid this direction and
define asingularity as follows: Wefirst shift our coordinate system so that the point (=, ;) istheorigin. In
the shifted world, we insist that all the monomials of ¢) with a non-zero coefficient be of sufficiently high
degree. Thiswill turn out to be the correct notion. (The algorithm of [27] can be viewed as a special case,
where the coefficient of the constant term of the shifted polynomial is set to zero.)

We first define the shifting method precisely: For a polynomia Q(z,y) and a, 5 € F we will say that
the shifted polynomia @, s(z, y) isthe polynomia givenby Q. s(z,y) = Q(2 + o,y + (). Observe that
the following explicit relation between the coefficients {¢;; } of @) and the coefficients {(¢.,3):;} of Qo3
holds:

TEDIDY (i) (?)Qi/,j/ai/_iﬂf'—i‘

11> 1>

In particul ar observe that the coefficients are obtained by alinear transformation of the original coefficients.

2.2 Algorithm

Definition 3 (weighted degree) For non-negativeweightsw , ws, the (w-, w,)-weighted degree of the mono-
mial 'y’ is defined to be iw; + jw,. For abivariate polynomial Q(z, y), and non-negative weights wy , w,
the (w1, wo )-weighted degree of ), denoted (w1, ws)-wt-deg(()), isthe maximumover all monomialswith

non-zero coefficientsin ¢) of the (w1, w;)-weighted degree of the monomial.

We now describe our algorithm for the polynomial reconstruction problem.

Algorithm Poly-Reconstruct:

Inputs: n, k, ¢, {(x;, y:)}y, Wwherez;, y; € F.



Step 0: Compute parameters r, [ such that

r+1 l(l+2)
rt>landn( 5 )< Y

In particular, set

def | kn + /k*n? + 4(¢? — kn)
2(1? — kn)

I = rt—-1

Step 1: Find a polynomia Q(x,y) such that (1, k)-wt-deg(Q) < [, i.e, find values for its coefficients

{8155 }i1,j2>0:51 +kj» <1 SUch that the following conditions hold:

1. Atleast oneg;, ;, isnon-zero
2. Forevery i € [n], if QU istheshift of Q to (z;,;), then al coefficients of Q) of total degree
lessthan » are 0. More specifically:

Vie[n],Vj1,j2 20, st.ji4+j2 <7,
A def j/ j/ TR
e 2 X (J’l) (Jz) gty =0,
Wi igzae VN2
Step 2: Find dl polynomiasp € F,[X] of degree at most £k such that p isaroot of () (i.e, y — p(z) isa
factor of Q(x, y)). For each such polynomial p check if p(z;) = y; for at least ¢ valuesof 7 € [n], and

if so, include p in output list.

End Poly-Reconstruct

2.3 Correctness of the Algorithm

We now prove the correctness of our algorithm. In Lemmas 4 and 5, () can be any polynomial returned in
Step 1 of the algorithm.

Lemma4 If (z;,y;) isaninput point and p isany polynomial such that y; = p(z;), then (z — z;)" divides
def

9(2)=Q(z, p(z)).

Proof: Let p/(z) be the polynomia given by p/(z) = p(2 + 2;) — y;. Notice that p'(0) = 0. Hence
p'(x) = zp"(x), for some polynomia p”(z). Now, consider ¢'(2)X'Q()(z, p/(z)). We first argue that

g'(z — z;) = g(x). To seethis, observe that
g9(x) = Qa,p(x)) = QU (x — wi,pl(a) — y;) =

7



QU(z — 2, p/(x — 21)) = g(w — 2y).
Now, by construction, Q) has no coefficients of total degree less than . Thus by substitutingy = p” ()
for y, we are left with a polynomial ¢’ such that 2" divides ¢’(x). Shifting back we have (z — z;)" divides

g'(x — ;) =g(a). |

Lemmab If p(z) isa polynomial of degree at most & such that y; = p(«;) for at least ¢ values of ¢ € [n]
and rt > [, theny — p(z) divides Q.

Proof: Consider the polynomia ¢(z) = Q(z,p(x)). By the definition of weighted degree, and the fact
that the (1, k)-weighted degree of () is at most /, we have that ¢ is a polynomial of degree at most /. By
Lemma 4, for every ¢ such that y; = p(z;), we know that (2 — x;)" divides g(z). Thusif S isthe set of
i such that y; = p(x;), then [[;cq(x — ;)" divides g(x). (Notice in particular that z; # x; for any pair
i # j € 5, since then we would have (z;,y;) = (2, p(z;)) = (2;,p(z;)) = (2;,y;).) By the hypothesis
|5| > t, and hence we have a polynomia of degree at least ¢ dividing ¢ whichisapolynomia of degree at
most [ < r¢. Thiscan happen only if g = 0. Thuswefind that p(z) isaroot of Q(z, y) (Where the latter is
viewed as a polynomia in y with coefficients from thering of polynomiasin x). By the divisionalgorithm,

thisimpliesthat y — p(z) dividesQ(z, ). |

All that needs to be shown now is that a polynomia ¢) as sought for in Step 1 does exist. The lemma below

shows this conditionally.

Lemmaé6 If n(T;’l) < l(l;,'f), then a polynomial ) as sought in Step 1 does exist (and can be found in

polynomial time by solving a linear system).

Proof: Notice that the computational task in Step 1 is that of solving a homogeneous linear system. A
non-trivial solution exists aslong as the rank of the systemis strictly smaller than the number of unknowns.
The rank of the system may be bounded from above by the number of constraints, which is n(H;). The
number of unknowns equals the number of monomials of (1, k)-weighted degree at most / and this number
equals

L) 1=k L&l

Y. 2 1= (I+1—kjp)

() -4 )
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v

and the result follows. |

1(1+2)

Lemma7 If n, k.t satisfyt> > kn, then for the choice of r, / made in our aIgorithm,n(Tgl) < =5~ and

rt > [ both hold.

Proof: Since!%<+¢ — 1 inour algorithm, rt > [ certainly holds. Using! = rt — 1, we now need to satisfy

the constraint

n(r—l— 1) GERNGER)

2 2k

which simplifiesto r?¢% — 1 > kn(r% + r) or, equivalently,
r3(t* — kn) — knr — 1 > 0.

Hence it sufficesto pick r to be an integer greater than the larger root of the above quadratic, and therefore

picking

kn + /k*n? + 4(t%2 — kn)

=1
rELt 201 — en)

suffices, and thisis exactly the choice made in the a gorithm. |

Theorem 8 Algorithm Poly-Reconstruct on inputs n, k, ¢ and the points{(z;, y;) : 1 < ¢ < n}, correctly

solves the polynomial reconstruction problemprovided ¢ > +/kn.

Proof: FollowsfromLemmasb5, 6 and 7. |

We can aso infer an upper bound on the number of codewordswithinradiuse < n — +/kn in a Gener-
alized Reed-Solomon code. Thisbound isalready known even for general (even non-linear codes) [13, 22].
Our result can be viewed as a constructive proof of this bound for the specific case of Generalized Reed-

Solomon codes.

Proposition 9 The number of codewords that lie within an Hamming ball of radiuse < n — vkn in an

[n, k + 1,d], Generalized Reed-Solomon codeis O(vkn3) (which isin turn O(n?)).



Proof: By Lemma 5, the number M of such codewords is a most the degree deg, (@) of the bivariate
polynomia @ iny. Since the (1, k)-weighted degree of () is a most /, deg,(Q) < |//k]. Choosing
t = [Vkn] 4+ 1 (which corresponds to the largest permissible value of theradius €), we have, by the choice
of [, that

L _ oknt

M =0(7) = 0(5-) = O(Vkn?),

asdesired. |

Corollary 10 For a family of constant (relative) rate x Generalized Reed-Solomon codes, the number of

codewords in a Hamming ball of (relative) radiuse = 1 — (1 + 7)/k, for any constant v > 0, isO(1/+?).

24 Runtimeof the Algorithm

We now verify that the a gorithm above can be implemented to run efficiently (in polynomial in » time) and

also provide rough (but explicit) upper bounds on the number of operationsit performs.

Proposition 11 The algorithmabove can be implemented to run using O( max{%, £1) field opera-

tionsover F, provided | F| < 2.3

Proof: (Sketch) The homogeneous system of equations solved in Step 1 of the algorithm clearly has at
most O(1*/k) unknowns (since deg, (@) < [//k] and deg,(Q) < ). Hence using standard methods, Step
1 can be implemented using O((1%/k)?) = O(1°/k?) field operations. We claim that this is the dominant
portion of the runtime and that Step 2 can be implemented to run within this time using standard bivariate
polynomial factorization techniques. We sketch some details on the implementation of Step 2 below.

Toimplement Step 2, we first compute the discriminant 7'(z ) = disc, (Q(x, y)) of Q(z, y) with respect
to y (treating it as a polynomial in y with coefficientsin F'[.X]). Therefore T € F[X], and also deg(T") <
2d.d, where d,, d, are the degrees of () in x and y respectively. This bound on the degree of 7" follows
easily from the definition of the discriminant (see for instance [5]), and it is aso easy to prove that the
discriminant 7' can be computed in O(d..d;) ) field operations.

Nextwefindan « € F'suchthat 7'(«) # 0. Thiscan bedonedeterministically by trying out an arbitrary
set of (2d,.d, + 1) field elements because of the bound we know on the degree of 7". Now, by the definition

of the discriminant, for such an «, Q(«, y) is square-free as an element of FY].

®In this analysis as well as the rest of the paper, we use the big-Oh notation to hide constants. We stress that these are universal

constantsand not functions of the field size | F'|.
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We then compute the shifted polynomial ¢)'(z, y)d:efQ(x + a,y), sothat Q'(0, y) is square-free. Now
we usetheagorithmin [11] that can computeal rootsp € F[z] of abivariate polynomia R(z,y) such that
R(0,y) € F[Y]issquare-free, in O(k?degy?(R)) time. Thisgives usalist of al polynomials p/(z) such
that y — p(z) dividesQ’(z, y); by computing p(z) = p'(z — «) for each such p’ gives usthe desired list of
roots p(z) of Q(z,y). Itisclear that once « is computed, al the above steps can be performed in at most
O(k*d?) field operations.

Summing up, Step 2 can be performed using
15 15
O(dody + dody + Kd}) = O( 5 + 1) = 0(5)
field operations.

The entire agorithm can thus be implemented to runin O(1°/%?) field operationsand since

[ = O(m:&LX{t2 — kn,t})

the claimed bound on the runtime follows. |

Theorem 12 The polynomial reconstruction problemcan be solved intime O(n'?), provided ¢ > v/kn, for
any field ' of cardinality at most 2". Furthermore, if ¢2 = (1 + §)kn, then the problem can be solved in
time O(n3679).

Proof: Followsfrom Proposition 11 and Theorem 8. |

Corollary 13 Given a family of Generalized Reed-Solomon codes of constant messagerate «, an error-rate

of e = 1 — \/k can be list-decoded in time O(n'®). When e < 1 — /k, then the decoding time reduces to

O(n*(1 —e—/k)™1%) = O(n?).

3 Some Consequences

First of all, sincethe classica Reed-Solomon codes are simply a specia case of Generalized Reed-Solomon
codes, Corollary 13 above holds for Reed-Solomon codes as well. We now describe some other easy con-
sequences and extensions of the algorithm of Section 2. The first three results are just applications of the
curve-fitting algorithm. The fourth result revisits the curve-fitting algorithm to get a solution to a weighted

curve-fitting problem.
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3.1 Alternant codes

We first describe afamily of codes called alternant codes that includes awide family of codes such as BCH

codes, Goppa codes etc.

Definition 14 (Alternant Codes ([19], §12.2)) For positiveintegersm, ko, n, prime power ¢, thefield F' =
GF(¢™), a vector a of distinct elements a4,...,a, € GF(¢™), and a vector ¥ of nonzero elements
vi,...,v, € GF(¢™), the alternant code A, ,, 1, #,# comprises of all the codewords of the Generalized

Reed-Solomon code defined by GRS, 1, &7 that liein G F(q)".

Since the Generalized Reed-Solomon code has distance exactly n — kg + 1, it followsthat the respective
aternant code, being a subcode of the Generalized Reed-Solomon code, has distance at least n — ko + 1.
We term thisthe designed distance d’ = n — kg + 1 of the aternant code. The actual rate and distance of
the code are harder to determine. The rate lies somewhere between n — m(n — ko) and ko and thus the
distance d lies between d’ and md’. Playing with the vector v might alter the rate and the distance (whichiis
presumably why it is used as a parameter).

The decoding algorithm of the previous section can be used to decode aternant codes as well. Given a
received word (71, ..., 7,) € GF(q)", we use as input to the polynomial reconstruction problem the pairs
{(zi,y;)}7_,, where z; = o; and y; = r;/v; are elements of GI'(¢™). The list of polynomials output
includesall possiblecodewords from the alternant code. Thusthe decoding agorithm for the earlier section
isreally a decoding algorithm for alternant codes as well; with the caveat that its performance can only be
compared with the designed distance, rather than the actual distance. The following theorem summarizes

the scope of the decoding a gorithm.

Theorem 15 Let A bean [n, k + 1, d], alternant code with designed distance ¢’ (and thus satisfying 4 <
d’ < d). Then there exists a polynomial time list decoding algorithm for A decodinguptoe < n —

n(n — d') errors.
(We notethat decoding algorithmsfor alternant codes givenin classical texts seemto correct d'/2 errors.
For the more restricted BCH codes, there are algorithms that decode beyond half the designed distance (cf.
[9] and also [4, Chapter 9]).
3.2 Errorsand Erasures decoding

The agorithm of Section 2 is aso capable of dealing with other notions of corruption of information. A

much weaker notion of corruption (than an “error”) in data transmission is that of an “erasure”: Here a
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transmitted symbol is either simply “lost” or received in obviously corrupted shape. We now note that the
decoding algorithm of Section 2 handles the case of errors and erasure naturally. Suppose n symbols were
transmitted and »’ < n were received and s symbols got erased. (We stress that the problem definition
specifies that the receiver knows which symbols are erased.) The problem just reduces to a polynomia
reconstruction problem on »’ points. An application of Theorem 12 yields that e errors can be corrected

provided e < n’ — v/n’k. Thuswe get:

Theorem 16 The list-decoding problemfor [n, k + 1, d], Reed-Solomon codes allowing for e errorsand s

erasures can be solved in polynomial time, provided e + s < n — \/(n — s)k.

The classica results of this nature show that one can solve the decoding problemif 2e + s < n — k. To
compare the two results we restate both result. The classica result can be rephrased as

n—s+k

n—(s+e)> 5

while our result requiresthat

n—(s+e)>/(n—s)k.

By the AM-GM inequality it is clear that the second one holds whenever thefirst holds.

3.3 Decoding with uncertain receptions

Consider the situation when, instead of recelving asingleword y = y,¥2,...,y,, for each i € [n] we
receive alist of [ possibilities y;1, 92, - - -, y;; such that one of them is correct (but we do not know which
one). Once again, asin normal list decoding, we wish to find out all possible codewords which could have
been possibly transmitted, except that now the guarantee given to usis not in terms of the number of errors
possible, but in terms of the maximum number of uncertain possibilities at each position of the received
word. Let uscall this problem decoding from uncertain receptions. Applying Theorem 12 (in particular by

applying the theorem on point sets where the z:;’s are not distinct) we get the following result.

Theorem 17 List decoding from uncertain receptionson a[n, k + 1,d = n — k], Reed-Solomon code can
be done in polynomial time provided the number of “ uncertain possibilities’ [ at each positioni € [n] is

(strictly) lessthan n/k.

13



3.4 Weighted curvefitting

Another natural extension of the algorithm of Section 2 is to the case of weighted curve fitting. This case
is somewhat motivated by a decoding problem called the soft-decision decoding problem (see [31] for a
formal description), as one might use the reliability information on the individual symbolsin the received
word more flexibly by encoding them appropriately as the weights below instead of declaring erasures. At
this point we do not have any explicit connection between the two. Instead we just state the weighted curve

fitting problem and describe our solution to this problem.

Problem 3 (Weighted polynomial reconstruction)
INPUT: n points{(z1,y1),...,(%n, ¥n)}, n NON-Negative integer weights wy, . . ., w,, and parameters k
and t.

OuTtpuT: All polynomialsp suchthat 3, .=, w:isatleast.

The agorithm of Section 2 can be modified as follows: In Step 1, we could find a polynomial ¢) which has
asingularity of order w;p at the point (x;,y;). Thus we would now have "7, (”w;“) constraints. If a
polynomial p passes through the points (z;, y;) for i € .5, then y — p(«) will appear as afactor of Q(z,y)
provided )", 5 pw; isgreater than (1, k)-wt-deg(Q)). Optimizing over the weighted degree of ) yieldsthe

following theorem.

Theorem 18 The weighted polynomial reconstruction problem can be solved in time polynomial in the sum
of w;'sprovided ¢ > 4/k > 7 w?.

Remark: The fact that the a gorithm runs in time pseudo-polynomia in w;’s should not be a serious prob-
lem. Given any vector of real weights, one can truncate and scal e the w;’swithout too much lossin the value

of ¢ for which the problem can be solved.

4 Algebraic-Geometry Codes

We now describe the extension of our algorithm to the case of agebraic-geometry codes. Our extension
follows along the lines of the agorithm of Shokrollahi and Wasserman [24]. Our extension shows that the
algebra of the previous section extends to the case of algebraic function fields, yielding an approach to the
list decoding problem for al gebraic-geometry codes. In particular it reduces the decoding problem to some
basis computationsin an agebraic function field and to a factorization (actually root-finding) problem over

the algebraic function field. However neither of these tasks is known to be solvable efficiently given only
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the generator matrix of the linear code. It is conceivable however that given some polynomial amount of
additional information about the linear code, one can solve both parts efficiently. In fact for the former task
we show that this is indeed the case; for the latter part we are not aware of any such results. For certain
representations of some function fields, Shokrollahi and Wasserman [24] give factorization algorithms that
run in time polynomial in the representation of thefield. It is not however still clear if these representations
are of size that is bounded by some polynomia in the block length of the code. Thus the results of this
section are best viewed as reductions of the list-decoding problem to a factorization problem over algebraic
function fields.

Much of the work of this section isin ferreting out the axioms satisfied by these constructions, so as to
justify our steps. We do so in Section 4.1. Then we present our algorithm for list decoding modulo some
algorithmic assumptions about the underlying structures. Under these assumptions, our agorithm yields an
agorithmfor list decoding which correctsupto e < n — \/n(n — d) errorsinan [n, k, d], code, improving

over theresult of [24], which correctsuptoe < n — y/2n(n — d) — g + 1 errors.

4.1 Definitions

An agebraic-geometry codeisbuilt over astructuretermed an algebraic function field. Definitionsand basic
properties of these codes can be found in [15, 26]; for purposes of self-containment and ease of exposition,
we nhow develop a dlightly different notation to express our results.

An agebraic function field is described by asix-tuple A = (F,, X, X, K, g, ord), where!

- F,isafinitefield with ¢ elements, with 7, denotingits algebraic closure.

— X isaset of points (typically some subset of (variety in) qu, but thiswill beirrelevant to us).

— X isasubset of X, called therational pointsof X'

- K isaset of functions from X' to F, U {cc} (where oc is a special symbol representing an undefined
value). It isusually customary to refer to just K as the function field (and letting the other components
of A beimplicit).

- ord: K x X — Z.ord(f,2) iscaled the order of thefunction f at point z.

— g isanon-negativeinteger caled the genus of A.

The components of A aways satisfy the following properties:

1. K is a field extension of F,: K is endowed with operations + and « giving it a field structure.

Furthermore, for f,g € K, thefunctions f + ¢ and f * ¢ satisfy f(z) + g(z) = (f + ¢g)(=) and
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(f*xg)(x) = f(z)* g(x), provided f(z) and g(x) are defined. Finally, corresponding to every
o € F,, thereexistsafunctiona € K st. a(z) = o for every X' € X. (In what followswelet o f

denotethe function o * f.)
. Rational points: Forevery f € K andz € X, f(z) € F,U {o0}.

. Order properties: (The order is a common generalization of the degree of a function as well asits
zeroes. Informally, the quantity >° ., d(f,2)>0 ord( f, z) is analogous to the degree of a function.
If ord(f,z) < 0, then the negative of ord( f, z) is the number of zeroes f has at the point . The
following axioms may make alot of sense when thisis kept in mind.)

Forevery f,g € K — {0}, a,3 € F,,» € X: theorder function ord satisfies:

@ f(z)=0 < ord(f,z) < 0; f(z) =00 <= ord(f,z) > 0.
(5) ord(f + g,2) = ord(f, ) + ord(g, o).

(©) ord(af + B¢,z) < max{ord(f,z),ord(g,)}.

. Distance property: If 3° _ord(f) < 0, then f = 0. (Thisproperty isjust the generaization of the

well-known theorem showing that a degree d polynomial may have at most d zeroes.)

. Rate property: Observe that, by Property 3(c) above, the set of functions @, ,, = { flord(f,z) < ¢}
form a vector space over 7, forany » € X and: € Z. Of particular interest will be functions
which may have positive order at only one point zq € X and nowhere else. Let L; . denote the set
{f € Klord(f,z) < iAord(f,y) <0,Yy € X — {x}}. Since L;, = B; . N (ﬂyey_{x}@(),y), we
have that L isaso avector space over F,. Therate property isthat for every : € Z,2 € X', L; . isa
vector space of dimension at least : — ¢ + 1. (Thisproperty is obtained from the famed Riemann-Roch

theoremfor the actual redlizationsof A, and in fact thedimensionisexactly i — g + 1if ¢ > 2g — 2.)

The following lemma shows how to construct a code from an algebraic function field, given n + 1 rationa

points.

Lemma 19 If there existsan algebraicfunctionfield A = (F,, X', X', K, g,ord) with n + 1 distinct rational

points zg; 1, . . ., z,, thenthelinear spaceC = {(f(z1),..., f(zu))|f € Liyg—1.4,} forman(n, k', d',

codefor somek’ > kandd' > n—k — g + 1.

Proof: For: > 1, by Property 2, wehavethat f(z;) € F, U{oc}, and by Property 3awe havethat f(z;) #

oo. ThusC C F'. By Property 4, themapev : Lyyy 1.4, — F, givenby f — (f(z1), f(@2), ..., f(2,))

16



isone-one, and hence dim (C) = dim(Ly44—1,4,). By Property 5, thisimpliesC has dimension at least %,
yielding &' > k. Finally, consider f1 # f; € Lit,-1.4, that agreein k 4 ¢ places. If f; and f, agree at z;,
then (f1 — f2)(;) = 0 and thusby Property 3a, ord( fi — f2, ;) < 0. Furthermore, we have that for every
z € X — {ag},ord(fi — f2,2) < 0. Findly at 2o we have ord( f; — f2,20) < k + g — 1. Thus summing
over al = € X, we have eryord(ﬁ — f2,2) < 0and thus f1 — f; = 0 using Property 4 above. This
yields the distance property as required. |

Codes constructed as above and achieving d/n, k/n > 0 (inthe limit of large n) are known for constant
alphabet size ¢. In fact, such codes achieving bounds better than those known by probabilistic constructions

areknownfor ¢ > 49 [29].

4.2 The Decoding Algorithm

We now describe the extension of our algorithm to the case of agebraic-geometry codes. As usual we will
try to describe the data points {(z;, y;) } by some polynomial ¢). We follow [24] and let () be a polynomial
in aformal variable y with coefficients from & (i.e., Q[y] € K[y]). Now given avaueof y; € F,, Q[y;]
will yield an element of K. By definition such an element of K hasavaueat z; € X and just asin [24]
we will aso require Q(z;,y;) = Q[yi](z;) to evaluate to zero. We, however, will require more and insist
that (z;, y;) “behave’ likeazero of multiplicity r of (); sincez; € A" and y; € F,, we need to be careful in
specifying the conditionsto achieve this. We, asin [24], dso insist that ¢ has a small (but positive) order
a xo for any substitution of y with afunctionin K of order at most o, + g — 1 a the point zo. Having
found such a ), we then look for rootsh € K of ().

What remains to be doneis to explicitly express the conditions (i) («;, y;) behaves like a zero of order
rof @ forl < ¢ < mn,and(ii) ord(Q[f], zo) < [ forany f € L, ,,, where! is aparameter that will be set
later (and which will play the samerole asthe! in our decoding algorithm for Reed-Solomon codes). To do
S0, we assume that we are explicitly given functions ¢+, . . ., ¢;_ ;41 such that ord(¢;, z) < j + ¢ — 1 and

def

such that ord(¢;, z0) < ord(¢;41,%0). Let s= V%’J . We will then look for coefficients ¢;, ;, such that

s l—g+l—aje

Ql= > > andny”. 1)

J2=0  j1=1
By explicitly setting up ¢) as above, we impose the constraint (ii) above. To get constraint (i) we need to
“shift” our basis. Thisis done exactly as before with respect to y;, however, »; € X" and hence a different

method isrequired to handleit. The following lemmas show how this may be achieved.
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Lemma20 For every f,¢g € K andz € X withord(f,2) = ord(g, ), there exist o, 5o € F, \ {0}, such
that

ord(agf + fog,z) < max{ord(f,z),ord(g,z)}.

Proof: Let ord(f,z) = ord(g,z) = ¢ and f~! be the multiplicative inverse of f in K. Then ord(f *
f~Y2) = 0 and hence ord(f~!,2) = —i and findly ord(g * f~1,2) = 0. Let (f * f~1)(2) = a and
(g+ f~1)(z) = 8. By Property 3a, a, 3 ¢ {0,c}, and sincez isarationa point, «, 3 € F,. Thuswefind
that (Bf « f~' — ag+ f~1)(z) = 0. Thusord(3f + f~! — ag+ f~',z) < 0 andsoord(3f — ag,z) < i

asrequired. |
Lemma 21 Given functions ¢4, ..., ¢, of distinct orders at zy € A satisfying ¢; € L;4,-1.,, and a
rational point z; # x, there exist functions ¢y, ..., 1, € K withord(v;, z;) < 1 — j and such that there

exist Oz g1,ja € Fq for 1 < j1, 3 < psuch that ¢ = Zi):l Wz it ja Lo -

Proof: We prove astronger statement by induction on p: If ¢4, ..., ¢, are linearly independent (over 7,)
functionssuch that ord(¢;, 2;) < m for j € [p], thentherearefunctions v, . . ., ¥, suchthat ord(v;, z;) <
m + 1 — j that generate the ¢,;’sover F,. Notethat thiswill imply our lemmaas ¢y, ¢2, . .., ¢, arelinearly
independent using Property 3(c) and the fact that the ¢;’s have distinct pole orders at . W.l.0.g. assume
that ¢, is afunction with largest order at =;, by assumption ord( ¢, z;) < m. Welet »; = ¢1. Now, for
2 <j<posetd: = ¢ iford(g;, ;) < ord(¢y,2;). If ord(¢;, x;) = ord(¢1,;), using Lemma 20 to
the pair (¢1, ¢;) of functions, we get o;, 3; € F, — {0} such that thefunction ¢, = a;¢, + §;¢; satisfies
ord(¢;, ;) < ord(¢y, ;) < m. Sinceinthiscase ¢; = 3; ' ¢, — ;37" ¢1, we concludethat inany case, for
2 <j < pohr = ¢ and ¢, generate ;. Now ¢, ¢3, . . ., ¢, arelinearly independent (since é1, ¢, . . -, ¢,
are) and ord( ¢, z;) < m — 1for2 < j < p, sotheinductive hypothesisapplied to thefunctions ¢, . . ., ¢},

now yields v, . . ., v, asrequired. I

We are now ready to express condition (i) on (z;, y;) being a zero of order at least . Using the above
lemmaand (1), we know that Q (=, y) hastheform

s l—g+1 l—g+l1-joc

Q(w,y) = Z Z Z 451,52 ¥zi 51,03 ¢j37l’i($)yj2'

J2=0 j3=1 J1=1

Theshiftingto y; isachieved by defining Q) (z, 1) X' Q (2, y+ ;). Thetermsin Q) (z, y) that are divisible

by y? contribute p towards the multiplicity of (z;,0) as a zero of QU or, equivalently, the multiplicity of
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(z;,y;) asazero of ). We have

s l—g+1

QU y) =3 Y ¢l i (0)y, )

Ja=0 j3=1

where
J2
Ja

() det s l—g+l-ajs
K3 €.
IV |

Je—ja | .. . .
) Y; “ 451,52 Q51,5
J2=j1  51=1

Since ord(v;, «;, z;) < —(js — 1), we can achieve our conditionon (z;, y;) being a zero of multiplicity at

7
Jaga T

least r by insisting that q() =0foradl js > 1, j4 > 0suchthat j;, + js — 1 < r. Having developed the

necessary machinery, we now proceed directly to the formal specification of our agorithm.
Implicit Parameters: n; zg, 21,...,2, € X'} k; ¢.

Assumptions: We assume that we “know” functions {¢;, € K|j; € [l — ¢ + 1]} of distinct orders at z,
withord(¢;,,z0) < j1 + g — 1, aswell asfunctions{;, ,,, € K|js € [l — ¢ + 1],¢ € [n]} such that
for any ¢ € [n], thefunctions{v;, ., };, satisfy ord(;, »,, ;) < 1 — j3. Thenotion of “knowledge”

isexplicit in the following two objects that we assume are available to our algorithm.

1. Theset{a,,j, j, € Fyli € [n], 1, € [[—g+1]} suchthat forevery i, j1, ¢j, = 3", @y o Vs i
Thisassumptionis a very reasonable one since Lemma 21 essentially describes an algorithm to

compute this set given the ability to perform arithmetic in the function field K.

2. A polynomial-timealgorithmto find roots (in &) of polynomiasin K [y] where the coefficients
(elements of K') are specified as aformal sum of ¢;,’s. (The cases for which such algorithms

areknown are described in [24, 11].)

The Algorithm:

Inputs: n, k, y1, ..., yn € Fy.

Step 0: Computer parameters r, [ such that

rt > [ and

(l-g)l—g+1) >n(7‘+1)'

2a 2

(Recall that o'k + ¢ — 1.) In particular set

def

r 1+

2gt+an++/(2gt+an)?2—4(g2—1)(t2—an)
2(t2—an) ’

{ def rt —1
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Step 1: Find Q[y] € K[y] of theform Q[y] = 3%, o X521 %72 ¢, 1, ¢, 472, i e find values of the coeffi-

J1=1
cients{¢;, ;, } such that the following conditions hold:

1. Atleast oneg;, ;, isnon-zero.

2. Forevery i € [n], VJs, j4, js > 1, j4 > O suchthat js + j4 < 7,

() def s l=g+l—aj ]
1) de 2 J2—i4 o L
ie 050 = Z Z ( . )yz Q1o O g g = 0.

2=is =1\

Step 2: Find all roots € Ljy4-1,4, Of the polynomia @) € Ky|. For each such i, check if h(z;) = y;
for at least ¢t values of i € [n], and if so, include . in output list. (This step can be performed by
either completely factoring ¢) using algorithms presented in [24], or more efficiently by using the
root-finding algorithm of [11].)

The following proposition says that the above a gorithm can be implemented efficiently modulo some (rea

sonable) assumptions.

Proposition 22 Given the ability to performfield operationsin the subset L, ., of the function field A" when
elements are expressed as a formal combinationof the ¢;, 'sfor j; € [[— ¢+ 1], theabove algorithmreduces
the decoding problemof an [n, k, d], algebraic geometry code (with designed distanced’ = n — k — g + 1)
in time (measured in operationsover K) at most O(1¢/(n — d')® + ni*) to a root-finding problem over the
function field K™ of a univariate polynomial of degree at most //(n — d’) with coefficients having pole order
at most [, where ! = O(max{%z:—i%,t}).

Proof: First of all, note that the computation of all the a,, ;, ;,'Scan bedonein O(nl?) operationsover K.
The system of equationsset upin Step 1 hasat most /(I — ¢)/a = O(I*/(n — d’)) unknowns, and hence can
be solvedin O(i%/(n — d’)*) operations (over F,). Also, itis clear that the degree of ) € K[Y] thusfound
isatmost (I — g)/a = O(l/(n — d")) and that all coefficients of ) have at most [ polesat z, and no poles
elsawhere. The claimed result now follows once we note that

gt+n(n—d)

=0 (max{m,t})
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4.3 Analysisof the Algorithm

We start by looking at Q[h]. Recal that for any h € K, Q[h] € K. By the condition (ii) which we imposed

on@,wehaveQ[h] € L;,, whenever h € Lyy,_1 -

Lemma23 For : € [n],ifh € K satisfiesh(xz;) = y;, thenord(Q[h], z;) < —r.

Proof: We have, for any suchi, Q[h](z) = Q(z, h(z)) = QW (x, h(z) — y:) = QI (x, h(x) — h(z;)) and

using (2), thisyields
s l—g+1

QEle) = 3 3 ¢\ (@) (B(e) — h(a))e.

Ja=0 j3=1

def

sinceq\ . = 0for jatjs < v, 0rd(¢j, 0y, 2:) < 1—js, andif b € K isdefined by A()(2)Eh(2)~h(x;),

7
Jasga

thenord((h())i+, 2;) < —j4, weget ord(Q[h], ;) < —r asdesired. |

Lemma24 If h € Lyyg4-1 4, issuchthat h(z;) = y; for at leastt valuesof i € [n] andrt > [, theny — h
dividesQ[y] € K[y].

Proof: Using Lemma 23, we get > ord(Q[h],z;) < —rt < —I. Since Q[h] € L, we have
Yoseword(@Q[h],x) < 0, implying Q[h] = 0. Thus h isaroot of Q[y] and hence y — h divides Q[y].
I

Lemma25 If n("t!) < (=0U=0%2) then a ([y] as sought in Step 1 does exist (and can be found in

polynomial time by solving a linear system).

Proof: The proof followsthat of Lemma 6. The computationa task in Step 1 is once again that of solving
a homogeneous linear system. A non-trivial solution exists as long as the number of unknowns exceeds
the number of constraints. The number of constraints in the linear system is n("}"), while the number of
unknownsequals

i(l_ﬁl_aﬁ) > (-9)l-9+2)

: 2c
J2=0

Lemma26 If n,k,t,g satisfy t* > (k 4+ g — 1)n, then for the choice of r,/ made in the algorithm,

U=a)(=9%2) 4 ("+1) and ¢ > | both hold.
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Proof: The proof parallelsthat of Lemma 7. The condition rt > [ certainly holds since we pick 1% 1.

Using! = rt — 1, the other constraint becomes
_ )2 _
(rt—g)*—1 oal” +1
2a 2

r3(t* — an) — (2gt + an)r + (¢> — 1) > 0.

which simplifiesto

If 2 — an > 0, it suffices to pick r to be an integer greater than the larger root of the above quadratic, and

therefore picking

rd:efl—l—

2gt+an++/(2gt+an)?—4(g%— 1)(t2—an)J
2(t2—an)

suffices, and thisis exactly the choice made in the a gorithm. |
Our main theorem now follows from Lemmas 24-26 and the runtime bound proved in Proposition 22

Theorem 27 Let C bean [n, k, d], algebraic-geometry code over an algebraic function field A of genus ¢
(withd’ = n — k — g + 1), Then there exists a polynomial time list decoding algorithmfor C that works

foruptoe < n—/n(k+¢g—1)=n—/n(n— d)errors(provided the assumptionsof the algorithm of
Section 4.2 are satisfied).

5 Concluding Remarks

We have given apolynomial time algorithm to decode upto 1 — /x errorsfor arate x Reed-Solomon code
and generalized the algorithm for the broader class of Algebraic-Geometry codes. Our agorithmis able to
correct anumber of errors exceeding half the minimum distancefor any rate.

A natural question not addressed in our work is more efficient implementation of the decoding ago-
rithms. Extensions of the works of [23, 11] seem to be promising directionsin this regard. An important
step, that of solving the associated linear equations efficiently, has already been taken by [20]. However
some important problems, such as efficient factorization algorithms for polynomials over function fields,
remain unsolved.

Thelist decoding problem remains an interesting question and it is not clear what thetrue limit ison the
number of efficiently correctable errors. Deriving better upper or lower on the number of correctable errors

remains a challenging and interesting pursuit.

22



Acknowledgments

We would like to the anonymous referees for numerous comments which improved and clarified the presen-

tation alot. We would like to express our thanks to Elwyn Berlekamp, Peter Elias, Jorn Justesen, Ronny

Roth, Amin Shokrollahi and Alex Vardy for useful comments on the paper.

References

[1]

[2]
(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

S. AR, R. LIPTON, R. RUBINFELD AND M. SUDAN. Reconstructing agebraic functionsfrom mixed

data. SSAM Journal on Computing, 28(2):488-511, 1999.
E. R. BERLEKAMP. Algebraic Coding Theory. McGraw Hill, New York, 1968.

E. R. BERLEKAMP. Bounded Distance +1 Soft-Decision Reed-Solomon Decoding. |EEE Transac-
tions on Information Theory, 42(3):704-720, 1996.

R. E. BLAHUT. Theory and Practice of Error Control Codes. Addison-Wesley, Reading, Mas-
sachusetts, 1983.

H. CoHEN. A Coursein Computational Algebraic Number Theory. GTM 138, Springer Verlag, Berlin,
1993.

I. 1. DUMER. Two algorithmsfor the decoding of linear codes. Problems of Infor mation Transmission,

25(1):24-32, 1989.

P. EL1AS. List decoding for noisy channels. Technica Report 335, Research Laboratory of Electronics,
MIT, 1957.

P. ELIAS. Error-correcting codes for list decoding. IEEE Transactionson Information Theory, 37:5-

12.1991.

G. L. FENG AND K. K . TZENG. A generalization of the Berlekamp-Massey agorithm for multise-
guence shift register synthesiswith application to decoding cyclic codes. |EEE Trans. Inform. Theory,
37 (1991), pp. 1274-1287.

G. D. FORNEY. Generaized Minimum Distance Decoding. |EEE Trans. Inform. Theory, Vol. 12, pp.
125-131, 1966.

23



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. GAO AND M. A. SHOKROLLAHI. Computing roots of polynomialsover function fields of curves.

Manuscript, August 1998.

P. GEMMELL AND M. SUDAN. Highly resilient correctors for multivariate polynomials. Information

Processing Letters, 43(4):169-174, 1992.

O. GOLDREICH, R. RUBINFELD AND M. SUDAN. Learning polynomialswith queries: The highly
noisy case. Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
pages 294303, 1995.

D. GRIGORIEV. Factorization of Polynomials over a Finite Field and the Solution of Systems of
Algebraic Equations. Tranglated from Zapiski Nauchnykh Seminarov Lenningradskogo Otdeleniya
Matematicheskogo Institutaim. V. A. Steklova AN SSSR, 137:20-79, 1984.

T. HpHOLDT, J. H. VAN LINT AND R. PELLIKAAN. Algebraic Geometry Codes. In Handbook of
Coding Theory, (V.S. Pless, W.C. Huffamn and R.A. Bruadi Eds.), Elsevier.

J. JUSTESEN. Boundson list decoding of MDS codes. Manuscript, April 1998.

E. KALTOFEN. A Polynomial-Time Reduction from Bivariate to Univariate Integral Polynomial Fac-
torization. Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages
261-266, San Francisco, California, 5-7 May 1982.

E. KALTOFEN. Polynomial factorization 1987-1991. LATIN '92, . Simon (Ed.) Springer LNCS, v.
583:294-313, 1992.

F. J. MACWILLIAMS AND N. J. A. SLOANE. The Theory of Error-Correcting Codes. North-Holland,
Amsterdam, 1981.

V. OLSHEVSKY AND M. A. SHOKROLLAHI. A displacement structure approach to efficient list de-
coding of agebraic geometric codes. Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, 1999, to appear.

W. W. PETERSON. Encoding and error-correction procedures for Bose-Chaudhuri codes. IRE Trans-

actions on Information Theory, 1T-60:459-470, 1960.

J. RADHAKRISHNAN. Personal communication, January, 1996.

24



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

R. M. RoTH AND G. RUCKENSTEIN. Efficient decoding of Reed-Solomon codes beyond half the

minimum distance. Manuscript, August 1998. Submitted to | EEE Transactionson Information Theory.

M. A. SHOKROLLAHI AND H. WASSERMAN. Decoding a gebraic-geometric codes beyond the error-
correction bound. Proceedings of the Twenty-Ninth Annual ACM Symposiumon Theory of Computing,
pages 241248, 1998.

V. M. SIDELNIKOV. Decoding Reed-Solomon codes beyond (d — 1)/2 and zeros of multivariate

polynomials. Problems of Information Transmission, 30(1):44-59, 1994.
H. STICHTENOTH. Algebraic Function Fields and Codes. Springer-Verlag, Berlin, 1993.

M. SuDAN. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Com-

plexity, 13(1):180-193, 1997.

M. SUDAN. Decoding of Reed-Solomon codes beyond the error-correction diameter. Proceedings of

the 35th Annual Allerton Conference on Communication, Control and Computing, 1997.

M. A. TSFASMAN, S. G. VLADUT AND T. ZINK. Modular curves, Shimura curves, and codes better

than the Varshamov-Gilbert bound. Math. Nachrichten, 109:21-28, 1982.
J. H. vaN LINT. Introductionto Coding Theory. Springer-Verlag, New York, 1982.

A. VARDY. Algorithmic complexity in coding theory and the minimum distance problem. STOC,
1997.

L. WELCH AND E. R. BERLEKAMP. Error correction of agebraic block codes. US Patent Number

4,633,470, issued December 1986.

25



