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Abstract— We show that the minimum distance d of a linear
code is not approximable to within any constant factor in ran-
dom polynomial time (RP), unless NP (nondeterministic polyno-
mial time) equals RP. We also show that the minimum distance is
not approximable to within an additive error that is linear in the
block length n of the code. Under the stronger assumption that
NP is not contained in RQP (random quasi-polynomial time), we
show that the minimum distance is not approximable to within the
factor 2log1−ε(n), for any ε > 0. Our results hold for codes over
any finite field, including binary codes. In the process we show
that it is hard to find approximately nearest codewords even if the
number of errors exceeds the unique decoding radius d/2 by only
an arbitrarily small fraction εd. We also prove the hardness of
the nearest codeword problem for asymptotically good codes, pro-
vided the number of errors exceeds (2/3)d.

Our results for the minimum distance problem strengthen
(though using stronger assumptions) a previous result of Vardy
who showed that the minimum distance cannot be computed ex-
actly in deterministic polynomial time (P), unless P = NP. Our
results are obtained by adapting proofs of analogous results for in-
teger lattices due to Ajtai and Micciancio. A critical component in
the adaptation is our use of linear codes that perform better than
random (linear) codes.

Index Terms— Computational complexity, NP-hardness, linear
codes, dense codes, approximation algorithms, minimum distance
problem, relatively near codeword problem, bounded distance de-
coding.

I. INTRODUCTION

In this paper we study the computational complexity of two
central problems from coding theory: (1) The complexity of ap-
proximating the minimum distance of a linear code and (2) The
complexity of error-correction in codes of relatively large min-
imum distance. An error-correcting code A of block length n
over a q-ary alphabet Σ is a collection of strings (vectors) from
Σn, called codewords. For all codes considered in this paper,
the alphabet size q is always a prime power and the alphabet
Σ = Fq is the finite field with q element. A codeA ⊆ Fnq is lin-
ear if it is closed under addition and multiplication by a scalar,
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i.e., A is a linear subspace of Fnq over base field Fq . For such a
code, the information content (i.e., the number k = logq |A| of
information symbols that can be encoded with a codeword1) is
just its dimension as a vector space and the code can be com-
pactly represented by a k × n generator matrix A ∈ Fk×nq of
rank k such that A = {xA | x ∈ Fkq}. An important property
of a code is its minimum distance. For any vectors x,y ∈ Σn,
the Hamming weight of x is the number wt(x) of nonzero co-
ordinates of x. The weight function wt(·) is a norm, and the
induced metric d(x,y) = wt(x − y) is called the Hamming
distance. The (minimum) distance d(A) of the code A is the
minimum Hamming distance d(x,y) taken over all pairs of dis-
tinct codewords x,y ∈ A. For linear codes it is easy to see
that the minimum distance d(A) equals the weight wt(x) of
the lightest nonzero codeword x ∈ A \ {0}. If A is a linear
code over Fq with block length n, rank k and minimum dis-
tance d, then it is customary to say that A is a linear [n, k, d]q
code. Throughout the paper we use the following notational
conventions: matrices are denoted by boldface uppercase Ro-
man letters (e.g., A,C), the associated linear codes are denoted
by the corresponding calligraphic letters (e.g., A, C), and we
write A[n, k, d]q to mean that A is a linear code over Fq with
block length n, information content k and minimum distance d.

A. The Minimum Distance Problem

Three of the four central parameters associated with a linear
code, namely n, k and q, are evident from its matrix represen-
tation. The minimum distance problem (MINDIST) is that of
evaluating the fourth — namely — given a generator matrix
A ∈ Fk×nq find the minimum distance d of the corresponding
code A. The minimum distance of a code is obviously related
to its error correction capability b(d−1)/2c and therefore find-
ing d is a fundamental computational problem in coding theory.
The problem gains even more significance in light of the fact
that long q-ary codes chosen at random give the best parameters
known for any q < 46 (in particular, for q = 2)2. A polynomial
time algorithm to compute the distance would be the ideal solu-
tion to the problem, as it could be used to construct good error
correcting codes by choosing a generator matrix at random and
checking if the associated code has a large minimum distance.
Unfortunately, no such algorithm is known. The complexity
of this problem (can it be solved in polynomial time or not?)

1Throughout the paper, we write log for the logarithm to the base 2, and logq
when the base q is any number possibly different from 2.

2For square prime powers q ≥ 49, linear AG codes can perform better than
random ones [21] and are constructible in polynomial time. For all other q ≥
46 it is still possible to do better than random codes, however the best known
procedures to construct them run in exponential time [24].
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was first explicitly questioned by Berlekamp, McEliece and
van Tilborg [5] in 1978 who conjectured it to be NP-complete.
This conjecture was finally resolved in the affirmative by Vardy
[23], [22] in 1997, proving that the minimum distance cannot
be computed in polynomial time unless P = NP. ([23], [22]
also give further motivations and detailed account of prior work
on this problem.)

To advance the search of good codes, one can relax the re-
quirement of computing d exactly in two ways:
• Instead of requiring the exact value of d, one can allow

for approximate solutions, i.e., an estimate d′ that is guar-
anteed to be at least as big, but not much bigger than the
true minimum distance d. (E.g., d ≤ d′ ≤ γd for some
approximation factor γ).

• Instead of insisting on deterministic solutions that always
produce correct (approximate) answers, one can consider
randomized algorithms such that d′ ≤ γd only holds in a
probabilistic sense. (Say d′ ≤ γd with probability at least
1/2.)3

Such algorithms can still be used to randomly generate rel-
atively good codes as follows. Say we want a code with
minimum distance d. We pick a generator matrix at random
such that the code is expected to have minimum distance γd.
Then, we run the probabilistic distance approximation algo-
rithm many times using independent coin tosses. If all esti-
mates returned by the distance approximation algorithm are at
least γd, then the minimum distance of the code is at least d
with very high probability.

In this paper, we study these more relaxed versions of the
minimum distance problem and show that the minimum dis-
tance is hard to approximate (even in a probabilistic sense) to
within any constant factor, unless NP = RP (i.e., every prob-
lem in NP has a polynomial time probabilistic algorithm that
always rejects NO instances and accepts YES instances with
high probability). Under the stronger assumption that NP does
not have random quasi-polynomial4 time algorithms (RQP),
we prove that the minimum distance of a code of block length
n is not approximable to within a factor of 2log(1−ε) n for any
constant ε > 0. (This is a naturally occurring factor in the study
of the approximability of optimization problems — see the sur-
vey of Arora and Lund [4].) Our methods adapt the proof of the
inapproximability of the shortest lattice vector problem (SVP)
due to Micciancio [18] (see also [19]) which in turn is based on
Ajtai’s proof of the hardness of solving SVP [2].

B. The Error Correction Problem
In the process of obtaining the inapproximability result for

the minimum distance problem, we also shed light on the gen-
eral error-correction problem for linear codes. The simplest for-
mulation is the Nearest Codeword Problem (NCP) (also known
as the “maximum likelihood decoding problem”). Here, the
input instance consists of a generator matrix A ∈ Fk×nq and
a received word x ∈ Fnq and the goal is to find the nearest

3One can also consider randomized algorithms with 2-sided error, where also
the lower bound d′ ≥ d holds only in a probabilistic sense. All our results can
be easily adapted to algorithms with 2-sided error.

4f(n) is quasi-polynomial in n if it grows slower than 2logc n for some
constant c.

codeword y ∈ A to x. A more relaxed version is to esti-
mate the minimum “error weight” d(x,A) that is the distance
d(x,y) to the nearest codeword, without necessarily finding
codeword y. The NCP is a well-studied problem: Berlekamp,
McEliece and van Tilborg [5] showed that it is NP-hard (even
in its weight estimation version); and more recently Arora,
Babai, Stern and Sweedyk [3] showed that the error weight
is hard to approximate to within any constant factor unless
P = NP, and within factor 2log(1−ε) n for any ε > 0, unless
NP ⊆ QP (deterministic quasi-polynomial time). This latter
result has been recently improved to inapproximability within
2O(logn/ log logn) = n1/O(log logn) under the assumption that
P 6= NP by Dinur, Kindler, Raz and Safra [9], [8]). On the
positive side, NCP can be trivially approximated within a fac-
tor n. General, non-trivial approximation algorithms have been
recently discovered by Berman and Karpinski [6], who showed
that (for any finite field Fq) NCP can be approximated within a
factor εn/ log n for any fixed ε > 0 in probabilistic polynomial
time, and εn in deterministic polynomial time.

However the NCP only provides a first cut at understanding
the error-correction problem. It shows that the error-correction
problem is hard, if we try to decode every linear code regardless
of the error weight. In contrast, the positive results from coding
theory show how to perform error-correction in specific linear
codes corrupted by errors of small weight (relative to the code
distance). Thus the hardness of the NCP may come from one
of two factors: (1) The problem attempts to decode every linear
code and (2) The problem attempts to recover from too many
errors. Both issues have been raised in the literature [23], [22],
but only the former has seen some progress [7], [10], [20].

One problem that has been defined to study the latter phe-
nomenon is the “Bounded distance decoding problem” (BDD,
see [23], [22]). This is a special case of the NCP where the error
weight is guaranteed (or “promised”) to be less than d(A)/2.
This case is motivated by the fact that within such a distance,
there may be at most one codeword and hence decoding is
clearly unambiguous. Also this is the case where many of the
classical error-correction algorithms (for say BCH codes, RS
codes, AG codes, etc.) work in polynomial time.

C. Relatively Near Codeword Problem

To compare the general NCP, and the more specific BDD
problem, we introduce a parameterized family of problems that
we call the Relatively Near Codeword Problem (RNC). For
real ρ, RNC(ρ) is the following problem:

Given a generator matrix A ∈ Fk×nq of a linear code
A of (not necessarily known) minimum distance d,
an integer t with the promise that t < ρ · d, and a re-
ceived word x ∈ Fnq , find a codeword within distance
t from x. (The algorithm may fail if the promise is vi-
olated, or if no such codeword exists. In other words,
in contrast to the papers [3] and [5], the algorithm is
expected to work only when the error weight is lim-
ited in proportion to the code distance.)

Both the nearest codeword problem (NCP) and the bounded
distance decoding problem (BDD) are special cases of
RNC(ρ): NCP = RNC(∞) while BDD = RNC( 1

2 ). Till
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recently, not much was known about RNC(ρ) for constants
ρ < ∞, leave alone ρ = 1

2 (i.e., the BDD problem). No fi-
nite upper bound on ρ can be easily derived from Arora et al.’s
NP-hardness proof for NCP [3]. (In other words, their proof
does not seem to hold for RNC(ρ) for any ρ < ∞.) It turns
out, as observed by Jain et al. [14], that Vardy’s proof of the
NP-hardness of the minimum distance problem also shows the
NP-hardness of RNC(ρ) for ρ = 1 (and actually extends to
some ρ = 1− o(1)).

In this paper we significantly improve upon this situation,
by showing NP-hardness (under randomized reductions) of
RNC(ρ) for every ρ > 1

2 bringing us much closer to an even-
tual (negative?) resolution of the bounded distance decoding
problem.

D. Organization

The rest of the paper is organized as follows. In Section II
we precisely define the coding problems studied in this paper,
introduce some notation, and briefly overview the random re-
duction techniques and coding theory notions used in the rest of
the paper. As explained in Section II our proofs rely on coding
theoretic constructions that might be of independent interest,
namely the construction of codes containing unusually dense
clusters. These constructions constitute the main technical con-
tribution of the paper, and are presented in Section III (for ar-
bitrary linear codes) and Section VI (for asymptotically good
codes). The hardness of the relatively near codeword problem
and the minimum distance problem are proved in Sections IV
and V respectively. Similar hardness results for asymptotically
good codes are presented in Section VII. The reader mostly in-
terested in computational complexity may want to skip Section
III at first reading, and jump directly to the NP-hardness results
in Sections IV and V. Section VIII concludes with a discussion
of the consequences and limitations of the proofs given in this
paper, and related open problems.

II. BACKGROUND

A. Approximation Problems

In order to study the computational complexity of coding
problems, we formulate them in terms of promise problems.
A promise problem is a generalization of the familiar notion of
decision problem. The difference is that in a promise problem
not every string is required to be either a YES or a NO instance.
Given a string with the promise that it is either a YES or NO
instance, one has to decide which of the two sets it belongs to.

The following promise problem captures the hardness of ap-
proximating the minimum distance problem within a factor γ.

Definition 1—Minimum Distance Problem: For prime
power q and approximation factor γ ≥ 1, an instance of
GAPDISTγ,q is a pair (A, d), where A ∈ Fk×nq and d ∈ Z+,
such that
• (A, d) is a YES instance if d(A) ≤ d.
• (A, d) is a NO instance if d(A) > γ · d.
In other words, given a code A and an integer d with the

promise that either d(A) ≤ d or d(A) > γ · d, one must decide
which of the two cases holds true. The relation between ap-
proximating the minimum distance of A and the above promise

problem is easily explained. On the one hand, if one can com-
pute a γ-approximation d′ ∈ [d(A), γ · d(A)] to the minimum
distance of the code, then one can easily solve the promise prob-
lem above by checking whether d′ ≤ γ · d or d′ > γ · d. On the
other hand, assume one has a decision oracle O that solves the
promise problem above. Then, the minimum distance of a given
code A can be easily approximated using the oracle as follows.
Notice that O(A, n) always returns YES while O(A, 0) always
returns NO. Using binary search, one can efficiently find a num-
ber d such that O(A, d) = YES and O(A, d− 1) = NO.5 This
means that (A, d) is not a NO instance and (A, d − 1) is not a
YES instance, and the minimum distance d(A) must lie in the
interval [d, γ · d].

Similarly we can define the following promise problem to
capture the hardness of approximating RNC(ρ) within a factor
γ.

Definition 2—Relatively Near Codeword Problem: For
prime power q, and factors ρ > 0 and γ ≥ 1, an instance of
GAPRNC(ρ)

γ,q is a triple (A,v, t), where A ∈ Fk×nq , v ∈ Fnq
and t ∈ Z+, such that t < ρ · d(A) and 6

• (A,v, t) is a YES instance if d(v,A) ≤ t.
• (A,v, t) is a NO instance if d(v,A) > γt.
It is immediate that the problem RNC(ρ) gets harder as ρ

increases, since changing ρ has the only effect of weakening
the promise t < ρ · d(A). RNC(ρ) is the hardest when ρ = ∞
in which case the promise t < ρd(A) is vacuously true and we
obtain the familiar (promise version of) the nearest codeword
problem:

Definition 3—Nearest Codeword Problem: For prime power
q and γ ≥ 1, an instance of GAPNCPγ,q is a triple (A,v, t),
A ∈ Fk×nq , v ∈ Fnq and t ∈ Z+, such that
• (A,v, t) is a YES instance if d(v,A) ≤ t.
• (A,v, t) is a NO instance if d(v,A) > γ · t.
The promise problem GAPNCPγ,q is NP-hard for every con-

stant γ ≥ 1 (cf. [3]7), and this result is critical to our hardness
result(s). We define one last promise problem to study the hard-
ness of approximating the minimum distance of a code with
linear additive error.

Definition 4: For τ > 0 and prime power q, let
GAPDISTADDτ,q be the promise problem with instances
(A, d), where A ∈ Fk×nq and d ∈ Z+, such that
• (A, d) is a YES instance if d(A) ≤ d
• (A, d) is a NO instance if d(A) > d+ τ · n.

B. Random Reductions and Techniques

The main result of this paper (see Theorem 22) is that ap-
proximation problem GAPDISTγ,q is NP-hard for any constant
factor γ ≥ 1 under polynomial reverse unfaithful random re-
ductions (RUR-reductions, [15]), and for γ = 2log(1−ε) n =

5By definition, the oracle can give any answer if the input is neither a YES
instance nor a NO one. So, it would be wrong to conclude that (A, d− 1) is a
NO instance and (A, d) is a YES one.

6Strictly speaking, the condition t < ρ·d(CA) is a promise and hence should
be added as a condition in both the YES and NO instances of the problem.

7To be precise, Arora et al. [3] present the result only for binary codes. How-
ever, their proof is valid for any alphabet. An alternate way to obtain the result
for any prime power is to use a recent result of Håstad [13] who states his re-
sult in linear algebra (rather than coding-theoretic) terms. We will state and use
some of the additional features of the latter result in Section VII.
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n1/ logε(n) it is hard under quasi-polynomial RUR-reductions.
These are probabilistic reductions that map NO instances al-
ways to NO instances and YES instances to YES instances with
high probability. In particular, given a security parameter s, all
reductions presented in this paper warrant that YES instances
are properly mapped with probability 1− q−s in poly(s) time.8

The existence of a (random) polynomial time algorithm to solve
the hard problem would imply NP = RP (random polyno-
mial time), i.e., every problem in NP would have a probabilis-
tic polynomial time algorithm that always rejects NO instances
and accepts YES instances with high probability.9 Similarly,
hardness for NP under quasi-polynomial RUR-reductions im-
plies that the hard problem cannot be solved in RQP unless
NP ⊆ RQP (random quasi-polynomial time). Therefore, simi-
larly to a proper NP-hardness result (obtained under determin-
istic polynomial reductions), hardness under polynomial RUR-
reductions also gives evidence of the intractability of a problem.

In order to prove these results, we first study the problem
GAPRNC(ρ)

γ,q. We show that the error weight is hard to approx-
imate to within any constant factor γ and for any ρ > 1/2 un-
less NP = RP (see Theorem 16). By using γ = 1/ρ, we
immediately reduce our error-correction problem GAPRNC(ρ)

γ,q

to the minimum distance problem GAPDISTγ,q for any constant
γ < 2. We then use product constructions to “amplify” the con-
stant and prove the claimed hardness results for the minimum
distance problem.

The hardness of GAPRNC(ρ)
γ,q for ρ > 1/2 is obtained by

adapting a technique of Micciancio [18], which is in turn based
on the work of Ajtai [2] (henceforth Ajtai-Micciancio). They
consider the analogous problem over the integers (rather than
finite fields) with Hamming distance replaced by Euclidean dis-
tance. Much of the adaptation is straightforward; in fact, some
of the proofs are even easier in our case due to the use of fi-
nite fields. The main hurdle turns out to be in adapting the fol-
lowing combinatorial problem considered and solved by Ajtai-
Micciancio:

Given an integer k construct, in poly(k) time, inte-
gers r, l, an l-dimensional lattice L (i.e., a subset of
Zl closed under addition and multiplication by an in-
teger) with minimum (Euclidean) distance d > r/ρ
and a vector v ∈ Zl such that the (Euclidean) ball of
radius r around v contains at least 2k vectors from L
(where ρ < 1 is a constant independent of k).

In our case we are faced with a similar problem with Zl re-
placed by Flq and Euclidean distance replaced by Hamming dis-
tance. The Ajtai-Micciancio solution to the above problem in-

8Here, and in the rest of the paper, we use notation poly(n) to denote any
polynomially bounded function of n, i.e., any function f(n) such that f(n) =
O(nc) for some constant c indepentent of n.

9Notice that we are unable to prove that the existence of a polynomial time
approximation algorithm implies the stronger containment NP ⊆ ZPP (ZPP
is the class of decision problems L such that both L and its complement are in
RP, i.e., ZPP = RP ∩ coRP), as done for example in [12]. The difference is
that [12] proves hardness under unfaithful random reductions (UR-reductions
[15], i.e. reductions that are always correct on YES instances and often correct
on NO instances). Hardness under UR-reductions implies that no polynomial
time algorithm exists unless NP ⊆ coRP, and therefore RP ⊆ NP ⊆ coRP.
It immediately follows that coRP ⊆ RP and NP = RP = coRP = ZPP.
However, in our case where RUR-reductions are used, we can only conclude
that RP ⊆ NP ⊆ RP, and therefore NP = RP, but it is not clear how to
establish any relation involving the complementary class coRP and ZPP.

volves number-theoretic methods and does not translate to our
setting. Instead we show that if we consider a linear code whose
performance (i.e., trade-off between rate and distance) is better
than that of a random code, and pick a random light vector in
Fnq , then the resulting construction has the required properties.
We first solve this problem over sufficiently large alphabets us-
ing high rate Reed-Solomon (RS) codes. (See next subsection
for the definition RS codes. This same construction has been
used in the coding theory literature to demonstrate limitations
to the “list-decodability” of RS codes [16].) We then translate
the result to small alphabets using the well-known method of
concatenating codes [11].

In the second part of the paper, we extend our methods to
address asymptotically-good codes. We show that even for such
codes, the Relatively Near Codeword problem is hard unless
NP equals RP (see Theorem 31), though for these codes we are
only able to prove the hardness of GAPRNC(ρ)

γ,q for ρ > 2/3.
Finally, we translate this to a result (see Theorem 32) showing
that the minimum distance of a code is hard to approximate to
within an additive error that is linear in the block length of the
code.

C. Coding Theory

For a through introduction to coding theory the reader is re-
ferred to [17]. Here we briefly review some basic results as used
in the rest of the paper. Readers with an adequate background
in coding theory can safely skip to the next section.

A classical problem in coding theory is to determine for
given alphabet Fq , block length n and dimension k, what is
the highest possible minimum distance d such that there exists
a [l,m, d]q linear code. The following two theorems give well
known upper and lower bounds for d.

Theorem 5—Gilbert-Varshamov bound: For finite field Fq ,
block length l and dimension m ≤ l, there exists a linear code
A[l,m, d]q with minimum distance d satisfying

qm−l · |B(0, d− 1)| ≥ 1 (1)

where |B(0, d− 1)| =
∑d−1
r=0

(
l
r

)
(q − 1)r is the volume of the

l dimensional Hamming sphere of radius d− 1. For any m ≤ l,
the smallest d such that (1) holds true is denoted d∗m. (Notice
that the definition of d∗m depends both on the information con-
tent m and the block length l. For brevity, we omit l from the
notation, as the block length is usually clear from the context.)

See [17] for a proof. The upper bound on d given by the
Gilbert-Varshamov theorem (GV bound, for short) is not effec-
tive, i.e., even if the theorem guarantees the existence of linear
codes with a certain minimum distance, the proof of the theo-
rem employs a greedy algorithm that runs in exponential time,
and we do not know any efficient way to find such codes for
small alphabets q < 49. Interestingly, random linear codes
meet the GV bound, i.e., if the generating matrix of the code
is chosen uniformly at random, then the minimum distance of
the resulting code satisfies the GV bound with high probability.
However, given a randomly chosen generator matrix, it is not
clear how to efficiently check whether the corresponding code
meets the GV bound or not. We now give a lower bound on d.
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Theorem 6—Singleton bound: For every linear code
C[l,m, d]q , the minimum distance d is at most

d ≤ l −m+ 1.
See [17] for a proof. A code C[l,m, d]q is called Maxi-

mum Distance Separable (MDS) if the Singleton bound is sat-
isfied with equality, i.e., if d = l − m + 1. Reed-Solomon
codes are an important example of MDS codes. For any finite
field Fq , and dimension m ≤ q − 1, the Reed-Solomon code
(RS code) G[q − 1,m, q − m]q can be defined as the set of
(q − 1)-dimensional vectors obtained evaluating all qm poly-
nomials p(x) = c0 + c1x + · · · cm−1x

m−1 ∈ Fq[x] of de-
gree less than m at all nonzero points x ∈ Fq \ {0}. Extended
Reed-Solomon codes G[q,m, q−m+ 1]q are defined similarly,
but evaluating the polynomials at all points x ∈ Fq , includ-
ing 0. Since a nonzero polynomial p of degree (m − 1) can
have at most (m− 1) zeros, then every nonzero (extended) RS
codeword has at most m − 1 zero positions, so it’s Hamming
weight is at least q − m (resp. q − m + 1). This proves that
(extended) Reed-Solomon codes are maximum distance separa-
ble. Extended RS codes can be further extended considering the
homogeneous polynomials p(x, y) =

∑m−1
i=1 aix

iym−1−i, and
evaluating them at all points of the projective line {(x, 1):x ∈
Fq} ∪ {(1, 0)}. This increases both the block length and the
minimum distance by one, giving twice extended RS codes
G[q + 1,m, q −m+ 2]q .

Another family of codes we are going to use are the
Hadamard codesH[qc− 1, c, qc− qc−1]q . In these codes, each
codeword corresponds to a vector x ∈ Fcq . The codeword asso-
ciated to x is obtained by evaluating all nonzero linear functions
φ : Fcq → Fq at x. Since there are qc linear functions in c vari-
ables (including the zero function), the code has block length
qc − 1. Notice that any nonzero vector x ∈ Fcq is mapped to 0
by exactly a 1/q fraction of the linear functions φ : Fcq → Fq
(including the identically zero function). So the minimum dis-
tance of the code is qc − qc−1.

In Section VI we will also use Algebraic Geometric codes
(AG codes). The definition of these codes is beyond the scope
of the present paper, and the interested reader is referred to [21].

An important operation used to combine codes is the con-
catenating code construction of [11]. Let A and B be two lin-
ear codes over alphabets Fqk and Fq , with generating matri-
ces A ∈ Fm×l

qk
and B ∈ Fn×kq . A is called the outer code,

and B is called the inner code. Notice that the dimension
of the inner code equals the dimension of the alphabet of the
outer code Fqk , viewed as a vector space over base field Fq .
The idea is to replace every component xi of outer codeword
[x1, . . . , xl] ∈ A ⊆ Flqk with a corresponding inner codeword
φ(xi) ∈ B. More precisely, let α1, . . . , αk ∈ Fqk be a ba-
sis for Fqk as a vector space over Fq and let φ : Fqk → B
be the (unique) linear function such that φ(αi) = bi for all
i = 1, . . . , k. The concatenation function 3B: Flqk → Flnq is
given by

[x1, . . . , xn]3B = [φ(x1), . . . , φ(xn)].

Function 3B is extended to sets of vectors in the usual way
X3B = {x3B: x ∈ X}, and concatenated code A3B is just
the result of applying the concatenation function 3B to set A.

It is easy to see that ifA is a [l,m, d]qk code and B is a [n, k, t]q
code, then the concatenation A3B is a [nl, km, dt]q code with
generator matrix C ∈ Fnl×kmq given by

ci+jk = (αi · aj+1)3B.

for all i = 1, . . . , k and j = 0, . . . ,m− 1.

III. DENSE CODES

In this section we present some general results about codes
with a special density property (to be defined), and their al-
gorithmic construction. The section culminates with the proof
of Lemma 15 which shows how to efficiently construct a gad-
get that will be used in Section IV in our NP-hardness proofs.
Lemma 15 is in fact the only result from this section directly
used in the rest of the paper (with the exception of Section VI
which extends the results of this section to asymptotically good
codes). The reader mostly interested in computational com-
plexity issues, may want to skip this section at first reading, and
refer to Lemma 15 when used in the proofs.

A. General overview
Let B(v, r) = {x ∈ Flq|d(v,x) ≤ r} be the ball of radius

r centered in v ∈ Flq . In this section, we wish to find codes
C[l,m, d]q that include multiple codewords in some ball(s)
B(v, r) of relatively small radius r = bρdc, where ρ is some
positive real number. Obviously, the problem is meaningful
only for ρ ≥ 1/2, as any ball of radius r < d/2 cannot con-
tain more than a single codeword. Below we prove that for any
ρ > 1/2 it is actually possible to build such a code. These codes
are used in the sequel to prove the hardness of GAPRNC(ρ)

γ,q by
reduction from the nearest codeword problem. Of particular
interest is the case r < d (i.e., ρ < 1), as the corresponding
hardness result for GAPRNC can be translated into an inap-
proximability result for the minimum distance problem.

We say that a code C[l,m, d]q is (ρ, k)-dense around v ∈ Flq
if the ball B(v, bρdc) contains at least qk codewords. We say
that C is (ρ, k)-dense if it is (ρ, k)-dense around v for some
v. We want to determine for what values of the parameters
ρ, k, l,m, d there exist (ρ, k)-dense codes. The technique we
use is probabilistic: we show that there exist [l,m, d]q codes
such that the expected number of codewords in a randomly cho-
sen sphere B(v, ρd) is at least qk. It easily follows, by a simple
averaging argument, that there exists a center v such that the
code is (ρ, k)-dense around v. Let

µC(r) = Exp
v∈Flq

[|C ∩ B(v, r)|]

=
∑
x∈C

Pr
v∈Flq
{x ∈ B(v, r)}

be the expected number of codewords in B(v, r) when the cen-
ter v is chosen uniformly at random from Flq . Notice that

µC(r) =
∑
x∈C

Pr
v∈Flq
{v ∈ B(x, r)}

=
|C| · |B(0, r)|

ql
(2)

= qm−l · |B(0, r)|.
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This shows that the average number of codewords in a randomly
chosen ball does not depend on the specific code C, but only
on its information content m (and the block length l, which is
usually implicit and clear from the context). So, we can simply
write µm instead of µC .

In the rest of this subsection, we show how dense codes are
closely related to codes that outperform the GV bound. This
connection is not explicitly used in the rest of the paper, and
it is presented here only for the purpose of illustrating the in-
tuition behind the choice of codes used in the sequel. Using
function µm, the definition of the minimum distance (for codes
with information content m) guaranteed by the GV bound (see
Theorem 5) can be rewritten as

d∗m = min{r | µm(r − 1) ≥ 1}.

In particular, for any code C[l,m, d]q , the expected number of
codewords in a random sphere of radius d∗m is bigger than 1,
and there must exist spheres with multiple codewords. If the
distance of the code d exceeds the GV bound for codes with the
same information content (i.e., d > d∗m), C is (ρ, k)-dense for
some ρ = d∗m/d < 1 and k > 0. Several codes are known for
which the minimum distance exceeds the GV bound:
• RS codes or, more generally, MDS codes, whose distances
d exceed d∗m for all code rates. RS codes of rate m/l ap-
proaching 1 will be of particular interest. This is due to the
fact that the ratio d/d∗m grows with code rate m/l of RS
codes and tends to 2 for high rates. We implicitly use this
fact in the sequel to build a ρ-dense codes for any ρ > 1/2.

• Binary BCH codes, whose distances exceed d∗m for very
high code rates approaching 1. These codes are not used
in this paper, but they are an important family of codes that
beat the GV bound.

• AG codes, meeting the TVZ bound, whose distances ex-
ceed d∗m for most code rates bounded away from 0 and
1 for any q. These codes are used to prove hardness re-
sults for asymptotically good codes, and approximating
the minimum distance up to an additive error.

Remark 7: The relation between dense codes and codes that
exceed the GV bound can be given an exact, quantitative char-
acterization. In particular, one can prove that for any positive
integer k and real ρ, the expected number of codewords from
C[l,m, d] in a random sphere of radius r = bρdc is at least qk

if and only if (d∗m−k − 1) ≤ ρd.

B. Dense code families from MDS codes

We are interested in sequences of (ρ, k)-dense codes with
fixed ρ and arbitrarily large k. Moreover, parameter k > 0
should be polynomially related to the block length l, i.e., lθ ≤
k ≤ l for some θ ∈ (0, 1). (Notice that k ≤ l is a necessary
condition because code C contains at most ql codewords and we
want qk distinct codewords in a ball.) This relation is essential
to allow the construction of dense codes in time polynomial in
k. Sequences of dense codes are formally defined below.

Definition 8: A sequence of codes Ck[lk,mk, dk]qk is called
a ρ-dense code family if, for every k ≥ 1, Ck is a (ρ, k)-dense
code i.e., there exists a center vk ∈ Flkqn such that the ball
B(vk, bρdkc) contains qkk codewords. Moreover, we say that

Ck[lk,mk, dk]qk is a polynomial code family if the block length
lk is polynomially bounded , i.e., lk ≤ kc for some constant c
independent of k.

In this section we use twice-extended RS codes to build ρ-
dense code families for any ρ > 1/2.

Lemma 9: For any ε ∈ (0, 1), and sequence of prime powers
qk satisfying

dk/εe1/ε ≤ qk ≤ O(poly(k)), (3)

there exists a polynomial ρ-dense code family Gk[lk,mk, dk]qk
with ρ = 1/(2(1− ε)).

Proof: Fix the value of ε and k and let ρ and q = qk be
as specified in the lemma. Define the radius r = bqεc. Notice
that, from the lower bound on the alphabet size, we get

εr = εbqεc ≥ εbdk/εec ≥ k. (4)

In particular, since ε < 1, we have r > k ≥ 1 and r < q. Since
r is an integer, it must be

2 ≤ r ≤ q − 1.

Consider an MDS code G[l,m, d]q with l = q + 1 and d =
br/ρc + 1 meeting the Singleton bound d = l − m + 1 (e.g.,
twice-extended RS codes, see Section II). From the definition
of d, we immediately get

ρd = ρ(br/ρc+ 1) > r. (5)

We will prove that µ(r) ≥ qεr, i.e., the expected number of
codewords in a randomly chosen ball of radius r is at least qεr.
It immediately follows from (4) and (5) that

µ(bρdc) ≥ µ(r) ≥ qεr ≥ qk,

i.e., the code is (ρ, k)-dense on the average. Since MDS codes
meet the Singleton bound with equality, we have

l −m = d− 1 = br/ρc ≤ r/ρ = 2(1− ε)r.

Therefore the expected number of codewords in a random
sphere satisfies

µm(r) = qm−l · |B(0, r)| ≥ q−2(1−ε)r · |B(0, r)|. (6)

We want to bound this quantity. Notice that for all l and r we
have (

l

r

)
=
r−1∏
i=0

l − i
r − i

≥
(
l

r

)r
. (7)

where we have used that l−ir−i ≥
l
r for all r ≤ l and i ∈ [0, r−1].

A slightly stronger inequality is obtained as follows:(
l

r

)
=

r−1∏
i=0

l − i
r − i

≥ (l − r + 1)
r−2∏
i=0

l

r
(8)

=
(
r(l − r + 1)

l

)(
l

r

)r
.



7

Moreover, the reader can easily verify that for all r ∈ [2, q]

r(l − r + 1)
l

=
r(q − r + 2)

q + 1
≥ 2q
q + 1

. (9)

We use (8) and (9) to bound the volume of the sphere |B(0, r)|
as follows:

|B(0, r)| >

(
l

r

)
(q − 1)r

≥
(

2q
q + 1

)(
q + 1
r

)r
(q − 1)r

=
(

2q
q + 1

)(
1− 1

q2

)r (
q2

r

)r
≥

(
2q
q + 1

)(
1− r

q2

)
q(2−ε)r

≥ q(2−ε)r

where in the last inequality we have used r ≤ q − 1 and 1 −
(q − 1)/q2 ≥ (q + 1)/(2q). Combining the bound |B(0, r)| >
q(2−ε)r with inequality (6) we get

µm(r) > q−2(1−ε)r+(2−ε)r = qεr.

This proves that our MDS codes are (ρ, k)-dense. Moreover, if
qk = O(poly(k)), then the block length l = q + 1 is also poly-
nomial in k, and Gk is a polynomial ρ-dense family of codes.

C. Codes over a fixed alphabet

Lemma 9 gives a ρ-dense code family Gk[lk,mk, dk]qk for
any fixed ρ > 1/2 with qk = O(poly(k)). In the sequel,
we wish to find a ρ-dense family of codes over some fixed
alphabet Fq . In order to keep the alphabet size fixed and
still get arbitrarily large k, we take the extension field Fqc
and use the MDS codes from Lemma 9 with alphabet size qc.
These codes are concatenated with equidistant Hadamard codes
H[qc − 1, c, qc − qc−1]q to obtain a family of dense codes over
fixed alphabet Fq . This procedure can be applied to any dense
code as described in the following lemma.

Lemma 10: Let C′[l′,m′, d′]qc be an arbitrary code, and let
H[qc − 1, c, qc − qc−1]q be the equidistant Hadamard code of
size qc. If C′ is (ρ, k)-dense (around some center v), then the
concatenated code C = C′3H is (ρ, ck)-dense (around v3H).

Proof: Let C′[l′,m′, d′]qc be a code and let H[qc −
1, c, qc − qc−1]q be the equidistant Hadamard code of size qc.
Define code C as the concatenation of C′ and H. (See Section
II for details.) The resulting concatenated code C = C′3H has
parameters

l = (qc − 1)l′, m = cm′, d = (qc − qc−1) · d′.

Now assume C′ is (ρ, k)-dense around some center v. No-
tice that the concatenation function x 7→ x3H is injective
and satisfies wt(x3H) = (d/d′) · wt(x). Therefore the ball
B(x, ρd′) is mapped into ball B(v3H, ρd) and the number
of C′-codewords contained in B(v, ρd′) equals the number of

(C′3H)-codewords contained in B(v3H, ρd). Therefore C is
(ρ, k′) dense for k′ = logq((qc)k) = ck.

By increasing the degree c of the extension field Fqc , we
obtain an infinite sequence of q-ary codes G3H. Combining
Lemma 9 and Lemma 10 we get the following proposition.

Proposition 11: For any ρ > 1/2 and prime power q, there
exists a polynomial ρ-dense family of codes {Ak}k≥1 over a
fixed alphabet Σ = Fq .

Proof: As in Lemma 9, let ε > 0 be an arbitrarily small
constant and let ρ = 1/(2(1 − ε)). For every k, define ck =⌈

1
ε · logq

⌈
k
ε

⌉⌉
. Notice that qck satisfies⌈

k

ε

⌉1/ε

≤ qck ≤ O(poly(k)),

so we can invoke Lemma 9 with alphabet size qk = qck and ob-
tain a (ρ, k)-dense code Gk[l′,m′, d′]qk . LetAk be the concate-
nation of Gk with Hadamard codeH[qck −1, ck, qck − qck−1]q .
By Lemma 10,Ak is (ρ, ck)-dense. Moreover, the block length
of Ak is l′ · (qck − 1), which is polynomial in k, because both
l′ and qck are poly(k). This proves that Ak is a polynomial
ρ-dense family.

D. Polynomial construction

We proved that ρ-dense families of codes exist for any ρ >
1/2. In this subsection we address two issues related to the
algorithmic construction of such codes:
• Can ρ-dense codes be constructed in polynomial time?

I.e., is there an algorithm that on input k outputs (in time
polynomial in k) a linear code which is (ρ, k)-dense?

• Given a (ρ, k)-dense code, i.e., a code such that some ball
B(v, ρd) contains at least qk codewords, can we efficiently
find the center v of a dense sphere?

The first question is easily answered: all constructions de-
scribed in the previous subsection are polynomial in k, so the
answer to the first question is yes. The second question is not
as simple and to-date we do not know any deterministic proce-
dure that efficiently produces dense codes together with a point
around which the code is dense. However, we will see that,
provided the code is dense “on the average”, the center of the
sphere can be efficiently found at least in a probabilistic sense.
We prove the following algorithmic variant of Proposition 11.

Proposition 12: For every prime power q and real constant
ρ > 1/2, there exists a probabilistic algorithm that on input
two integers k and s, outputs (in time polynomial in k and s)
three integers l,m, r, a generator matrix A ∈ Fm×lq and a center
v ∈ Flq (of weight wt(v) = r) such that

1) r < ρ · d(A)
2) with probability at least 1−q−s, the ball B(v, r) contains

qk or more codewords.
Before proving the proposition, we make a few observations.

The codes described in Proposition 11 are the concatenation of
twice-extended RS codes with Hadamard codes, and therefore
they can be explicitly constructed in polynomial time. While
the codes are described explicitly, the proof that the code is
dense is non constructive: in Lemma 9 we proved that the aver-
age number of codewords in a randomly chosen sphere is large,
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so spheres containing a large number of codewords certainly
exist, but it is not clear how to find a dense center. At the
first glance, one can try to reduce the entire set of centers Flq
used in Lemma 9. In particular, it can be proved that Flq can be
replaced by any MDS code G that includes our original MDS
code G. However, even with two centers left, we still need to
count codewords in the two balls to find which is dense indeed.
To-date, explicit procedures for finding a unique ball are yet
unknown. Therefore below we use a probabilistic approach and
show how to find a dense center with high probability.

First, let the center be chosen uniformly at random from the
entire space Flq . Given the expected number of codewords µ,
Markov’s inequality yields

Pr
v∈Flq

(|B(v, r) ∩ G| > ∆ · µ) < 1/∆,

showing that spheres containing at most ∆ ·µ codewords can be
found with high probability 1− 1/∆. It turns out that a similar
lower bound

Pr
v∈B(0,r)

(|B(v, r) ∩ G| ≤ δ · µ) ≤ δ

can be proved if we restrict our choice of v to a uniformly ran-
dom element of B(0, r) only. This is an instance of a quite gen-
eral lemma that holds for any pair of groups G ⊆ F .10 In the
lemma below, we use multiplicative notation for groups (G, ·)
and (F, ·). However, to avoid any possible confusion, we clar-
ify in advance that in our application G and F will be groups
(G,+) and (Flq,+) of codewords with respect to vector sum
operation.

Lemma 13: Let F be a group, G ⊂ F a subgroup and B ⊂
F an arbitrary subset of F . Given z ∈ F, consider the subset
Bz = {b · z | b ∈ B} and let µ be the average size of G ∩ Bz
as the element z runs through F . Choose v ∈ B−1 = {b−1 |
b ∈ B} uniformly at random. Then for any δ > 0,

Pr
v∈B−1

{|G ∩Bv| ≤ δµ} ≤ δ.
Proof: Divide the elements of B into equivalence classes

where u and v are equivalent if uv−1 ∈ G. Then choose
v ∈ B−1 = {b−1 | b ∈ B} uniformly at random. If
v = b−1 is chosen, then G ∩ Bv has the same size as the
equivalence class of b. (Notice: the equivalence class of b is
Gb∩B = (G∩Bv)b.) Since the number of equivalence classes
is (at most) |F |/|G|, the number of elements that belong to
equivalence classes of size δµ or less is bounded by δµ|F |/|G|
(i.e., the maximum number of classes times the maximum size
of each class), and the probability that such a class is selected
is at most δµ|F |/(|G||B|). The following simple calculation
shows that µ = |G||B|/|F | and therefore the probability to se-
lect an element b such that |G ∩Bv| ≤ δµ is at most δ:

µ = Exp
z∈F

[|G ∩Bz|]

=
∑
y∈G

Pr
z∈F
{y ∈ Bz}

=
|G| · |B|
|F |

.

10In fact, it is not necessary to have a group structure on the sets, and the
lemma can be formulated in even more general settings, but working with
groups make the presentation simpler.

We are now ready to prove Proposition 12.
Proof: Fix some q and ρ > 1/2 and let k, s be the in-

put to the algorithm. We consider the (ρ, k′)-dense code Ak′
from Proposition 11, where k′ = k + s. This code is the con-
catenation of a twice extended RS code G[l′,m′, d′]qk′ from
Lemma 9, and a Hadamard codeH[qk′ − 1, ck′ , qk′(1− 1/q)]q
with block length polynomial in k′. Therefore a generator ma-
trix A ∈ Fm×lq for Ak′ can be constructed in time polynomial
in k, s.

At this point, we instantiate the Lemma 13 with groups F =
(Fl′q′ ,+), G = (G,+), and B = B(0, r′), where r′ = bρd′c.
Notice that for any center z = z ∈ Fl′q′ , the set Bz is just
the ball B(z, r′) of radius r′ centered in z. From the proof
of Lemma 9, the average size of G ∩ Bz (i.e., the expected
number of codewords in a random ball when the center is cho-
sen uniformly at random from Fl′q′ is at least qk+s. Following
Lemma 13, we choose v′ ∈ Fl′qk′ uniformly at random from
B(0, r′) = B = B−1. By Lemma 13 (with δ = q−s), we get
that B(v′, r′) contains at least qk codewords with probability
1 − q−s. Finally, by Lemma 10, we get that the corresponding
ball B(v, r) in Flq (with radius r = qk′(1 − 1/q)r′ and center
v = v′3H) contains at least qk codewords fromA. The output
of the algorithm is given by a generating matrix for code Ak′ ,
the block length l and information content m of this matrix,
radius r and vector v.

E. Mapping dense balls onto full spaces

In the next section we will use the codewords inside the ball
B(v, r) to represent the solutions to the nearest codeword prob-
lem. In order to be able to represent any possible solution, we
need first to project the codewords in B(v, r) to the set of all
strings over Fq of some shorter length. This is accomplished
in the next lemma by another probabilistic argument. Given
a matrix T ∈ Fl×kq and a vector y ∈ Flq , let T(y) = yT
denote the linear transformation from Flq to Fkq . Further, let
T(Y ) = {T(y) | y ∈ Y }.

Lemma 14: Let Y be any fixed subset of Flq of size |Y | ≥
q2k+s. If matrix T ∈ Fk×lq is chosen uniformly at random, then
with probability at least 1− q−s we have T(Y ) = Fkq .

Proof: Choose T ∈ Fl×kq uniformly at random. We want
to prove that with very high probability T(Y ) = Fkq . Choose
a vector t ∈ Fkq at random and define a new function T′(y) =
yT + t. Clearly T′(Y ) = Fkq if and only if T(Y ) = Fkq .

Notice that the random variables T′(y) (indexed by vector
y ∈ Y , and defined by the random choice of T and t) are
pairwise independent and uniformly distributed. Therefore for
any vector x ∈ Fkq , T′(y) = x with probability p = q−k.
Let Nx be the number of y ∈ Y such that T′(y) = x. By
linearity of expectation and pairwise independence of the T′(y)
we have Exp [Nx] = |Y |p and Var [Nx] = |Y |(p−p2) < |Y |p.

Applying Chebychev’s inequality we get

Pr{Nx = 0} ≤ Pr{|Nx − Exp [Nx] | ≥ Exp [Nx]}
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≤
Var [Nx]

Exp [Nx]2

<
1
|Y |p

≤ q−(k+s).

Therefore, for any x ∈ Fkq , the probability that T′(y) 6= x for
every y ∈ Y is at most q−(k+s). By union bound, the proba-
bility that there exists some x ∈ Fkq such that x 6∈ T′(Y ) is at
most q−s, i.e., with probability at least 1 − q−s, T′(Y ) = Fkq
and therefore T(Y ) = Fkq .

We combine Proposition 12 and Lemma 14 to build the gad-
get needed in the NP-hardness proofs in the following section.

Lemma 15: For any ρ > 1/2 and finite field Fq there exists a
probabilistic polynomial time algorithm that on input k, s out-
puts, in time polynomial in k and s, integers l,m, r, matrices
A ∈ Fm×lq , and T ∈ Fl×kq and a vector v ∈ Flq (of weight
wt(v) = r) such that

1) r < ρ · d(A).
2) with probability at least 1− q−s, T(B(v, r) ∩ A) = Fkq ,

i.e., for every x ∈ Fkq there exists a y ∈ A such that
d(y,v) ≤ r and yT = x.

Proof: Run the algorithm of Proposition 12 on input k′ =
2k + s + 1 and s′ = s + 1 to obtain integers l,m, r, a matrix
A ∈ Fm×lq such that r < ρd(A) and a center v ∈ Flq such that
B(v, r) contains at least q2k+s+1 codewords with probability
1 − qs+1. Let Y be the set of all codewords in B(v, r), and
choose T ∈ Fk×lq uniformly at random. By Lemma 14, the
conditional probability, given |Y | ≥ q2k+s+1, that T(Y ) = Fkq
is at least 1− qs+1. Therefore, the probability that T(Y ) 6= Fkq
is at most qs+1 + qs+1 ≤ qs.

IV. HARDNESS OF THE RELATIVELY NEAR CODEWORD
PROBLEM

In this section we prove that the relatively near codeword
problem is hard to approximate within any constant factor γ for
all ρ > 1/2. The proof uses the gadget from Lemma 15.

Theorem 16: For any ρ′ > 1/2, γ′ ≥ 1 and any finite
field Fq , GAPRNC(ρ′)

γ′,q is hard for NP under polynomial RUR-
reductions. Moreover, the error probability can be made expo-
nentially small in a security parameter s while maintaining the
reduction polynomial in s.

Proof: Fix some finite field Fq . Let ρ be a real such
that Lemma 15 holds true, let ε > 0 be an arbitrarily small
positive real, and γ ≥ 1 such that GAPNCPγ,q is NP-hard.
We prove that GAPRNC(ρ′)

γ′,q is hard for ρ′ = ρ · (1 + ε) and
γ′ = γ/(2 + 1/ε). Since ε can be arbitrarily small, Lemma 15
holds for any ρ > 1/2, and GAPNCPγ,q is NP-hard for any
γ ≥ 1, this proves the hardness of GAPRNC(ρ′)

γ′,q for any γ′ ≥ 1
and ρ′ > 1/2.

The proof is by reduction from GAPNCPγ,q. Let (C,u, t)
be an instance of GAPNCPγ,q with C ∈ Fk×nq . We want

to define an instance (C′,u′, t′) of GAPRNC(ρ′)
γ′,q such that if

(C,u, t) is a YES instance of GAPNCPγ,q , then (C′,u′, t′) is
a YES instance of GAPRNC(ρ′)

γ′,q with high probability, while if

(C,u, t) is a NO instance of GAPNCPγ,q , then (C′,u′, t′) is
a NO instance of GAPRNC(ρ′)

γ′,q with probability 1. Notice that
the main difference between the two problems is that while in
(C,u, t) the minimum distance d(C) can be arbitrarily small, in
(C′,u′, t′) the minimum distance d(C′) must be relatively large
(compared to error weight parameter t′). The idea is to embed
the original code C in a higher dimensional space to make sure
that the new code has large minimum distance. At the same
time we want also to embed target vector u in this higher di-
mensional space in such a way that the distance of the target
from the code is roughly preserved. The embedding is easily
performed using the gadget from Lemma 15. Details follow.

On input GAPNCP instance (C,u, t), we invoke Lemma 15
on input k (the information content of input code C ∈ Fk×nq )
and security parameter s, to find integers l,m, r, a generator
matrix A ∈ Fm×lq , a mapping matrix T ∈ Fl×kq , and a vector
v ∈ Flq such that:

1) r < ρ · d(A)
2) T(A ∩ B(v, r)) = Fkq with probability at least 1− q−s.
Consider the linear code ATC ∈ Fm×nq . Notice that all m

rows of matrix ATC are codewords of C. (However, only at
most k are independent.) We define matrix C′ by concatenat-
ing11 b =

⌈
r
t

⌉
copies of ATC and a =

⌈
bt
εr

⌉
copies of A:

C′ = [A, . . . ,A︸ ︷︷ ︸
a

, ATC, . . . ,ATC︸ ︷︷ ︸
b

] (10)

and vector u′ as the concatenation of a copies of v and b copies
of u:

u′ = [v, . . . ,v︸ ︷︷ ︸
a

, u, . . . ,u︸ ︷︷ ︸
b

] (11)

Finally, let t′ = ar + bt. The output of the reduction is
(C′,u′, t′).

Before we can prove that the reduction is correct, we need to
bound the quantity ar

bt . Using the definition of a and b we get:

bt

ar
≤ bt(

bt
εr

)
r

= ε

and

ar

bt
<

(
bt
εr + 1

)
r

bt
=

1
ε

+
r

bt
≤ 1
ε

+
r(
r
t

)
t

=
1
ε

+ 1.

So, we always have ar
bt ∈

[
1
ε ,

1
ε + 1

)
. We can now prove the

correctness of the reduction. In order to consider (C′,u′, t′) as
an instance of GAPRNC(ρ′)

γ′,q , we first prove that t′ < ρ′ · d(C′).
Indeed, d(C′) ≥ a · d(A) > ar/ρ and therefore

t′

d(C′)
<
ar + bt

ar/ρ
= ρ

(
1 +

bt

ar

)
≤ ρ(1 + ε) = ρ′. (12)

Now, assume (C,u, t) is a YES instance, i.e., there exists x
such that d(xC,u) ≤ t. Let y = zA be a codeword in A such

11Here the word “concatenation” is used to describe the simple juxtapposi-
tion of matrices or vectors, and not the concatenating code construction of [11]
used in Section III.
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that d(y,v) ≤ r and yT = x. We know such a codeword
exists with probability at least 1− q−s. In such a case, we have

d(zC′,u′) = a · d(zA,v) + b · d(zATC,u)
≤ ar + bt (13)
= t′

proving that (C′,u′, t′) is a YES instance.
Conversely, assume (C,u, t) is a NO instance, i.e., the dis-

tance of u from C is greater than γt. We want to prove that for
all z ∈ Fmq we have d(zC′,u′) > γ′t′. Indeed,

d(zC′,u′) ≥ b · d(z(ATC),u)
≥ b · d(C,u)
> b · γt
= γ′(2 + 1/ε)bt (14)
= γ′((1 + 1/ε)bt+ bt)

> γ′
((ar

bt

)
bt+ bt

)
= γ′t′

proving that (C′,u′, t′) is a NO instance. (Notice that NO in-
stances get mapped to NO instances with probability 1, as re-
quired.)

Remark 17: The reduction given here is a randomized many-
one reduction (or a randomized Karp reduction) which fails
with exponentially small probability. However it is not a Levin
reduction: i.e., given a witness for a YES instance of the source
of the reduction we do not know how to obtain a witness to YES
instances of the target in polynomial time. The problem is that
given a solution x to the nearest codeword problem, one has to
find a codeword y in the sphere B(v, r) such that yT = x. Our
proof only asserts that with high probability such a codeword
exists, but it is not known how to find it. This was the case also
for the Ajtai-Micciancio hardness proof for the shortest vector
problem, where the failure probability was only polynomially
small.

As discussed in subsection II-B, hardness under polynomial
RUR-reductions easily implies the following corollary.

Corollary 18: For any ρ > 1/2, γ ≥ 1 and any finite field
Fq , GAPRNC(ρ)

γ,q is not in RP unless NP = RP.
Since NP is widely believed to be different from RP, Corol-

lary 18 gives evidence that no (probabilistic) polynomial time
algorithm to solve GAPRNC(ρ)

γ,q exists.

V. HARDNESS OF THE MINIMUM DISTANCE PROBLEM

In this section we prove the hardness of approximating the
Minimum Distance Problem. We first derive an inapproxima-
bility result to within some constant bigger than one by reduc-
tion from GAPRNC(ρ)

γ,q . Then we use direct product construc-
tions to amplify the inapproximability factor to any constant
and to factors 2log(1−ε) n, for any ε > 0.

A. Inapproximability to within some constant
The inapproximability of GAPDISTγ,q to within a con-

stant γ ∈ (1, 2) immediately follows from the hardness of
GAPRNC(1/γ)

γ,q .

Lemma 19: For every γ ∈ (1, 2), and every finite field Fq ,
GAPDISTγ,q is hard for NP under polynomial RUR-reductions
with exponentially small soundness error.

Proof: The proof is by reduction from GAPRNCγ
−1

γ,q . Let

(C,u, t) be an instance of GAPRNCγ
−1

γ,q with distance d(C) >
t/ρ = γt. Assume without loss of generality that u does not
belong to code C. (One can easily check whether u ∈ C by
solving a system of linear equations. If u ∈ C then (C,u, t)
is a YES instance because d(u, C) = 0, and the reduction can
output some fixed YES instance of GAPDISTγ,q.) Define the
matrix

C′ =
[

C
u

]
. (15)

Assume (C,u, t) is a YES instance of GAPRNCγ
−1

γ,q , i.e., there
exists an x such that d(xC,u) ≤ t. Then, (C′, t) is a YES
instance of GAPDISTγ,q, since nonzero vector xC−u belongs
to code C′ and has weight at most t.

Conversely, assume (C,u, t) is a NO instance of
GAPRNCγ

−1

γ,q . We prove that any nonzero vector y = xC+αu
of code C′ has weight above γt. Indeed, if α = 0 then y is a
nonzero codeword of C and therefore has weight wt(y) > γt
(since d(C) > γt). On the other hand, if α 6= 0 then wt(y) =
wt((α−1x)C − u) > γt as d(u, C) > γt. Hence, d(C′) > γt
and (C′, t) is a NO instance of GAPDISTγ,q.

B. Inapproximability to within bigger factors

To amplify the hardness result obtained above, we take the
direct product of the code with itself. We first define direct
products.

Definition 20: For i ∈ {1, 2}, let Ai be a linear code gener-
ated by Ai ∈ Fki×niq . Then the direct product of A1 and A2,
denoted A1 ⊗ A2 is a code over Fq of block length n1n2 and
dimension k1k2. Identifying the set Fn1n2

q of n1n2 dimensional
vectors with the set Fn2×n1

q of all n2×n1 matrices in the obvi-
ous way, the direct product A1 ⊗A2 is conveniently defined as
the set of all matrices {AT

2 XA1|X ∈ Fk2×k1q } in Fn2×n1
q .

Notice that a generating matrix for the product code can be
easily computed from A1 and A2, defining a basis codeword
(A(i)

1 )TA(j)
2 for every row A(i)

1 of A1 and row A(i)
2 of A2

(where xT denotes the transpose of vector x, and xTy is the
standard “external” product of column vector xT and row vec-
tor y). Notice that the codewords of A1 ⊗ A2 are matrices
whose rows are codewords of A1 and columns are codewords
of A2. In our reduction we will need the following fundamen-
tal property of direct product codes. For completeness (see also
[17]), we prove it below.

Proposition 21: For linear codes A1 and A2 of minimum
distance d1 and d2, their direct product is a linear code of dis-
tance d1d2.

Proof: First, AT
2 XA1 has at least d1d2 nonzero entries

if X 6= 0. Indeed, consider the matrix XA1 whose rows are
codewords fromA1. Since this matrix is nonzero, some row is a
nonzero codeword of weight d1 or more. Thus XA1 has at least
d1 nonzero columns. Now consider the matrix AT

2 (XA1). At
least d1 columns of this matrix are nonzero codewords of A2.
each of weight at least d2, for a total weight of d1d2 or more.
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Second, we verify that the minimum distance of A1 ⊗A2 is
exactly d1d2. To see this consider vectors xi ∈ Fkiq such that
xiAi has exactly di nonzero elements. Then notice that the ma-
trix M = AT

2 xT2 x1A1 is a codeword of A1 ⊗A2. Expressing
M as (x2A2)T (x1A1) we see that its i-th column is zero if the
i-th coordinate of x1A1 is zero and the j-th row of M is zero
if the jth coordinate of x2A2 is zero. Thus M is zero on all
but d1 columns and d2 rows and thus at most d1d2 entries are
nonzero.

We can now prove the following theorem.
Theorem 22: For every finite field Fq the following holds:
• For every γ > 1, GAPDISTγ,q is hard for NP under poly-

nomial RUR-reductions.
• For every ε > 0, GAPDISTγ,q is hard for NP under quasi-

polynomial RUR-reductions for γ(n) = 2log(1−ε) n.
In both cases the error probability is exponentially small in a
security parameter.

Proof: Let γ0 be such that GAPDISTγ0,q is hard by
Lemma 19. Given an instance (A, d) of GAPDISTγ0,q , con-
sider the instance (A⊗l, dl) of GAPDISTγl0,q , where

A⊗l = (· · · ((A⊗A)⊗A) · · · ⊗A)︸ ︷︷ ︸
l

is a generator matrix of

A⊗l = (· · · ((A⊗A)⊗A) · · · ⊗ A)︸ ︷︷ ︸
l

for an integer parameter l ∈ Z+. By Proposition 21 it follows
that YES instances map to YES instances and NO instances to
NO instances. Setting l = log γ

log γ0
yields the first part of the the-

orem. Notice that for constant l, the size of A⊗l is polynomial
in A, and A⊗l can be constructed in polynomial time (for any
fixed l independent of the size of A).

To show the second part, we use the first part by setting
γ0 = 2 and l = log

1−ε
ε n in the previous reduction, where n

is the block length ofA. This time the block length of A⊗l will
be N = nl = 2log1/ε n which is quasi-polynomial in the block
length n of the original instance A. The reduction can be com-
puted in quasi-polynomial (in n) time, and the approximation
factor achieved is

γ(N) = 2l = 2log
1−ε
ε n = 2log1−εN .

As for the relatively near codeword problem, the following
corollary can be easily derived from the hardness result under
RUR-reductions.

Corollary 23: For every finite field Fq the following holds:
• For every γ > 1, GAPDISTγ,q is not in RP unless NP =

RP.
• For every ε > 0, GAPDISTγ,q is not in RQP for γ(n) =

2log(1−ε) n unless NP ⊆ RQP.

VI. ASYMPTOTICALLY GOOD DENSE CODES

Our concatenated codes used in the proof of Proposition 11
employ outer MDS codes over Fqc and inner Hadamard codes

H, for fixed q and growing c. As a result, overall code rate van-
ishes for growing lengths, since so does the inner rate c/qc.
Relative distance also tends to 0, both in outer MDS codes
and overall concatenations. To date, all other codes used to
prove NP-hardness also have been asymptotically bad. To get
hardness results (in both the relatively near codeword prob-
lem and the minimum distance problem) even when the codes
are asymptotically good, we will need constructions of asymp-
totically good “dense” codes. To get such constructions, we
will fix the outer alphabet qc and the inner code H. Then
we use algebraic-geometry (AG) codes over Fqc to show that
there exist dense families of asymptotically good codes over
Fq . In particular, we show that there exist ρ-dense code fam-
ilies Ck[lk,mk, dk]q with relative distance dk/lk ≥ δ and rate
mk/lk ≥ R, where ρ < 1, δ > 0 and R > 0 are positive real
numbers12 independent of k. These codes will be used to prove
the NP-hardness of GAPRNC(ρ)

γ,q restricted to asymptotically
good codes, and the hardness of approximating the minimum
distance of a code within an additive linear error.

Given a square prime power q ≥ 49, we use long algebraic-
geometry codesA[l,m, d]q meeting the Tsfasman-Vlăduţ-Zink
(TVZ) bound d ≥ l − m − l√

q−1 (see [21]). The generator

matrices A ∈ Fm×lq of these codes can be constructed for any l
and m ≤ l in time polynomial in l. As remarked in Section III,
the TVZ bound exceeds the GV bound for most code rates and
therefore allows to obtain sequences of dense codes with fixed
q. The resulting code sequence turns out to be ρ-dense for ρ >
2/3. We don’t know how to get ρ arbitrarily close to 1/2 using
this technique.

Proposition 24: For every prime power q and every ρ > 2/3
there exist R > 0 and δ > 0 such that there is a polynomial
family of asymptotically good ρ-dense codes Ck[lk,mk, dk]q
with rate mk/lk ≥ R and relative distance dk/lk ≥ δ.

Proof: Let ε ∈ (0, 1/2] and ρ = 2
3(1−2ε) . Notice that by

taking ε sufficiently close to 0, we can get ρ arbitrarily close to
2/3. We first prove the result assuming q ≥ (2/ε)2/ε and that
q is a square. In this case the algebraic-geometry codes (for
appropriate choice of parameters) already give what we want.
Later we will use concatenation to get the proposition for arbi-
trary q.

a) Case 1: (q ≥ (2/ε)2/ε and q is a square): Given
parameter k, Let r = d2k/εe, l = 2k(

√
q − 1) and m =⌈

l − ( 3
2 − ε)r

⌉
. Let A[l,m, d]q be a code meeting the TVZ

bound, i.e., with d ≥ l −m − l√
q−1 . We show that this code

has rate R ≥ 3
4 , relative distance δ ≥ 1

2(
√
q−1) , r/d ≤ ρ, and

that the expected number of codewords of A in a random ball
of radius r is at least qk. We start with bounding the rate:

m

l
≥

l − ( 3
2 − ε)r
l

≥ 1− 3r
2l

= 1− 3d2k/εe
4k(
√
q − 1)

12Notice that the relative distance satisfies d/l > (r/ρ)/l ≥ δ/ρ and the
code is asymptotically good. In fact, for all dense codes considered in this
paper, we have ρ < 1 and therefore the relative distance is at least δ.
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≥ 1− 3
4
· (2/ε) + 1
√
q − 1

.

We want to prove that this bound is strictly positive. Using the
assumption ε ≤ 1/2 and q ≥ (2/ε)2/ε we get

(2/ε) + 1
√
q − 1

≤ (2/ε) + 1
(2/ε)1/ε − 1

≤ (2/ε) + 1
(2/ε)2 − 1

=
1

(2/ε)− 1

≤ 1
3
.

Substituting in the bound for the rate of the code we get

m

l
≥ 1− 3

4
· 1

3
=

3
4
.

Next we bound the minimum distance. From the TVZ bound
we get

d ≥ l −m− l
√
q − 1

=
⌊(

3
2
− ε
)⌋
− 2k (16)

≥
(

3
2
− ε
)
r − 3k.

Using ε ≤ 1/2 and dividing by the block length of the code, we
get

d

l
≥ r − 3k

l
≥ 2k/ε− 3k

2k(
√
q − 1)

≥ 1
2(
√
q − 1)

.

This proves that the relative distance is bounded away from 0,
and the code is asymptotically good. We still need to prove that
the code is (ρ, k)-dense (on the average), i.e., r < ρd and the
expected number of codewords in a random ball of radius r is
at least qk.

We use (16) to bound the ratio d/r.

d

r
≥ 3

2
− ε− 3k

r

≥ 3
2
− ε− 3k

2k/ε

=
3
2
− 5

2
ε

>
3
2

(1− 2ε) =
1
ρ
.

This proves that the radius r is small, relative to the minimum
distance of the code. We want to bound µm(r), the expected
number of codewords in a random ball of radius r. Using (2)
and (7), we have

µm(r) ≥
(
l

r

)
(q − 1)rqm−l

≥
(
l

r

)r
(q − 1)rq−( 3

2−ε)r

≥

(
2k(
√
q − 1)

2k
ε + 1

)r (
1
√
q

)r (
1− 1

q

)r
qεr

≥
(

ε

1 + 1/4

)r (
1− 1
√
q

)r (
1− 1

q

)r
qεr.

We want to prove that this bound is at least qk. Combining
ε ≤ 1/2 and q ≥ (2/ε)2/ε, we get q ≥ 44 = 256. Substituting
in the last equation,

µm(r) ≥
(
εqε

5/4

(
1− 1

256

)(
1− 1

16

))r
≥

( ε
2
qε
)2k/ε

≥
(( ε

2

)2/ε

· q2
)k

≥ qk.

It follows that there exists a vector v such that |B(v, r) ∩A| ≥
qk. This concludes the analysis for large square q.

b) Case 2: (arbitrary q): In this case, let c be the small-
est even integer such that q′ = qc ≥ (2/ε)2/ε. Given k, let
A′[l′,m′, d′]q′ be a code and r′ a radius as given in Case 1 with
rate m′/l′ ≥ 3

4 , relative distance d′/l′ ≥ 1/(2(
√
q′ − 1)),

r′/d′ < ρ and µm′(r′) ≥ (q′)k. We concatenate A′ with
equidistant Hadamard code H[qc − 1, c, qc − qc−1]q to get a
code A[l,m, d]q of rate

m

l
=

m′c

l′(qc − 1)
≥ 3c

4qc
> 0,

and relative distance

d

l
=
d′(qc − qc−1)
l′(qc − 1)

≥
(

1− 1
q

)
· 1

2(
√
qc − 1)

> 0.

Now given a vector x′ ∈ Fl′q′ that has (q′)k vectors in the ball
of radius r′ around it, the vector x = x′3H also has (q′)k

vectors of A3H in the ball of radius r = (qc − qc−1)r′ around
it. Notice that the ratio r/d = r′/d′ does not change in this
step, and therefore, r < ρd holds true. This gives the code as
claimed in the proposition.

The following lemma stresses the algorithmic components
of the code construction above and in particular stresses that
we know how to construct the generator matrix of the kth code
in the sequence, and how to sample dense balls from this code
in polynomial time. (We also added one more parameter n to
the algorithm to ensure that the block length of code A is at
least n. This additional parameter will be used in the proofs
of Section VII, and is being added for purely technical reasons
related to those proofs.)

Proposition 25: For every prime power q and every ρ > 2/3
, there exist R > 0, δ > 0 and a probabilistic algorithm that
on input three integers k, n and s, outputs (in time polynomial
in k, n, s) three other integers l, m, r, a generator matrix A ∈
Fm×lq of a codeA and a center v ∈ Flq (of weight r) such that

1) m/l ≥ R.
2) d(A)/l ≥ δ.
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3) r < ρ · d(A).
4) with probability at least 1−q−s, the ball B(v, r) contains

at least qk codewords of A.
5) l ≥ n.

Proof: Given inputs k, n, s to the algorithm, we consider
the (ρ, k′)-dense code Ak′ from Proposition 24, where k′ =
max(n, k + s). This code is the concatenation of an algebraic-
geometry code A′[l′,m′, d′]qc and a Hadamard code H[qc −
1, c, qc(1 − 1/q)]q . Therefore a generator matrix A ∈ Fm×lq

for Ak′ can be constructed in time polynomial in k, n, s. Let
r′ = bρd′c, r = r′ · qc · (1− 1/q), choose v′ ∈ Fl′qc uniformly
at random from B(0, r′) and let v = v′3H. From the proof of
Proposition 24 we know that the expected number of codewords
in a randomly chosen ball B(v′, r′) is at least qk+s. We now
apply the Lemma 13 instantiating it with groups F = (Fl′q′ ,+),
G = (G,+), and set B = B(0, r′). Notice that for any center
z = z ∈ Fl′q′ , the set Bz is just the ball B(z, r) of radius r′

centered in z. From the proof of Proposition 24, the average
size of G ∩ Bz (i.e., the expected number of codewords in a
random ball) is at least qk+s. Setting δ = q−s in Lemma 13,
and noting that B−1 = B = B(0, r′), we immediately get
that B(v, r′) contains at least qk codewords with probability
1 − q−s. Finally, by Lemma 10, we get that the corresponding
ball B(v, r) in Flq contains at least qk codewords from A.

We conclude with the following lemma analogous to
Lemma 15 of Section III.

Lemma 26: For every ρ > 2/3 and prime power q, there ex-
ist R > 0, δ > 0 and a probabilistic polynomial time algorithm
that on input k, n, s outputs, (in time polynomial in k, n, s), in-
tegers l,m, r, and matrices A ∈ Fm×lq , T ∈ Fl×kq and a vector
v ∈ Flq such that:

1) m/l ≥ R.
2) d(A)/l ≥ δ.
3) r < ρ · d(A).
4) With probability at least 1− q−s, T(B(v, r) ∩A) = Fkq ,

i.e., for every x ∈ Fkq there exists a y ∈ A such that
d(v,y) ≤ r and yT = x.

5) l ≥ n.
The proof is identical to that of Lemma 15, with the use of

Proposition 12 replaced by Proposition 25.

VII. HARDNESS RESULTS FOR ASYMPTOTICALLY GOOD
CODES

In this section we prove hardness results for the decoding
problem even when restricted to asymptotically good codes,
and the hardness of approximating the minimum distance prob-
lem with linear (in the block length) additive error. First, we
define a restricted version of GAPRNC where the code is re-
quired to be asymptotically good.

Definition 27: For R, δ ∈ (0, 1), let (R, δ)-restricted
GAPRNC(ρ)

γ,q be the restriction of GAPRNC(ρ)
γ,q to instances

(A ∈ Fk×nq ,v, t) satisfying k ≥ R · n and t ≥ δ · n.
We call δ relative error weight. Notice that for every constant
ρ, the minimum distance of the code satisfies d > t/ρ ≥ δn/ρ,
therefore the code is asymptotically good with information rate
at least k/n ≥ R > 0 and relative distance at least d/n >

δ/ρ > 0. In particular, when ρ ≤ 1, the relative distance is
strictly bigger than δ.

In the following subsections, we prove that (R, δ)-restricted
GAPRNC is NP-hard (under RUR reductions). Then we use
this result to prove that the minimum distance of a linear code is
hard to approximate additively, even to within a linear additive
error relative to the block length of the code. The proofs will
be essentially the same as those for non-asymptotically good
codes. The main differences are the following:
• We use the asymptotically good dense code construction

from Section VI. Before we relied on dense codes that
were not asymptotically good.

• We reduce from a restricted version of the nearest code-
word problem in which the error weight is required to be a
constant fraction of the block length.

In the following subsection we observe that a result of
Håstad [13] gives us hardness of NCP with this additional
property. Then we use this result to prove the hardness of
the (R, δ)-restricted GAPRNC problem, and the hardness of
GAPDISTADD.

A. The restricted nearest codeword problem

We define a restricted version of the nearest codeword prob-
lem in which the target distance is required to be at least a linear
fraction of the block length.

Definition 28: For τ ∈ (0, 1), let τ -restricted GAPNCPγ,q
(τ -GAPNCPγ,q for short) be the restriction of GAPNCPγ,q to
instances (A ∈ Fk×nq ,v, t) satisfying t ≥ τ · n.

We will need the fact that τ -GAPNCPγ,q is NP-hard. This
result does not appear to follow from the proof of [3]. Instead
we observe that this result easily follows from a recent and ex-
tremely powerful result of Håstad [13].

Theorem 29—[13]: For every Abelian group G and for ev-
ery τ ∈ (0, (1 − 1/|G|)/2), given a system of n linear equa-
tions over G, it is NP-hard to distinguish instances in which
(1−τ)n equations can be satisfied, from those in which at most(

1
|G| + τ

)
n equations can be satisfied13.

Notice that a system of n linear equations where s is the
maximum number of simultaneously satisfiable equations cor-
responds to an instance of the nearest codeword problem where
the distance of the target from the code is n − s. So, applied
to group G = (Fq,+), and phrased in coding theoretic terms
the theorem says that for every prime power q, it is hard to tell
whether the distance of the target from the code is at most τn or
more than (1−1/q−τ)n. In other words, τ -GAPNCPγ,q is NP-
hard for every constant approximation factor γ ≤ 1−(1/q)−τ

τ .
In particular, τ -GapNCPγ,q is NP-hard for γ = 1

2τ − 1. This
gives the following version of Theorem 29.

Corollary 30: For every γ > 1, there exists a τ > 0 such
that τ -GAPNCPγ,q is NP-hard for all prime powers q.

Notice that the τ in the corollary is independent of the alpha-
bet size.

13Håstad’s result has the further property that every linear equation only in-
volves three variables, but we don’t need this extra property.
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B. Inapproximability of the restricted relatively near codeword
problem

In this subsection we prove the hardness of the (R, δ)-
restricted GAPRNC(ρ)

γ,q problem. The proof is the same as that
of Theorem 16 with the following modifications: (1) instead of
using Lemma 15 (i.e., the dense code family based on asymp-
totically bad MDS codes) we use the asymptotically good dense
code family from Lemma 26; (2) we consider only ρ > 2/3, so
that Lemma 26 holds true; (3) we use Corollary 30 to select a
τ > 0 such that τ -GAPNCPγ,q is NP-hard; (4) we assume that
the GAPNCPγ,q instance (C,v, t) we are reducing is in fact a
τ -GAPNCPγ,q instance. Details follow.

Theorem 31: For every prime power q, and constants ρ′ >
2/3 and γ′ ≥ 1, there exists R′ > 0 and δ′ > 0 such that
(R′, δ′)-restricted GAPRNC(ρ′)

γ′,q is hard for NP under RUR-
reductions with error probability exponentially small in a se-
curity parameter.

Proof: Fix a prime power q and real ρ > 2/3, and letR >
0 and δ > 0 be the corresponding constants such that Lemma 26
holds true. Let ε > 0 be an arbitrarily small constant, and γ′ ≥
1 the approximation factor for which we want to prove the NP-
hardness of the restricted GAPRNCγ′,q problem. Let γ = (2 +
1/ε)γ′, and let τ > 0 be the constant from Corollary 30 such
that τ -GAPNCPγ,q is NP-hard, e.g., τ = 1/(2γ + 2). We
prove that (R′, δ′)-restricted GAPRNC(ρ′)

γ′,q is NP-hard for ρ′ =
ρ(1+ε), δ′ = min(δ/2, τ) andR′ = R/(1+ 2

εδ + 2
τ + 1

ε ). Since
ρ can be arbitrarily close to 2/3, and ε arbitrarily close to 0, this
proves the NP-hardness of (R′, δ′)-restricted GAPRNC(ρ′)

γ′,q for
any ρ′ > 2/3.

We prove the NP-hardness of (R′, δ′)-restricted
GAPRNC(ρ′)

γ′,q by reduction from τ -GAPNCPγ,q. Let (C,u, t)
be an instance of τ -GAPNCPγ,q , where C ∈ Fk×nq . We invoke
the algorithm of Lemma 26 on input k, n and s, to find integers
l,m, r, a generator matrix A ∈ Fm×lq , a mapping matrix
T ∈ Fl×kq , and a vector v ∈ Flq such that

1) r < ρ · d(A),
2) for every x ∈ Fkq there exists a y ∈ A satisfying

d(v,y) ≤ r and yT = x,
3) m ≥ Rl,
4) d(A) ≥ δl,
5) l ≥ n, and therefore l ≥ t too.

where the second condition holds with probability 1−q−s. No-
tice that, since any sphere containing more than a single code-
word must have radius at least d(A)/2, the relative radius must
be at least

r

l
≥ d(A)

2l
≥ δ

2
.

The reduction proceeds as in the proof of Theorem 16. Let
b =

⌈
r
t

⌉
, a =

⌈
bt
εr

⌉
, t′ = ar + bt, and define code C′ and

target u′ as in (10) and (11). The output of the reduction
is (C′,u′, t′). We want to prove that the map (C,u, t) 7→
(C′,u′, t′) is a valid (RUR) reduction from τ -GAPNCPγ,q to
(R′, δ′)-restricted GAPRNC(ρ′)

γ′,q . The proof of the following
facts is exactly the same as in Theorem 16 (Equations (12), (13)
and (14)):
• t′ < ρ′ · d(C′)

• if d(u, C) ≤ t, then d(u′, C′) ≤ t′
• if d(u, C) > γ · t, then d(u′, C′) > γ′ · t′

It remains to prove that GAPRNC instance (C′,u′, t′) satisfies
the (R′, δ′) restriction. Notice that the code C′ has block length
n′ = al+ bn. Therefore the relative error weight t′/n′ satisfies

t′

n′
=
ar + bt

al + bn
≥ min

(
r

l
,
t

n

)
≥ min(δ/2, τ) = δ′.

Finally, the information content of C′ is m, i.e., the same as
code A. Therefore, the rate is m/n′ ≥ R(l/n′) and in order
to show that the code is asymptotically good we need to prove
that n′ = O(l). In fact,

a =
⌈
bt

εr

⌉
≤ 1+

⌈
r
t

⌉
t

εr
≤ 1+

t+ r

εr
≤ 1+

1
ε

+
l

εr
≤ 1+

1
ε

+
2
εδ

b =
⌈r
t

⌉
≤ t+ r

t
≤ 2l
τn

and

n′ = al + bn ≤
(

1 +
1
ε

+
2
εδ

+
2
τ

)
l.

This proves that the rate of the code is at least

m

n′
≥ R

1 + 1
ε + 2

εδ + 2
τ

= R′.

C. Minimum distance with linear additive error
In Lemma 19 we proved that the minimum distance prob-

lem is hard to approximate within some constant factor. The
proof was by reduction from GAPRNC. The same reduc-
tion, when applied to the restricted GAPRNC problem gives
an inapproximability result for the minimum distance problem
with linear additive error. In particular, Lemma 19 reduces
(R, δ)-restricted GAPRNC(ρ)

1/ρ,q to GAPDISTADDτ,q with τ =
δ · ((1/ρ)− 1) > δ · (1− ρ). This result is formally proved in
the following theorem.

Theorem 32: For every prime power q, there exists a τ > 0
such that GAPDISTADDτ,q is hard for NP under polynomial
RUR-reductions with soundness error exponentially small in a
security parameter.

Proof: The proof is by reduction from (R, δ)-restricted
GAPRNC(ρ)

γ,q with ρ < 1, γ = 1/ρ, and τ = δ(1 − ρ). The
reduction is the same as in the proof of Lemma 19. On input
(C,u, t), the reduction outputs (C′, t) where C′ is the code
defined in (15). We know from the proof of Lemma 19 that
(C,u, t) 7→ (C′, t) is a valid reduction from GAPRNC(ρ)

γ,q to
GAPDISTγ,q. We show that if (C′, t) is a YES (resp. NO) in-
stance of GAPDISTγ,q , then it is also a YES (resp. NO) instance
of GAPDISTADDτ,q . This proves that (C,u, t) 7→ (C′, t) is
also a valid reduction from GAPRNC(ρ)

γ,q to GAPDISTADDτ,q .
The case of YES instances is trivial, because the definition

of YES instances in GAPDISTγ,q and GAPDISTADDτ,q is the
same, namely d(C′) ≤ t. So, assume (C′, t) is a NO instance
of GAPDISTγ,q . Then,

d(C′) > γ · t = t+
(

1
ρ
− 1
)
t ≥ t+

(
1
ρ
− 1
)
δn ≥ t+ τn,

and (C′, t) is a NO instance of GAPDISTADDτ,q .
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VIII. OTHER REDUCTIONS AND OPEN PROBLEMS

We proved that approximating the minimum distance prob-
lem is hard for NP under RUR-reductions, i.e. probabilistic
reductions that map NO instances to NO instances, and YES in-
stances to YES instances with high probability. (The same is
true for all other reductions presented in this paper, as well as
the hardness proof for the shortest vector problem in [2], [18].)

An obvious question is whether it is possible to remove the
randomization and make the reduction deterministic. (Observe
that a deterministic NP-hardness result is known for the exact
version of the minimum distance problem [23], [22]. In con-
trast, for the shortest vector problem, even the exact version is
known to be NP-hard only under randomized reductions [2].)
We notice that our reductions (as well as the Ajtai-Micciancio
ones for SVP) use randomness in a very restricted way. Namely,
the only part of the reduction where randomness is used is the
proof of Lemma 15 (and Lemma 26 for asymptotically good
codes). The construction in the lemma depends only on the in-
put size, and not on the particular input instance we are reduc-
ing. So, if the construction succeeds, the reduction will faith-
fully map all YES instances (of the appropriate size) to YES in-
stances. Therefore, the statements in Lemma 15 and Lemma 26
can be easily modified to obtain hardness results for NP under
deterministic non-uniform reductions, i.e. reductions that take a
polynomially sized advice that depends only on the input size14.
(The advice is given by the sphere center v and transformation
matrix T satisfying Lemma 15 and Lemma 26.)

Corollary 33: For every finite field Fq the following holds:

• For every ρ > 1/2, and γ ≥ 1 GAPRNC(ρ)
γ,q is hard for

NP under nonuniform polynomial reductions. Therefore,
no nonuniform polynomial time (P/poly) algorithm exists
for GAPRNC(ρ)

γ,q unless NP ⊆ P/poly.
• For every γ > 1, GAPDISTγ,q is hard for NP under

nonuniform polynomial reductions. Therefore, no P/poly
algorithm exists for GAPDISTγ,q unless NP ⊆ P/poly.

• For every ε > 0 and γ(n) = 2log(1−ε) n, GAPDISTγ,q is
hard for NP under nonuniform quasi-polynomial reduc-
tions. Therefore, no nonuniform quasi-polynomial time
(QP/poly) algorithm exists for GAPDISTγ,q unless NP ⊆
QP/poly.

• For every ρ > 1/2, and γ ≥ 1 there exists R > 0 and δ >
0 such that (R, δ)-restricted GAPRNC(ρ)

γ,q is hard for NP
under nonuniform polynomial reductions. Therefore, no
P/poly algorithm exists for (R, δ)-restricted GAPRNC(ρ)

γ,q

unless NP ⊆ P/poly.
• There exists a τ > 0 such that GAPDISTADDτ,q is hard for

NP under nonuniform polynomial reductions. Therefore,
no P/poly algorithm exists for GAPDISTADDτ,q unless
NP ⊆ P/poly.

We notice also that a uniform deterministic construction sat-
isfying the properties of Lemma 15 and Lemma 26 would
immediately give a proper NP-hardness result (i.e. hardness
under deterministic Karp reductions) for all problems consid-

14Since our reduction achieves exponentially small error probability, hard-
ness under non-uniform reductions also follows from general results about de-
randomization [1]. However, the ad-hoc derandomization method we just de-
scribed is more efficient and intuitive.

ered in this paper. Interestingly, for the shortest vector prob-
lem, Micciancio [18] (see also [19]) showed that a determinis-
tic NP-hardness result is possible under a reasonable (but un-
proven) number theoretic conjecture regarding the distribution
of smooth numbers (i.e., numbers with no large prime factors).
No deterministic proof under similar number theoretic conjec-
tures is known for the coding problems studied in this paper.

Finally, we notice that all our results rely on the fact that the
code is given as part of the input. Thus it is conceivable that
for every error-correcting code, there exists a fast algorithm to
correct errors (say up to the distance of the code), however, this
algorithm may be hard to find (given a description of the code).
A result along the lines of the one of Bruck and Naor [7], show-
ing that there are specific sequences of codes for which nearest
codewords are hard to find (even if the code can be arbitrarily
preprocessed) would be desirable to fix this gap in our knowl-
edge. Feige and Micciancio [10] recently showed that the near-
est codeword problem with preprocessing is hard to approxi-
mate within any factor less than 5/3. Inapproximability results
for NCP with preprocessing are interesting because they can be
combined with our reduction (Theorem 16) to prove the inap-
proximability of RNC with preprocessing. Specifically, The-
orem 16 gives a reduction from GAPNCPγ,q to GAPRNC(ρ)

γ′,q

with ρ = (1 + ε)/2 and γ′ < γ/(2 + 1/ε), with the prop-
erty that the GAPRNC code depends only on the GAPNCP
code (and not the target vector). So, if GAPNCPγ,q is hard
to solve even when the code can be preprocessed, then also
GAPRNC(ρ)

γ′,q with preprocessing cannot be efficiently solved.
Unfortunately, in order to get non trivial hardness results for
GAPRNC(ρ)

γ′,q with preprocessing (i.e., results with γ′ ≥ 1)
using this method, one needs to start from inapproximability
results for GAPNCPγ,q with preprocessing with γ > 2. So,
inapproximability factors γ < 5/3 proved in [10] do not suf-
fice. Very recently, the results of [10] have been improved by
Regev [20] to γ < 3, giving the first inapproximability results
for RNC(ρ) with preprocessing. Notice that applying the re-
duction from Theorem 16 to GAPNCPγ,q with γ < 3 allows
to establish the inapproximability (within some constant factor
γ′ < 3/(2 + 1/ε)) of GAPRNC(ρ) for ρ = (1 + ε)/2. Notice
that in order to get γ′ ≥ 1, one needs ε > 1, and therefore
ρ > 1. Interestingly, [20] also shows how to modify the reduc-
tion in Theorem 16 to get inapproximability of RNC(ρ) with
preprocessing for any ρ > 1/2. The improvement is based on
the following two observations. (The reader is referred to [20]
for details.)

1) The lower bound d(C′,u′) ≥ b · d(C,u) in (14) can be
strengthened to

d(C′,u′) ≥ a · d(A,v) + b · d(C,u).

2) The center of the sphere v is at distance at least

d(A,v) ≥ min(‖v‖, d(A)− ‖v‖) ≥
(

1
ρ
− 1
)
r

from the code A.
Based on these two observations, Regev shows that (with a dif-
ferent choice of parameters a and b) the reduction given in the
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proof of Theorem 16 maps GAPNCPγ,q to GAPRNC(ρ)
γ′,q for

any γ′ <
(

1− 1
2ρ

)
γ + 1

2ρ . Combined with the improved in-
approximability results for GAPNCP with preprocessing, this
shows that GAPRNC(ρ)

γ,q with preprocessing is NP-hard (under
RUR-reductions as usual) for any ρ > 1/2 and γ < 3− 1/ρ.

We conclude with a brief discussion of the main problem left
open in this work. Our hardness results for RNC(ρ) hold only
for ρ > 1/2. For the case of general (not asymptotically good)
codes, we showed that one can make ρ arbitrarily close to 1/2.
However, we cannot achieve equality ρ = 1/2. RNC(1/2) (also
known as the “bounded distance decoding” problem, BDD) is
arguably the most relevant decoding problem in practice, and
the one for which most known polynomial time algorithms (for
specific families of codes, e.g., RS codes) work. The prob-
lems RNC(1/2) and RNC(ρ) for ρ > 1/2 are qualitatively
different, because for ρ ≤ 1/2 the solution to the decoding
problem is guaranteed to be unique. Our reduction relies on
the construction of a code A and a sphere B(v, r) of radius
r < ρ · d(A) such that B(v, r) contains several (in fact, expo-
nentially many) codewords. Clearly, for ρ ≤ 1

2 , no sphere of
radius r < ρ · d(A) can contain more than a single codeword.
So, the bound ρ > 1/2 seems an intrinsic limitation of our re-
duction technique.15 We leave determining the computational
complexity of BDD as an open problem.
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