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Abstract
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1 Introduction

Consider a modification of a Markov chain in which at each step, with some probability, we undo
the last forward transition of the chain. For intuition, the reader may wish to think of a user using
a browser on the world-wide web where he is following a Markov chain on the pages of the web,
and occasionally hitting the “back button”. We model such phenomena by discrete-time stochastic
processes of the following form: we are given a Markov chain M on a set V = {1, 2, . . . , n} of states,
together with an n-dimensional vector ~α of backoff probabilities. The process evolves as follows: at
each time step t = 0, 1, 2, . . . , the process is in a state Xt ∈ V , and in addition has a history Ht,
which is a stack whose items are states from V . Let top(H) denote the top of the stack H. At
time t = 0 the process starts at some state X0 ∈ V , with the history H0 containing only the single
element X0. At each subsequent step the process makes either a forward step or a backward step,
by the following rules: (i) if Ht consists of the singleton X0 it makes a forward step; (ii) otherwise,
with probability αtop(Ht) it makes a backward step, and with probability 1 − αtop(Ht) it makes a
forward step. The forward and backward steps at time t are as follows:

1. In a forward step, Xt is distributed according to the successor state of Xt−1 under M ; the
state Xt is then pushed onto the history stack Ht−1 to create Ht.

2. In a backward step, the process pops top(Ht−1) from Ht−1 to create Ht; it then moves to
top(Ht) (i.e., the new state Xt equals top(Ht).)1

Under what conditions do such processes have limit distributions, and how such processes differ
from traditional Markov chains? We focus in this paper on the time-averaged limit distribution,
usually called the “Cesaro limit distribution”.2

Motivation. Our work is broadly motivated by user modeling for scenarios in which a user
with an “undo” capability performs a sequence of actions. A simple concrete setting is that of
browsing on the world-wide web. We view the pages of the web as states in a Markov chain, with
the transition probabilities denoting the distribution over new pages to which the user can move
forward, and the backoff vector denoting for each state the probability that a user enters the state
and elects to click the browser’s back button rather than continuing to browse forward from that
state.

A number of research projects [1, 10, 13] have designed and implemented web intermediaries and
learning agents that build simple user models, and used them to personalize the user experience.
On the commercial side, user models are exploited to better target advertising on the web based
on a user’s browsing patterns; see [3] and references therein for theoretical results on these and
related problems. Understanding more sophisticated models such as ours is interesting in its own
right, but could also lead to better user modeling.

1Note that the condition Xt = top(Ht) holds for all t, independent of whether the step is a forward step or
backward step.

2The Cesaro limit of a sequence a0, a1, . . . is limt→∞
1
t

∑t−1

τ=0
aτ , if the limit exists. For example, the sequence

0,1,0,1,... has Cesaro limit 1/2. The Cesaro limit distribution at state i is limt→∞
1
t

∑t−1

τ=0
Pr [Xτ = i], if the limit

exists. By contrast, the stationary distribution at state i is limt→∞ Pr [Xt = i], if the limit exists. Of course, a
stationary distribution is always a Cesaro limit distribution. Intuitively, the stationary distribution gives the limiting
fraction of time spent in each state, whereas the Cesaro limit distribution gives the average fraction of time spent
in each state. We shall sometimes refer simply to either a stationary distribution or a Cesaro limit distribution as a
limit distribution.
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Overview of Results

For the remainder of this paper we assume a finite number of states. For simplicity, we assume
also that the underlying Markov chain is irreducible (i.e., it is possible, with positive probability, to
eventually reach each state from every other state) and aperiodic. In particular, M has a stationary
distribution, and not just a Cesaro limit distribution. Since some backoff probability αi may equal
1, these assumptions do not guarantee that the backoff process is irreducible (or aperiodic). We
are mainly interested in the situation where the backoff process is irreducible.3

We now give the reader a preview of some interesting and arguably unexpected phenomena that
emerge in such “back-button” random walks. Our primary focus is on the Cesaro limit distribution.

Intuitively, if the history stack Ht grows unboundedly with time, then the process “forgets”
the start state X0 (as happens in a traditional Markov process, where ~α is identically zero). On
the other hand, if the elements of ~α are all very close to 1, the reader may envision the process
repeatedly “falling back” to the start state X0, so that Ht does not tend to grow unboundedly.
What happens between these extremes?

One of our main results is that there is always a Cesaro limit distribution, although there may
not be a stationary distribution, even if the backoff process is aperiodic. Consider first the case
when all entries of ~α are equal, so that there is a single backoff probability α that is independent
of the state. In this case we give a remarkably simple characterization of the limit distribution
provided α < 1/2: the history grows unboundedly with time, and the limit distribution of the
process converges to that of the underlying Markov chain M .

On the other hand, if α > 1/2 then the process returns to the start state X0 infinitely often, the
expected history length is finite, and the limit distribution differs in general from that of M , and
depends on the start state X0. Thus, unlike ergodic Markov chains, the limit distribution depends
on the start state.

More generally, consider starting the backoff process in a probability distribution over the states
of M ; then the limit distribution depends on this initial distribution. As the initial distribution
varies over the unit simplex, the set of limit distributions forms a simplex. As α converges to
1/2 from above, these simplices converge to a single point, which is the limit distribution of the
underlying Markov chain.

The transition case α = 1/2 is fascinating: the process returns to the start state infinitely
often, but the history grows with time and the distribution of the process reaches the stationary
distribution of M . These results are described in Section 3.

We have distinguished three cases: α < 1/2, α = 1/2, and α > 1/2. In Section 4, we show
that these three cases can be generalized to backoff probabilities that vary from state to state.
The generalization depends on whether a certain infinite Markov process (whose states correspond
to possible histories) is transient, null, or ergodic respectively (see Section 4 for definitions). It
is intuitively clear in the constant α case, for example, that when α < 1/2, the history will grow
unboundedly. But what happens when some states have backoff probabilities greater than 1/2 and
others have backoff probabilities less than 1/2? When does the history grow, and how does the
limit distribution depend on M and ~α? Even when all the backoff probabilities are less than 1/2,
why should there be a limit distribution?

We resolve these questions by showing that there exists a potential function of the history
that is expected to grow in the transient case (where the history grows unboundedly), is expected

3We would like to make the simplifying assumptions that no αi equals 1, and that the backoff process is irreducible,
but we cannot, since later we are forced to deal with cases where these assumptions do not hold.
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to shrink in the ergodic case (where the expected size of the history stack remains bounded),
and is expected to remain constant if the process is null. The potential function is a bounded
difference martingale, which allows us to use martingale tail inequalities to prove these equivalences.
Somewhat surprisingly, we can use this relatively simple characterization of the backoff process to
obtain an efficient algorithm to decide, given M and α, whether or not the given process is transient,
null or ergodic. We show that in all cases the process attains a Cesaro limit distribution (though
the proofs are quite different for the different cases). We also give algorithms to compute the limit
probabilities. If the process is either ergodic or null then the limit probabilities are computed
exactly by solving certain systems of linear inequalities. However, if the process is transient, then
the limit probabilities need not be rational numbers, even if all entries of M and ~α are rational.
We show that in this case, the limit probabilities can be obtained by solving a linear system, where
the entries of the linear system are themselves the solution to a semidefinite program. This gives
us an algorithm to approximate the limit probability vector.

In Section 2, we establish various definitions and notation. In Section 3, we consider the case
where the backoff probabilities are constant (that is, uniform). In Section 4, we consider the
general case, where the backoff probabilities can vary. In Subsection 4.1, we show how it is possible
to classify, in polynomial time, the behavior of each irreducible backoff process as transient or
ergodic or null. In Subsection 4.2, we prove that each backoff process always has a Cesaro limit
distribution. In Subsection 4.3, we show how the limit distribution may be computed. In Section 5,
we show how it is possible to extend our results to a situation where the backoff probabilities are
determined by the edges (that is, for each forward step from state j to state k, there is a probability
of revocation that depends on both j and k, rather than depending only on k). In Section 6, we
give our conclusions. We also have an appendix, in which we give some background material,
namely, the Perron-Frobenius theorem, Azuma’s inequality for martingales, submartingales, and
supermartingales, the Renewal Theorem, and the Law of Large Numbers. Also in the appendix,
we complete the proof of one of our theorems.

2 Definitions and Notation

We use (M, ~α, i) to denote the backoff process on an underlying Markov chain M , with backoff
vector ~α, starting from state i. This process is an (infinite) Markov chain on the space of all
histories. Formally, a history stack (which we may refer to as simply a history) σ̄ is a sequence
〈σ0, σ1, . . . , σl〉 of states of V , for l ≥ 0. For a history σ̄ = 〈σ0, σ1, . . . , σl〉, its length, denoted
`(σ̄), is l (we do not count the start state σ0 in the length, since it is special). If `(σ̄) = 0, then
we say that σ̄ is an initial history. For a history σ̄ = 〈σ0, σ1, . . . , σl〉, its top, denoted top(σ̄), is
σl. We also associate the standard stack operations pop and push with histories. For a history
σ̄ = 〈σ0, σ1, . . . , σl〉, we have pop(σ̄) = 〈σ0, σ1, . . . , σl−1〉, and for state j ∈ {1, . . . , n}, we have
push(σ̄, j) = 〈σ0, σ1, . . . , σl, j〉. We let S denote the space of all finite attainable histories.

For a Markov chain M , backoff vector ~α, and history σ̄ with top(σ̄) = j, define the successor
(or next state) succ(σ̄) to take on values from S with the following distribution:

succ(σ̄) =


pop(σ̄) with probability αj if `(σ̄) ≥ 1
push(σ̄, k) with probability (1− αj)Mjk if `(σ̄) ≥ 1
push(σ̄, k) with probability Mjk if `(σ̄) = 0

For a Markov chain M , backoff vector ~α and state i ∈ {1, . . . , n}, the (M, ~α, i)-Markov chain
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is the sequence 〈H0, H1, H2, . . .〉 taking values from the set S of histories, with H0 = 〈i〉 and
Ht+1 distributed as succ(Ht). We refer to the sequence 〈X0, X1, X2, . . .〉, with Xt = top(Ht) as the
(M, ~α, i)-backoff process. Several properties of the (M, ~α, i)-backoff process are actually independent
of the start state i, and to stress this aspect we will sometimes use simply the term “(M, ~α)-backoff
process”.

Note that the (M, ~α, i)-backoff process does not completely give the (M, ~α, i)-Markov chain,
because it does not specify whether each step results from a “forward” or “backward” operation.
To complete the correspondence we define an auxiliary sequence: Let S1, . . . , St, . . . be the sequence
with St taking on values from the set {F,B}, with St = F if `(Ht) = `(Ht−1) + 1 and St = B
if `(Ht) = `(Ht−1) − 1. (Intuitively, F stands for “forward” and B for “backward”.) Notice
that sequence X0, . . . , Xt, . . . together with the sequence S1, . . . , St, . . . does completely specify the
sequence H0, . . . ,Ht, . . ..

We study the distribution of the states Xt as the backoff process evolves over time. We shall
show that there is always a Cesaro limit distribution (although there is not necessarily a stationary
distribution, even if the backoff process is aperiodic). We shall also study the question of efficiently
computing the Cesaro limit distribution.

3 Constant Backoff Probability

The case in which the backoff probability takes the same value α for every state has a very clean
characterization, and it will give us insight into some of the arguments to come. In this case, we
refer to the (M, ~α, i)-backoff process as the (M,α, i)-backoff process (where we drop the vector sign
above α).

We fix a specific (M,α, i)-backoff process throughout this section. Suppose we generate a
sequence X0, X1, . . . , Xt, . . . of steps together with an auxiliary sequence S1, . . . , St, . . .. To begin
with, we wish to view this sequence of steps as being “equivalent” (in a sense) to one in which only
forward steps are taken. In this way, we can relate the behavior of the (M,α, i)-backoff process to
that of the underlying (finite) Markov process M beginning in state i, which we understand much
more accurately. We write qt(j) to denote the probability that M , starting in state i, is in state j
after t steps.

When the backoff probability takes the same value α for every state, we have the following basic
relation between these two processes.

Theorem 3.1 For given natural numbers λ and t, and a state j, we have Pr [Xt = j | `(Ht) = λ] =
qλ(j).

Proof. Consider a string ω of F’s and B’s with the property the in every prefix, the number of
B’s is not more than the number of F’s. Notice that every such string corresponds to a legitimate
auxiliary sequence for the backoff process (except if some αi = 0 or 1). Now consider strings ω and
ω′ such that ω = ω1FBω2 and ω′ = ω1ω2. Let ω be of length t and ω1 of length t1. Notice that

Pr [Xt = j | 〈S1, . . . , St〉 = ω]
=

∑
σ̄∈S

Pr [Ht1 = σ̄ | 〈S1, . . . , St1〉 = ω1] · Pr [Xt = j | 〈St1+1, . . . , St〉 = FBω2 and Ht1 = σ̄]

=
∑
σ̄∈S

Pr [Ht1 = σ̄ | 〈S1, . . . , St1〉 = ω1] · Pr [Xt = j | 〈St1+3, . . . , St〉 = ω2 and Ht1+2 = σ̄]
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=
∑
σ̄∈S

Pr [Ht1 = σ̄ | 〈S1, . . . , St1〉 = ω1] · Pr [Xt−2 = j | 〈St1+1, . . . , St−2〉 = ω2 and Ht1 = σ̄]

= Pr
[
Xt−2 = j | 〈S1, . . . , St−2〉 = ω′

]

This motivates the following notion of a reduction. A sequence ω of F’s and B’s reduces in one step
to a sequence ω′ if ω = ω1FBω2 and ω′ = ω1ω2. A sequence ω reduces to a sequence ω′′ if if ω′′

can be obtained from ω by a finite number of “reductions in one step”. Repeatedly applying the
claim from the previous paragraph, we find that if a string ω of length t reduces to a string ω′′ of
length t′′, then

Pr [Xt = j | 〈S1, . . . , St〉 = ω] = Pr
[
Xt′′ = j | 〈S1, . . . , St′′〉 = ω′′

]
.

But every auxiliary sequence 〈S1, . . . , St〉 can eventually be reduced to a sequence of the form F λ

(i.e., consisting only of forward steps), and further λ = `(Ht). This yields:

Pr [Xt = j | `(Ht) = λ] = Pr
[
Xλ = j | 〈S1, . . . , Sλ〉 = F λ

]
= qλ(j).

In addition to the sequences {Xt} and {St}, consider the sequence {Yt : t ≥ 0}, where Yt is the
history length `(Ht). Now Yt is simply the position after t steps of a random walk on the natural
numbers, with a reflecting barrier at 0, in which the probability of moving left (except at 0) is α,
the probability of moving right (except at 0) is 1 − α, and the probability of moving right at 0 is
1. This correspondence will be crucial for our analysis.

In terms of these notions, we mention one additional technical lemma. Its proof follows simply
by conditioning on the value of Yt and applying Theorem 3.1.

Lemma 3.2 For all natural numbers t and states j, we have Pr [Xt = j] =
∑
r qr(j) · Pr [Yt = r] .

We are now ready to consider the two cases where α ≤ 1
2 and where α > 1

2 , and show that in
each case there is a Cesaro limit distribution.

The case of α ≤ 1
2 : Let the stationary probability distribution of the underlying Markov chain

M be 〈ψ1, . . . , ψn〉. By our assumptions about M , this distribution is independent of the start
state i. When α ≤ 1

2 , we show that the (M,α, i)-backoff process converges to 〈ψ1, . . . , ψn〉. That
is, there is a stationary probability distribution, which is independent of the start state i, and this
stationary probability distribution equals the stationary probability distribution of the underlying
Markov chain.

Theorem 3.3 For all states j of the (M,α, i)-backoff process, we have limt→∞ Pr [Xt = j] = ψj.

Proof. Fix ε > 0, and choose t0 large enough that for all states j of M and all t ≥ t0, we have
|qt(j)− ψj | < ε/2. Since α ≤ 1/2, we can also choose t1 ≥ t0 large enough that for each t ≥ t1, we
have Pr [Yt > t0] > 1− ε/2. Then for t ≥ t1 we have

|Pr [Xt = j]− ψj | =

∣∣∣∣∣∑
r

qr(j) · Pr [Yt = r]− ψj
∑
r

Pr [Yt = r]

∣∣∣∣∣
5



=

∣∣∣∣∣∑
r

(qr(j)− ψj) · Pr [Yt = r]

∣∣∣∣∣
≤

∑
r

|qr(j)− ψj | · Pr [Yt = r]

=
∑
r<t1

|qr(j)− ψj | · Pr [Yt = r] +
∑
r≥t1
|qr(j)− ψj | · Pr [Yt = r]

≤
∑
r<t1

Pr [Yt = r] +
∑
r≥t1

ε/2 · Pr [Yt = r]

≤ ε/2 + ε/2 = ε.

Although the proof above applies to each α ≤ 1
2 , we note a qualitative difference between the

case of α < 1
2 and the “threshold case” α = 1

2 . In the former case, for every r, there are almost
surely only finitely many t for which Yt ≤ r; the largest such t is a step on which the process pushes
a state that is never popped in the future. In the latter case, Yt almost surely returns to 0 infinitely
often, and yet the process still converges to the stationary distribution of M .

The case of α > 1
2 : When α > 1

2 , the (M,α, i)-backoff process retains positive probability on
short histories as t increases, and hence retains memory of its start state i. Nevertheless, the
process has a Cesaro limit distribution, but this distribution may be different from the stationary
distribution of M .

Theorem 3.4 When α > 1
2 , the (M,α, i)-backoff process has a Cesaro limit distribution.

Proof. For all natural numbers t and states j we have Pr [Xt = j] =
∑
r qr(j) · Pr [Yt = r] by

Lemma 3.2. Viewing Yt as a random walk on the natural numbers, one can compute the Cesaro
limit of Pr [Yt = r] to be ζr = βα when r = 0, and ζr = βzr−1 when r > 0, where β = (2α−1)/(2α2)
and z = (1 − α)/α. (Note that Yt does not have a stationary distribution, because it is even only
on even steps.) A standard argument then shows that Pr [Xt = j] has the Cesaro limit

∑
r ζrqr(j).

Note that the proof shows only a Cesaro limit distribution, rather than a stationary distribution.
We now give an example where there is no stationary distribution, even though the backoff process
is aperiodic.
Example: Assume

M =

(
.01 .99
.99 .01

)
α = .99. (1)

Assume that the two states are states 1 and 2, and that the start state is 1. It is easy to see that
the backoff process (M,α, 1) can have the initial history 〈1〉 only on even steps. By considering,
as before, the corresponding random walk on the natural numbers, with a reflecting barrier at 0,
in which the probability of moving left (except at 0) is .99, the probability of moving right (except
at 0) is .01, and the probability of moving right at 0 is 1, we see that on even steps, with high
probability the backoff process has the initial history 〈1〉, and hence is in state 1, while on the odd
steps, with high probability the backoff process has the history 〈1, 2〉, and hence is in state 2. Since
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the backoff process is in state 1 with high probability on even steps, and is in state 2 with high
probability on odd steps, it follows that there is no stationary distribution.

Note that the backoff process is aperiodic: this follows immediately from the fact that there is
a self-loop (in fact, both states have a self-loop, that is, it is possible to pass from each state to
itself in one step). This is in spite of the fact that there is a periodicity in the histories. Later, we
shall study the Markov chain (the “Polish matrix”) whose states consist of the attainable histories:
the Polish matrix is always periodic.

Now, more generally, suppose that the process starts from an initial distribution over states; we
are given a probability vector z = 〈z1, . . . , zn〉, choose a state j with probability zj , and begin the
process from j. As z ranges over all possible probability vectors, what are the possible vectors of
limit distributions? Let us again assume a fixed underlying Markov chain M , and denote this set
of limit distributions by Sα.

Theorem 3.5 Each Sα is a simplex. As α converges to 1
2 from above, these simplices converge to

the single vector that is the stationary distribution of the underlying Markov chain.

Proof. Let us define ζ
(α)
r to be the value of ζr given in the proof of Theorem 3.4 when the

backedge probability is α. Define qzt to be the probability vector whose jth entry is the probability
that the Markov process given by M is in state j after t steps, if the process starts from an initial
distribution z of states. Thus, qzt = zM t. Note that qt(j), as defined earlier, is the jth entry of qzt
when z is the probability distribution with zj = 1 and zk = 0 when k 6= j. Define fα(z) to be the
Cesaro limit distribution, when α is the backedge probability. As in the proof of Theorem 3.4, we
have fα(z) =

∑
r ζ

(α)
r qzr . It is easy to see that fα is a linear function, which implies that Sα is a

simplex.
Let ψ be the stationary probability distribution of the underlying Markov chain M , so that

ψM = ψ. We now show that as α converges to 1
2 from above, the simplices Sα converge to the

single vector ψ. We first show that ψ ∈ Sα. Since ψM = ψ, we have qψt = ψ for every t. It follows
easily that fα(ψ) = ψ. Hence, ψ ∈ Sα, as desired.

To show that the Sα’s converge to ψ, we show that for each ε > 0, there is α′ such that if
1
2 < α < α′, then Sα is in the ball of radius ε about ψ.

We know that qzt = zM t converges to ψ as t goes to infinity, for each probability vector z.
This convergence is in fact uniform, over all probability vectors. That is, given ε > 0, there is T
such that for every t > T and for every probability vector z, we have ‖qzt − ψ‖2 < ε (here ‖·‖2
is the `2-norm). Choose k so that ‖qzk − ψ‖2 < ε/3 for every probability vector z. Then choose
α′ > 1

2 so that for every α with 1
2 < α < α′, we have

∑
r<k ζ

(α)
r < ε/3 (it is easy to see that this is

possible, by definition of ζ(α)
r ). Then ‖fα(z)− ψ‖2 =

∥∥∥∑r<k ζ
(α)
r (qzr − ψ) +

∑
r≥k ζ

(α)
r (qzr − ψ)

∥∥∥
2
≤∑

r<k ζ
(α)
r ‖qzr − ψ‖2 +

∑
r≥k ζ

(α)
r ‖qzr − ψ‖2. Now ‖qzr − ψ‖2 ≤ 2, since qzr and ψ are each probability

vectors, and so
∑
r<k ζ

(α)
r ‖qzr − ψ‖2 ≤ 2

∑
r<k ζ

(α)
r < 2ε/3. Further, ‖qzr − ψ‖2 < ε/3 for r ≥ k, and

so
∑
r≥k ζ

(α)
r ‖qzr − ψ‖2 ≤ (ε/3)

∑
r≥k ζ

(α)
r ≤ (ε/3)

∑
r ζ

(α)
r = ε/3. So ‖fα(z)− ψ‖2 < ε. Therefore,

Sα is in the ball of radius ε about ψ, as desired.
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4 Varying Backoff Probabilities

Recall that the state space S of the (M, ~α, i)-Markov chain contains all finite attainable histories of
the backoff process. Let us refer to the transition probability matrix of the (M, ~α, i)-Markov chain
as the Polish matrix with start state i, or simply the Polish matrix if i is implicit or irrelevant.
Note that even though the backoff process has only finitely many states, the Polish matrix has a
countably infinite number of states.

Our analysis in the rest of the paper will branch, depending on whether the Polish matrix is
transient, null, or ergodic. We now define these concepts, which are standard notions in the study
of denumerable Markov chains (see e.g. [9]). A Markov chain is called recurrent if, started in an
arbitrary state i, the probability of eventually returning to state i is 1. Otherwise, it is called
transient. There are two subcases of the recurrent case. If, started in an arbitrary state i, the
expected time to return to i is finite, then the Markov chain is called ergodic. If, started in an
arbitrary state i, the probability of return to state i is 1, but the expected time to return to i is
infinite, then the Markov chain is called null. Every irreducible Markov chain is either transient,
ergodic, or null, and for irreducible Markov chains, we can replace every occurrence of “an arbitrary
state” by “some state” in these definitions above. Every irreducible Markov chain with a finite state
space is ergodic.

As examples, consider a random walk on the natural numbers, with a reflecting barrier at 0,
where the probability of moving left (except at 0) is p, of moving right (except at 0) is 1− p, and
of moving right at 0 is 1. If p < 1/2, then the walk is transient; if p = 1/2, then the walk is null;
and if p > 1/2, then the walk is ergodic.

We say that the backoff process (M, ~α, i) is transient (resp., null, ergodic) if the Polish matrix
is transient (resp., null, ergodic). In the constant α case (Section 3), if α < 1/2, then the backoff
process is transient; if α = 1/2, then the backoff process is null; and if α > 1/2, then the backoff
process is ergodic. The next proposition says that the classification does not depend on the start
state and therefore we may refer to the backoff process (M, ~α) as being transient, ergodic, or null.

Proposition 4.1 The irreducible backoff process (M, ~α, i) is transient (resp., ergodic, null) pre-
cisely if the backoff process (M, ~α, j) is transient (resp., ergodic, null).

Proof. Let us call a state i transient if (M, ~α, i) is transient, and similarly for the other properties
(recurrent, and its subclassifications ergodic and null). We must show that if some state is transient
(resp., ergodic, null) then every state is transient (resp., ergodic, null). If αj = 0 for some j, then
every state i is transient. This is because starting in state i, there is a positive probability of
eventually reaching state j, and the stack 〈i, . . . , j〉 can never be unwound back to the original
stack 〈i〉. So assume that αj > 0 for every j.

Assume that there is at least one transient state and at least one recurrent state; we shall
derive a contradiction. Assume first that there is some transient state j with αj < 1. Let i be a
recurrent state. Starting in state i, there is a positive probability of eventually reaching state j.
This gives the stack 〈i, . . . , j〉. There is now a positive probability that the stack never unwinds
back to 〈i, . . . , j〉 (this follows from the fact that j is transient and that αj < 1). But if the stack
never unwinds to 〈i, . . . , j〉, then it never unwinds to 〈i〉. So there is a positive probability that the
stack never unwinds to 〈i〉, which contradicts the assumption that i is recurrent. Hence, we can
assume that for every transient state j, we have αj = 1.

Let j be an arbitrary state. We shall show that j is recurrent, a contradiction. Assume that
the backoff process starts in state j; we must show that with probability 1, the stack in the backoff
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process returns to 〈j〉. Assume that the next state is `, so that the stack is 〈j, `〉. If ` is transient,
then with probability 1, on the following step the stack is back to 〈j〉, since α` = 1. Therefore,
assume that ` is recurrent. So with probability 1, the stack is 〈j, `〉 infinitely often. Since α` > 0,
it follows that with probability 1, the stack must eventually return to 〈j〉, which was to be shown.

We have shown that if some state is transient, then they all are. Assume that there is at least
one null state and at least one ergodic state; we shall derive a contradiction. This will conclude
the proof.

Assume first that there is some null state j with αj < 1. Let i be an ergodic state. There is
a positive probability that starting in state i in (M, ~α, i), the backoff process eventually reaches
state j and then makes a forward step. Since the expected time in (M, ~α, j) to return to the
stack 〈j〉 is infinite, it follows that the expected time in (M, ~α, i) to return to 〈i〉 is infinite. This
contradicts the assumption that i is ergodic. Hence, for every null state j, we have αj = 1.

Let j be an arbitrary state. We shall show that j is ergodic, a contradiction. For each state i,
let hi be the expected time to return to the stack 〈i〉 in (M, ~α, i), after starting in state i. Thus,
hi is finite if i is ergodic, and infinite if i is null. From the start state j in (M, ~α, j), the expected
time to return to the stack 〈j〉 is

∑
`

Mj`(α`(2) + (1− α`)α`(h` + 2) + (1− α`)2α`(2h` + 2) + (1− α`)3α`(3h` + 2) + · · ·) (2)

The term Mj`α`(2) represents the situation where the first step is to some state `, followed imme-
diately by a backward step. The term Mj`(1−α`)α`(h`+2) represents the situation where the first
step is to some state `, followed immediately by a forward step, followed eventually by a return to
the stack 〈j, `〉, followed immediately by a backward step. The next term Mj`(1− α`)2α`(2h` + 2)
represents the situation where the first step is to some state `, followed immediately by a forward
step, followed eventually by a return to the stack 〈j, `〉, followed immediately by a forward step,
followed eventually by another return to the stack 〈j, `〉, followed immediately by a backward step.
The pattern continues in the obvious way.

The contribution to the sum by null states ` is finite, since α` = 1 for each null state `. Let
z` = h` + 2. Then

(1− α`)α`(h` + 2) + (1− α`)2α`(2h` + 2) + (1− α`)3α`(3h` + 2) + · · ·

is bounded above by

(1− α`)α`(z`) + (1− α`)2α`(2z`) + (1− α`)3α`(3z`) + · · ·

This is bounded, since

(1− α`) + (1− α`)2(2) + (1− α`)3(3) + · · · = (1− α`)/(α`)2.

Therefore, the expression (2), the expected time to return to the stack 〈j〉, is finite, so j is
ergodic, as desired.

We shall prove the following theorems.

Theorem 4.2 If (M, ~α) is irreducible, then the task of classifying the (M, ~α)-backoff process as
transient or ergodic or null is solvable in polynomial time.
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Theorem 4.3 Each (M, ~α, i)-backoff process has a Cesaro limit distribution. If the process is
irreducible and is either transient or null, then this limit distribution is independent of the start
state i. Furthermore, the limit distribution is computable in polynomial time if the process is ergodic
or null.

When the (M, ~α, i)-backoff process is transient, the limit probabilities are not necessarily ra-
tional in the entries of M and ~α (see example in Section 4.3.3) and therefore we cannot hope to
compute them exactly. Instead, we give an algorithm for approximating these limit probabilities.
Specifically, we show the following:

Theorem 4.4 Let (M, ~α, i) be a transient backoff process on n states, and let all entries of M and
~α be rationals expressible as ratios of l-bit integers. Then given any error bound ε > 0, a vector π′

that ε-approximates the limit distribution π (i.e., satisfies |π′j − πj | ≤ ε) can be computed in time
polynomial in n, l and log 1

ε .

The next theorem shows the delicate balance that a null backoff process is in.

Theorem 4.5 Let (M, ~α) be an irreducible, null backoff process.

1. If (M, ~α) is modified by increasing some αj, but leaving M and all other αi’s the same, then
the resulting backoff process is ergodic.

2. If (M, ~α) is modified by decreasing some αj, but leaving M and all other αi’s the same, then
the resulting backoff process is transient.

Proof. The first part is Claim 4.28 below. The second part is demonstrated by comments after
Claim 4.28.

In particular, it follows from Theorem 4.5 that null backoff processes form a set of measure 0.

4.1 Classifying the Backoff Process

In this section we show how it is possible to classify, in polynomial time, the behavior of each
irreducible (M, ~α)-backoff process as transient or ergodic or null. In Section 3 (where the backoff
probability is independent of the state), except for initial histories the expected length of the history
either always grows, always shrinks, or always stays the same, independent of the top state in the
history stack. To see that this argument cannot carry over to this section, consider a simple Markov
chain M on two states 1 and 2, with Mij = 1/2 for every pair i, j, and with α1 = .99 and α2 = .01.
It is clear that if the top state is 1, then the history is expected to shrink while if the top state is 2,
then the history is expected to grow. To deal with this imbalance between the states, we associate
a weight wi with every state i and consider the weighted sum of states on the stack. Our goal is
to find a weight vector with the property that the sum of the weights of the states in the stack is
expected to grow (resp., shrink, remain constant) if and only if the length of the history is expected
to grow (resp., shrink, remain constant) This hope motivates our next few definitions.

Definition 4.6 For a nonnegative vector ~w = 〈w1, . . . , wn〉 and a history σ̄ = 〈σ0, . . . , σl〉 of a
backoff process on n states, define the ~w-potential of σ̄, denoted Φ~w(σ̄), to be

∑l
i=1wσi (i.e., the

sum of the weights of the states in the history, except the start state).
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Definition 4.7 For a nonnegative vector ~w = 〈w1, . . . , wn〉 and a history σ̄ = 〈σ0, . . . , σl〉 of a
backoff process on n states, define the ~w-differential of σ̄, denoted ∆Φ~w(σ̄), to be E [Φ~w(succ(σ̄))]−
Φ~w(σ̄). (Here E represents the expected value over the distribution given by succ(σ̄).)

The following proposition is immediate from the definition.

Proposition 4.8 If σ̄ and σ̄′ are non-initial histories with the same top state j, then

∆Φ~w(σ̄) = ∆Φ~w(σ̄′) = −αjwj + (1− αj)
n∑
k=1

Mjkwk.

The above proposition motivates the following definition.

Definition 4.9 For a nonnegative vector ~w = 〈w1, . . . , wn〉, a history σ̄ = 〈σ0, . . . , σl〉 of a backoff
process on n states, and state j ∈ {1, . . . , n}, let ∆Φ~w,j = ∆Φ~w(σ̄), where σ̄ is any history with
j = top(σ̄) and `(σ̄) > 0. Let ∆Φ~w denote the vector 〈∆Φ~w,1, . . . ,∆Φ~w,n〉.

For intuition, consider the constant α case with weight wi = 1 for each state i. In this case
Φ~w(σ̄), the ~w-potential of σ̄, is precisely `(σ̄), and ∆Φ~w(σ̄), the ~w-differential of σ̄, is the expected
change in the size of the stack, which is 1− 2α. When α < 1/2 (resp., α = 1/2, α > 1/2), so that
the expected change in the size of the stack is positive (resp., 0, negative), the process is transient
(resp., null, ergodic).

Similarly, in the varying α case we would like to associate a positive weight with every state
so that (1) the expected change in potential, or the “drift” of the potential, in every step has the
same sign independent of the top state (i.e., ~w is positive and ∆Φ~w is either all positive or all zero
or all negative), and (2) this sign can be used to categorize the process as either transient, null or
ergodic, precisely as it did in the constant α case.
Examples: We now give examples where this approach succeeds in classifying the backoff process
as transient, ergodic, or null. Let M and ~α be as follows:

M =

(
1
2

1
2

1
2

1
2

)
~α = 〈2

5
,
2
3
〉. (3)

Let ~w = (3, 1). Then ∆Φ~w = (0, 0). Thus, ~w is a witness to (M, ~α) being null. (Such results are
formally proven later.)

Now let M be as in (3), and let ~α′ = (1
3 ,

2
3). Let ~w′ = (4, 1). Then ∆Φ~w′ = (1

3 ,
1
6). Since

∆Φ~w′ is all positive, we conclude that ~w′ is a witness to (M, ~α′) being transient. Note that this is
consistent with the second part of Theorem 4.5, since α′ is obtained from α by lowering α1.

Finally, let M be as in (3), and let ~α′′ = (2
5 ,

4
5). Let ~w′′ = (4, 1).4 Then ∆Φ~w′′ = (− 1

10 ,−
3
10).

Since ∆Φ~w′′ is all negative, we conclude that ~w′′ is a witness to (M, ~α′′) being ergodic. Note that
this is consistent with the first part of Theorem 4.5, since α′′ is obtained from α by raising α2.

There are easy counterexamples, say, if some αi = 1 and some other αj = 0, that show that it
is not possible to insist that the expected change in potential be always positive, or always zero,
or always negative, when all weights are positive. Therefore, we relax the requirement of positivity
on vectors slightly and define the notion of an “admissible” vector (applicable to both the vector
of weights and also the vector of changes in potential).

4It is a coincidence that ~w′ = ~w′′.
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Definition 4.10 We say that an n-dimensional vector ~v is admissible for a vector ~α if ~v is non-
negative and vi = 0 only if αi = 1. (We will say simply “admissible” instead of “admissible for ~α”
if ~α is fixed or understood.)

In Section 4.1.1 we prove three very natural lemmas that combine to show the following. Given
an irreducible backoff process and an admissible vector ~w: (1) (Lemma 4.14) If ∆Φw is admissible
then the process is transient. (2) (Lemma 4.19) If ∆Φw is zero then the process is null. (3)
(Lemma 4.17) If −∆Φw is admissible then the process is ergodic. Roughly speaking, we show that
Φ~w(σ̄) is a bounded-difference martingale. This enables us to use martingale tail inequalities to
analyze the long-term behavior of the process.

This explains what could happen if we are lucky with the choice of ~w. It does not explain how
to find ~w, or even why the three cases above are exhaustive. In the rest of this section, we show
that the cases are indeed exhaustive and give a efficient algorithm to compute ~w. This part of the
argument relies on the surprising properties of an n× n matrix related to the (M, ~α)-process. We
now define this matrix, that we call the Hungarian matrix.

Let A be the n × n diagonal matrix with the ith diagonal entry being αi. Let I be the n × n
identity matrix. If αi > 0 for every i, then the Hungarian matrix for the (M, ~α)-process, denoted
H = H(M,~α), is the matrix (I − A)MA−1. (Notice that A−1 does exist and is the diagonal matrix
with ith entry being 1/αi.)

The spectral properties of H, and in particular its maximal eigenvalue, denoted ρ(H), play
a central role in determining the behavior of the (M, ~α)-process. In this section we show how it
determines whether the process is ergodic, null, or transient. In later sections, we will use it to
compute limit probability vectors, for a given (M, ~α)-process.

The maximal eigenvalue ρ(H) motivates us to define a quantity ρ(M, ~α) which is essentially
equal to ρ(H), in cases where H is defined. Let

ρ(M, ~α) = sup {ρ| There is an admissible ~w such that the vector (I −A)M ~w − ρA~w is admissible} .

We first dispense with the case where some αi = 0.

Claim 4.11 If (M, ~α) is irreducible and αj = 0 for some j, then ρ(M, ~α) =∞.

Remark: From the proof it follows that if every entry of M and ~α is an l-bit rational, then
for any ρ ≤ 2l, there exists a non-negative vector ~w with ‖w‖∞ ≤ 1 and wi ≥ 2− poly(n,l) if wi 6= 0
satisfying (I −A)M ~w ≥ ρ~w. This fact will be used in Section 4.3.3.
Proof. Let ρ < ∞ be any constant. We prove the claim by explicitly constructing an admissible
vector ~w such that (I −A)M ~w − ρA~w is admissible.

Let Mmin be the smallest non-zero entry of M , and let αmax be the largest entry of ~α that is
strictly smaller than 1. Let γ be any positive number less than (1−αmax)Mmin

ρ . Let j be any index
such that αj = 0. Let GM,~α be the graph on vertex set {1, . . . , n} that has an edge from i to k,
if αi 6= 1 and Mik 6= 0. (This is the graph with edges giving forward steps of positive probability
of the (M, ~α)-process.) Let d(i, k) denote the length of the shortest path from i to k in the graph
GM,~α. By the irreducibility of the (M, ~α)-process we have that d(i, j) < n for every state i. We
now define ~w as follows.

wi =

{
0 if αi = 1
γd(i,j) otherwise.
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It is clear by construction that γ > 0 and thus ~w is admissible. Let ~v = (I−A)M ~w−ρA~w. We
argue that ~v is admissible componentwise, showing that vi satisfies the condition of admissibility
for every i.

Case 1: αi = 1. In this case it suffices to show vi ≥ 0. This follows from the facts that∑
k(1− αi)Mikwk ≥ 0, and −ραiwi = 0 since wi = 0.
Case 2: αi = 0. (This includes the case k = j.) In this case, again we have −ραiwi = 0.

Further we have
∑
k(1 − αi)Mik =

∑
kMik = 1 and thus vi = 1, which also satisfies the condition

for admissibility.
Case 3: 0 < αi < 1. In particular, i 6= j and d(i, j) > 0. Let k be such that d(k, j) = d(i, j)− 1

and there is an edge from i to k in GM,~α. We know such a state k exists (by definition of shortest
paths). We have:

vi =
∑
k′

(1− αi)Mik′wk′ − ραiwi

≥ (1− αi)Mikwk − ραiwi
≥ (1− αmax)Mminwk − ρwi
= (1− αmax)Mminγ

d(k,j) − ργd(i,j)

= ((1− αmax)Mmin − ργ) γd(k,j)

> 0 (since γ < (1−αmax)Mmin

ρ )

Again the condition for admissibility is satisfied.

The next claim shows that in the remaining cases ρ(M, ~α) = ρ(H).

Claim 4.12 Let (M, ~α) be irreducible. If αi > 0 for every i, then ρ(M, ~α) = ρ(H). Further, there
exists an admissible vector ~w such that (I −A)M ~w = ρ(M, ~α)A~w.

Proof. Note first that the Hungarian matrix H is nonnegative. Our hope is to apply the Perron-
Frobenius theorem to this non-negative matrix and derive some benefits from this. However, H is
not necessarily irreducible, so we can do this yet. So we consider a smaller matrix, H|~α, which is
the restriction of H to rows and columns corresponding to j such that αj < 1. Notice that H|~α
is irreducible. (This is equivalent to M |~α being irreducible, which is implied by the irreducibility
of the backoff process.) By the Perron-Frobenius theorem (Theorem A.1), there exists a (unique)
positive vector ~v′ and a (unique) positive real ρ = ρ(H|~α) such that H|~α~v′ = ρ~v′. In what follows
we see that ρ(M, ~α) = ρ(H|~α) = ρ(H).

First we verify that ρ(H|~α) = ρ(H). This is easily seen to be true. Note that the rows of H
that are omitted from H|~α are all 0. Thus a vector ~x is a right eigenvector of H if and only if it
is obtained from a right eigenvector ~x′ of H|~α by padding with zeroes (in indices j where αj = 1),
and this padding preserves eigenvalues. In particular, we get that ρ(H) = ρ(H|~α) and there is an
admissible vector ~v (obtained by padding ~v′) such that H~v = ρ(H)~v.

Next we show that ρ(M, ~α) ≥ ρ(H). Consider any ρ′ < ρ(H) and let ~w = A−1~v. Then note
that (I − A)M ~w − ρ′A~w = H~v − ρ′~v = (ρ(H) − ρ′)~v which is admissible. Thus ρ(M, ~α) ≥ ρ′ for
every ρ′ < ρ(H) and thus ρ(M, ~α) ≥ ρ(H).

Finally we show that ρ(M, ~α) ≤ ρ(H). Let ~w be an admissible vector and let ρ > 0 be such that
(I −A)M ~w− ρA~w is admissible. Let ~v = A−1 ~w. First note that vj must be 0 if αj = 1, or else the
jth component of the vector (I −A)M ~w − ρA~w is negative. Now let ~v′ be obtained by restricting
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~v to coordinates such that αj < 1. Notice now that we have H|~α~v′ − ρ~v′ is a non-negative vector.
From the fact [11, p. 17] that

ρ(A) = max
~x

{
min
i|xi 6=0

{
(Ax)i
xi

}}

for any irreducible non-negative matrix A, we conclude that ρ(H|~α) ≥ ρ.
This concludes the proof that ρ(M, ~α) = ρ(H). The existence of a vector ~w satisfying (I −

A)M ~w = ρ(H)A~w also follows from the argument above.

Lemma 4.13 For every irreducible (M, ~α)-backoff process, the following hold.

• (M, ~α) is ergodic ⇔ ρ(M, ~α) < 1 ⇔ There is an admissible ~w such that −∆Φ~w is
admissible.

• (M, ~α) is null ⇔ ρ(M, ~α) = 1 ⇔ There is an admissible ~w such that ∆Φ~w = ~0.

• (M, ~α) is transient ⇔ ρ(M, ~α) > 1 ⇔ There is an admissible ~w such that ∆Φ~w is
admissible.

Furthermore, ρ(M, ~α) and the vector ~w are computable in polynomial time.

Proof. The fact that ρ(M, ~α) is computable efficiently follows from Claims 4.11 and 4.12.
Notice now that ∆Φ~w = (I −A)M ~w−A~w. We start with the case ρ(M, ~α) < 1. Notice that in

this case, no αi = 0 (by Claim 4.11) and hence we can apply Claim 4.12 to see that there exists a
vector ~w such that (I − A)M ~w = ρA~w. For this vector ~w, we have ∆Φ~w = (ρ− 1)A~w. Thus, the
vector −∆Φ~w = (1 − ρ)~w is admissible. Applying Lemma 4.17 of Section 4.1.1, we conclude that
the (M, ~α)-process is ergodic.

Similarly, if ρ(M, ~α) = 1, we have that for the vector ~w from Claim 4.12, ∆Φ~w = ~0. Thus,
by Lemma 4.19, we find that the (M, ~α)-process is null. Finally, if ρ(M, ~α) > 1, then (by the
definition of ρ(M, ~α)) there exists a vector ~w and ρ′ > 1 such that (I−A)M ~w−ρ′A~w is admissible.
In particular, this implies that the vector ∆Φ~w = (I − A)M ~w − A~w is also admissible. Applying
Lemma 4.14, we conclude that the (M, ~α)-process is transient.

Theorem 4.2 follows immediately from Lemma 4.13.

4.1.1 Classification Based on Drift of the Potential

We now state and prove Lemmas 4.14, 4.17, and 4.19 which relate the drift of the potential to the
behavior of the backoff process (i.e., whether they are transient, null, or ergodic).

Lemma 4.14 For an irreducible (M, ~α)-backoff process, if there exists an admissible ~w s.t ∆Φ~w is
also admissible, then the (M, ~α)-backoff process is transient.

Proof. We start by showing that the potential Φ~w(succ(succ(σ̄))) has a strictly larger expectation
than the potential Φ~w(σ̄). This, coupled with the fact that changes in the potential are always
bounded in magnitude, allow us to apply martingale tail inequalities to the sequence {Φ~w(Ht)}t
and claim that it increases linearly with time, with all but an exponentially vanishing probability.
This allows us to prove that with positive probability the process never returns to the initial history,
thus ruling out the possibility that it is recurrent (ergodic or null). Details below.
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Claim 4.15 There exists ε > 0 such that for all sequences H0, . . . ,Ht of positive probability in the
(M, ~α, i)-Markov chain,

E [Φ(Ht+2)− Φ(Ht)] > ε.

Proof. We start by noticing that the potential must increase (strictly) whenever Ht is the initial
history. This is true, since in this case the backoff process is not allowed to backoff. Further, by
irreducibility, there exists some state j with αj < 1 and Mij > 0. Thus the expected increase in
potential from the initial history is at least ε1 = wjMij . Let ε2 be the smallest non-zero entry of
∆Φ~w. We show that the claim holds for ε = min{ε1, ε2}.

Notice first that both the quantities: E [Φ(Ht+1)− Φ(Ht)] and E [Φ(Ht+2)− Φ(Ht+1)] are non-
negative (since ∆Φ~w is nonnegative). So it suffices to prove that at least one of these quantities
increases by at least ε. We consider several cases:

Case 1: αtop(Ht) < 1: In this case E [Φ(Ht+1)− Φ(Ht)] = ∆Φ~w,top(Ht) ≥ ε2, since ∆Φ~w is
admissible.

Case 2: αtop(Ht) = 1 and `(Ht) > 1: LetHt = 〈σ0, . . . , σl−1, σl〉. Note thatHt+1 = 〈σ0, . . . , σl−1〉.
Further, note that αtop(Ht+1) < 1 (since only the top or bottom of the history stack can be states j
with αj = 1). Thus, in this case we have, E [Φ(Ht+2)− Φ(Ht+1)] ≥ ε2 (again using the admissibility
of ∆Φ~w).

Case 3: αtop(Ht) = 1 and `(Ht) ≤ 1: In this case, either Ht or Ht+1 is the initial history, and in
such a case, the expected increase in potential is at least ε1.

Next we apply a martingale tail inequality to claim that the probability that the history is the
initial history (or equivalently the potential is zero) grows exponentially small with time.

Claim 4.16 There exists c <∞, λ < 1 such that for every integer t ≥ 0, the following holds:

Pr[`(Ht) = 0] ≤ c · λt.

Proof. Since the potential at the initial history is zero, and the potential is expected to go up by ε
every two time steps, we have that the expected potential at the end of t steps (when t is even) is at
least εt/2. Further notice that the sequence Φ~w(H0),Φ~w(H2),Φ~w(H4), . . . , form a submartingale,
and that the change in Φ~w(Ht) is absolutely bounded: |Φ~w(Ht+2)−Φ~w(Ht)| ≤ 2 ·maxi∈{1,...,n}{wi}.
Therefore, we can apply a standard tail inequality (Corollary A.5) to show that there exist constants
c <∞, λ < 1 such that

Pr [Φ~w(Ht) = 0] ≤ c · λt.

The claim follows by noticing that if the history is the initial history, then the potential is zero.

We use the claim above to notice that for any time T , the probability that the (M, ~α, i)-backoff
process reaches the initial history after time T is at most

∑∞
t=T c · λt ≤ c · λT /(1 − λ). Setting T

sufficiently large, we get that this quantity is smaller than 1. Thus the probability that the given
(M, ~α, i)-backoff process returns to the initial history after time T is bounded away from 1, ruling
out the possibility that it is recurrent.

Lemma 4.17 For an irreducible (M, ~α)-backoff process, if there exists an admissible ~w s.t −∆Φ~w

is also admissible, then the (M, ~α)-backoff process is ergodic.
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Proof. First notice that we can modify the vector ~w so that it is positive and ∆Φ~w is negative,
as follows: Let ε be the smallest non-zero entry of −∆Φ~w. For every j such that αj = 1, set
w′j = wj + ε/2. The corresponding difference vector, ∆Φ~w′ , is at most ε/2 larger than ∆Φ~w in any
coordinate; and thus entries that were already negative in ∆Φ~w remain negative in ∆Φ~w′ . On the
other hand, for any j such that ∆Φ~w,j was 0 (implying αj = 1), the value of ∆Φ~w′,j is −w′j = −ε/2.
Thus all the zero entries are now negative.

Henceforth we assume, without loss of generality, that ~w is positive and ∆Φ~w is negative. Let
wmin denote the smallest entry of −∆Φ~w and wmax denote the largest entry of ~w. At this stage the
expected ~w-potential always goes down except when the history is an initial history. Notice that
when the history is an initial history, the expected increase is potential is at most wmax. To deal
with initial histories, we define an extended potential.

For a history sequence H0, . . . ,Ht, . . . of the (M, ~α, i)-Markov chain, let N0(t) denote the number
of times the initial history occurs in the sequence H0, . . . ,Ht−1. Define the extended potential
ψ(t) = ψH0,...,Ht,...

~w (t) to be

ψ(t) = Φ~w(Ht)− (wmax + wmin) ·N0(t).

By construction, the extended potential of a sequence is expected to go down by at at least
wmin in every step. Thus we have

E[ψ(t)] ≤ −wmin · t.

Further, the sequence ψ(0), . . . , ψ(t), . . . is a supermartingale and the change in one step is abso-
lutely bounded. Thus, by applying a martingale tail inequality (Corollary A.6), we see that for any
ε > 0, with probability tending to 1 the extended potential after t steps is at most −(1− ε)wmin · t.
(More formally, for every ε, δ > 0, there exists a time t0 such that for every t ≥ t0, the probability
that the extended potential ψ(t) is greater than −(1− ε)wmin · t, is at most δ.) Since the Φ~w part
of the extended potential is always nonnegative, and each time the sequence reaches the initial
history, the extended potential is reduced by at most (wmax + wmin), this implies that a sequence
with extended potential −(1− ε)wmin · t must include at least (1− ε) wmin

wmin+wmax
· t initial histories.

Assume for contradiction that the (M, ~α)-backoff process is null or transient. Then the expected
time to return to an initial history is infinite. Let Yi denote the length of the time between the
(i− 1)st and ith visit to the initial history. By the law of large numbers (Proposition A.9), we find
that for every δ > 0 and every c, there exists an integer N such that with probability at least 1− δ,
the first N visits to the initial history take more than cN steps. Setting δ = 1

2 and c = 2 · wmin+wmax
(1−ε)wmin

and t = cN , we see from the previous paragraph that with probability tending to 1, after t steps
there are at least 2N initial histories. But we just showed that with probability at least 1

2 , the first
N visits to the initial history take more than t steps. This is a contradiction. We conclude that
the (M, ~α)-backoff process is ergodic.

Before going on to characterize null processes, we prove a simple proposition that we will
need in the next lemma. Define the revocation probability rj to be the probability that a given
forward move to state j is eventually popped off the history stack (for a more formal definition, see
Definition 4.36).

Proposition 4.18 If an irreducible (M, ~α)-backoff process is transient, then there exists a state j
with revocation probability rj < 1.
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Proof. If every state has revocation probability 1, then the first step is revoked with probability
1, indicating that the process returns to the initial history with probability 1, making it recurrent.

The converse is also true, but we do not need it, so we do not prove it.

Lemma 4.19 For an irreducible (M, ~α)-backoff process, if there exists an admissible ~w s.t ∆Φ~w = ~0
then the (M, ~α)-backoff process is null.

Proof. We first define an extended potential as in the proof of Lemma 4.17, but we will be a bit
more careful. Let τ = E [Φ~w(H1)− Φ~w(H0)] be the expected increase in potential from the initial
history. (Note τ > 0.)

As before, for a history sequence H0, . . . ,Ht, . . . of the (M, ~α, i)-Markov chain, let N0(t) denote
the number of occurrences of the initial history in time steps 0, . . . , t − 1, and let the extended
potential ψ(t) be given by

ψ(t) = Φ~w(Ht)− τ ·N0(t).

Notice that the extended potential is expected to remain unchanged at every step of the backoff
process. Applying a martingale tail inequality again (Corollary A.4) we note that for every δ > 0,
there exists a constant c such that the probability that the extended potential ψ(t) is greater than
c
√
t in absolute value is at most δ. We will show that for an ergodic process the extended potential

goes down linearly with time, while for a transient process the extended potential goes up linearly
with time - thus concluding that the given (M, ~α)-backoff process fits in neither category.

Claim 4.20 If the irreducible (M, ~α)-backoff process is transient, then there exist constants ε > 0
and b such that for every time t, it is the case that

E[ψ(t)] ≥ εt− b.

Proof. Let j be a state with rj < 1. Let n be the number of states of the Markov chain M .
Notice that for each t and each history Ht, there is a positive probability that there exists a time
t′ ∈ [t+ 1, t+n] such that top(Ht′) = j and the move from Ht′−1 to Ht′ is a forward step. Further,
conditioned on this event there is a positive probability (of 1 − rj) that this move to j is never
revoked. Thus in any interval of time of length at least n, there is a positive probability, say γ, that
the (M, ~α, i)-backoff process makes a move that it never revokes in the future. Thus the expected
number of such moves in t steps is γt/n. Let wmin be the smallest non-zero entry of ~w. Then the
expected value of Φ~w(Ht) is at least (γt/n)wmin.

We now verify that the expected value of τ · N0(t) is bounded from above. This is an easy
consequence of a well-known property of transient Markov chains, which states that the expected
number of returns to the start state (or any state) is finite. Let this finite bound on E[N0(t)] be B.
Then for every t, we have E[τ ·N0(t)] ≤ τB.

Thus the expected extended potential after t steps is at least γt/n− τB.

Claim 4.21 If the irreducible (M, ~α)-backoff process is ergodic, then there exist constants γ > 0
and b such that for all t,

E [ψ(t)] ≤ −γt+ b.
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Proof. We first argue that the “−τ ·N0(t)” part of the extended potential goes down linearly with
time. Let Yj denote the time between the (j − 1)st and jth return to the initial history. Then the
Yj ’s are independently and identically distributed and have a bounded expectation, say T . Then
applying the law of large numbers (Proposition A.9), we have that there exists t0 such that for all
t ≥ t0 the probability that the number of visits to the initial history in the first t time steps is less
than t/2T is at most 1

2 . Thus the expected contribution to the extended potential from this part
is bounded above by −τ · (t− t0)/(4T ).

It remains to bound the contribution from E[Φ~w(Ht)]. Let f(t) denote the smallest nonnegative
index such that the history Ht−f(t) is an initial history. Notice then that E[Φ~w(Ht)] is at most
wmax · E[f(t)]. We will bound the expected value of f(t). Let F (t) denote this quantity. Let p be
the probability distribution on the return time to an initial history, starting from H0. Recall that∑
i ip(i) = T . Then F (t) satisfies the relation:

F (t) =
t∑
i=1

p(i)F (t− i) +
∞∑

i=t+1

tp(i).

(If the first return to the initial history happens at time i and i > t, then f(t) = t, and if i ≤ t
then f(t) = f(t− i).) We use this relation to prove, by induction on t, that: For every ε > 0, there
exists a constant a such that F (t) ≤ εt + a. Set a such that

∑
i>a ip(i) ≤ ε

2T . The base cases of
the induction are with t ≤ a and these easily satisfy the hypothesis, since F (t) ≤ t ≤ a ≤ εt + a.
For t > a, we get:

F (t) =
t∑
i=1

p(i)F (t− i) +
∞∑

i=t+1

tp(i)

≤
t∑
i=1

p(i)(ε(t− i) + a) +
∞∑

i=t+1

tp(i)

≤
∞∑
i=1

p(i)εt−
t∑
i=1

p(i)εi+
∞∑
i=1

p(i)a+
∞∑

i=t+1

ip(i)

= εt+ a−
∞∑
i=1

p(i)εi+
∞∑

i=t+1

(1 + ε)ip(i)

≤ εt+ a− εT + (1 + ε)(ε/2)T
≤ εt+ a (Using ε ≤ 1).

By selecting ε sufficiently small (so that the overall coefficient of t is negative), the claim follows.

4.2 Existence of Cesaro Limit Distributions

In this section we prove that the (M, ~α, i)-backoff process always has a Cesaro limit distribution.
The proofs are different for each case (ergodic, null and transient), and so we divide the discussion
based on the case. In the transient case, we prove even more (the existence of a stationary distri-
bution, not just a Cesaro limit distribution, when the backoff process is aperiodic). As we showed
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earlier, there need not be a stationary distribution in the ergodic case, even when the backoff pro-
cess is aperiodic. It is an open problem as to whether there is always a stationary distribution in
the aperiodic null case (we conjecture that there is).

4.2.1 Ergodic Case

The simplest argument is for the ergodic case.

Theorem 4.22 If the (M, ~α, i)-backoff process is ergodic, then it has a Cesaro limit distribution.

Proof. Since the Polish matrix is ergodic, the corresponding Markov process has a Cesaro limit.
This gives us a Cesaro limit in the backoff process, where the probability of state i is the sum of
the probabilities of the states (stacks) in the Polish matrix with top state i.

4.2.2 Transient Case

Next, we consider the transient case (where the Polish matrix is transient). The crucial notion
underlying the analysis of this case is that of “irrevocability”. When the backoff process is in a
state (with a given stack), and that state is never popped off of the stack (by taking a backedge),
then we refer to this (occurrence of the) state as irrevocable. Let us fix a state i, and consider
a renewal process (see Definition A.7), where each new epoch begins when the process has an
irrevocable occurrence of state i. Since the Polish matrix is transient, the expected length of an
epoch is finite. The limit probability distribution of state j is the expected number of times that
the process is in state j in an epoch, divided by the expected length of an epoch. This argument
is formalized below, to obtain a proof of the existence of a Cesaro limit distribution.

Theorem 4.23 If the (M, ~α, i)-backoff process is transient, then it has a Cesaro limit distribution,
which is independent of the start state i. If it is aperiodic, then it has a stationary distribution.

Proof. Since the Polish matrix is transient, we know that for each state σ̄ of the Polish matrix
(which is a stack of states of the backoff process) where the top state top(σ̄) has αtop(σ̄) 6= 1, there
is a positive probability, starting in σ̄, that the top state top(σ̄) is never popped off of the stack.
It is clear that this probability depends only on the top state top(σ̄) of the stack σ̄.

When the backoff process is in a state (with a given stack), and that state is never popped off
of the stack (by taking a backedge), then we refer to this (occurrence of the) state as irrevocable.
Technically, an irrevocable state should really be thought of as a pair consisting of the state (of the
backoff process) and the time, but for convenience we shall simply refer to the state itself as being
irrevocable.

We now define a new matrix, which we call the Turkish matrix, which defines a Markov chain.
Just as with the Polish matrix, the states are again stacks of states of the backoff process, but
the interpretation of the stack is different from that of the Polish matrix. In the Turkish matrix,
the stack 〈σ0, . . . , σ`〉 represents a situation where σ0 is irrevocable, and where σ1, . . . , σ` are not
irrevocable. The intuition behind the state 〈σ0, . . . , σ`〉 is that the top states of the stack of the
Polish matrix (from σ0 on up) are σ0, . . . , σ`. As with the Polish matrix, the states 〈σ0, . . . , σ`〉 of
the Turkish matrix are restricted to being the attainable ones: in this case this means (a) ασj 6= 1
for 0 ≤ j < `; (b) ασj 6= 0 for 1 ≤ j ≤ `; and (c) Mσiσi+1 > 0 for 0 ≤ i < `. There is a subtlety
if the start state i has αi = 1, since then the state 〈i〉 is not reachable from any other state, and
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so we do not consider it to be a state of the Turkish matrix. One way around this issue is simply
to assume that the start state i has αi 6= 1. It is not hard to see this assumption is without loss of
generality, since the backoff process will reach an irrevocable state j (which necessarily has αj 6= 1)
with probability 1.

We now define the entries of the Turkish matrix T . If σ̄ and σ̄′ are states of the Turkish matrix,
then the entry Tσ̄σ̄′ is 0 unless either (a) σ̄′ is the result of popping the top element off of the stack
σ̄, (b) σ̄′ is the result of pushing one new element onto the stack σ̄, or (c) both σ̄ and σ̄′ each
contain exactly one element. The probabilities are those induced by the backoff process. Thus,
in case (a), if ` ≥ 1, then T〈σ0,...,σ`〉〈σ0,...,σ`−1〉 equals the probability that the backoff process takes
a backedge from σ`, given that the last irrevocable state was σ0, that the stack from σ0 on up
is 〈σ0, . . . , σ`〉, and that the remaining states σ1, . . . , σ`−1 on the stack are not irrevocable. That
this conditional probability is well-defined (and is independent of the time) can be seen by writing
Pr [A | B] as Pr [A ∧B] /Pr [B]. Note that even though this conditional probability represents the
probability of taking a backedge from state σ`, it is not necessarily equal to ασ` , since the event
of taking the backedge is conditioned on other events, such as that σ0 is irrevocable. Similarly, in
case (b), we have that T〈σ0,...,σ`〉〈σ0,...,σ`+1〉 equals the probability that the backoff process takes a
forward edge from σ` to σ`+1 and that σ`+1 is not irrevocable, given that the last irrevocable state
was σ0, that the stack from σ0 on up is 〈σ0, . . . , σ`〉, and that the remaining states σ1, . . . , σ` on
the stack are not irrevocable. Finally, in case (c) we have that T〈σ0〉〈σ′0〉 equals the probability that
the backoff process takes a forward edge from to σ0 to σ′0 and that σ′0 is irrevocable, given that σ0

is irrevocable.
We now show that the Turkish matrix is irreducible, aperiodic (if the backoff process is aperi-

odic), and (most importantly) ergodic.
We first show that it is irreducible. We begin by showing that from every state of the Turkish

matrix, it is possible to eventually reach each (legal) state 〈σ0〉 with only one element in the stack
(by “legal”, we mean that ασ0 6= 1). This is because in the backoff process, it is possible to
eventually reach the state σ0, because the backoff process is irreducible; further, it is possible that
once this state σ0 is reached, it is then irrevocable. Next, from the state 〈σ0〉, it is possible to
eventually reach each state 〈σ0, . . . , σ`〉 with bottom element σ0. This is because it is possible to
take forward steps from σ0 to σ1, then to σ2, ..., and then to σ`, with each of the states σ1, σ2, . . . , σ`
being non-irrevocable (they can be non-irrevocable, since it is possible to backup from σ` to σ`−1

... to σ0). Combining what we have shown, it follows that the Turkish matrix is irreducible.
We now show that the Turkish matrix is aperiodic if the backoff process is aperiodic. Let i be

a state with αi 6= 1. Since the backoff process is aperiodic, the gcd of the lengths of all paths from
i to itself is 1. But every path from i to itself of length k in the backoff process gives a path from
〈i〉 to itself of length k in the Turkish matrix (where we take the arrival in state i at the end of the
path to be an irrevocable state). So the Turkish matrix is aperiodic.

We now show that the Turkish matrix is ergodic. It is sufficient to show that for some state of
the Turkish matrix, the expected time to return to this state from itself is finite. We first show that
the expected time between irrevocable states is finite. Thus, we shall show that the expected time,
starting in an irrevocable state σ0 in the backoff process at time t0, to reach another irrevocable
state is finite. Let Ek be the event that the time to reach the next irrevocable state is at least k
steps (that is, takes place at time t0 + k or later, or does not take place at all after time t0). It is
sufficient to show that the probability of Ek is O(θk) for some constant θ < 1. Assume that the
event Ek holds. There are now two possible cases. Case 1: There are no further irrevocable states.
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In this case, the size of the stack (state) in the Polish matrix is one bigger than it was at time t0
infinitely often. Case 2: There is another irrevocable state, that occurs at time t0 + k or later.
Assume that it occurs for the first time at time t0 + k′, where k′ ≥ k. It is easy to see that the size
of the stack in the Polish matrix at time t0 + k′ is one bigger than it was at time t0. So in both
cases, there is k′ ≥ k such that after k′ steps, the size of the stack in the Polish matrix has grown
by only one.

Now since the Polish matrix is transient, we see from Section 4.1 that we can define a potential
such that there is an expected positive increase in the potential at each step. So by a submartingale
argument (Corollary A.5), there are positive constants c1, c2 such that the probability that the
size of the stack in the Polish matrix has grown by only one after k′ steps is at most c1e

−c2k′ .
Therefore, the probability that there is some k′ ≥ k such that that the size of the stack in the Polish
matrix has grown by only one after k′ steps is at most

∑
k′≥k c1e

−c2k′ = c1e
−c2k∑∞

m=0 e
−c2m =

c1(1/(1− e−c2))e−c2k. Let θ = e−c2 . So the probability of Ek is O(θk), as desired.
We have shown that the expected time between irrevocable states is finite. So starting in state

〈σ0〉 of the Turkish matrix, there is some state σ1 such that the expected time to reach 〈σ1〉 from
〈σ0〉 is finite. Continuing, we see that there is some state σ2 such that the expected time to reach
〈σ2〉 from 〈σ1〉 is finite. Similarly, there is some state σ3 such that the expected time to reach 〈σ3〉
from 〈σ2〉 is finite, and so on. Let n be the number of states in the backoff process. Then some
state σ appears at least twice among σ0, σ1, . . . , σn. Hence, the expected time from 〈σ〉 to itself in
the Turkish matrix is finite. This was to be shown.

We have shown that the Turkish matrix is irreducible and ergodic. So it has a Cesaro limit
distribution. This gives us a Cesaro limit distribution in the backoff process, where the probability
of state m is the sum of the probabilities of the stacks in the Turkish matrix with top state m. Since
the Turkish matrix is the same, independent of the start state i, this probability does not depend
on the start state.5 If the backoff process is aperiodic, then the Turkish matrix has a stationary
distribution, and hence so does the backoff process.

4.2.3 Null Case

Finally, we consider the null case. In this case our proof is based on a surprising property of a
recurrent (ergodic or null) (M, ~α, i)-backoff process: Its steady state distribution turns out to be
independent of αi (the backoff probability of the start state). We exploit this property ( which
will be proved implicitly in Lemma 4.25 below) as follows: We select a state j where αj 6= 1. Let
us consider a new backoff process, where the underlying Markov matrix M is the same; where all
of the backoff probabilities αk are the same, except that we change αj to 1; and where we change
the start state to j. This new backoff process is shown to be ergodic. We show a way of “pasting
together” runs of the new ergodic backoff process to simulate runs of the old null process. Thereby,
we show the remarkable fact that the old null process has a Cesaro limit distribution which is the
same as the Cesaro limit distribution of the new ergodic process.

Theorem 4.24 If the (M, ~α, i)-backoff process is null, then it has a Cesaro limit distribution, which
is independent of the start state i.

As before, we can assume without loss of generality that the (M, ~α, i)-backoff process is irre-
ducible, since we can easily restrict our attention to an irreducible “component”.

5As mentioned earlier, there is a subtlety if the start state i has αi = 1. It is not hard to see that this independence
of the Cesaro limit probabilities on the start state holds even then.
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The theorem follows from Lemma 4.25 below, which asserts that the limit distribution exists
and equals the limit distribution of a related ergodic process, and is independent of the start state i.

Lemma 4.25 Let (M, ~α) be null. Let j be any state of M such that αj < 1. Let ~α′ be the vector
given by α′j = 1 and α′j′ = αj′ otherwise. Then the (M, ~α′, j)-backoff process is ergodic and hence
has a Cesaro limit distribution. Let i be any state of M . Then the (M, ~α, i)-backoff process has a
Cesaro limit distribution which is the same as the Cesaro limit distribution of the (M, ~α′, j)-backoff
process.

Proof. The first part of Lemma 4.25, claiming that (M, ~α′) is ergodic, follows from the first part of
Theorem 4.5, and is proven in Claim 4.28. We now move to the more difficult part. It is convenient
for us to use the term walk, which refers to the sequence of states visited (along with the information
about the auxiliary sequence that tells whether each move was a forward or backward step, and the
history sequence). For this part, we consider a walk W of length t of the (M, ~α, i)-backoff process
and break it down into a number of smaller pieces. This breakdown is achieved by a “skeletal
decomposition” as defined below.

Fix an (M, ~α, i)-walk W with 〈X0, . . . , Xt〉 being the sequence of states visited, with auxiliary
sequence 〈S0, . . . , St〉 and associated history sequence 〈H0, . . . ,Ht〉.

For every t1 ≤ t such that St1 = F (i.e., W makes a forward step at time t1) and Xt1 = j, we
define a partition of W into two walks W ′ and W ′′ as follows. Let Ht1 = σ̄ be the history stack at
time t1. Let t2 > t1 be the first time at which this history repeats itself (t2 = t if this event never
happens). Consider the sequence 〈0, . . . , t1, t2 + 1, . . . , t〉 of time steps (and the associated sequence
of states visited and auxiliary sequences). They give a new (M, ~α, i)-walk W ′ that has positive
probability. On the other hand the sequence 〈t1, t1 + 1, . . . , t2〉 of time steps defines a walk W ′′ of
an (M, ~α, j)-backoff process, of length t2 − t1, with initial history being 〈j〉. We call this partition
(W ′,W ′′) a j-division of the walk W . (Notice that W ′,W ′′ do not suffice to recover W , and this
is fine by us.) A j-decomposition of a walk W is an (unordered) collection of walks W0, . . . ,Wk

that are obtained by a sequence of j-divisions of W . Specifically, W is a j-decomposition of itself.
Further, if (a) W0, . . . ,Wl is a j-decomposition of W ′, (b) Wl+1, . . . ,Wk is a j-decomposition of
W ′′, and (c) (W ′,W ′′) is a j-division of W , then W0, . . . ,Wk is a j-decomposition of W . If a walk
has no non-trivial j-divisions, then it is said to be j-indivisible. A j-skeletal decomposition of a walk
W is a j-decomposition W0, . . . ,Wk of W , where each Wl is j-indivisible. Note that the j-skeletal
decomposition is unique and independent of the choice of j-divisions. We refer to W0, . . . ,Wk as
the skeletons of W . Note that the skeletons come in one of three categories (assuming j 6= i).

• Initial skeleton: This is a skeleton that has 〈i〉 as its initial history. Note that there is exactly
one such skeleton (unless i = j, in which case we say that there is no initial skeleton). We
denote the initial skeleton by W0.

• Closed skeletons: These are the skeletons with 〈j〉 as their initial and final history.

• Open skeletons: These are the skeletons with 〈j〉 as their initial history, but not their final
history.

Our strategy for analyzing the frequency of the occurrence of a state j′ in the walk W is to
decompose W into its skeletons and then to examine the relative frequency of j′ in these skeletons.
Roughly we will show that not too much time is spent in the initial and open skeletons; and that
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the distribution of closed skeletons of W is approximated by the distribution of random walks
returning to the initial history in an (M, ~α′, j)-backoff process. But the (M, ~α′, j)-backoff process
is ergodic, and thus the expected time to return to the initial history in such walks is finite. With
a large number of closed j-skeletons, the frequency of occurrence of j′ converges (to its frequency
in (M, ~α′, j)-backoff processes).

Consider the following:
Simulation of W .

1. Pick an (infinite) walk W ′0 from the (M, ~α′, i)-backoff process.

2. Pick a sequence W ′1,W
′
2, . . . , of walks as follows: For each k, the walk W ′k starts at 〈j〉 and

walks according to (M, ~α′, j) and terminates the first time it returns to the initial history.

3. We now cut and paste from the W ′i ’s to get W as follows:

(a) We initialize W = W ′0 and t′ = 0, N = 0.

(b) We iterate the following steps till t′ ≥ t:
i. Let t′′ be the first visit to j occurring at some time after t′ in W . Set t′ = t′′.
ii. With probability αj do nothing, else (with probability 1− αj), set N = N + 1 and

splice the walk W at time t′ and insert the walk W ′N into W at this time point.

(c) Truncate W to its first t steps and output it. Further, let Wi denote the truncation of
W ′i so that it includes only the initial portion of W ′i that is used in W .

The following proposition is easy to verify.

Proposition 4.26 W generated as above has exactly the same distribution as that of the (M, ~α, i)-
backoff process. Further W0, . . . ,WN give the j-skeletal decomposition of W .

Let W ′ denote a random walk obtained by starting at 〈j〉, walking according to (M, ~α′, j) and
stopping the first time we reach the initial history. Since the (M, ~α′, j)-backoff process is ergodic,
the expected length of W ′ is finite. Let µ denote the expectation of the length of the walk W ′

and let µj′ denote the expected number of occurrences of the state j′ in W ′. By Theorem A.8
µj′/µ = π′j′ , where π′ denotes the Cesaro limit distribution of the (M, ~α′, j)-backoff process.

Let a′k denote the number of visits to j′ in W ′k and let b′k denote the length of W ′k. Since the
walks W ′k (k ∈ {1, . . . , N}) are chosen independently from the same distribution as W ′, we have
that the expectation of a′k is µj′ and the expectation of b′k is µ. Let ak denote the number of visits
to j′ in Wk and let bk denote the length of Wk. Notice our goal is to show that

∑N
k=0 ak/

∑N
k=0 bk

approaches π′j′ with probability tending to 1 as t tends to infinity. Fix any β > 0. We now
enumerate a number of bad events, argue that each one of them has low probability of occurrence
and then argue that if none of them happen, then for N sufficiently large,

(1− β)π′j′ ≤
N∑
k=0

ak/
N∑
k=0

bk ≤ (1 + β)π′j′ ,

1. N is too small: In Claim 4.29 we show that this event has low probability. Specifically, there
exists δ > 0 such that for every ε > 0 there exists t0 such that for all t ≥ t0, the probability
that N is less than δt is at most ε.
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2. W0 is too long: Claim 4.30 shows that for every ε > 0, there exists t1 such that for all t ≥ t1,
the probability that W0 is longer than εt is at most ε.

3. There are too many open skeletons: In Claim 4.32, we prove that for every ε0 > 0, there exists
t2 such that if t ≥ t2, then the probability that the number of open skeletons is more than
ε0t is at most ε0.

4.
∑N
k=1 bk is too large: By the law of large numbers (Proposition A.9), we have that for every

ε > 0, there exists N1 such that for all N ≥ N1, the probability that
∑N
k=1 b

′
k ≥ (1 + ε)µN is

at most ε. Using the fact that bk ≤ b′k, we obtain the same upper bound on
∑N
k=1 bk as well.

5.
∑N
k=1 ak is too large: As above, we have that we have that for every ε > 0, there exists N2

such that for all N ≥ N2, the probability that
∑N
k=1 ak ≥ (1 + ε)µj′N is at most ε.

6. (Informally)
∑N
k=1 bk is too small: The first formal event considered here is that for some large

subset S ⊆ {1, . . . , N}, the quantity
∑
k∈S b

′
k turns out to be too small. Using the fact that

the b′k’s are independently and identically distributed and have finite mean µ, Claim 4.34 can
be used to show that for every ε > 0, there exists ε1 > 0 and N3 > 0, such that for all N ≥ N3

the probability that there exists a subset S ⊆ {1, . . . , N} of cardinality at least (1 − ε1)N
such that

∑
k∈S b

′
k ≤ (1 − ε)µN is at most ε. Taking S to be the subset of closed skeletons

and using the fact that for a closed skeleton bk = b′k, and relying on the negation of item (3),
we get to the informal claim here.

7.
∑N
k=1 ak is too small: Obtained as above. Specifically, for every ε > 0, there exists ε2 > 0 and

N4 > 0, such that for all N ≥ N4 the probability that there exists a subset S ⊆ {1, . . . , N}
of cardinality at least (1− ε2)N such that

∑
k∈S a

′
k ≤ (1− ε)µN is at most ε.

Given the above claims, the lemma may be proved as follows: Let δ be as in item (1) above.
Given any β, let ε = min{β/7, β/(2 + 1/(µδ)), β/(2 + 1/(µj′δ) + β)}. Let ε1 and ε2 be as given
in items (6) and (7) above and let ε0 = min{ε, ε1δ, ε2δ}. For these choices of ε and ε0, let
t0, t1, t2, N1, N2, N3, N4 be as given in items (1)-(7) and take t ≥ max{t0, t1, t2, 1

δN1,
1
δN2,

1
δN3,

1
δN4}.

Then since t is large enough, we have that for any of items (1), (2), or (3) the probability that
the bad event listed there happens is at most ε. If the bad event of item (1) does not occur, then
N ≥ {N1, N2, N3, N4} and thus the probability of any of the bad events list in items (3)-(7) is at
most ε. Summing over all bad events, we have the probability that no bad events happens is at

least 1− 7ε ≥ 1− β. We now reason that if none of these events happen then
∑N

k=0
ak∑N

k=0
bk

is between

(1− β)π′j′ and (1 + β)π′j′ . We show the lower bound; the proof of the upper bound is similar. We
first give an upper bound for

∑N
k=0 bk by the negations of items (2) and (4). By the negation of item

(2), b0 ≤ εt ≤ ε
δN (where the second inequality uses the negation of item (1).) By the negation of

item (4),
∑N
k=1 bk ≤ (1 + ε)µN and thus we have

N∑
k=0

bk ≤ (1 + ε+ ε/(µδ))µN.

Next we give a lower bound on
∑N
k=0 ak. Here we use the negation of item (3) to conclude that the

number of closed skeletons is at least N − ε0t ≥ N − (ε0/δ)N ≥ (1− ε2)N . Let S denote the set of
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indices k of closed skeletons Wk. Thus, we have

N∑
k=0

ak ≥
∑
k∈S

ak =
∑
k∈S

a′k ≥ (1− ε)µj′N.

Putting the above together, we get∑N
k=0 ak∑N
k=0 bk

≥ 1− ε
1 + ε+ ε/(µδ)

µj′

µ
≥ (1− β)π′j′ ,

as desired. (The final inequality above uses π′j′ = µj′/µ and ε ≤ β/(2 + 1/(µδ)).) The upper bound
follows similarly, using the inequality ε ≤ β/(2 + 1/(µj′δ) + β). This concludes the proof of the
lemma, modulo Claims 4.28-4.34.

For the following claims, let H denote the Hungarian matrix corresponding to the (M, ~α)-backoff
process and let H ′ denote the Hungarian matrix corresponding to the (M, ~α′)-backoff process. For
a nonnegative matrix A, let ρ(A) denote its maximal eigenvalue. For n× n matrices A and B, say
A < B if Aik ≤ Bik for every i, k and there exists i, k such that Aik < Bik. Claim 4.28 will use the
following simple claim.

Claim 4.27 If A and B are n×n irreducible nonnegative matrices such that A < B, then ρ(A) <
ρ(B).

Proof. Notice first that it suffices to prove that ρ(I +A) < ρ(I +B), since ρ(I +M) = 1 + ρ(M).
Similarly it suffices to prove that for some positive integer k, we have ρ((I + A)k) < ρ((I + B)k),
since ρ(Mk) = ρ(M)k. We will do so for k = 2n− 1. Let C = (I +A)2n−1 and D = (I +B)2n−1.

We first show that for every pair i, j, we have Cij < Dij . (By contrast, we know only that the
strict inequality Aij < Bij holds for some pair i, j.) Notice that the (i, j) entry of a matrix Mk has
the following combinatorial interpretation: It counts the sum of the weights of all walks of length k
between i and j, where the weight of a walk is the product of the weight of the edges it takes, and
where the weight of an edge (u, v) is Muv. Thus we wish to show that for every i, j, there exists a
walk P from i to j of length 2n− 1 such that its weight under I + A is less than its weight under
I + B. By assumption, there are l,m so that Alm < Blm. By irreducibility of A we know there
exists a path from i to l of positive weight and by taking enough self-loops this can be converted
into a path P1 of length exactly n − 1 with positive weight in (I + A). The path has at least the
same weight in I + B. Similarly we can find a path P2 of positive weight in I + A from m to j of
length exactly n − 1. Now the path P1 ◦ (l,m) ◦ P2 has positive weight in both I + A and I + B
and has strictly larger weight in I + B since Blm > Alm. Thus we find that Cij < Dij , for every
pair i, j.

Now we use the properties of the maximal eigenvalue to show that ρ(C) < ρ(D). Notice that

ρ(C) = max
~x

min
i∈{1,...,n}

{
(C~x)i
(~x)i

}
.

Pick ~x that maximizes the right hand side above and now consider

ρ(D) = max
~y

min
i∈{1,...,n}

{
(D~y)i
(~y)i

}
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≥ min
i∈{1,...,n}

{
(D~x)i
(~x)i

}
> min

i∈{1,...,n}

{
(C~x)i
(~x)i

}
(Since Dij > Cij and ~x 6= 0).

= ρ(C)(By our choice of ~x.)

We are now ready to prove that the (M, ~α′)-backoff process is ergodic.

Claim 4.28 Let (M, ~α) be irreducible and null. Let j be a state such that αj < 1. Assume that
α′j > αj and α′j′ = αj′ if j′ 6= j. Then (M, ~α′) is ergodic (though it may not be irreducible).

Proof. We first focus on the case α′j < 1. In this case, we observe that (M, ~α′) is also irreducible.
For this part, we use Lemma 4.13 and Claim 4.12 to rephrase this question in terms of the maximal
eigenvalues of the corresponding Hungarian matrices H (for (M, ~α)) and H ′ (for (M, ~α′)). In
particular, we have ρ(H) = 1 and we need ρ(H ′) < ρ(H) = 1.

Note that for every k, l, we have

H ′kl = (1− α′k)Mklα
′−1
l

≤ (1− α′k)Mklα
−1
l

≤ (1− αk)Mklα
−1
l

= Hkl

Further, the first inequality is strict if l = j and Mkj 6= 0 (and such a k does exist, by the
irreducibility of M). Using Claim 4.27 we now have ρ(H ′) < ρ(H) = 1. and thus we have shown
the desired result for the case α′j < 1.

For the case α′j = 1, we first use the first part shown above to show that the (M, ~α′′)-backoff
process, where αj < α′′j < 1 (and α′′j′ = αj′ for other j′), is ergodic. Thus it suffices to prove that
(M, ~α′) is ergodic, given that (M, ~α′′) is ergodic. However, since we may not have irreducibility, we
need to argue this individually for every (M, ~α′, i)-backoff process. Now the expected return time
of the (M, ~α′′, i)-backoff process (to its initial history) is finite. But it is not hard to see that the
expected return time of the (M, ~α′, i)-backoff process (to its initial history) is bounded above by
the expected return time of the (M, ~α′′, i)-backoff process, since it can only cost additional steps to
not pop j immediately off the history stack whenever it appears. So the (M, ~α′, i)-backoff process
is ergodic, as desired.

Claim 4.28 gives the first part of Theorem 4.5. The proof of the second part is similar, provided
αj is not lowered to α′j = 0 (in which case the Hungarian matrix would not be defined). But if
α′j = 0, then the resulting backoff process is certainly transient.

The next claim shows that N , the number of skeletons in a walk of length t, grows linearly in t.

Claim 4.29 There exists δ > 0, such that for every ε > 0 there exists t0 such that for all t ≥ t0,
the probability that N is less than δt is at most ε.

26



Proof. Notice that the number of skeletons is lower bounded by the number of times j is pushed
onto the history stack in the walk W . We lower bound this quantity by using the fact that in any
sequence of n steps (where n is the size of the Markov chain M), there is a positive probability ρ of
pushing j onto the history stack. Thus the expected number of times j is pushed onto the history
in t steps is at least ρ(t/n). Applying the law of large numbers (Proposition A.9), we get that there
exists t0 such that if t ≥ t0, then the probability that j is pushed on the stack fewer than 1

2ρ(t/n)
times is at most ε. The claim follows with δ = ρ

2n .

Next we argue that the initial skeleton is not too long.

Claim 4.30 For every ε > 0, there exists a time t1 such that for all times t > t1,

Pr[ Length of W0 > εt] < ε.

Proof. We prove the claim in two steps. First we note that in a walk of length t, with high
probability, the (null) (M, ~α, i)-backoff process returns to the initial history o(t) times. Note that
the expected time to return to the initial history is infinite. Thus we get:
Subclaim 1: For every ε′ > 0, there exists a time t′1 such that for all t > t′1, the probability that
an (M, ~α, i)-walk of length t returns to the initial history at least ε′t times is at most ε′.

The next subclaim follows from the law of large numbers (Proposition A.9).
Subclaim 2: Let T be the expected return time to the initial history in the (M, ~α′, i)-backoff
process. (Note that T <∞, since the (M, ~α′, i)-backoff process is ergodic.) Then for every ε′′, there
exists N0 such that if N ≥ N0 and N ′ ≤ N , then the probability that N ′ returns to the initial
history take more than 2NT steps is at most ε′′.

From the two subclaims, we get the claim as follows: Set ε′′ = ε/2 and
ε′ = min{ε/2, ε/(2T )}. Now let N0 and T be as in Subclaim 2 and let t0 = max{t′1, 2N0T

ε }.
Given t ≥ t0, let N = (εt)/(2T ). Notice N ≥ N0. Applying Subclaim 1, we get that the probability
that the number of returns to the initial history in the (M, ~α, i)-backoff process is at least N
(= (εt)/(2T ) ≥ ε′t) is at most ε′ ≤ ε/2. Now applying Subclaim 2, we get that the probability of
N returns to the initial history taking more that 2NT = εt steps in the (M, ~α′, i)-backoff process
is at most ε′′ = ε/2. So with probability at least 1 − ε, neither of the bad events in the subclaims
occurs, which means that there are less than N returns to the initial history in the initial skeleton,
and even N returns would take time at most εt steps. So with probability at least 1− ε, the length
of the initial skeleton is is at most εt. This proves the claim.

Next we show that not too many skeletons are open. We do it in two claims.

Claim 4.31 If (M, ~α, i) is null, and ~w is a weight vector as guaranteed to exist by Lemma 4.13,
then the ~w-potential Φ~w(Ht) is expected to grow as o(t).

Proof. Recall that the extended potential used in Lemma 4.17 is expected to be 0 after t steps.
Further, by Subclaim 1 of Claim 4.30, the number of returns to the initial history is less than ε′t,
with probability all but ε′. Thus the expected number of returns to the initial history is at most
2ε′t. Hence, the expected value of φ~w(Ht) is also at most 2ε′t.

Claim 4.32 For every ε > 0, there exists t2 such that for all t ≥ t2, the probability that more than
εt of the skeletons W1, . . . ,WN are open at time t is at most ε.
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Proof. Consider the event E that the history Ht contains more than εt occurrences of the state j.
We wish to show that the probability that E occurs is at most ε. Assume E occurs with probability
at least ε. Let ~w be the weight vector as shown to exist in Lemma 4.13, and let φ~w(Ht) be the
potential of the history Ht. Notice that if E occurs, then the potential φ~w(Ht) is at least wjεt.
Since E happens with probability at least ε, the expected potential E[φ(Ht)] is at least ε2wjt, and
so is growing linearly in t. But this contradicts the previous claim.

We now use our machinery to prove a lemma that we need to prove Theorem 4.35.

Lemma 4.33 In a null backoff process, for every ε > 0, there exists t2 such that for all t ≥ t2, the
probability that more than εt of the forward edges into state j are unrevoked at time t is at most ε.

Proof. If α` < 1, then if we take j = `, every unrevoked edge into state ` corresponds, in
the machinery we have just developed, to a different open skeleton. The result then follows from
Claim 4.32. If α` = 1, then every forward edge into state ` is immediately followed by a revocation,
so the result again follows.

Our final claim to complete the proof of Lemma 4.25, and hence of Theorem 4.24, is a technical
one. In this claim, [N ] = {1, . . . , N}.

Claim 4.34 For every distribution D on nonnegative integers with finite expectation µ, and every
ε > 0, there exists ε1 > 0 and N3 > 0 such that for all N ≥ N3, if X1, . . . , XN are N samples
drawn i.i.d. from D, then

Pr

[∑
i∈S

Xi ≥ (1− ε)µN for every S ⊆ [N ] with |S| ≥ (1− ε1)N

]
≥ 1− ε.

Proof. We will find ε1 and pick τ such that with high probability the (ε1N)th largest element of
X1, . . . , XN is greater than or equal to τ . We will then sum only those elements in the Xi’s whose
value is at most τ and this will give a lower bound on

∑
i∈S Xi.

Let p(j) be the probability given to j by D. Let µk =
∑
j≤k jp(j). Notice that the µk’s converge

to µ. Let τ be such that µ − µτ ≤ (ε/2)µ. Let T (X) = X if X ≤ τ and 0 otherwise. Notice that
for X drawn from D, we have E[T (X)] ≥ (1− ε/2)µ (by definition of τ). Thus by the law of large
numbers (Proposition A.9), there exists N ′3 such that for all N ≥ N ′3, the following holds.

Pr

[
N∑
i=1

T (Xi) ≤ (1− ε)Nµ
]
≤ ε/2. (4)

Now set ε1 =
∑
j>τ p(j)/2. Then the probability that X has value at least τ is at least 2ε1.

Thus, applying the law of large numbers (Proposition A.9) again, we find that there exists N ′′3 such
that for all N ≥ N ′′3 , the following holds:

Pr [|{i|Xi ≥ τ}| < ε1N ] ≤ ε/2. (5)

Thus, for N3 = max{N ′3, N ′′3 } and any N ≥ N3, we have that with probability at least 1 − ε
neither of the events mentioned in (4) or (5) occur. In such a case, consider any set S of cardinality
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at least (1− ε1)N , and let S′ be the set of the (1− ε1)N smallest Xi’s. We have∑
i∈S

Xi ≥
∑
i∈S′

Xi

≥
N∑
i=1

T (Xi)

≥ (1− ε)Nµ.

This proves the claim.

4.3 Computation of Limit Distributions

We now show how the limit distribution may be computed. We can assume without loss of generality
that the backoff process is irreducible, since we can easily restrict our attention to an irreducible
“component”. Again, we branch into three cases.

4.3.1 Null Case

The matrix H = (I − A)MA−1, which we saw in Section 4.1), plays an important role in this
section. We refer to this matrix as the Hungarian matrix of the (M, ~α)-backoff process. The next
theorem gives an important application of the Hungarian matrix.

Theorem 4.35 The limit probability distribution π satisfies π = πH. This linear system has a
unique solution subject to the restriction

∑
i πi = 1. Thus, the limit probability distribution can

found by solving a linear system.

Proof. The key ingredient in the proof is the observation that in the null case, the limit probability
of a transition from a state i to a state j by a forward step is the same as the limit probability
of a transition from state j to a state i by a backward step (since each forward step is eventually
revoked, with probability 1). Thus if we let πi→j denote the limit probability of a forward step
from i to j and πi←j denote the limit probability of a backward step from j to i (and πi denotes
the limit probability of being in state i), then the following conditions hold:

πi =
∑
j

πi→j +
∑
j

πj←i; πi→j = (1− αi)Mijπi; πi→j = πi←j .

The only controversial condition is the third one, that πi→j = πi←j . The fact that πi←j exists
and equals πi→j follows easily from Lemma 4.33. Manipulating the above conditions shows that π
satisfies π = πH.

We now consider uniqueness. Assume first that αi < 1 for every i. Then H is irreducible and
nonnegative and thus by the Perron-Frobenius theorem (Theorem A.1), it follows easily that π is
the unique solution to the linear system. If some αi = 1, we argue by focusing on the matrix H|α,
which is irreducible (as in Section 4.1, H|α is the principal submatrix of H containing only rows
and columns corresponding to i such that αi < 1). Renumber the states of M so that the αi’s are
non-decreasing. Then the Hungarian matrix looks as follows:

H =

(
H|α X

0 0

)
,
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where H|α is nonnegative and irreducible and X is arbitrary. Write π = (πAπB), where πB has
the same number of elements as the number of αi’s that are 1. Then the linear system we have to
solve is

(πAπB) = (πAπB)

(
H|α X

0 0

)
.

This system can be solved by finding πA = πAH|α and then setting πB = πAX. Now πB is
uniquely determined by πA. Furthermore, πA is uniquely determined, by the Perron-Frobenius
theorem (Theorem A.1). This concludes the proof of the theorem.

4.3.2 Ergodic Case

In this case also the limit probabilities are obtained by solving linear systems, obtained from a
renewal argument. We define “epochs” starting at i by simulating the backoff process as follows.
The epoch starts at an initial history with X0 = 〈i〉. At the first step the process makes a forward
step. At every subsequent unit of time, if the process is back at the initial history, it first flips a
coin that comes up B with probability αi and F otherwise. If the coin comes up B, the end of an
epoch is declared.

Notice that the distribution of the length of an epoch starting at i is precisely the same as the
distribution of time, starting at an arbitrary non-initial history with i on top of the stack, until
this occurrence of i is popped from the stack, conditioned on the fact that the first step taken from
i is a forward step.

Let Ti denote the expected length of (or more precisely, number of transitions in) an epoch,
when starting at state i. Let Nij denote the expected number of transitions out of state j in
an epoch when starting at state i. From Theorem A.8 we see that the Cesaro limit probability
distribution vector π(i), for an (M, ~α, i)-backoff process, is given by π

(i)
j = Nij/Ti, provided Ti is

finite. This gives us a way to compute the Cesaro limit distribution. The key equations that allow
us to compute the Nij and Ti are:

Ti = 1 +
∑
k

Mik[αk · 1 + (1− αk)(Tk + 1)] + (1− αi)Ti, (6)

Nij = δij +
∑
k

Mik[αk · δjk + (1− αk)(Nkj + δjk)] + (1− αi)Nij , (7)

where δij = 1 if i = j and 0 otherwise. (The above equations are derived by straightforward
conditioning. For example, if the first step in the epoch takes the process to state k, then it takes
Tk units of time to return to 〈i〉 and then with probability (1 − αi) it takes Ti more steps to end
the epoch.)

We claim that the first set (6) of linear equations completely specify T . We argue this as follows.
First we may rearrange terms in the equation, and use the fact that

∑
kMik = 1, to simplify (6)

to:
αiTi = 2 +

∑
k

(1− αk)MikTk.

Dividing both sides by αi (we know that no αi = 0 in the ergodic case), moving all terms involving
Tk to the left, and using the fact that the Hungarian matrix H is given by Hik = 1−αk

αi
Mik, we get:

Ti −
∑
k

HikTk =
2
αi
.
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Letting ~T = 〈T1, . . . , Tn〉 and ~b = 〈2/α1, . . . , 2/αn〉, we get (I − H)~T = ~b. Since the maximal
eigenvalue of H is less than 1, we know that I−H has an inverse (and is given by I+H+H2 + · · ·)
and thus ~T is given by (I −H)−1~b.

Similarly, if we let ~Nj = 〈N1j , . . . , Nnj〉 and ~bj = 〈 δ1j+M1j

α1
, . . . ,

δnj+Mnj

αn
〉, then (7) simplifies to

yield ~Nj = (I −H)−1~bj .
Thus ~T and the ~Nj ’s can be computed using the above linear equations. Using now the formula

π
(i)
j = Nij/Ti, we can also compute the stationary probability vectors.

4.3.3 Transient Case

We now prove Theorem 4.4.
We now give a formal definition of the revocation probability, which was defined informally

earlier.

Definition 4.36 For a state j, define the revocation probability as follows: Pick any non-initial
history σ̄ = 〈σ0, . . . , σl〉 with top(σ̄) = j. The revocation probability rj is the probability that the
(M, ~α, i)-Markov chain starting at state σ̄ reaches the state σ̄′ = 〈σ0, . . . , σl−1〉. (Notice that this
probability is independent of i, l, and σ0, . . . , σl−1; thus, the quantity is well-defined.)

Note that ri is the probability that an epoch starting at i, as in Section 4.3.2, ends in finite time.
Let ~r denote the vector of revocation probabilities. The following lemma shows how to compute
the limit probabilities π given ~r. Further it shows how to compute a close approximation to π,
given a sufficiently close approximation to ~r.

Lemma 4.37 The limit probabilities satisfy π = π(I −A)MR, where R is a diagonal matrix with
Rii = 1

1−(1−αi)
∑

k
rkMik

. Further, there exists a unique solution to the this system subject to the

condition
∑
i πi = 1.

Remarks: If αi = 0 for every i, then ri = 0 for every i, and so we recover the familiar condition
for Markov chains that π = πM . Although we are considering the transient case here, note that
if we formally take ri = 1, which occurs in the null case, then we in fact recover the equation we
found in the null case, namely π = π(I −A)MA−1.
Proof. The first part of the lemma is obtained as in Theorem 4.35. Let πi→j denote the limit
probability of a forward step from i to j, and let πi←j denote the limit probability of a backward
step from j to i. Then the following conditions hold.

πi←j = rjπi→j (8)
πi→j = πi(1− αi)Mij (9)

πi =
∑
j

πj→i +
∑
j

πi←j (10)

Using equation (8) to eliminate all occurrences of variables of the form πi←j , and then using
equation (9) to eliminate all occurrences of πi→j , equation (10) becomes:

πi =
∑
j

πj(1− αj)Mji + πi(1− αi)
∑
j

rjMij (11)
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Thus if we let D be the matrix with

Dij =
(1− αi)Mij

1− (1− αj)
∑
kMjkrk

,

then π satisfies π = πD. As in the proof of Theorem 4.35 if we permute the rows and columns of
D so that all states i with αi = 1 appear at the end, then the matrix D looks as follows:

D =

(
Dα X
0 0

)
where Dα is nonnegative and irreducible. Thus π = [πAπB] must satisfy πA = πADα and πB =
πAX. Now πA is seen to be unique (up to scaling) by the Perron-Frobenius theorem (Theorem A.1),
while πB is unique given πA. The lemma follows by noticing that D can be expressed as (I−A)MR.

Lemma 4.38 Let the entries of M and ~α be l-bit rationals describing a transient (M, ~α, i)-backoff
process and let π be its limit probability vector. For every ε > 0, there exists β > 0, with log 1

β =
poly(n, l, log 1

ε ), such that given any vector ~r′ of l′-bit rationals satisfying ‖~r′ − ~r‖∞ ≤ β, a vector
π′ satisfying ‖π′ − π‖∞ ≤ ε can be found in time poly(n, l, l′, log 1

ε ).

Remark: By truncating ~r′ to log 1
β bits, we can ensure that l′ also grows polynomially in the input

size, and thus get a fully polynomial time algorithm to approximate π.
We defer the proof of Lemma 4.38 to Appendix B.
In the next lemma, we address the issue of how the revocation probabilities may be determined.

We show that they form a solution to a quadratic program; in fact a semi-definite program. (Recall
that a real symmetric matrix A is positive semidefinite if all of its eigenvalues are non-negative. A
semi-definite program is an optimization problem with a linear objective function, whose constraints
are of the form “A[~x] is positive semidefinite”, where A[~x] denotes a symmetric matrix whose entries
are themselves linear forms in the variables x1, . . . , xn. Semidefinite programs are a special case
of convex programs, but more general than linear programs. They can be approximately solved
efficiently using the famed ellipsoid algorithm (see [4] for more details).)

Lemma 4.39 The revocation probabilities ri are the optimum solution to the following system:

min
∑
i

xi

such that xi ≥ αi + (1− αi)xi
∑
jMijxj

xi ≤ 1
xi ≥ 0

 (12)

Further, the system of inequalities above is equivalent to the following semidefinite program:

min
∑
i

xi

such that qi = 1− (1− αi)
∑
jMijxj

xi ≤ 1
xi ≥ 0
qi ≥ 0

Di positive semidefinite, where Di =

(
xi

√
αi√

αi qi

)


(13)
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Proof. We start by considering the following iterative system and proving that it converges to the
optimum of (12).

For t = 0, 1, 2, . . ., define x(t)
i as follows:

x
(0)
i = 0, x

(t+1)
i = αi + (1− αi)x(t)

i

∑
j

Mijx
(t)
j .

By induction, we note that x(t)
i ≤ x

(t+1)
i ≤ 1. The first inequality holds, since

x
(t+1)
i = αi + (1− αi)x(t)

i

∑
j

Mijx
(t)
j

≥ αi + (1− αi)x(t−1)
i

∑
j

Mijx
(t−1)
j

= x
(t)
i

The second inequality follows similarly. Hence, since 〈x(t)
i 〉t is a non-decreasing sequence in the

interval [0, 1], it must have a limit. Let x∗i denote this limit.
We claim that the x∗i give the (unique) optimum to (12). By construction, it is clear that

0 ≤ x∗i ≤ 1 and x∗i = αi + (1− αi)x∗i
∑
jMijx

∗
j ; and hence x∗i ’s form a feasible solution to (12). To

prove that it is the optimum, we claim that if a1, . . . , an are a feasible solution to (12), then we
have ai ≥ x

(t)
i and thus ai ≥ x∗i . We prove this claim by induction. Assume ai ≥ x

(t)
i , for every i.

Then

ai ≥ αi + (1− αi)ai
∑
j

Mijaj

≥ αi + (1− αi)x(t)
i

∑
j

Mijx
(t)
j

= x
(t+1)
i .

This concludes the proof that the x∗i give the unique optimum to (12).
Next we show that the revocation probability ri equals x∗i . To do so, note first that ri satisfies

the condition
ri = αi + (1− αi)

∑
j

Mijrjri.

(Either the move to i is revoked at the first step with probability αi, or there is a move to j with
probability (1− αi)Mij and then the move to j is eventually revoked with probability rj , and this
places i again at the top of the stack, and with probability ri this move is revoked eventually.)
Thus the ri’s form a feasible solution, and so ri ≥ x∗i . To prove that ri ≤ x∗i , let us define r(t)

i

to be the probability that a forward step onto vertex i is revoked in at most t steps. Note that
ri = limt→∞ r

(t)
i . We will show by induction that r(t)

i ≤ x
(t)
i and this implies ri ≤ x∗i . Notice first

that
r

(t+1)
i ≤ αi + (1− αi)

∑
j

Mijr
(t)
j r

(t)
i .

(This follows from a conditioning argument similar to the above and then noticing that in order
to revoke the move within t+ 1 steps, both the revocation of the move to j and then the eventual
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revocation of the move to i must occur within t time steps.) Now an inductive argument as earlier
shows r(t+1)

i ≤ x
(t+1)
i , as desired. Thus we conclude that x∗i = ri. This finishes the proof of the

first part of the lemma.
For the second part, note that the condition that Di be positive semidefinite is equivalent to

the condition that xiqi ≥ αi. Substituting qi = 1− (1−αi)
∑
jMijxj turns this into the constraint

xi − (1 − αi)xi
∑
jMijxj ≥ αi, and thus establishing the (syntactic) equivalence of (12) and (13).

Using Lemmas 4.37 and 4.39 above, we can derive exact expressions for the revocation proba-
bilities and limit probabilities of any given backoff process. The following example illustrates this.
It also shows that the limit probabilities are not necessarily rational, even when the entries of M
and ~α are rational.
Example: The following example shows that the limit probabilities may be irrational even when
all the entries of M and ~α are rational. Let M and ~α be as follows:

M =

(
1
2

1
2

1
3

2
3

)
~α = 〈1

2
,
1
3
〉.

Using Lemma 4.39, we can now show that the revocation probabilities are roots of cubic equations.
Specifically, r1 is the unique real root of the equation −16 + 30x − 13x2 + 2x3 = 0 and r2 is the
unique real root of the equation −9 + 21x − 14x2 + 8x3 = 0. Both quantities are irrational and
given approximately by r1 ≈ 0.7477 and r2 ≈ 0.5775. Applying Lemma 4.37 to this, we find that
the limit probabilities of the (M, ~α)-process are π1 and π2, where π1 is the unique real root of the
equation

−1024 + 3936x− 3180x2 + 997x3 = 0,

and π2 is the unique real root of the equation

−729 + 567x+ 189x2 + 997x3 = 0.

It may be verified that the cubic equations above are irreducible over the rationals, and thus π1

and π2 are irrational and given approximately by π1 ≈ 0.3467 and π2 ≈ 0.6532.

In the next lemma we show how to efficiently approximate the vector of revocation probabilities.
The proof assumes the reader is familiar with standard terminology used in semidefinite program-
ming, and in particular the notion of a separation oracle and its use in the ellipsoid algorithm (see
[4] for more details).

Lemma 4.40 If the entries of M and ~α are given by l-bit rationals, then an ε-approximation to
the vector of revocation probabilities can be found in time poly(n, l, log 1

ε ).

Proof. We solve the convex program given by (12) approximately using the ellipsoid algorithm [4].
Recall that the ellipsoid algorithm can solve a convex programming problem given (1) a separation
oracle describing the convex space, (2) a point ~x inside the convex space, (3) radii ε and R such
that the ball of radius ε around ~x is contained in the convex body and the ball of radius R contains
the convex body. The running time is polynomial in the dimension of the space and in log R

ε .
The fact that (12) describes a convex program follows from the fact that it is equivalent to the

semidefinite program (13). Further, a separation oracle can also be obtained due to this equivalence.
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In what follows we will describe a vector ~x that is feasible, and an ε ≥ 2− poly(n,l) such that every
point y satisfying ‖x− y‖∞ ≤ ε is feasible. Further it is trivial to see that every feasible point
satisfies the condition that the ball of radius

√
n around it contains the unit cube and hence all

feasible solutions. This will thus suffice to prove the lemma.
Recall, from Lemma 4.13 of Section 4.1, that since (M, ~α) is transient, there exists ρ > 1 and a

vector ~w such that (I − A)M ~w ≥ ρA~w. Let wmax = maxi{wi} and wmin = mini|wi 6=0{wi}. Notice
further that we can choose ρ and ~w such that ρ ≥ 1+2− poly(n,l) and wmax = 1 and wmin ≥ 2− poly(n,l).
(In case ρ(M, ~α) = ∞, this follows by picking say ρ = 2 and using the remark after Claim 4.11.
In case ρ(M, ~α) < ∞ we use Claim 4.12 and set ρ = ρ(H) and ~w = A−1~v, where ~v is a right
eigenvector of H. Since ρ > 1 is an eigenvalue of a matrix whose entries are l-bit rationals and
since ~w is a multiple of the eigenvector, the claims about the magnitude of ρ and wmin follow.)

Before describing the vector ~x and ε, we make one simplification. Notice that if αi = 1 then
ri = 1, and if αi = 0 then ri = 0. We fix this setting and then solve (12) for only the remaining
choices of indices i. So henceforth we assume 0 < αi < 1 and in particular the fact that αi ≥ 2−l.

Let δ = ρ−1
2ρ . Note δ > 2− poly(n,l). Let ε = 2−(l+3)wmin

(
ρ−1
ρ

)2
. We will set zi = 1 − δwi and

first show that zi − αi − (1− αi)zi
∑
jMijzj is at least 2ε. Consider

zi − αi − (1− αi)zi
∑
j

Mijzj

= 1− δwi − αi − (1− αi)(1− δwi)
∑
j

Mij(1− δwj)

= 1− δwi − αi − (1− αi)(1− δwi)(1− δ
∑
j

Mijwj)

= (1− δwi)

δ∑
j

(1− αi)Mijwj

− δwiαi
≥ (1− δwi) (δραiwi)− δwiαi
= δαiwi (ρ− ρδwi − 1)
≥ δαiwiρ

≥
(
ρ− 1

2ρ

)2

αiwi

≥ 2ε.

Now consider any vector ~y such that zi − 2ε ≤ yi ≤ zi. We claim that ~y is feasible. First,
yi ≤ 1 since yi ≤ zi = 1 − δwi ≤ 1. We now show that yi ≥ 0. First, zi ≥ 0 since wi ≤ 1 and
δ < 1. Since, as we showed above, zi − αi − (1− αi)zi

∑
jMijzj ≥ 2ε, it follows that yi ≥ zi − 2ε ≥

αi + (1− αi)zi
∑
jMijzj ≥ 0. Finally,

yi − αi − (1− αi)yi
∑
j

Mijyj

≥ zi − 2ε− αi − (1− αi)yi
∑
j

Mijyj

≥ zi − 2ε− αi − (1− αi)zi
∑
j

Mijzj

≥ 0 (Using the claim about the zi’s.)
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Thus setting xi = zi − ε, we note that every vector ~y satisfying xi − ε ≤ yi ≤ xi + ε is feasible.
This concludes the proof.

Proof. [of Theorem 4.4] Given M , ~α and ε, let β be as given by Lemma 4.38. We first compute a
β-approximation to the vector of revocation probabilities in time poly(n, l, log 1

β ) = poly(n, l, log 1
ε )

using Lemma 4.40. The output is a vector ~r′ of l′ = poly(n, l, log 1
ε )-bit rationals. Applying

Lemma 4.38 to M , ~α, ~r and ε, we obtain an ε-approximation to the limit probability vector π in
time poly(n, l, l′, log 1

ε ) = poly(n, l, log 1
ε ).

5 Allowing Backoff Probabilities on Edges

In this paper, we have considered the backoff probability to be determined by the current state.
What if we were to allow the backoff probabilities to be a function not just of the current state, but
of the state from which the current state was entered by a forward step? Thus, in this situation,
each edge (j′, j) that corresponds to a forward step from j′ to j has a probability of being revoked
that depends not just on j, but on j′ also. We refer to this new, more general process as an
edge-based backoff process, and our original backoff process as a node-based backoff process. We now
define edge-based backoff processes a little more precisely.

As with node-based backoff processes, for an edge-based backoff process we are given a Markov
matrix M , indexed by the set S of states. The difference is that for node-based backoff processes,
we are given a vector ~α of backoff probabilities αi for each state i; however, for edge-based backoff
processes, we are given a vector ~κ of backoff probabilities κij for each pair i, j of states.

For a history σ̄ = 〈σ0, . . . , σl−1, σl〉, define next− to− top(σ̄) to be σl−1.
Given the Markov chain M and backoff vector ~κ, and history σ̄ with next− to− top(σ̄) = j′

and top(σ̄) = j, define the successor (or next state) succ(σ̄) to take on values from S with the
following distribution:

succ(σ̄) =


pop(σ̄) with probability κj′j if `(σ̄) ≥ 1
push(σ̄, k) with probability (1− κj′j)Mjk if `(σ̄) ≥ 1
push(σ̄, k) with probability Mjk if `(σ̄) = 0

We denote by (M,~κ, i) the edge-based backoff process, with start state i.
We now show how to convert our results about node-based backoff processes into results for

edge-based backoff processes. Assume we are given the edge-based backoff process (M,~κ, i). Let
S ′ be the set of all ordered pairs (j, k) of states of S such that Mjk > 0. Define a new matrix M ′,
indexed by S ′, such that M ′(j,k)(k,l) = Mkl, and M ′(j,k)(l,m) = 0 if l 6= k. It is easy to verify that
M ′ is a Markov chain, that M ′ is irreducible if M is, and that M ′ is aperiodic if M is. Define
~α over S ′ by taking α(j,k) = κjk. We correspond to the edge-based backoff process (M,~κ, i) the
node-based backoff process (M, ~α, (m, i)), where m is an arbitrary state in S such that Mmi > 0.
This correspondence allows us to carry over results about node-based backoff processes into results
about edge-based backoff processes. For example, we have the following result.

Theorem 5.1 Every edge-based backoff process has a Cesaro limit distribution.

Proof. Let (M,~κ, i) be an edge-based backoff process. Let (M ′, ~α, (m, i)) be the corresponding
node-based backoff process. We have shown that every node-based backoff process has a Cesaro
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limit distribution. This gives a Cesaro limit distribution for the edge-based backoff process, where
the limit probability of state j in the edge-based backoff process is the sum of the limit probabilities
of all states (k, j) in the corresponding node-based backoff process.

Similarly, the Cesaro limit distribution for the edge-based backoff process is efficiently com-
putable, just as it is for node-based backoff processes.

6 Conclusions

We have introduced backoff processes, which are generalizations of Markov chains where it is
possible, with a certain probability, to backup to the previous state that was entered by a forward
step. Backoff processes are intended to capture a feature of browsing on the world-wide web,
namely, the use of the back button, that Markov chains do not. We show that backoff processes
have certain properties that are similar to those of Markov chains, along with some interesting
differences. Our main focus is on limiting distributions, which we prove always exist and can be
computed efficiently.

We view this research as only a first step. First, we believe that backoff processes are a natural
extension of Markov chains that deserve further study. Second, we feel that further generalizations
should be considered and investigated. We gave one simple example of such a generalization in
Section 5. More powerful generalizations should be considered, including studies as to how well
various stochastic models actually capture browsing, along with a mathematical analysis of such
models.
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A Preliminaries

In this section, we review background material essential to our proofs.

A.1 Perron-Frobenius theorem

Theorem A.1 (Perron-Frobenius theorem, see e.g. [7, p. 508]) Let A be an irreducible, nonneg-
ative square matrix. Then

• there exists ~v, with all components positive, and λ0 > 0 such that A~v = λ0~v;

• λ0 = sup~x
{

mini|xi 6=0

{
(Ax)i
xi

}}
.

• if λ 6= λ0 is any other eigenvalue of A, then |λ| < λ0;

• each ~w such that A~w = λ0 ~w is a constant multiple of ~v; and

• each nonnegative eigenvector of A is a constant multiple of ~v.

A.2 Martingale Tail Inequalities

We begin by reviewing the basic definitions.

Definition A.2 We now define a martingale, supermartingale, and submartingale.

• A sequence X0, X1, . . . of random variables is said to be a martingale if E[Xi|X0, . . . , Xi−1] =
Xi−1 for all i > 0.

• A sequence X0, X1, . . . of random variables is said to be a supermartingale if E[Xi|X0, . . . , Xi−1] ≤
Xi−1 for all i > 0.

• A sequence X0, X1, . . . of random variables is said to be a submartingale if E[Xi|X0, . . . , Xi−1] ≥
Xi−1 for all i > 0.
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Theorem A.3 (Azuma’s Inequality, see e.g. [12, p. 92]) Let X0, X1, . . . be a martingale such that
for each k

|Xk −Xk−1| ≤ ck,

where ck may depend on k. Then for each t ≥ 0 and each λ > 0,

Pr[Xt −X0| ≥ λ] ≤ 2e
− λ2

2
∑

1≤k≤t c
2
k .

Corollary A.4 Let X0, X1, . . . be a martingale such that for all k

|Xk −Xk−1| ≤ c.

Then for each t ≥ 0 and each λ > 0

Pr[Xt −X0| ≥ λc
√
t] ≤ 2e−λ

2/2.

Corollary A.5 Let X0, X1, . . . be a submartingale such that

E(Xi|X0, . . . , Xi−1) ≥ Xi−1 + β,

(β > 0) and for all k
|Xk −Xk−1| ≤ c.

Then for each t ≥ 0 and each λ ≥ 0

Pr(|Xt −X0| ≤ λ) ≤ 2e−
(
β

2c2

(
t− 2λ

β

))
.

Corollary A.6 Let X0, X1, . . . be a supermartingale such that

E(Xi|X0, . . . , Xi−1) ≤ Xi−1 − β,

(β > 0) and for all k
|Xk −Xk−1| ≤ c.

Then for all t ≥ 0
Pr(|Xt + βt−X0| ≥ γt) ≤ 2e−γ

2t/(2c2).

A.3 Renewal Theory

Definition A.7 A renewal process {N(t), t ≥ 0} is a nonnegative integer-valued stochastic process
that counts the number of occurrences of an event during the time interval (0,t], where the times
between consecutive events are positive, independent, identically-distributed random variables.

Theorem A.8 (Corollary of Renewal Theorem, see e.g. [8, p. 203]) Let N(t) be a renewal process
where the time between the ith and (i + 1)st event is denoted by the random variable Xi. Let Yi
be a cost or value associated with the ith epoch (period between ith and (i+ 1)st event), where the
values Yi, i ≥ 1, are also positive, independent, identically-distributed random variables. Then

limt→∞
E[
∑

1≤k≤N(t)+1 Yk]
t

=
E(Y1)
E(X1)

.
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A.4 Law of Large Numbers

We shall make use various times of the following (weak form of the) law of large numbers.

Proposition A.9 Let p : Z+ → [0, 1] be a probability distribution (i.e.,
∑∞
i=1 p(i) = 1) with

expectation at least µ (i.e.,
∑∞
i=1 ip(i) ≥ µ). Let Y1, . . . , YN , . . . , be a sequence of independent

random variables distributed according to p. Then for every δ > 0 and µ′ < µ, there exists an index
N such that

Pr[
N∑
i=1

Yi > µ′ ·N ] ≥ 1− δ.

B Stability of computations in the transient case

In this section we show that the linear system used to find the stationary probability vector (given
the vector of revocation probabilities) in Section 4.3.3 is stable. Thus it can be solved even if some
of the entries of the system are only known approximately. This proof relies on a general theorem
(Theorem B.1), due to Gurvits [5], about the stability of the maximal eigenvector of a positive
matrix. For completeness, a proof of this theorem is also included in this section.

Restatement of Lemma 4.38 Let the entries of M and ~α be l-bit rationals describing a transient
(M, ~α)-backoff process and let π be its limit probability vector. For every ε > 0, there exists β > 0,
with log 1

β = poly(n, l, log 1
ε ), such that given any vector ~r′ of l′-bit rationals satisfying ‖~r′ − ~r‖∞ ≤

β, a vector π′ satisfying ‖π′ − π‖∞ ≤ ε can be found in time poly(n, l, l′, log 1
ε ).

Proof. Let ~r′ be such that ‖~r′ − ~r‖∞ ≤ β (where β will be specified later). We will assume for
notational simplicity that that r′i ≥ ri for every i. (If this is not the case, then the vector ~r′′ given
by r′′i = r′i + β does satisfy this property and still satisfies ‖~r′′ − ~r‖∞ ≤ 2β. Thus the proof below
with ~r′ replaced by ~r′′ and β by 2β will work for the general case.)

Let D, Dα and X be as in the proof of Lemma 4.37. Define D′, D′α and X ′ analogously. Thus,
D′ is the matrix given by

D′ij =
(1− αi)Mij

1− (1− αj)
∑
kMjkr

′
k

,

and D′ can be described as

D′ =

(
D′α X ′

0 0

)
,

where D′α is irreducible. Notice first that X ′ = X, since if αj = 1, then for each i we have
Dij = D′ij = Mij(1 − αi). Recall that our goal is to approximate the maximal left eigenvector
π of D, such that ‖π‖1 = 1. Write π = 1

1+lB
[πAπB], where πA is a left eigenvector of Dα with

‖πA‖1 = 1, πB = πAX and lB = ‖πB‖1. We will show how to compute π′A, π
′
B such that that

‖π′A‖1 = 1, ‖π′A − πA‖∞ ≤ ε/(n + 1) and ‖π′B − πB‖∞ ≤ ε/(n + 1). It follows then that if we set
π′ = 1

1+‖π′B‖1
[π′Aπ

′
B], then

∥∥π′ − π∥∥∞ ≤ 1
1 + lB

max{
∥∥π′A − πA∥∥∞, ∥∥π′B − πB∥∥∞}+ |lB −

∥∥π′B∥∥1|

≤ ε

n+ 1
+ |
∥∥π′B − πB∥∥1|

≤ ε
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as desired. (The term |lB−‖π′B‖1| is an upper bound on
∥∥∥∥ π′A

1+lb
− π′A

1+‖π′B‖1

∥∥∥∥
∞

, and also on
∥∥∥∥ π′B

1+lb
− π′B

1+‖π′B‖1

∥∥∥∥
∞

.)

Further, if π′A is any vector such that ‖π′A − πA‖∞ ≤
ε

n(n+1) , then a π′B satisfying ‖π′B − πB‖∞ ≤
ε/(n + 1) can be obtained by setting π′B = π′AX. (Notice that maxij{Xij} ≤ 1 and thus |(π′B)j −
(πB)j | ≤

∑
iXij |(π′A)i − (πA)i| ≤ n ε

n(n+1) .)
Thus, below we show how to find π′A that closely approximates πA, specifically satisfying

‖π′A − πA‖∞ ≤ ε/(n(n+ 1)). To do so, we will use the matrix D′.
We now show that the entries of D′ are close to those of D, using the fact that 0 ≤ r′k− rk ≤ β.

Note that

D′ij −Dij =
(1− αi)Mij

1− (1− αj)
∑
kMjkr

′
k

− (1− αi)Mij

1− (1− αj)
∑
kMjkrk

= (1− αi)Mij
(1− αj)

∑
kMjk(r′k − rk)(

1− (1− αj)
∑
kMjkr

′
k

)
(1− (1− αj)

∑
kMjkrk)

≤ β

(1− (1− αj)
∑
kMjkrk)

2 .

Thus to upper bound this difference, we need a lower bound on the quantity 1− (1−αj)
∑
kMjkrk.

If αj 6= 0, then this quantity is at least αj ≥ 2−l. Now consider the case where αj = 0. In such a
case, for any k, either αk = rk = 1, or αk < 1 and in such a case, we claim rk ≤ 1 − 2−2nl. This
is true, since the (M,α)-backoff process is irreducible and hence there is a path consisting only of
forward steps that goes from k to j, and this path has probability at least 2−2nl, and once we push j
onto the history stack, it will never be revoked. Further, by the irreducibility of the (M, ~α)-backoff
process, there must exist k0 such that Mjk0 > 0 and rk0 ≤ 1 − 2−2nl. Now Mjk0 ≥ 2−l. Since∑
kMjk = 1, we have

∑
k 6=k0 Mjkrk + Mjk0 ≤ 1, that is,

∑
kMjkrk −Mjk0rk0 + Mjk0 ≤ 1. So∑

kMjkrk ≤ 1−Mjk0(1− rk0) ≤ 1− 2−(2n+1)l. Hence, 1− (1− αj)
∑
kMjkrk is lower bounded by

2−(2n+1)l. Thus we conclude that

|D′ij −Dij | ≤ 2(4n+2)lβ.

Next consider the matrix B =
(

1
2(I +Dα)

)n
. Notice that B has a (maximal) eigenvalue of

1, with a left eigenvector πA. We claim B is positive, with each entry being at least 2−(2l+1)n.
To see this, first note that every non-zero entry of Dα is at least 2−2l. Next consider a sequence
i0 = i, i1, i2, . . . , il = j of length at most n satisfying Dik,ik+1

> 0. Such a sequence does exist since
Dα is irreducible. Further Bij is at least 2−n

∏
kDikik+1

which is at least 2−n(2l+1). Thus B is a
positive matrix and we are interested in computing a close approximation to its left eigenvector πA.

Next we show that B′ =
(

1
2(I +D′α)

)n
is a close enough approximation to B. Note that since

maxij |Dij − D′ij | ≤ 2(4n+2)lβ, we have maxij |B′ij − Bij | ≤ (1 + 2(4n+2)lβ)n − 1), which may be
bounded from above by (2n · 2(4n+2)l)β provided β ≤ 2−(4n+2)l. (This follows from the fact that if
x ≤ 1, then (1+x)n−1 ≤ 2nx, which we can see by considering the binomial expansion of (1+x)n,
and noting that the sum of the coefficients is 2n.)

Now let π′A be any vector satisfying ‖π′A − π′AB′‖∞ ≤ 2n+l(4n+2)β and ‖π′A‖1 = 1. (Such a
vector does exist. In particular, πA satisfies this condition. Further, such a vector can be found by
linear programming.) Applying Theorem B.1 below to BT , (B′)T , πA and π′A with γ = 2−n(2l+1),
ε = δ = 2n+l(4n+2)β yields ‖π′A − πA‖∞ ≤ β2O(nl). Thus setting β = ε2/2−Ω(nl) suffices to get π′A
to be an ε/(n(n+ 1)) close approximation to πA. This concludes the proof.
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The rest of this section is devoted to the proof of the following theorem. As pointed out earlier,
this theorem is due to Leonid Gurvits, and its proof is included here for completeness.

Theorem B.1 ([5]) Let B,C be n × n matrices and ~x, ~y be n-dimensional vectors satisfying the
following conditions:

1. Bij ≥ γ > 0 for every i, j. Further, ρ(B) = 1. (Recall that ρ(B) is the maximal eigenvalue of
B.)

2. |Cij −Bij | < δ for every i, j.

3. ‖~x‖1 = 1 and B~x = ~x.

4. ‖~y‖1 = 1 and ‖C~y − ~y‖∞ ≤ ε.

Then ‖~x− ~y‖∞ ≤
ε+δ
γ3 , provided ε+ δ ≤ γ

2 .

To prove the above theorem, we need to introduce some new definitions. In particular, a “pro-
jective norm” on vectors introduced by Hilbert, a norm on positive matrices induced by Hilbert’s
projective norm, and a theorem of Birkhoff bounding the matrix norm play a crucial role in the
proof of Theorem B.1. We introduce this background material next.

Definition B.2 For n-dimensional positive vectors ~x and ~y the Hilbert projective distance between
~x and ~y, denoted d(~x, ~y), is defined to be

ln
β

α
, where α = min

i

{
xi
yi

}
and β = max

i

{
xi
yi

}
.

It may be verified that for every γ1, γ2 > 0, it holds that d(~x, ~y) = d(γ1 ·~x, γ2 ·~y), and thus d(·, ·)
is invariant under scaling of vectors. Further, the projective norm satisfies the three properties
of metrics (on the projective space), namely (1) non-negativity, that is, d(~x, ~y) ≥ 0 with equality
holding if and only if ~x = ~y; (2) symmetry, that is, d(~x, ~y) = d(~y, ~x); and (3) the triangle inequality,
that is, d(~x, ~y) ≤ d(~x, ~z) + d(~z, ~y). In the following lemma, we relate the `∞-distance between two
positive unit vectors in the `1-norm with the projective distance between the two.

Lemma B.3 Let ~x, ~y be positive vectors. Then the following hold:

1. d(~x, ~y) ≤ 3‖~x−~y‖∞
mini{yi} , provided ‖~x− ~y‖∞ ≤ (mini{yi})/2.

2. If ‖~x‖1 = 1 and ‖~y‖1 = 1, then ‖~x− ~y‖∞ ≤ d(~x, ~y).

Proof. Let ε = ‖~x− ~y‖∞ and γ = mini{yi}. For Part (1), note that xi
yi
≤ 1 + |xi−yi|

yi
≤ 1 + ε

γ .
(The first inequality holds by considering two cases: if xi ≤ yi, then the left-hand side is at most
1; if xi > yi, then the right-hand side equals xi

yi
. Similarly, considering the two cases xi ≤ yi and

xi > yi, we obtain xi
yi
≥ 1− |xi−yi|yi

≥ 1− ε
γ . Thus d(~x, ~y) ≤ ln

1+ ε
γ

1− ε
γ

= ln(1 + ε
γ ) + ln 1

1− ε
γ

. Using the

inequality ln(1 + z) ≤ z, we see that the first term is at most ε
γ . For the second term, we use the

fact that 1
1−z ≤ 1 + 2z, if z ≤ 1

2 . Combined with the monotonicity of the natural logarithm, we get
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that ln 1
1− ε

γ
≤ ln(1 + 2 εγ ) ≤ 2 εγ , where the first inequality holds provided ε ≤ γ/2. If follows that

d(~x, ~y) ≤ 3 εγ , provided ε ≤ γ/2.
For Part (2), let i0 be such that |xi0 − yi0 | = ε. Assume without loss of generality that

xi0 = yi0 + ε. Since
∑
j xj = 1, we have xi0 ≤ 1. Therefore xi0

xi0−ε
≥ 1

1−ε (as we see by clearing the

denominators in the inequality), that is xi0
yi0
≥ 1

1−ε . Thus maxi
{
xi
yi

}
≥ 1

1−ε . Since
∑
j xj =

∑
j yj ,

there must exist an index i1 such that yi1 ≥ xi1 . Thus mini
{
xi
yi

}
≤ 1. Putting the above together,

we get d(~x, ~y) ≥ ln 1
1−ε ≥ ε.

The Hilbert projective distance between vectors induces a natural norm on positive matrices,
as defined below.

Definition B.4 For a positive square matrix A, define the projective norm of A, denoted ρH(A),
to be

ρH(A) = sup
~x,~y>0

{
d(A~x,A~y)
d(~x, ~y)

}
.

It turns out that the projective norm of every positive matrix is strictly smaller than 1. This can
be shown using a theorem of Birkhoff that we will state shortly. First we need one more definition
related to positive matrices.

Definition B.5 For a positive square matrix A, define the diameter of A, denoted ∆(A), to be

∆(A) = sup
~x,~y>0

{d(A~x,A~y)} .

Birkhoff’s theorem below relates the projective norm of a matrix to its diameter. In particular
it shows that if the diameter of a matrix is bounded, then its projective norm is strictly smaller
than 1.

Theorem B.6 ([2]) For every positive square matrix A,

ρH(A) = tanh(∆(A)/4).

Recall that tanh(x) = ex−e−x
ex+e−x , and so tanh(x) < 1 for every x. In the following lemma it is

shown that the diameter of every positive matrix is bounded, and thus every positive matrix has a
projective norm less than one.

Lemma B.7 For a positive square matrix A satisfying ρ(A) = 1 and Aij ≥ γ > 0, it is the case
that ρH(A) ≤ 1− γ2.

Proof. Let ~z be the maximal right eigenvector of A normalized to satisfy ‖~z‖1 = 1. (Note ~z is
positive by the Perron-Frobenius theorem.) Let Ã = D−1AD, where D is the diagonal matrix with
ith diagonal entry being zi. We bound ρH(A) in four steps showing: (1) ρH(A) = ρH(Ã), (2) Ã is
row-stochastic (i.e., its rows sum to one), (3) Ãij ≥ γ2, and (4) ∆(Ã) ≤ 1 −mini,j{Ãij} for each
row-stochastic matrix Ã.
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For Step (1), note first that by the definition of the projective distance, we have d(D1~xD2, D1~yD2) =
d(~x, ~y) for each pair ~x, ~y of vectors and each pair D1, D2 of positive diagonal matrices. As a conse-
quence, we find that for each choice of a positive matrix A and positive diagonal matrices D1 and
D2, we have ρH(A) = ρH(D1AD2). Setting D1 = D−1 and D2 = D yields ρH(A) = ρH(Ã).

For Step (2), we need to verify that
∑
j Ãij = 1 for every i. Note that Ãij = Aij · zjzi . Summing,

we get
∑
j Aij

zj
zi

= 1
zi

∑
j Aijzj = 1, where the last equality uses the fact that A~z = ~z.

For Step (3), we need to verify that Aij
zj
zi
≥ γ2. Since we know Aij ≥ γ, it suffices to show

that zj ≥ γ and zi ≤ 1. For the former note that zj =
∑
k Ajkzk ≥

∑
k γzk = γ (since Ajk ≥ γ and

‖~z‖1 = 1). For the latter, we use zi ≤
∑
k zk = 1. Thus we get Ãij ≥ γ2.

Finally for Step (4), let µ = mini,j{Ãij}. Assume that ~x and ~y are vectors of `1-norm 1. Then

µ ≤ (Ã~x)i ≤ 1 and µ ≤ (Ã~y)i ≤ 1. Hence, µ ≤ (Ã~x)i
(Ã~y)i

≤ 1
µ . Thus for every ~x and ~y of `1-norm 1, we

have d(Ã~x, Ã~y) ≤ −2 lnµ. Hence

∆(Ã) = sup
~x,~y>0

{
d(Ã~x, Ã~y)

}
= sup

~x,~y>0, ‖~x‖1=‖~y‖1=1

{
d(Ã~x, Ã~y)

}
≤ −2 lnµ,

where the second equality holds since the projective distance is invariant with respect to scaling
of the arguments. From Theorem B.6 and the fact that tanh(x) ≤ 1 − e−2x, we get ρH(Ã) =
tanh(∆(Ã)/4) ≤ 1− e−∆(Ã)/2 ≤ 1− e− lnµ = 1− µ.

Next we derive an easy corollary of Lemma B.7.

Lemma B.8 If A is a positive matrix with maximal right eigenvector ~x, then limk→∞{d(Ak~y, ~x)} =
0 for every positive vector ~y.

Proof. Assume without loss of generality that ρ(A) = 1, and A~x = ~x (since A may be scaled
without affecting its projective properties). Note that d(Ak~y,Ak~x) ≤ ρH(A)d(Ak−1~y,Ak−1~x) by
the definition of the projective norm ρH(·). Since Ak~x = ~x, we get that d(Ak~y, ~x) ≤ ρH(A)kd(~y, ~x).
Since ρH(A) < 1, we have d(Ak~y, ~x) tends to 0 as k →∞.

The next lemma shows that if A~y is close to ~y for a positive matrix A with maximal eigenvalue
1, and positive vector ~y, then ~y is close to the maximal eigenvector of A, where closeness is under
the projective norm.

Lemma B.9 For a positive square matrix A, with maximal right eigenvector ~x, if ~y satisfies
d(A~y, ~y) ≤ ε, then d(~y, ~x) ≤ ε

1−ρH(A) .

Proof. Again, we assume that ρ(A) = 1, to simplify the notation. Then from Lemma B.8 we
have limk→∞{d(Ak~y, ~x)} = 0. Thus, using triangle inequality on the projective distance we get
d(~y, ~x) ≤

∑∞
k=0 d(Ak~y,Ak+1~y). But d(Ak~y,Ak+1~y) ≤ ρH(A)d(Ak−1~y,Ak~y) ≤ ρH(A)kd(~y,A~y) ≤

ρH(A)kε. Thus, we have d(~y, ~x) ≤
∑∞
k=0 ρH(A)kε = ε

1−ρH(A) .

Proof. [of Theorem B.1] By Conditions (2) and (4) of the hypothesis we get

‖B~y − ~y‖∞ ≤ ‖(B − C)~y‖∞ + ‖C~y − ~y‖∞ ≤ δ + ε. (14)

Applying Part (1) of Lemma B.3, where the roles of ~x, ~y of the lemma are played here by ~y,
B~y respectively, we get d(~y,B~y) ≤ 3 ε+δγ . (Note the necessary condition for the application of
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Lemma B.3 follows from the condition ε + δ ≤ γ/2. Applying Lemma B.9, where the roles of
A, ~x, ~y of the lemma are played here by B, ~x, ~y respectively, we get d(~y, ~x) ≤ 3 ε+δ

γ·(1−ρH(B)) . By

Lemma B.7 we have ρH(B) ≤ 1− γ2, and thus d(~y, ~x) ≤ ε+δ
γ3 . Applying Part (2) of Lemma B.3 to

vectors ~x and ~y, we get ‖~x− ~y‖∞ ≤ d(~x, ~y) ≤ ε+δ
γ3 .
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