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Abstract

We give efficient (polynomial-time) list-decoding algorithms for
certain families of error-correcting codes obtained by “concate-
nation”. Specifically, we give list-decoding algorithms for codes
where the “outer code” is a Reed-Solomon or Algebraic-geometric
code and the “inner code” is a Hadamard code. Codes obtained
by such concatenation are the best known constructions of error-
correcting codes with very large minimum distance. Our decoding
algorithms enhance their nice combinatorial properties with algo-
rithmic ones, by decoding these codes up to the currently known
bound on their list-decoding “capacity”. In particular, the number
of errors that we can correct matches (exactly) the number of errors
for which it is known that the list size is bounded by a polynomial
in the length of the codewords.

1 Introduction

In this paper we consider constructions of linear codes over fixed
size alphabets with very high list-decoding capabilities, i.e., one
can efficiently recover a small list of possible codewords when a
very large fraction of the symbols are either erased or are in error.
We consider a number of errors or erasures which is essentially the
best one can hope to recover from. Over the finite field GF(q)
(also denoted as Fq), we consider problems which are of the fol-
lowing form. Suppose one needs to transmit k symbols (over Fq)
and one wishes to recover from a fraction (1 − 1/q − γ) of errors
(this is essentially the best one can hope to recover from, as a ran-
dom string agrees with any given codeword in 1/q fraction of the
places). We want to encode the k bits into n symbols over GF(q)
and then transmit the encoded string so that this can be achieved,
and our goal is to keep the value of n as small as possible so that
the redundancy in the encoding is small (or, equivalently, the rate of
the code is high). Note that we also allow the parameter γ = γ(n)
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to be a o(1) function which depends on n, and one can present our
results as constructing a family of codes Cn such that a fraction
(1− 1/q − γn) of errors can be corrected in Cn.

We are also interested in the corresponding question in pres-
ence of only erasures, and also in the presence of both errors and
erasures. For instance, we can ask the same question above when
all but γn of the transmitted symbols are erased, and similarly when
e errors and s erasures occur which satisfy q

q−1
e+ s ≤ (1− γ)n.

Constructions of codes with this kind of performance typically
achieve n = poly(k/γ); we are interested in the explicit specifica-
tion of this polynomial. We also show special interest in the case
when the dependence of n is linear in k, so that the resulting code
is asymptotically good.

Previous and Related Work. These problems do not seem to have
been considered explicitly in the literature. However there certainly
are constructions which imply something in our context. Let us
first consider the case of erasures. It is shown in [12] that a Reed-
Solomon code concatenated with a Hadamard code together with
the outer (list) decoder for Reed-Solomon codes of [18, 9] implies
that a blocklength n = Ω(k2/γ4) suffices to tolerate up to (1− γ)
fraction of erasures1. We will prove a stronger result in this paper
using a much simpler approach. We do this by showing that any
q-ary code of distance (1 − 1/q)(1 − δ) can be list decoded from
a fraction (1 − δ) of erasures, and hence it suffices to construct
rate k q-ary codes with minimum distance (q−1)

q
(1 − δ)n for as

small a value of n as possible. Reed-Solomon concatenated with
Hadamard code achieves a distance of (1 − 1/q) · (1 − k/

√
n),

and this gives n = O(k2/δ2). For the case of asymptotically good
codes, by a brute force search for the best inner code along with a
Reed-Solomon code as an outer code gives roughly n = O(k/δ3),
and this was shown by [5]. This construction is sometimes not “ex-
plicit” enough, as the construction complexity is not a fixed polyno-
mial independent of δ, and also the entries of the generator matrix
cannot be computed in polylogarithmic (in n) time. The first ex-
plicit asymptotically good construction achieving this was given by
[23] following the work of Justesen [10], and related constructions
appear in [20, 21]. Constructions of algebraic-geometric codes im-
ply such codes with n = O(k/δ3), but these codes have very high
construction complexity. The best constructions with reasonable
complexity is due to [3], which achieves n = O(k/δ3).

For the case of errors, no such simple connection between the
distance of the code and its efficient list decodability exists, and
constructions are much harder to come by. It is known that a con-
catenation of Reed-Solomon codes with Hadamard codes can achieve
n = poly(k/γ) to decode up to a fraction (1 − 1/q − γ) of er-

1The reader unfamiliar with the definitions of Reed-Solomon codes,
Hadamard codes or concatenation, can find a brief description in Section 2.



rors [19] (this is also implicit in [12]), but even for this code the
dependence of n on γ was not optimized. The situation is worse
for asymptotically good codes. In Justesen’s original paper [10],
he also gives an algorithm to decode his code construction to half
the minimum distance. Note that unique codeword decoding im-
mediately implies that we cannot hope to recover from more than
1
2
(1 − 1/q) fraction of errors as any q-ary code (with exponen-

tially many codewords) has distance less than (1 − 1/q). More-
over, the original binary codes due to Justesen [10] have a distance
only about 0.11, implying decoding up to about 0.055 fraction of
errors. It turns out, however, that the binary code construction of
Weldon [23] has distance 1/2 − ε, and can be decoded up to half
the minimum distance using similar ideas. This implies decoding
up to a fraction 1/4 − γ of errors for the binary case, and a simi-
lar result can be shown for the q-ary case. Beyond this error radius,
one needs the power of list decoding, and no list decoders to handle
such high noise seem to be known for asymptotically good codes.
We are able to give two constructions, one resorting to algebraic-
geometric codes, and the other a simpler one by concatenating a
Reed-Solomon code with any asymptotically good inner code with
good distance properties. Moreover, our decoding algorithms can
handle both errors and erasures.

Our Results.

[Recovering from erasures:] We show that, using a Reed-Solomon
code concatenated with the Hadamard code, we can reconstruct, in
polynomial time, a list of all candidate codewords when only a frac-
tion γ > 0 of the transmitted symbols are received, provided the
blocklength of the code is n ≥ (k/γ)2. We also show, following
the approach in [6], that such codes which are efficiently list decod-
able from a (1 − γ) fraction of erasures exist provided n ≥ k2/γ
(in fact a random code has such a property), though we know of no
explicit construction achieving this. Our result implies, in the ter-
minology of [6, 12], an explicit construction of a binary code, for
any ε > 0, with exponentially (2N

β

for some β > 0) many code-
words such that given any N1/2+ε of the N bits of the codeword,
the list of codewords consistent with these bits can be efficiently
recovered.

[Recovering from errors and erasures:] We first establish a
combinatorial result proving an upper bound on the list size pos-
sible when decoding from a certain number of errors and erasures.
Our result is analogous to the Johnson bound (see also [8]), and
reduces to the one in [8] in presence of only errors; our proof is in
fact simpler than the one in [8] even though our result is more gen-
eral. This places limits on the radius to which one can (currently)
hope to list decode in polynomial time, and restricts qe/(q−1)+s,
where e, s are the number of errors and erasures respectively, to be
at most some quantity that is a function of the minimum distance
of the code. We then give polynomial time list decoding algorithms
for certain concatenated codes to recover from e errors and s era-
sures provided qe/(q− 1) + s ≤ (1− γ)n, and express the block-
length n required to achieve this as a function of k and γ. The
specific results we obtain are the following:

(a) A decoding algorithm for Reed-Solomon concatenated with
Hadamard code whose blocklength is n = O(k2/γ4). Our
decoding algorithm is novel and uses “soft information” that
is passed by the inner decoder in order to decode the outer
Reed-Solomon code. Underlying this procedure is a power-
ful weighted polynomial time reconstruction algorithm due to
[9], which will probably find other applications as well (for
example, recent work in [13] uses this to give decoding algo-
rithms for Reed-Solomon codes that appear to be superior to
Forney’s GMD algorithm [5]). We also use the Linear Pro-
gramming based bounds for codes to provide evidence that

this (quartic) dependence of n on γ is probably the best pos-
sible, given current (combinatorial) techniques to bound the
list size of candidate codewords by a polynomial.

(b) For asymptotically good codes, we give an algorithm for list
decoding algebraic-geometric codes concatenated with Hadamard
code, and the required blocklength is n = O(k/(γ6 log 1/γ)).

(c) The code from (b) above relies on algebraic-geometric codes
which have quite a high construction complexity and more-
over the decoding algorithm has to assume complicated sub-
routines over function fields, so we also give a polynomial
time decoding algorithm for the alternative simpler code ob-
tained by concatenating a Reed-Solomon code with any inner
code with large enough minimum distance. This code is con-
structible in polynomial time and satisfies the required error-
erasure correction property with a blocklength n = O(k/γ8).

The above concatenated codes have the best known blocklength
(up to constant factors) for codes with a given rate and minimum
distance, and our results are therefore qualitatively significant in
that no constructions of codes with better information-theoretic list
decoding capabilities are known. More precisely, consider the task
of constructing codes where decoding (1− 1

q
−γ) fraction of errors

leads to polynomial size lists. The smallest block length, given
k and γ, for which we know of constructions of codes with such
properties, is at least a constant fraction of the blocklength that
we can demonstrate; however we do so with a polynomial time
decoding algorithm! Another fact of interest is that for the cases
(a) and (b) above, the radius to which we are able to list decode
in polynomial time matches (exactly) the bound on the radius for
which it is known that the list size is bounded by a polynomial in
the blocklength.

Organization. In Section 2 we describe the codes we shall use
and the high level idea behind our decoding algorithms. Section 3
proves an upper bound on the list size when decoding q-ary codes
from both errors and erasures. Our code constructions and decod-
ing algorithms for erasures as well for the errors and erasures case
are described in detail in Section 5. Section 6 describes a couple of
applications of our codes to problems in complexity theory.

2 Basic Outline

We start by identifying some standard parameters of codes. A linear
error-correcting code C over a q-ary alphabet of block length n is
a linear subspace of GF(q)n. Its dimension, typically denoted by
k, is the information content of the code. The minimum distance
of the code, is the minimum Hamming distance between any two
distinct members of the code. Some of the standard constructions
of codes we deal with are described below.
• (Generalized) Reed Solomon Codes: These are obtained by

viewing the message as specifying a k− 1-dimensional poly-
nomial; and evaluating it at n distinct points of GF(q). It
needs n ≤ q, and often we will use n = q. The minimum
distance of this code is n− k + 1.

• Hadamard Codes: These are obtained by viewing the message
as the coefficients of a homogeneous degree 1 polynomial in
k variables, and evaluating it at all inputs: Thus it gives a code
of block length qk with minimum distance qk − qk−1.

• Algebraic Geometry codes: We will not be able to describe
the codes here; however we can describe their parameters.
They are constructible for any q that is an even power of a
prime, and can achieve a distance of at least n − k + 1 −
n/(
√
q − 1).

• Concatenated codes [5]: These are codes obtained by com-
bining an “outer” code over a qk-ary alphabet with an ”inner”



code of dimension k over a q-ary alphabet. The combined
codeword corresponding to a given message is obtained by
first encoding the message using the outer code, and then en-
coding each symbol of the resulting string by the inner code.
The resulting code has block length that is a product of the
two block lengths and distance that is the product of the two
distances.

All codes for which we give efficient list decoding algorithms
from high noise are based on the idea of code concatenation. The
outer codes we use will be algebraic codes like Reed-Solomon or
Algebraic-geometric codes. The specific concatenated codes we
give decoding algorithms for are:

(a) Reed-Solomon code concatenated with Hadamard code
(b) Reed-Solomon code concatenated with any q-ary inner code

which has relative distance very close to (1− 1/q)

(c) Algebraic-geometric code concatenated with Hadamard code
These codes are by no means new to our paper and have been

(especially the Reed-Solomon concatenated with a Hadamard code)
often considered in the past (for instance in [1, 12, 19]). The novel
aspect of our work is in the (list) decoding algorithms we give to
decode these codes in the presence of a very large number of er-
rors and erasures. Our decoding algorithms for these concatenated
codes begin by a decoding of the inner code which can be accom-
plished by brute-force since the total number of inner codewords is
of polynomial complexity. Information from the inner decoding is
then passed onto the outer decoder which then completes the de-
coding. The information passed from the inner decoder can be of
many kinds: one possibility could be to just pass the most likely
inner codeword for each of the outer codeword positions. This typ-
ically is too weak as the inner decoder is forced to make a single
hard decision on its codeword which may lead the outer decoder
astray. Our inner decoding algorithms work in one of the following
two ways:

1. Returns a (small) list of possible codewords; this list is typ-
ically the list of all codewords within a certain distance of
the inner received word. Thus the outer decoder has for each
codeword position, a list of possibilities, and needs to list de-
code from this information. This is possible for Reed-Solomon
and algebraic-geometric codes [18, 9]. One important aspect
here is that the list size must be small, and we need com-
binatorial bounds on the maximum possible codewords with
a certain number of errors and erasures from a received (in-
ner) word. Such a bound, which is of independent interest, is
stated and proved in the next section.

2. Returns weights for each possible inner codeword; the weight
corresponding to an inner codeword is a measure of the con-
fidence which the inner decoder has in the fact that it was
that codeword which was transmitted. It is reasonable that
the weight a certain inner codeword receives should in some
sense decrease with its distance from the received inner word,
and as we shall this will be indeed be the case. The outer de-
coder then uses this “soft decision” reliability/confidence in-
formation in its decoding. An algorithm that can use soft deci-
sion information was given for Reed-Solomon codes in [9]; a
similar algorithm actually exists for algebraic-geometric codes
as well; these algorithms are detailed in Appendix B.

3 A bound on list size in presence of errors and erasures

The aim of this section is to state and prove an upper bound on the
number of codewords possible when list decoding from e errors and
s erasures provided e, s satisfy some condition with respect to the
distance d of the code. This bound will place limits on the number
of errors and erasures for which one is guaranteed a polynomial list

size, and can therefore hope for efficient list decoding algorithms.
The bound will also be important to one of our decoding algorithms
(specifically the one which decodes a Reed-Solomon code concate-
nated with any inner code, see Theorem 10), where we need an up-
per bound on the number of inner codewords that can exist with a
certain number of errors and erasures. The result below generalizes
a similar bound in [8] and specializes to that bound for the errors
only case, although our proof is different and simpler.

Theorem 1 For a q-ary code of blocklength n and distance d =
(1−1/q)(1−δ)n, and for any received word with s = σn erasures,
the number of codewords differing from the received word in at
most e places, where qe/(q − 1) + s = (1 − γ)n, is at most
(1−σ)(1−δ)
γ2−(1−σ)δ

, provided γ >
√

(1− σ)δ.

Proof: Let y ∈ Fn−sq be a received word with s erasures, say
the last s = σn positions are erasures. Also assume without loss
of generality that y is the symbol q repeated (n − s) times (we let
the field elements to be in one-one correspondence with the integers
1, 2, . . . , q). LetC1, C2, . . . , Cm be all the codewords which differ
from y in at most e places, where qe/(q− 1) + s = (1− γ)n. Our
goal is to get an upper bound on m provided γ is large enough.

We associate with the received word y and each codewordCi an
nq-dimensional real vector. The vector is to be viewed as having
n blocks each having q components (the n blocks correspond to
the n codeword positions). For 1 ≤ l ≤ q, denote by êl the q-
dimensional unit vector with 1 in the lth position and 0 elsewhere.
For 1 ≤ i ≤ m, the vector ~vi associated with the codeword Ci has
in its jth block the components of the vector êCi[j] (Ci[j] is the jth
symbol of Ci, treated as an integer between 1 and q). The vector
~r associated with the received word y is defined similarly for the
first (n− s) blocks, and the last s blocks of ~r (which correspond to
the erased positions) will have 1/q in every position. (The intuition
behind this is the following: the vector (1/q, 1/q, . . . , 1/q) ∈ Rq
is the centroid of the q points corresponding to the q field elements,
and hence associating this vector with a position amounts to saying
that we have absolutely no idea about the value at this position, or
in other words this position was erased.)

The key quantity we will estimate now is the sum

S =
∑

1≤j,k≤m

〈(~vj − ~r), ( ~vk − ~r)〉.

Let us first give a lower bound on S. The dot product above can
be written as the sum of the dot products over the n blocks. We
ignore the contribution from the s erased positions (which is clearly
non-negative); for blocks p, 1 ≤ p ≤ (n − s), let Np denote
the number of vectors ~vj − ~r which are non-zero, and let Npβ ,
for 1 ≤ β ≤ (q − 1), denote the number of those vectors which
are of the form 0β−110q−β−1(−1); clearly

∑
β
Npβ = Np. The

contribution to S from the q columns in block p is

N2
p +

q−1∑
β=1

N2
pβ ≥

(
q

q − 1

)
N2
p .

Now,
∑n−s

p=1
Np =

∑m

j=1
ej = mē where ej is the number of

placesCj differs from y, and ē is the average number of errors over
the codewordsC1, C2, . . . , Cm. Hence

∑
p
N2
p ≥ (mē)2/(n−s),

and thus we get

S ≥ q

q − 1

(
m2ē2

n− s

)
. (1)

Now for the upper bound on S. Let us consider a fixed pair of
vectors (~vj − ~r) and ( ~vk − ~r). If j = k, then one easily computes



〈(~vj − ~r), (~vj − ~r)〉 = 2ej +
(q − 1)

q
· s. (2)

When j 6= k, if djk is the distance between the codewords Cj , Ck
(note djk ≥ d), one can show that

〈(~vj − ~r), ( ~vk − ~r)〉 = 〈~vj , ~vk〉+ 〈~r, ~r〉 − 〈~vj , ~r〉 − 〈 ~vk, ~r〉

=
(

1− 1

q

)
s+ ej + ek − djk

≤ q − 1

q
s+ ej + ek − d. (3)

From Equations (2) and (3), we get

S ≤ 2m2ē+
q − 1

q
m2s−m(m− 1)d (4)

The proposition follows (after some algebraic manipulation) from
(1) and (4). 2

4 Distance properties of some concatenated codes

From Theorem 1, it is clear that in order to list decode from a large
amount of noise, we would like the underlying code to have large
minimum distance, so that we will, to begin with, at least have the
combinatorial guarantee that size of the list to be output will be
small. We now quantify the distance properties of the main con-
catenated codes we will use; namely we express the blocklength n
in terms of the rate k and the distance parameter δ = 1−qd/(q−1).

Proposition 2 For every k, δ > 0, there is an explicitly specified
q-ary code, denoted CRS−Had, obtained by concatenating a Reed-
Solomon code with a Hadamard code, which has rate k, relative
distance d = (1−1/q)(1−δ), and blocklength n = O( k2

δ2 log2(1/δ)
).2

Proof: Let the code CRS−Had be obtained by concatenating a rate
k/m Reed-Solomon code over GF (qm) with the Hadamard code
associated with GF (qm). The combined rate is clearly k and the

blocklength is n ∆
= (qm)2. The relative minimum distance of the

code is (1 − 1/q)(1 − k/m−1
qm

), and thus n = O(( k
δ log 1/δ

)2) as
desired. 2

The above construction has good (in fact the best possible) depen-
dence of the blocklength on δ, but is, however, not asymptotically
good (i.e n is not linear in k). We next describe two asymptotically
good constructions.

Proposition 3 For every k, δ > 0, there exists an explicitly speci-
fied q-ary code, denoted CAG−Had, that is obtained by concatenat-
ing an (appropriate) algebraic-geometric code with a Hadamard
code, and which has rate k, relative distance d = (1−1/q)(1−δ),
and blocklength n = O( k

δ3 log 1/δ
).

Proof: Let the code CAG−Had be obtained by concatenating a rate
k/m, blocklength n0, algebraic-geometric code overGF (qm) with
the Hadamard code associated with GF (qm). The distance of the
outer code is n0−k/m−g+1 where g is the genus of the underly-
ing function field; we will use function fields with g = n0/(q

m/2−
1) (such constructions are given, for instance, in [22, 15, 7]). The
rate of the concatenated code is clearly k and the blocklength is
n

∆
= n0q

m. The relative minimum distance of the code is at
least (1 − 1/q)

(
1 − k/m−1

n0
− 1/(qm/2 − 1)

)
, and this gives

n = O( k
δ3 log 1/δ

). 2

2Here and by a bound like n = O(ka/δb) we mean the following: there
exists a constant c such that for every k and every δ > 0, there is a distance
(1− 1/q)(1− δ) q-ary code of rate k and blocklength at most cka/δb.

Proposition 4 For every k, δ, ρ > 0, there is a q-ary code, denoted
CRS−GoodInner, that is obtained by concatenating a Reed-Solomon
code with any relative distance (1− 1/q)(1− ρ) q-ary inner code,
and which has rate k, distance d = (1 − 1/q)(1 − δ), and block-
length n = O( k

δρ2
). Moreover such a code can be constructed in

polynomial (in n) time.3

Proof: We use the same construction as in Proposition 2 except
we use, instead of the Hadamard code, an [n1,m, d1]q inner code
where d1 = (1 − 1/q)(1 − O(δ)) with m = Ω(δ2n1) (such a
code exists by the Gilbert-Varshamov bound and can be found in
2O(n1) = poly(n) time by searching in the Wozencraft’s ensemble
of randomly shifted codes [23]). The blocklength is n = n1q

m =

O(n1 · k/mδ ) = O(k/δ3). 2

Remark: The above codes have, up to constant factors, the small-
est blocklength possible for a given value of k and δ. In addition
they have this concatenated structure with a nice algebraic outer
code, and hence we will be able to design list decoding algorithms
for these that can handle a large amount of noise. In particular, for
the codes CRS−Had and CAG−Had we will be able to decode up
to exactly the radius specified in the combinatorial bound of The-
orem 1. This makes our results qualitatively significant in that no
constructions of codes with better information-theoretic list decod-
ing capabilities are known than the ones we are able to achieve
algorithmically.

5 Performance of the Decoding algorithms

This section formally describes our code constructions and decod-
ing algorithms and quantifies their error-erasure correction perfor-
mance.

5.1 Erasure Codes

The following simple but useful fact also follows from Theorem 1,
but we include an easier proof below.

Lemma 1 If C is a q-ary code of blocklength n and minimum dis-
tance d, then for any received word with at most q

q−1
d erasures,

the list of possible codewords consistent with the received word is
of size at most q2

q−1
d.

Proof: Let y be a received word with s ≤ qd/(q − 1) erasures.
Suppose C1, C2, . . . , CM are the distinct codewords of C consis-
tent with y, i.e they agree with y in all the non-erased positions. By
the distance property of C, these codewords must differ from each
other in at least d places in the s erased positions. Projecting the
codewords C1, C2, . . . , CM to the erased positions, we get a code
of blocklength s ≤ qd/(q− 1) with distance d. By a standard cod-
ing theory bound, any such code can have at most qs codewords,
implying M ≤ q2

q−1
d. 2

Corollary 1 Any q-ary code of relative minimum distance (1 −
1/q)(1 − γ) can be efficiently list decoded from erasures as long
as the fraction of erasures is at most (1− γ).

Proof: By Lemma 1, we know that for any received word with less
than a fraction (1−γ) of erasures, the list of possible codewords is
of polynomial (in fact linear) size. Now to recover from erasures, a
small list size implies efficient decodability, since recovering from
erasures only involves finding all possible solutions to a linear sys-
tem of equations, and if the number of solutions is guaranteed to be

3Actually we can even explicitly specify such a code by using a dif-
ferent code from the Wozencraft’s ensemble of codes for the various outer
codeword positions (see, for instance, [10, 23]).



polynomial in number, then they can certainly be found and output
in polynomial time. 2

Hence one way to construct codes that handle a large number of
erasures is to construct codes with very large minimum distance.

Theorem 5 For any finite fieldFq and for any integer k and γ > 0,
there exists an explicitly specified code which encodes k symbols
over Fq into n symbols over Fq where n = O(k/γ3), such that
the list of possible codewords can be recovered in polynomial time
when up to a fraction (1 − γ) of the symbols in the received word
are erased.4

Proof: By Corollary 1, we only need to construct a code with rate
k, blocklength n and minimum distance (1− 1

q
)(1−γ)n. As shown

by Alon et. al. [3], such a code can be constructed in polynomial in
n time (with the exponent being independent of γ) provided n =
Ω(k/γ3). We could have similarly used the code CAG−Had from
Proposition 3. 2

While the construction of the previous theorem has linear de-
pendence of n on k (and hence the code family is asymptotically
good), we would also like constructions with better dependence on
γ. The Gilbert-Varshamov bound shows the existence of codes
with n = O(k/γ2) (in fact a random code with such a value of n
has the required property), but we know of no explicit way of con-
structing such codes. We now present an explicit construction with
better than a γ−3 dependence at the expense of worse dependence
of n on k (hence this construction is not asymptotically good).

Theorem 6 For any prime power q, and any k, γ, the statement of
Theorem 5 holds with n = O(k2/γ2 log2(1/γ)).

Proof: By Proposition 2 and Corollary 1, it follows that the code
CRS−Had has this property. 2

The quadratic dependence of n on γ is unavoidable using just
the “distance based” approach of Corollary 1. This is because
the McEliece-Rodemich-Rumsey-Welch upper bound [16] on the
rate of codes implies that a q-ary code relative minimum distance
(1−1/q)(1−δ) can have relative rate k/n at mostO(δ2 log(1/δ)).
We now prove an existential result for codes that achieves a bet-
ter dependence of n on γ; we have no idea, however, on how to
construct such codes deterministically in polynomial time. In fact,
Alon [2] has pointed out that an explicit construction of erasure
codes which beat the quadratic dependence of n on γ is probably
difficult as it would imply improvements on the bipartite Ramsey
problem; specifically it would give an explicit construction of an
N ×N matrix over GF(2) with no monochromatic p× p subma-
trix for p much smaller than N1/2, and it is currently not known
how to achieve this.

Theorem 7 For any finite fieldFq and for any integer k and γ > 0,
there is a linear code over Fq with rate k and blocklength n where
n = O(k2/γ), such that whenever up to a fraction (1 − γ) of
the symbols in the received word are erased, the list of possible
codewords can be recovered in polynomial time.

Proof: The proof is by the probabilistic method and follows the
approach in [6]. We show that a random linear code (picked using
a random n × k generator matrix G with n = Θ(k2/γ)) has the
required property with high probability. Note that we only need
to prove that the list of candidate codewords is of polynomial size
whenever at least a fraction γ of the codeword is specified, and then
efficient list decoding follows simply by finding all solutions of a
linear system of equations.

4Both the construction of the code and the list decoding can be per-
formed in time which strongly polynomial in both n and 1/γ.

Suppose γn positions of a codewords are specified as a vector
y ∈ Fγnq . This gives a linear system G′x = y where G′ is the
γn × k matrix obtained by picking rows of G corresponding to
the γn non-erased positions. The list size of codewords consistent
with y is precisely the number m of solutions x ∈ Fkq of the this
linear system. Clearly, m = qk−rank(G′), and hence we need to
argue that, with high probability, every γn × k sub-matrix of G
has “high” rank, say a rank at least k − c logq n for some constant
c > 0. The number of such sub-matrices is

(
n
γn

)
, and the number

of subspaces Γ of Fkq of rank less than k− c logq n is at most qk
2
.

The probability that a specific γn× k sub-matrix G′ has row span
contained in a specific subspace Γ of rank less than k − c logq n,
is at most (q−c logq n)γn. Hence the overall probability of the code
not having the required property is, by union bound, at most(

n

γn

)
· qk

2
· n−cγn ≤ (

e

γ
)γn · qk

2
· n−cγn

≤ (
qe

γnc
)γn (provided k2 ≤ γn)

< 1.

Such a code therefore exists and the proof is complete. 2

5.2 Decoding from errors and erasures

Theorem 8 For an [n, k, d] code CRS−Had over GF(q) with d =
(1−1/q)(1−δ), there is a polynomial time list decoding algorithm
for e errors and s = σn erasures as long as

qe

q − 1
+ s ≤ n

(
1−

√
(1− σ)δ

)
−O(1) .

Corollary 2 For any finite field Fq and for any integer k and γ >
0, there exists an explicitly specified linear code over Fq of rate
k and blocklength n where n = O(k2/γ4), such that for any re-
ceived word y with s erasures, the list of all codewords differing
from y in at most e places can be found in polynomial time, pro-
vided q/(q − 1)e+ s ≤ (1− γ)n.

Proof: Follows from Proposition 2 and Theorem 8. 2

Proof of Theorem 8: Before we begin proving the Theorem note
that this matches the combinatorial bound for list decoding proved
in Theorem 1. Recall that CRS−Had is constructed by concatenating
an outer [n′ = qm, k/m, n′ − k/m + 1]qm Reed-Solomon code
with the Hadamard code associated with GF(qm), and it has block-
length n = n′2 and distance d = (1−1/q)(1−δ) with δ = k/m−1

n′ .
Now let y be a received word with s = σn erasures in all, we would
like to obtain a list of all codewords in CRS−Had that differ from y
in at most e places. For 1 ≤ i ≤ n′, denote by yi the portion of
y in block i of the codeword (i.e the portion corresponding to the
encoding of the ith symbol of the outer code), and let si be the
number of erasures in yi (where

∑n′

i=1
si = s). The n′ codewords

of the inner Hadamard code are in one-to-one correspondence with
the n′ elements α1, α2, . . . , αn′ of the field GF(qm) (which are
viewed as m-tuples over GF(q)). For 1 ≤ i, j ≤ n′, let eij be
the number of positions where yi differs from αj , and define the
weight wij as:

wij
∆
= (1− si

n′
− q

q − 1
· eij
n′

).

One key property of these weights, proved in Corollary 7 in Ap-
pendix A is that, for each i,∑

j

w2
ij ≤ (1− si

n′
). (5)



These weights will be the “soft information” passed to the outer
decoder for Reed-Solomon codes. In order to exploit this infor-
mation, we will use as outer decoder, a weighted polynomial re-
construction algorithm presented in [9] (see also Proposition 16 of
Appendix B). More precisely, the decoder is given weights wij
on pairs (αi, αj) of field elements, and the algorithm can find, in
poly(n′, 1/ε) time, a list of all outer codewords RS(p), which cor-
respond to degree (k/m − 1) polynomials p over GF(qm), that
satisfy

n′∑
i=1

wi,p̃(i) >

√
(k/m− 1)

∑
1≤i,j≤n′

w2
ij + εmax

ij
wij

where p̃ : [n′]→ [n′] is defined by p̃(i) = j iff p(αi) = αj .
For our definition of weights, using Equation (5), the decoding

algorithm can thus retrieve all codewords corresponding to polyno-
mials p for which

n′∑
i=1

(1− si
n′
− q

q − 1
·
ei,p̃(i)

n′
) >

√√√√(k/m− 1)

n′∑
i=1

(1− si
n′

) + ε,

or, equivalently, one can find all codewords at a distance e from the
received word y provided

n′ − s

n′
− qe

(q − 1)n′
>

√
(
k

m
− 1)(n′ − s

n′
) + ε or

qe

q − 1
+ s < n

(
1−

√
k/m− 1

n′
(1− s

n
)− ε√

n

)
⇐=

q

q − 1
e+ s ≤ n

(
1−

√
(1− σ)δ

)
−O(1)

provided we pick ε ≤ 1/
√
n. 2

Remark: The (quartic) dependence of n on γ in Corollary 2 seems
to be the best one can currently hope for. Current combinatorial
bounds guarantee a small list size as long as γ in Corollary 2 is
of the order of

√
δ where (1 − 1/q)(1 − δ) is the relative min-

imum distance of the code. Beyond this radius it is unknown if
the number of codewords can always be bound by a polynomial.
By the McEliece-Rodemich-Rumsey-Welch upper bound [16], for
codes with such high minimum distance, we must have k/n =
O(γ4 log(1/γ)). For completeness sake, we include in Appendix C,
a proof that any binary code with minimum distance d = n/2 −
c
√
n for any c < 1/2 can have only polynomially many code-

words; this implies that when γ = n−1/4, we must have k =
O(logn), and this shows that the γ−4 dependence of nmatches the
performance possible given the best known combinatorial bounds
on list decodability.

The dependence of n on k in CRS−Had is quadratic, however,
and hence the code family constructed above is not asymptotically
good. We next provide a list decoding algorithm for CAG−Had that
matches the bound of Theorem 1, and then also give a good list
decoding algorithm for the simpler construction CRS−GoodInner.
These results will prove that one can indeed construct asymptot-
ically good codes which can correct from such large fractions of
errors and erasures as we are interested in, with only a moderate
worsening of the dependence of n on γ.

Theorem 9 For an [n, k, d] code CAG−Had over GF(q) with d =
(1−1/q)(1−δ), there is a polynomial time list decoding algorithm
for e errors and s = σn erasures as long as qe/(q − 1) + s ≤
n
(
1−

√
(1− σ)δ

)
−O(1).

Corollary 3 For any finite field Fq and for any integer k and γ >
0, there exists an explicitly specified linear code over Fq of rate
k and blocklength n where n = O( k

γ6·log(1/γ)
), such that for any

received word y with s erasures, the list of all codewords differ-
ing from y in at most e places can be found in polynomial time,
provided q/(q − 1)e+ s ≤ (1− γ)n.

Proof of Theorem 9 (Sketch): Recall that CAG−Had is constructed
by concatenating an outer [n0, k/m, d0]qm algebraic-geometric code
with the Hadamard code associated with GF(qm), and it has block-
length n = n0q

m, rate k and distance d = (1−1/q)(1− δ) where
δ = 1− d0/n0.

The decoding algorithm is exactly similar to the one in Theo-
rem 8 except that instead of a weighted polynomial reconstruction
routine, one uses a weighted version of the decoding algorithm of
[9] for algebraic-geometric codes (stated formally in Appendix B).
Using exactly the same definition of weights as earlier and arguing
as in Theorem 8, we conclude that, for any ε > 0, we can find all
codewords at a distance e from a received word y with s erasures
provided

n0 −
s

qm
− q

q − 1
· e
qm

>

√
(n0 − d0)(n0 −

s

qm
) + ε

⇐=
q

q − 1
e+ s ≤ n(1−

√
(1− σ)δ)−O(1)

provided we choose ε ≤ 1/qm. 2

Caveat: When we claim polynomial time decodability in the above
theorem, this is valid only under some assumptions about the func-
tion field underlying the algebraic-geometric code which we use
as the outer code (say the Garcia-Stichtenoth codes of [7]). We
next present a decoding algorithm for the simpler construction of
CRS−GoodInner from Proposition 4.

Theorem 10 For an [n, k, d]q code CRS−GoodInner, where d =
(1 − 1/q)(1 − δ)(1 − ρ), for every ε > 0, one can list decode
in poly(n, 1/ε) time from e errors and s = σn erasures as long as

qe

q − 1
+ s ≤ n

(
1−

√
(1 + ε)ρ−

√
δ(1− σ)

ερ

)
.

Proof: Recall that CRS−GoodInner with the specified parameters is
obtained by concatenating an outer [n0, k/m, d0]qm Reed-Solomon
code where n0 = qm and d0 = n0 − k/m+ 1 = (1− δ)n0, with
any inner code over GF(q) that has blocklength n1, rate m and
minimum distance (1− 1/q)(1− ρ)n1.

The decoding algorithm will work as follows. The received
word y (which has s = σn erasures) can be divided into n0 blocks
yi corresponding to the n0 outer codeword positions. For 1 ≤
i ≤ n0, let si denote the number of erasures in yi, with

∑
i
si =

s. For each block i, the inner decoder, by going over all inner
codewords (since there are qm = n0 inner codewords, we can do
this in polynomial time), outputs a list Li of all (inner) codewords
that differ from yi in at most ei places where ei is defined so that
qei/(q − 1) + si = (1 − ζ)n1 for some ζ >

√
ρ; by Theorem 1

the size `i of each Li is at most (1− si/n1)(1− ρ)/(ζ2 − ρ);
The inner decoder thus passes to the outer decoder a list of at

most L =
∑n0

i=1
`i ≤ (1−σ)(1−ρ)n0

(ζ2−ρ) points {(xi, zij) : 1 ≤ i ≤
n0, 1 ≤ j ≤ `i} (here x1, x2, . . . , xn0 are the elements of the field
GF(qm) and zij ∈ GF(qm)). Using the decoding algorithm in [9],
we can find all outer codewords, i.e polynomials p ∈ GF(qm)[X]
of degree less than k/m, such that p(xi) ∈ {zij : 1 ≤ j ≤ `i} for

more than t ∆
=
√

(k/m− 1)L values of i.



If this algorithm fails to output a codeword corresponding to
a polynomial p when receiving y, there must be at least (n0 − t)
blocks i of y for which p(xi) does not belong to the list Li output
by the inner decoder. This implies that the number ei of positions
where the encoding of p(xi) (by the inner code) differs from yi
satisfies qei/(q − 1) + si > (1− ζ)n1. Hence the algorithm fails
to output a codeword which differs from y at e places (recall y has
s erasures) only if

q

q − 1
· e+ s > (n0 − t)(1− ζ)n1

=
(
n0 −

√(
k/m− 1

)
L
)

(1− ζ)n1.

Thus we can decode from e errors and s erasures provided

q

q − 1
· e+ s ≤

(
1−

√
(k/m− 1)

n0

L

n0

)
(1− ζ)n0n1

⇐ q

q − 1
· e+ s ≤

(
1−

√
δ(1− σ)

(1− ρ)

(ζ2 − ρ)

)
(1− ζ)n.

Setting ζ =
√

(1 + ε)ρ, we see that the above condition is met if

qe

q − 1
+ s ≤ n

(
1−

√
(1 + ε)ρ−

√
δ(1− σ)

ερ

)
. 2

Corollary 4 [Simpler Construction than that of Corollary 3]: For
any finite field Fq and for any integer k and γ > 0, the statement
of Corollary 3 holds with n = O(k/γ8), and the code is actually
a Reed-Solomon code concatenated with any inner code with large
enough distance.

Proof: Follows from Theorem 10 and Proposition 4 with the fol-
lowing choice of parameters: δ = O(γ4), ρ =

√
δ, ε = 1. 2

6 Applications

6.1 Computing from partial solutions

We now point out applications of our codes and decoding algo-
rithms to the framework of [6, 12] which concerns checking mem-
bership for languages in NP when the only either a small fraction
of the witness is given (referred to as a partially publishable proof
system in [12]), or when a large portion of the witness is in error.
For this application we are only interested in binary codes. Corol-
laries 5 and 6 below improve the corresponding bounds (ofN2/3+ε

andN/2+N4/5+ε respectively) proved in [12]. The result of The-
orem 6 immediately implies:

Corollary 5 For any language L in NP and every witness predi-
cate RL for L, and every ε > 0, there is a witness predicate R′L
and a polynomial time procedure to map witnesses y ofRL intoN -
bit witnesses z of R′L such that given any N1/2+ε bits of a witness
z which satisfies R′L(x, z), one can construct in polynomial time a
witness y that satisfies RL(x, y).

Using the result of Corollary 2, we can get the errors-analogue of
the above statement.

Corollary 6 For any ε > 0 and any languageL in NP, we can con-
struct a polynomial time computable witness predicate RL, such
that given any string which agrees with an N -bit witness y that
satisfies RL(x, y) in at least N/2 + N3/4+ε positions, one can
in polynomial time compute a witness which satisfies the predicate
RL.

The above results imply that membership checking for languages
in NP can be performed even when a partial witness or a highly
noisy witness is given. They, however, treat witnesses simply as
strings, and even if we start out with witnesses which have a nice
semantic property, say, of being satisfying assignments to a SAT
formula, in the encoding process they get mapped into arbitrary bi-
nary strings. This raises the question, considered by [6] of whether
one can map SAT instances φ to (longer) SAT instances φ′ such that
a satisfying assignment for the original instance φ can be inferred
given only very few bits of a satisfying assignment for φ′. Combin-
ing the techniques in their paper together with the code construction
of Theorem 6, we get the following (compare with Theorem 2 of
[6]):

Theorem 11 For any ε > 0, there exist deterministic polynomial
time algorithms Encsat and Recsat such that

(i) If φ is a CNF formula over n variables, then φ′ = Encsat(φ)

is a CNF formula over N = nO(1) variables, with |φ′| =

|φ|+ nO(1).

(ii) If s′ is an assignment to any N3/4+ε of the variables in φ′

that can be extended to a full satisfying assignment, then
Recsat(φ, φ

′, s′) is a satisfying assignment for φ.

Proof: The proof follows the proof of Theorem 2 in [6]. Use the
construction of Theorem 6 to get a code C which encode the n-bit
strings x (corresponding to satisfying assignments to φ) into nc-
bit strings y such that given any nc(1/2+ε) bits of y, all strings x
consistent with this can be found in polynomial time.

Let C(x1, x2, . . . , xn, y1, . . . , ync) be a circuit which verifies
that y is the encoding of x; using the nice structure of linear codes,
it is easy to see that one can write C as a CNF formula using only
nc+1 temporary variables as φC(x1, . . . , xn, y1, . . . , ync , z1, . . . ,

znc+1). For each variable yi, introduce nc − 1 new variables yji
(1 ≤ j ≤ nc − 1), and encode the equalities yi = y1

i = y2
i = · · ·

in a CNF formula φeq . Finally set φ′ = φ∧φC∧φeq , thus obtaining
a formula over N = n+ n2c + nc+1 variables.

Now suppose we are given some N3/4+ε bits of a satisfying
assignment b of φ′. We haveN3/4+ε = (n+nc+1 +n2c)3/4+ε >

n3c/2+2εc > n3c/2+εc + nc+1 + n (for large enough n). Since
we have only n x’s and nc+1 z’s, this means we are left with at
least n3c/2+εc y-variables, which means we must have the value of
at least n(1/2+ε)c different yi’s (as each yi is only duplicated nc

times). By the property of the code C, we can now find a list of all
possible x’s in polynomial time, and simply check if any of them
satisfies φ. 2

6.2 Decoding from 100% error and Membership Compa-
rable Sets

The results of this paper, specifically that of Corollary 3 or Corol-
lary 4, imply the following interesting result (which is trivial for
the binary case q = 2, but is far from obvious otherwise):

Theorem 12 For any prime power q, there is an explicitly con-
structible asymptotically good family of linear codes Cn over Fq
such that given a received word y ∈ Fnq , a list of all codewords in
Cn which differ from y in every position can be found in polynomial
time.

Proof: Simply use the construction of Corollary 4 with a value
of γ < 1

(q−1)2
. Such a code can be efficiently list decoded up

to a radius of
(
1 − 1/q − (q − 1)γ/q

)
>
(
1 − 1

q−1

)
from any

received word. Now given y which differs from some codeword c
in every position, form a word z by setting zi, 1 ≤ i ≤ n, to be
a random value not equal to yi. The expected agreement between



z and c is thus 1/(q − 1), and by the construction of the code all
codewords with agreement at least 1/(q − 1) with z can be found
in polynomial time. This gives a randomized procedure to recover
a list of all codewords that differ from y in every position. The
method can be easily derandomized, completing the proof. 2

The above has application to membership comparable sets [17].
A set A is said to be k(n) membership comparable if there is a
polynomial time computable function that, given k(n) instances of
A of length at most n, excludes one of the 2k(n) possibilities for
memberships of the given strings in A. The above theorem also
gives a proof of the following fact; our proof is different from the
one in [17].

Theorem 13 ([17]) If SAT is O(logn) membership comparable,
then UniqueSAT ∈ P.

Proof: Suppose there exists a constant d such that SAT is d logn
membership comparable. Let φ be an instance of UniqueSAT on
n boolean variables. Set p = d logn and q = 2p and consider
the code C of rate n over GF(q) as guaranteed by Theorem 12; let
the blocklength of C be m. For each 1 ≤ i ≤ m, construct p =
d logn SAT formulae φij over n variables for 1 ≤ j ≤ p, such that
for a ∈ {0, 1}n, φij(a) =

(
φ(a) ∧ The jth bit of EncC(a) = 1

)
(here EncC(a) is the encoding of a in the code C, and elements of
GF(2p) are viewed as p-bit vectors).

Suppose φ were satisfiable (in case it is not, we will never find
a witness, so we only worry about the satisfiable case), and let a
be the unique satisfying assignment to φ. We use the polynomial
membership comparator function f guaranteed by the hypothesis,
to get, for 1 ≤ i ≤ m, vectors bi = f(φi1, . . . , φip) ∈ {0, 1}p
such that bi 6= (χSAT (φi1), . . . , χSAT (φip)). By the definition of
φij and the fact that a is the unique satisfying assignment to φ, we
can conclude, for 1 ≤ i ≤ m, that bi when viewed as an element
of GF(2p) is not equal to the ith symbol of EncC(a), and thus
we have a word (b1, b2, . . . , bm) ∈ GF(q)m with all symbols in
disagreement with the codeword EncC(a). Now using the decoding
algorithm for C as in Theorem 12, we can find a list of all such a’s
in polynomial time, and by simply going over the list also find the
unique satisfying assignment to φ. 2
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A Fourier Transforms over a q-ary alphabet

Proposition 14 Let f : Fmq → Fq be an arbitrary function, and
for every α ∈ Fmq , let the linear function lα : Fmq → Fq be
defined by: lα(x) =

∑m

i=1
αixi (all operations performed over

Fq). Then ∑
α∈Fmq

(
1− q

q − 1
Dist(f, lα)

)2

≤ 1.

Remark: For the case q = 2,
(
1−2Dist(f, lα)

)
equals the Fourier

coefficient f̂α of f with respect to lα, and the statement of the
Proposition holds with equality, and is simply the standard Par-
seval’s identity

∑
α
f̂2
α = 1. The result for the non-binary case

appears in [11], and the proof there is based on the MacWilliams-
Sloane identities for the weight distribution of dual codes; we give
a more elementary proof below.



Proof: The proof works by viewing any f : Fmq → Fq as a qm-
tuple over Fq , and embedding it as a qm · q-dimensional real unit
vector. The vectors associated with lα and lβ will be orthogonal (in
the usual dot product over Rq

m·q) whenever α 6= β. The quantity
(1 − q

q−1
Dist(f, g)) for any two functions f, g will simply be the

dot product of the vectors associated with f, g. The result will then
follow since the sum of the squares of the projections of a unit
vector along pairwise orthogonal vectors can be at most 1.

Suppose the q elements of Fq are x1, x2, . . . , xq . Associate
a q-dimensional vector ei with xi as follows (eij denotes the jth
component of ei): eii =

√
(q − 1)/q and eij = −1/

√
q(q − 1)

for j 6= i. Note that this definition satisfies 〈ei, ei〉 = 1 and
〈ei, ej〉 = −1

q−1
for i 6= j. Treating a function f : Fmq → Fq

as a string over Fq , we view f as the qm · q-dimensional vector
obtained in the obvious way by juxtaposing the q-dimensional vec-
tors for each of the qm values which f takes on its domain, and
then normalizing it to a unit vector. Note that when we take the
inner product 〈f, g〉, we get a contribution of 1 corresponding to
the positions where f, g agree, and a contribution of −1/(q − 1)
corresponding to places where f, g differ. Hence 〈f, g〉 = (1 −
Dist(f, g)) · 1 + Dist(f, g) · −1/(q − 1) = 1 − q

q−1
Dist(f, g).

Hence 〈lα, lα〉 = 1. For α 6= β, Dist(lα, lβ) = (q−1)/q (two dis-
tinct codewords in the Hadamard code corresponding to Fmq agree
is exactly qm−1 places and differ in qm−1(q− 1) places), and thus
〈lα, lβ〉 = 0 when α 6= β. The result now follows since∑
α∈Fmq

(
1− q

q − 1
Dist(f, lα)

)2

=
∑
α

〈f, lα〉2 ≤ 〈f, f〉 = 1.2

Corollary 7 Suppose f : Fmq → Fq is a string of qm symbols
over Fq except that a fraction s of them are erased. Let eα be
the fraction of positions (among the non-erased positions) where f
differs from lα. Then∑

α∈Fmq

(1− s− q

q − 1
· eα)2 ≤ (1− s).

Proof: As in the proof of Proposition 14, view f as a qm · q-
dimensional vector over the reals, except that now the vector has
zeroes at the q coordinates corresponding to every erased position.
Now∑
α

(1−s− q

q − 1
eα)2 =

∑
α

〈f, lα〉2 ≤ 〈f, f〉 = (1−s). 2

B List decoding Reed-Solomon and Algebraic-geometric
codes with weights

In this section we present a version of the weighted polynomial re-
construction algorithm due to [9]. The algorithm as presented in
[9] handled integer weights and ran in time polynomial in the sum
of the weights. Here we note that with an ε degradation in perfor-
mance, the algorithm can be implemented to run in poly(n, 1/ε)
time, even when the weights are arbitrary rational numbers.

Let us first formally define the weighted polynomial reconstruc-
tion problem.

(Weighted polynomial reconstruction)
INPUT: n distinct points {(x1, y1), . . . , (xn, yn)} in F × F , F a
field, together with n non-negative weights w1, . . . , wn, and pa-
rameters k and t. (Assume w1 ≤ w2 ≤ · · · ≤ wn.)
OUTPUT: All polynomials p of degree less than k such that∑

i:p(xi)=yi

wi ≥ t.

Note: The xi’s above need not be distinct.

Theorem 15 ([9]) If the weights are non-negative integers the weighted
polynomial reconstruction problem can be solved in time polyno-
mial in the sum of wi’s provided t >

√
(k − 1)

∑n

i=1
w2
i .

Proposition 16 For any tolerance parameter ε > 0, the weighted
polynomial reconstruction problem can solved in polynomial (in n
and 1/ε) time provided

t >

√√√√(k − 1)

n∑
i=1

w2
i + εwn.

Proof: Pick any large integer L ≥ n
ε

, and form the integer weights
w′i = bLwi/wnc. Since wi ≤ wn for all i, the weights w′i are
all at most L, and now the algorithm of [9] can used to in find, in
poly(nL) time, a list of all polynomials p of degree less than k,
provided ∑

i:p(xi)=yi

w′i >

√√√√(k − 1)

n∑
i=1

w′2i .

But since Lwi/wn ≥ w′i ≥ Lwi/wn − 1, this implies we find in
poly(nL) = poly(n, 1/ε) time all polynomials p of degree less
than k, provided

∑
i:p(xi)=yi

(
Lwi
wn
− 1
)

>

√√√√(k − 1)

n∑
i=1

(
Lwi
wn

)2

⇐=
∑

i:p(xi)=yi

wi >

√√√√(k − 1)

n∑
i=1

w2
i +

nwn
L

⇐=
∑

i:p(xi)=yi

wi >

√√√√(k − 1)

n∑
i=1

w2
i + εwn

(the last step follows since L ≥ n/ε). 2

Weighted list decoding of Algebraic-geometric codes: Though it
is not explicitly stated in [9], their techniques also imply a decod-
ing algorithm for algebraic-geometric codes with weights on the
codewords positions. Let x0, x1, . . . , xn be n+ 1 distinct rational
points in an algebraic function field over Fq . Then an algebraic-
geometric code has codewords corresponding to the evaluations of
“functions” f which have at most α poles at x0 (α is a parameter
of the code) and no poles elsewhere (this space of functions is de-
noted by Lα,x0 ), at the rational points x1, x2, . . . , xn. The results
of [9], together with the trick of Proposition 16 above, imply the
following.

Proposition 17 Let C be an algebraic-geometric code of block-
length n defined over Fq with rational points {x0, x1, . . . , xn}
and the space Lα,x0 of functions; the designed distance d of C is
(n − α). Suppose we are given N pairs (pi, yi), 1 ≤ i ≤ N with
associated weights wi, where pi ∈ {x1, x2, . . . , xn} and yi ∈ Fq .
Then, for any ε > 0, a list of all f ∈ Lα,x0 such that

∑
i:f(pi)=yi

wi >

√√√√(n− d)

N∑
i=1

w2
i + εmax

i
wi

can be found in poly(N, 1/ε) time provided certain assumptions
about the algebraic function field underlying C hold (see [9] for
details on these assumptions). 2



C The Linear Programming Bound for large distance bi-
nary codes

In this section we include a proof that binary linear codes with
a minimum distance n/2 − c

√
n for any c < 1/2 can have at

most polynomially many codewords (in fact at mostO(n3/2) code-
words). The proof uses the Linear Programming bound for linear
codes (see for example [14]). This bound on the distance is tight,
in the sense that there are linear codes with exponentially many
codewords and with minimum distance n/2 − n1/2+ε, for any
ε > 0 (Reed-Solomon codes concatenated with Hadamard codes
gives one such construction).

Proposition 1 A binary linear code of blocklength n and minimum
distance d = n/2 − c

√
n can have at most O(n3/2) codewords if

c < 1/2.

Proof: The proof follows exactly along the lines of the McEliece-
Rodemich-Rumsey-Welch upper bound [16] (a description can also
be found in [14, Chapter 17]), but is actually easier as we only prove
a very specific result.

We use the dual version of the linear programming bound [4]
which states the following: if a polynomial β(x) of degree at most
n with Krawtchouk expansion β(x) =

∑n

k=0
βkPk(x) can be

found such that β0 = 1,5 βk ≥ 0 for 1 ≤ k ≤ n, and β(j) ≤ 0 for
d ≤ j ≤ n, then the maximum number of codewords in a binary
code of blocklength n and distance d, denoted A(n, d), is at most
β(0).

Let us now focus on the case d = n/2 − c
√
n with c < 1/2.

Pick a = n/2−p
√
n where c < p < 1/2, so that a < d. Consider

the polynomial

α(x) =
1

a− x

(
P2(x)P1(a)− P1(x)P2(a)

)2

.

α(x) is a polynomial of degree 3 and can be expanded as α(x) =∑3

k=0
αkPk(x). We will then choose β(x) = α(x)/α0. In order

to get a bound on A(n, d), we need to check that (i) α(i) ≤ 0 for
d ≤ i ≤ n; (ii) αk ≥ 0 for 1 ≤ k ≤ n; and (iii) α0 > 0.

By the definition of α(x), α(x) ≤ 0 if x > a, and therefore
also if x > d (since a < d). Now αk = 2−n

∑n

i=0
α(i)Pi(k),

and the claim that αk ≥ 0 follows from a few further properties of
Krawtchouk polynomials (see [14, Chap. 17] for details). Similarly
it can also be shown that

α0 = −nP1(a)P2(a)

= −n(n− 2a)
((

n

2

)
− 2na+ 2a2

)
> 0

= −n(2p
√
n)
(
− 2(1/4− p2)n

)
= 4n5/2p(

1

4
− p2) > 0.

We can now conclude,

A(n, d) ≤ β(0) = α(0)/α0

=

1
a

{(
n
2

)
P1(a)− nP2(a)

}2

α0

=

{(
n
2

)
2p
√
n+ 2n2(1/4− p2)

}2

4n5/2p(1/4− p2)(n/2− p
√
n)

= O(n5/n7/2) = O(n3/2). 2

5The Krawtchouk polynomials are a family of orthogonal polynomials
and can be defined recursively by: P0(x) = 1, P1(x) = n − 2x and
(k + 1)Pk+1(x) = (n− 2x)Pk(x)− (n− k + 1)Pk−1(x).


