
“Soft-decision” Decoding of Chinese Remainder Codes

Venkatesan Guruswami∗ Amit Sahai ∗ † Madhu Sudan ∗ ‡

Abstract

Given n relatively prime integers p1 < · · · <
pn and an integer k < n, the Chinese Remainder
Code, CRTp1,...,pn;k, has as its message space M =
{0, . . . ,

∏k
i=1 pi − 1}, and encodes a message m ∈ M as

the vector 〈m1, . . . ,mn〉, where mi = m(mod pi). The
soft-decision decoding problem for the Chinese remainder
code is given as input a vector of residues ~r = 〈r1, . . . , rn〉,
a vector of weights 〈w1, . . . , wn〉, and an agreement param-
eter t. The goal is to find all messagesm ∈M such that the
weighted agreement between the encoding of m and ~r (i.e.,∑
i wi summed over all i such that ri = m(mod pi)) is at

least t. Here we give a new algorithm for solving the soft-
decision problem for the CRT code that works provided the
agreement parameter t is sufficiently large. We derive our
algorithm by digging deeper into the algebra underlying
the error-correcting algorithms and unveiling an “ideal”-
theoretic view of decoding.

When all weights are equal to 1, we obtain the more
commonly studied “list decoding” problem. List decod-
ing algorithms for the Chinese Remainder Code were
given recently by Goldreich, Ron, and Sudan [5], and im-
proved by Boneh [1]. Their algorithms work for t ≥√

2knlog pn/log p1 and t ≥
√
knlog pn/log p1, respec-

tively. We improve upon the algorithms above by using our
soft-decision decoding algorithm with a non-trivial choice
of weights, and solve the list decoding problem provided
t ≥

√
k(n+ ε), for arbitrarily small ε > 0.

1 Introduction
Given n relatively prime integers p1 < · · · <

pn and an integer k < n, the Chinese Remainder
Code, CRTp1,...,pn;k, has as its message space M =
{0, . . . ,

∏k
i=1 pi − 1}, and encodes a message m ∈ M as

the vector 〈m1, . . . ,mn〉, where mi = m(mod pi). The

∗MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA 02139. Email:
{venkat,amits,madhu}@theory.lcs.mit.edu.
†Supported in part by a DOD NDSEG Fellowship.
‡Supported in part by an MIT-NEC Research Initiation Award, a Sloan

Foundation Fellowship and NSF Career Award CCR-9875511.

Chinese Remainder Code (henceforth, CRT code), also re-
ferred to as the Redundant Residue Number System code,
seems to have been studied for several years now in the liter-
ature in coding theory (see [15, 9], and the references there
in), and its redundancy property has been exploited often in
theoretical computer science as well. Mandelbaum gave a
decoding algorithm for this code, correcting n−k

2 errors.1

Recently, Goldreich, Ron, and Sudan [5] gave a “list de-
coding” algorithm for this code. Formally, the list decoding
problem has as its inputs a vector 〈p1, . . . , pn〉, an integer
k (specifying the CRT code), a vector 〈r1, . . . , rn〉 and an
agreement parameter t. The goal is to find a list of all mes-
sages m ∈ M such that ri = m(mod pi) for at least t
choices of i ∈ {1, . . . , n}. The notion of list decoding was
proposed independently by Elias [3] and Wozencraft [17]
as a relaxation to the usual notion of recovery from errors
(which requires the output to be a single message). Infor-
mally, a list decoding algorithm offers a method of recov-
ery from n − t errors. For the case of the CRT code, the
algorithm of [5] solved the list decoding problem in poly-

nomial time provided t ≥
√

2kn log pn
log p1

. If pn = O(p1),
and k = o(n), then t can be growing as o(n) and this is far
better than the results achievable via standard (not list) de-
coding. More recently, Boneh [1] reduced the requirement

on t by a factor of
√

2 to be able to correct from
√
kn log pn

log p1

agreements. Numerous applications are also now known
for the CRT list decoding problem. Goldreich et al. [5] de-
scribe an application to computation of the permanent on
random instances, Håstad and Näslund [8] use it in con-
structing hardcore predicates from some (specific) one-way
functions, and Boneh [1] shows consequences to the task of
finding smooth numbers in short intervals. While for all the
applications, the original result of [5] would have sufficed
(at least to derive qualitatively interesting results), they nev-
ertheless motivate a closer look at the decoding algorithms
(and if this yields an improvement in performance, so much
the better).

1Mandelbaum [11] does not give a precise bound on the running time of
the algorithm. It is pointed out in [5] that the algorithm can have exponen-
tial running time for certain values of the pi’s. It seems easier to modify
the algorithm so as to correctly only (n−k) log p1

log p1+log pn
errors in polynomial

(in n, log pn) time (cf. [5]).



One weakness common to all the known algorithmic re-
sults on CRT decoding is their poor(er) performance if the
primes are varying significantly in size. This can cause the
algorithm of Mandelbaum [11] to take exponential time,
while it degrades the number of errors that the algorithms
of Goldreich et al. [5], or Boneh [1] can correct. This weak-
ness, in turn, highlights an eccentricity of the CRT code:
Its alphabet size is not uniform, and so the “contribution”
of an error is not independent of its location. Viewed dif-
ferently, if the residue of a message m is known correctly
modulo a small prime, then this provides less information
than if the residue of m is known correctly modulo a large
prime. The first coordinate of the code provides only log p1

bits of information about the message, while the last coordi-
nate provides log pn bits of information. However when we
treat the code as a combinatorial object, all coordinates are
declared to be equally important. The distortion in translat-
ing between the two measures of “importance” of the co-
ordinates leads to a degradation in performance of the code
and this explains the common occurrence of the quantity
log pn/ log p1.

At first glance, this loss in performance seems inevitable.
After all we are distorting the natural weighting of the code
and so the algorithmic results should suffer. However, a
closer look reveals that this distortion has already been ac-
counted for when estimating the distance of the code. It then
follows that the code does have distance greater than n− k
in the uniform weighting; and thus it should be possible to
correct (n − k)/2 errors unambiguously. Similarly, some
standard results on the combinatorics of list decoding imply
that the output size of the list decoding problem is bounded
by a polynomial in n if t >

√
nk. However, the algebra of

known decoding algorithms defer to the natural weighting
of the alphabets of the CRT code. To overcome this limi-
tation, one needs algorithms to decode the CRT code under
the uniform weighting, or more generally, some arbitrary
“user-specified” weighting, of the coordinates of the code.

Our Results. We first consider the combinatorial impli-
cations of the question of “reweighting” the coordinates of
a code in a general setting (and not just the CRT code). Say
we have a code C of n-letter strings, with its natural weight
vector ~α = 〈α1, . . . , αn〉, where αi is a non-negative real
representing the “natural importance” of the i-th coordinate
of the code. (For the CRT code αi = log pi.) Say the code
C has distance D~α under this weighting (i.e. for any two
codewords x, y ∈ C,

∑
i|xi 6=yi αi ≥ D~α). Now suppose

we wish to impose our own weighting ~β = 〈β1, . . . , βn〉
on the alphabets (typically, our weighting would be the uni-
form one), and wish to study the code C under this weight-
ing. We first prove some combinatorial results giving some
lower bound on t, such that if the weight of agreement un-
der the ~β-weighting is at least t, then the size of the output
of the list decoder is bounded by a polynomial in n. (See

Theorem 1 and its Corollaries.)
Next we consider the task of recovering the list of all

such codewords in polynomial time, for the CRT code. In
general, there are few algorithms in the literature on coding
theory where the natural weighting of the code (usually the
uniform one) can be overcome by a “user-imposed” weight-
ing; and this is exactly what we wish to do in this case. Two
known exceptions to this are the Generalized Minimum Dis-
tance (GMD) decoding algorithm of Forney [4], and the
weighted version of the Reed-Solomon decoding algorithm
of Guruswami and Sudan [6]. These two algorithms form
the starting points for our algorithmic results.

Our first algorithmic result (Theorem 2) applies the
GMD algorithm of Forney [4] to the task of decoding the
CRT code under the uniform weighting. We show how to
combine this result with the results of Mandelbaum [11, 12]
and Goldreich et al. [5] to obtain the first polynomial time
algorithm which decodes the CRT code up to half the min-
imum distance of the code (i.e., recovering from up to
(n− k)/2 errors). We stress that no polynomial time algo-
rithm was known for this task prior to our result, since the
run time of Mandelbaum’s algorithm [11, 12] to correct up
to (n− k)/2 errors, was not always polynomial in n, log pn
(see [5] for a discussion). Our algorithm can actually re-
cover from a number of errors which is less than half the
weighted minimum distance for any set of positive weights
imposed on the codeword positions. Technically, this part
of the paper is simple – the main contribution of this part
may be viewed as highlighting the role of GMD decoding
in the task of decoding the CRT code.

Our second algorithmic result extends the weighted list
decoding algorithm of Guruswami and Sudan [6] to the
case of the CRT code. As a consequence we show how
to solve the weighted list decoding problem for an arbi-
trary choice of the ~β vector, as long as the ~β-weighted er-
ror matches the combinatorial bound of Theorem 1. This
result is shown in Corollary 4 to Theorem 4. We then
show how to choose the weight vector ~β (and this part turns
out to be a non-trivial guess) so that we get a solution to
the uniform list decoding problem for the CRT code, for
t ≥

√
k(n+ ε), for a tolerance parameter ε > 0 as small as

we seek. In fact, we can efficiently list decode as long as t ≥

min
{√

k(n+ ε),
√(∑k

i=1 log pi
)(∑n

i=1
1

log pi
+ ε
)}

.

Theorem 3 is the technical centerpoint of this paper. It
is proven by creating an “ideal”-lic view of error-correcting
codes and the decoding problem. This view captures all
known algebraic codes, including Reed-Solomon codes and
the more general algebraic-geometric codes, as well as
number-theoretic codes such as the CRT code. Further, we
present a decoding algorithm in the same framework that
unifies the algebra of most of the known list decoding al-
gorithms including those in [16, 14, 6, 5, 1], and most im-



portant for us, the weighted list decoding algorithm of [6].
The resulting abstraction reduces the decoding problem to
a number of “elementary” algorithmic problems on the un-
derlying ideals. In the case of the CRT code, these prob-
lems turn out to be well-solved problems on integer lattices,
such as the problems of computing the sum and the inter-
section of given lattices, or finding short vectors in them,
and thereby solves the weighted list decoding problem for
the CRT code. The unified algebraic framework emerging
from this study may be of independent interest.

Organization. We begin by describing combinatorial
bounds on the “radius” up to which we are guaranteed to
have a small number of codewords for a general code which
has varying weights (and varying alphabet sizes) on its var-
ious coordinates. In Section 3 we describe and analyze a
“soft-decision” algorithm for decoding CRT codes, and also
prove our main algorithmic result (Theorem 3). Our algo-
rithm is motivated and founded upon an ideal-theoretic view
of existing decoding algorithms [6, 5, 1] for “redundant-
residue codes” like the Reed-Solomon and Chinese Re-
mainder codes, which we ferret out and describe as an Ap-
pendix (Appendix A). We then get specific results for inter-
esting weightings of the coordinates by non-trivial choice
of weights in the main algorithm.

2 Combinatorial Bounds

Theorem 1 Let C be a code of length n with the ith symbol
coming from an alphabet of size qi. Let the distance Dα of
the code be measured according to a weighting vector ~α i.e.,
for any two distinct codewords c1, c2,

∑
i:c1i 6=c2i αi ≥ Dα

(assume each αi ≥ 1 without loss of generality). For a
weighting vector ~β and a received word y, define the ball
B~β(y,W ) to consist of all strings z (in the space [q1] ×
[q2]× · · · × [qn]) such that

∑
i:yi 6=zi βi ≤W . Then, for all

y, the ball B~β(y,Eβ) has at most DαP
i αi−Dα

(∑
i
β2
i

αi

)
ε−1

codewords from C provided:

Eβ ≤
∑
i

(1− 1
qi

)βi −
[(∑

i

(1− 1
qi

)
β2
i

αi
+ ε
)

((∑
i

(1− 1
qi

)αi
)
−Dα

)]1/2
.

(All sums are for 1 ≤ i ≤ n.) 2

We prove this bound by generalizing the method of [7],
which was used to establish a similar bound in the special
case where ~α is the all 1s vector, and ~β ∈ {0, 1}n, and all
qi’s are equal. The details of the proof are quite technical,
and may be found in the full version of the paper.

When ~β equals ~α or is the all 1s vector, we can get the
following Corollaries:

Corollary 1 When ~β = ~α in the above Theorem, then
there are at most a polynomial (in n,

∑
i αi, ε

−1) many
codewords in any ball B~β(y,Eα) provided E~α ≤ αtot −√(

αtot + ε
)(
αtot −Dα

)
, where αtot =

∑n
i=1 αi.

Corollary 2 If βi = 1 for all i, i.e., the distance of the
received word from codewords is measured using the Ham-
ming distance, then there are at most a polynomial in n, 1/ε
many codewords in a Hamming ball of radius E provided

E ≤ n−
√(

αtot −Dα

)(∑n
i=1

1
αi

+ ε
)

.

We will see that for the case of CRT codes, we can essen-
tially match the bounds of Theorem (1) (in the limit of large
alphabet sizes) and Corollaries 1 and 2 algorithmically.

3 Algorithms for decoding CRT codes
In this section, we discuss efficient decoding algorithms

for the CRT code. As stated above, we consider a sequence
p1 < p2 < . . . < pn of relatively prime integers and an
integer k < n. Let K =

∏k
i=1 pi; N =

∏n
i=1 pi. We

associate to each integer m ∈ {0, 1, . . . ,K − 1} the se-
quence (m1,m2, . . . ,mn), where mi = m mod pi. We
will abuse notation and refer to both this sequence and
m as a codeword. We consider a received word to be a
sequence 〈r1, r2, . . . , rn〉 of integers with 0 ≤ ri < pi
for each i from 1 to n. By the Chinese Remainder The-
orem, each such sequence corresponds to a unique non-
negative integer r < N . For a given sequence of weights
~w = 〈w1, . . . , wn〉, we say the ~w-weighted agreement (or
simple weighted agreement when the weighting we are re-
ferring to is clear) between a codeword m < K and a re-
ceived word r < N is

∑
i aiwi, where ai = 1 if mi = ri,

and ai = 0 otherwise.
In this section, we present two efficient decoding al-

gorithms. For any sequence of positive weights ~β, the
first one efficiently (in near-quadratic time) recovers the
unique codeword m < K with highest ~β-weighted Ham-
ming agreement with a received word r, as long as there
is a codeword whose ~β-weighted Hamming distance from
r is less than half the ~β-weighted minimum distance of the
code. codeword modulo at least (n+k)/2 positions. This is
accomplished by adapting the method of Forney, introduced
for Reed-Solomon codes in [4], to CRT codes. Note that in
particular this gives the first efficient algorithm to correct
from (n− k)/2 errors (i.e., decode up to half the minimum
distance) for the CRT code.

In the second (which is our main) decoding algorithm,
the goal is to efficiently find a list of all codewords m <
K such that m and the received word r have sufficient
weighted agreement. In particular, we are able to give an ef-
ficient list decoding algorithm which outputs all codewords



m < K which agree with r modulo at least
√
k(n+ ε)

positions (for any ε, with the running time of the algorithm
depending polynomially in 1/ε).

3.1 GMD decoding for CRT codes
For integers k, n and relatively prime integers p1 < p2 <
· · · < pn, and any integer j, 1 ≤ j ≤ n, Goldreich, Ron,
and Sudan [5] gave a near-linear time algorithm to compute
the unique integer m, if any, that satisfies

j∑
i=1

ailog pi >
1
2

(
j∑
i=1

log pi +
k∑
i=1

log pi

)
(1)

where ai is defined in the usual way: ai = 1 if m =
ri(mod pi) and ai = 0 otherwise. Note that the above algo-
rithm decodes up to half the minimum ~w-weighted distance
(log(N/K)) for the “natural” weighting wi = log pi of the
CRT code. Using this algorithm as the “basic algorithm”
and running a GMD style algorithm similar to Forney [4],
we are able to perform such a decoding for any choice of
weights ~β = 〈β1, β2, . . . , βn〉.

To prove this we show a more general result. Suppose we
have an arbitrary code C of blocklength n. We show how to
use a decoding algorithm designed for any weighting ~α to
produce one that works for the desired weighting ~β. Define
Aα =

∑n
i=1 αi − Dα where Dα is ~α-weighted distance

of the code, so that Aα is the maximum ~α-weighted agree-
ment between two distinct codewords of C; Aβ is defined
similarly. We are now ready to state and prove the main
result of this section:

Theorem 2 Let ~α, ~β ∈ Rn+ be positive real vectors such
that β1

α1
≥ β2

α2
≥ · · · ≥ βn

αn
. Suppose we have a poly-

nomial time algorithm Algα that given a received word
~r = 〈r1, . . . , rn〉 and an index j (1 ≤ j ≤ n), can find
the unique codeword C, if any, whose ~α-weighted agree-
ment with ~r in the first j codeword positions is more than
1
2

(∑j
i=1 αi + Aα

)
. Then, for any vector of positive re-

als ~β = 〈β1, . . . , βn〉, there is a polynomial time algorithm
Algβ that given a received word 〈r1, . . . , rn〉, outputs the
unique codeword, if any, whose ~β-weighted agreement with
~r is at least 1

2

(∑n
i=1 βi + Aβ + βmax

)
, and moreover the

run-time of Algβ is at most O(n) times that of Algα.

Corollary 3 For the CRT code with parame-
ters (n, k; p1, p2, . . . , pn), for any received word
~r = (r1, r2, . . . , rn), there is a polynomial time (in
fact near-quadratic time) algorithm to find the unique
codeword m = (m1,m2, . . . ,mn), if any, that agrees with
~r in at least n+k

2 positions.

Proof: By Equation (1) we have a near-linear time decoding
algorithm for the weighting αi = log pi and Aα = logK

(whereK = p1p2 · · · pk). By Theorem 2 applied to ~β being
the all-ones vector, we have Aβ = k and thus we can find
the unique codeword m that agrees with ~r in at least (n +
k + 1)/2 places. For any constant c, we can also correct
c additional errors by simply erasing c symbols for all

(
n
c

)
possible choices of c positions and then running the above
decoding algorithm. In particular, this implies that we can
find the unique codeword with agreement at least (n+k)/2
with ~r in polynomial time. 2

Proof of Theorem 2: Recall that the codeword positions i
are ordered so that β1

α1
≥ β2

α2
≥ · · · ≥ βn

αn
. Define

Ãβ
def= max

x∈[0,1]nP
αixi≤Aα

{
n∑
i=1

βixi

}
. (2)

Note that under the condition x ∈ {0, 1}n, the above would
just define Aβ ; we relax the condition to x ∈ [0, 1]n in the
above to define Ãβ . Clearly Aβ ≤ Ãβ < Aβ + βmax. We
will present an algorithm to find the unique codeword C, if
any, that satisfies

n∑
i=1

aiβi >
1
2
( n∑
i=1

βi + Ãβ
)

(3)

(where ai = 1 if Ci = ri and 0 otherwise), and this will
imply the claimed result (since Ãβ < Aβ +βmax). We now
assume such a C exists, for, otherwise, there is nothing to
prove.

The algorithm Algβ will simply run Algα for all values
of j, 1 ≤ j ≤ n, and pick the closest codeword among
the (at most n) codewords which the runs of Algα returns.
If this algorithm fails to find the codeword C that satisfies
Condition (3), then we must have, by the hypothesis of the
Theorem, for every j, 1 ≤ j ≤ n,

2
j∑
i=1

aiαi ≤
j∑
i=1

αi +Aα . (4)

Let x̃ = 〈1 1 · · · 1 ε 0 · · · 0〉 be a vector such that∑n
i=1 αix̃i = Aα (here 0 ≤ ε < 1). Denote by ` the

last position where x̃i = 1 (i.e., x̃` = 1 and x̃`+1 = ε). By
our definition (2) Ãβ ≥

∑
βix̃i (in fact by the ordering of

the codeword positions it is easy to see that Ãβ =
∑
βix̃i

though we will not need this). Now for j ≥ ` + 1, Aα =∑n
i=1 αix̃i =

∑j
i=1 αix̃i. Also, for 1 ≤ j ≤ `, we have the

obvious inequality
∑j
i=1 aiαi ≤

∑j
i=1 αi =

∑j
i=1 αix̃i.

Combining these with Equation (4) we obtain the following
uniform condition that holds for all j, 1 ≤ j ≤ n:

2
j∑
i=1

aiαi ≤
j∑
i=1

αi +
j∑
i=1

αix̃i . (5)



Multiplying the jth inequality above by the non-negative
quantity

( βj
αj
− βj+1

αj+1

)
for 1 ≤ j ≤ n (define βn+1 = 0 and

αn+1 = 1), and adding the resulting inequalities, we get

2
n∑
i=1

aiβi ≤
n∑
i=1

βi +
n∑
i=1

βix̃i ≤
n∑
i=1

βi + Ãβ ,

which contradicts Condition (3). Thus the codeword C that
satisfies (3), if any, will indeed be output by the algorithm
Algβ . 2

3.2 The Weighted List Decoding Algorithm
Our goal in this section is to efficiently find a list of all

codewords m < K such that m and the received word r
have sufficient weighted agreement. We note that a simple
transformation makes it equivalent for us to find integers
m where |m| ≤ K/2, with sufficient agreement with a re-
ceived word (r1, . . . , rn).

Our algorithm follows the ideal-based framework pre-
sented in Appendix A. Following [5], the basic idea will be
to find an integer polynomial c(x) (based on the received
word r) with the property that all codewords that have suffi-
cient weighted agreement with the received word are roots
of the polynomial c(x) over the integers. Then, by factor-
ing c(x) and extracting all factors of the form (x −m) for
|m| ≤ K/2 where m has sufficient weighted agreement,
we could recover all sufficiently similar codewords. We are
able to construct such a polynomial by pursuing two objec-
tives, which are in turn adaptations of the objectives of [16]
in the context of Reed-Solomon codes:

1. To ensure that the polynomial c(x) has the property
that for any integer m such that |m| ≤ K/2, if
m = ri mod pi, then c(m) ≡ 0 mod Mi, for some
sequence of moduli Mi. By the Chinese Remain-
der Theorem, this in turn implies that for any m with
|m| ≤ K/2, we have that c(m) ≡ 0 mod (

∏
iM

ai
i ) ,

where ai = 1 if mi = ri, and ai = 0 otherwise.

2. To ensure that the coefficients of c(x) =
∑̀
j=0

cjx
j are

sufficiently small. In particular, for some integer G,
ensure that |cj | ≤ G/(K/2)j for all j. This in turn
implies that if ` is the degree of c(x), for any m with

m ≤ K/2, we have that |c(m)| <
∑̀
j=0

|cj |(K/2)j ≤

(`+ 1) ·G.

By combining Objectives 1 and 2, we see that for any
integerm such that |m| ≤ K/2 with sufficient agreement so
that

∏
iM

ai
i > (`+1) ·G, we have that m is a root of c(x),

not only modulo some number, but over the integers too, as
we desired. Note that the decoding condition is equivalent
to
∑
i ai logMi > log ((`+ 1) ·G).

We show how to achieve these objectives for Mi = pzii ,
for arbitrary non-negative integer sequences zi, yielding a
weighted decoding condition similar to the one in [6] for
Reed-Solomon codes.

3.3 The Main Theorem
We now state and prove our main algorithmic result.

Theorem 3 For a CRT code with the above parameters,
given a received word r = (r1, r2, . . . , rn) with 0 ≤ ri <
pi, and any non-negative integers ` and zi for 1 ≤ i ≤ n,
we can find in time polynomial in n, logN, ` and

∑
i zi, a

list of all codewords m that satisfy

n∑
i=1

aizi log pi > log(`+ 1) +
`

2
logK +

+
1

`+ 1

n∑
i=1

(
zi + 1

2

)
log pi, (6)

where ai = 1 if mi = ri and ai = 0 otherwise.

Proof: In light of the preceding discussion, our basic ob-
jective will be, given some sequence of integers zi, to find a
polynomial c(x) such that for all i, 1 ≤ i ≤ n, the following
Condition holds:

(*) For all integers m such that |m| ≤ K/2, we have that
m ≡ ri mod pi implies c(m) ≡ 0 mod pzii .

For a fixed i, consider the (zi + 1) polynomials{
pai (x− ri)(zi−a)

}zi
a=0

. These certainly satisfy Condi-
tion (*). Let Izii be the ideal in the polynomial ring Z[x]
generated by these (zi + 1) polynomials.2 In other words,
Izii is the closure of this set of polynomials under addition,
and multiplication by any polynomial. It is immediate that
all polynomials in Izii satisfy Condition (*). We now estab-
lish that there must be polynomials with small coefficients
that lie in the intersection3 ideal I =

⋂n
i=1 I

zi
i , and thus

satisfy Condition (*) for all i:

Lemma 1 For any positive integers ` and F , if

F >

(
n∏
i=1

p
(zi+1

2 )
i

) 1
`+1

· (K/2)`/2

then there exists some degree ≤ ` integer non-zero polyno-

mial c(x) =
∑̀
j=0

cjx
j such that |cj | < F/(K/2)j for all j

from 0 to `, and c ∈ I.
2We note that the exponentiation notation actually makes sense here,

see Appendix A.
3Note that this is also the product ideal, but we will refer to it as the

intersection ideal in this text to retain intuition. See Appendix A for dis-
cussion.



Proof: For any fixed i, we will count how many possible
residues any integer polynomial c(x) can have modulo Izii .
Consider the following sequence of polynomials: Let c0(x)
be the remainder when c(x) is divided by (x − ri)zi (us-
ing the standard polynomial division algorithm). Because
(x − ri)zi is monic, c0(x) has degree at most zi − 1. Now
add or subtract pi(x − ri)zi−1 as many times as necessary
from c0(x) in order to force the coefficient of xzi−1 to be
non-negative and less than pi; let the result be c1(x). Con-
tinue this process, obtaining ca(x) by adding or subtracting
pai (x − ri)zi−a as many times as necessary from ca−1(x)
in order to force the coefficient of xzi−a to be non-negative
and less than pai . We stop at czi(x), which we will call
the canonical residue of c(x) modulo Izii . The canonical
residue is a degree (zi − 1) integer polynomial such that
for all a from 0 to zi, the coefficient of xa is non-negative

and less than pzi−ai . There are thus
∏zi
a=1 p

a
i = p

(zi+1
2 )

i

such polynomials. We associate a canonical residue to c(x)

for each ideal Izii , yielding
∏n
i=1 p

(zi+1
2 )

i possible sets of
canonical residues.

Now we consider the space of degree ≤ ` integer poly-

nomials c(x) =
∑̀
j=0

cjx
j such that 0 ≤ cj < F/(K/2)j for

all j from 0 to `. There are F `+1 · (K/2)(
`+1
2 ) such poly-

nomials. If F `+1 · (K/2)(
`+1
2 ) >

∏n
i=1 p

(zi+1
2 )

i , then there
must either be a non-zero such polynomial c(x) such that
all the canonical residues vanish, in which case c(x) ∈ I;
or there must be two distinct such polynomials c(x) and
c′(x) such that the canonical residues are identical modulo
every Izii . In this case, the polynomial c(x) − c′(x) is in
the intersection I and satisfies the condition of the Lemma.
2(Lemma 1)

To establish our algorithmic result, we need only show
how to find such a polynomial c(x) efficiently. Note that if
we consider the intersection ideal I restricted to polynomi-
als of degree at most `, this can be seen as an integer lattice
L of dimension (`+ 1). Finding a suitable polynomial with
small coefficients can therefore be seen exactly as finding
a short vector in this lattice. This can be accomplished us-
ing lattice basis reduction algorithms such as LLL, provided
we can construct a basis for this lattice. We stress that it is
not necessary to explicitly write down the basis; all that we
need is to be able to efficiently compute a basis. We now
demonstrate how to do this.

Explicit bases for the individual lattices Li correspond-
ing to the polynomials of degree at most ` in each Izii are
easily obtained by considering the generating polynomi-
als for Izii restricted to polynomials of degree at most `:
Let z̃i = min{zi, `}. The first z̃i + 1 vectors in our ba-
sis correspond to the generating polynomials {p(zi−a)

i (x −
ri)a : 0 ≤ a ≤ zi} from the ideal Izii . For exam-

ple, corresponding to pzi−2
i (x − ri)2, we add the vector

(r2i · p
zi−2
i , − 2ri · pzi−2

i , pzi−2
i , 0, . . . , 0).

If ` > zi, then we also add vectors corresponding to the
polynomials {xa · (x− ri)zi}`−zia=1 . Let M (i) be the (`+ 1)
by (` + 1) matrix whose rows are the vectors from this ba-
sis. We observe that the integer linear combinations of these
vectors correspond exactly to the set of polynomials in the
ideal Izii of degree at most `:

Lemma 2 The space of polynomials corresponding to vec-
tors in the lattice Li is exactly the ideal Izii restricted to
polynomials of degree at most `.

Proof: By construction, the polynomials corresponding to
integer linear combinations of the rows of M (i) are a subset
of Izii restricted to polynomials of degree at most `. Let
c(x) = λ1(x) · pzii + λ2(x) · p(zi−1)

i (x − ri) + · · · + λzi ·
(x − ri)zi be an arbitrary polynomial of degree at most `
in Izii . Since pi · pji (x − ri)(zi−j) = (x − ri) · pj+1

i (x −
ri)(zi−j−1), we may assume without loss of generality that
the degree of λj(x) is at most 0 for each j < zi (if this fails
for a particular j < zi, subtract the appropriate multiple of
(x− ri) from λj(x) and add the appropriate multiple of pi
to λj+1(x)). Thus, c(x) is an integer linear combination of
{p(zi−a)
i (x− ri)a : 0 ≤ a ≤ zi} and {xa · (x− ri)zi}`−zia=1 ,

as claimed. 2(Lemma 2)

We remark that using standard techniques (see Ap-
pendix B), given bases for the (full-dimensional) lattices
Li, a basis B for the intersection lattice L =

⋂n
i=1 Li can

be computed. By Lemma 2, L corresponds exactly to the
space of polynomials in the intersection ideal I of degree at
most `.

Let L′ be a re-scaling of the lattice L where
(v0, v1, . . . , v`) ∈ L iff (v0, v1 · (K/2), . . . , v` · (K/2)`) ∈
L′. We now show that applying the LLL algorithm to the
lattice L′ gives us the polynomial we are looking for:

Lemma 3 Let v′ be the lattice vector returned by the LLL
lattice basis reduction algorithm when applied to the lattice
L′, and let c(x) be the corresponding polynomial. Then for
any m with |m| ≤ K/2 such that:

n∏
i=1

paizii > (`+ 1) ·

(
n∏
i=1

p
(zi+1

2 )
i

) 1
`+1

·K`/2

we have that m will be an integer root of the polynomial
c(x).

Proof: Let G =
(∏n

i=1 p
(zi+1

2 )
i

) 1
`+1

· (K/2)`/2. Lemma 1

shows that there exists a vector v in L′ such that for all j,
we have that |vj | ≤ G, and so ‖v‖ ≤

√
`+ 1 · G. Thus,

the LLL lattice reduction algorithm returns a vector v′ ∈



L′ which is at most a factor of 2`/2 times larger: ‖v′‖ ≤(
2`/2

)
·
√
`+ 1 · G. Hence, ‖v′‖1 ≤

√
(`+ 1) · ‖v′‖2 ≤(

2`/2
)
· (`+ 1) ·G. This corresponds to a polynomial c(x)

such that for all integers m with |m| ≤ K/2, we have that
|c(m)| ≤

(
2`/2

)
· (`+ 1) ·G; on the other hand, of course,

c(x) ∈ I , so by construction c(m) ≡ 0 mod (
∏
i p
aizi
i ).

The Lemma follows. 2 (Lemma 3)

Thus, we see that under the condition prescribed by the
Theorem, we can efficiently find a polynomial whose set of
roots contains all codewords with sufficient weighted agree-
ment with the received word, and the decoding can then be
completed by finding all integer roots of this polynomial
using the polynomial time algorithm for factoring polyno-
mials in Z[x] from [10]. 2 (Theorem 3)

For easy reference, we summarize in Figure 1 the main steps
of the algorithm from the above proof of Theorem 3.

We now present an alternative algorithmic proof of The-
orem 3, in which we translate the ideal-based reasoning
given above directly into an explicit lattice.

Alternative Proof (of Theorem 3): As in the original
proof, we will seek to find a polynomial c(x), with coef-
ficients that are bounded in size and with degree at most
`, such that for all i, 1 ≤ i ≤ n, the following Condition
holds:

(*) For all integers m such that |m| ≤ K/2, we have that
m ≡ ri mod pi implies c(m) ≡ 0 mod pzii .

Here, we present an alternative method to find such poly-
nomials. Recall the definitions of the ideals Izii and the
intersection ideal I from the original proof, to provide in-
tuition for our construction. We build an explicit lattice L
in which all polynomials (of degree at most `) are repre-
sented, but where we also represent, for each ideal Izii , the
possible translates of these polynomials by elements of the
ideal (again restricted to degree at most `). Thus, polyno-
mials that are present in all the ideals Izii can be translated
to 0 in each of the ideals. We constrain all non-zero trans-
lations to contribute a very large factor to the norm of the
corresponding vector. Thus, we obtain a lattice L in which
all polynomials are represented (by many vectors), but in
which polynomials outside the intersection ideal I must be
represented by very long vectors, whereas polynomials in-
side the ideal I have one representative vector (where the
polynomial has been translated to 0 for each ideal) that is
quite short. Thus, the construction essentially mimics the
steps of the proof of Lemma 1 to give this implicit repre-
sentation, allowing us to extract small polynomials in the
intersection ideal I .

Let us now describe the lattice L formally, by presenting
an explicit basis. The lattice L will have (n + 1) · (` + 1)
dimensions, conceptually separated into n+1 blocks of `+1

components each. We represent the basis vectors by the
rows of the following matrix, described modularly:

0 0 · · · 0 qM (n)

0 0 · · · qM (n−1) 0
...

...
...

...
...

0 qM (1) · · · 0 0
Λ qI(`+1) · · · qI(`+1) qI(`+1)


(7)

Above, all component matrices are (`+1) by (`+1). Let

G =
(∏n

i=1 p
(zi+1

2 )
i

) 1
`+1

· (K/2)`/2. Above, q =
√
`+ 1 ·

G · 2(n+1)(`+1). The matrix I(`+1) simply represents the
(`+1) by (`+1) identity matrix. The matrix Λ is an identity
matrix with each diagonal entry scaled as shown:

Λ =


1 0 · · · 0
0 K/2 · · · 0
...

...
...

...
0 0 · · · (K/2)`


Thus, the last `+ 1 basis vectors correspond to the polyno-
mials 1, x, x2, . . . , x`. These vectors are broken up into
(n + 1) blocks of (` + 1) dimensions each: the first block
measures how large the polynomial can be when evaluated
on an integer of magnitude at most (K/2); the remaining
n blocks are each used to measure the residue of the poly-
nomial modulo the ideals Iz11 , . . . , Iznn . In order to measure
this residue, we need to have other vectors in our lattice that
allow us to “reduce” this residue by the generators of the
ideals. The matrices M (i), as defined in the original proof,
serve this purpose. Recall that the rows of the matrix M (i)

correspond to the generating polynomials of the ideal Izii re-
stricted to polynomials of degree at most `. Note, however,
that in our proof, we will only need that the polynomials
corresponding to integer linear combinations of the rows of
M (i) satisfy Condition (*) – we do not need to refer to the
ideals themselves:

Now, for any polynomial c(x) of degree at most `, we
can mimic the steps of the proof of Lemma 1 by adding and
subtracting integer multiples of the polynomials represented
by the rows of M (i) for each i. Thus, for any polynomial
c(x) of degree at most `, there exists a vector v ∈ L such
that for all i between 1 and n, in the i’th block of v there

is one of at most p(
zi+1

2 )
i vectors. Hence, (again mimicking

the proof of Lemma 1), if we consider all polynomials c(x)
of degree at most ` such that 0 ≤ cj ≤ G/(K/2)j for all
j, we must find either a corresponding vector v ∈ L with
all 0’s beyond the first ` + 1 coordinates, or two vectors
v(1) and v(2) such that all coordinates beyond the first `+ 1
agree. In the second case, v = v(1) − v(2) will have the
property that |vj | ≤ G for all j between 1 and ` + 1, and



List Decode(~r, `, z1, z2, . . . , zn)
1. Let Izi1 be the set of polynomials that are integer linear combinations of {pai (x− ri)(zi−a)}zia=0.
2. Compute a basis for the lattice L of all degree ` polynomials belonging to

⋂n
i=1 I

zi
i .

3. Scale this lattice by multiplying the i’th coordinate by (K/2)i−1 to produce the lattice L′.
4. Run LLL to find a short vector v′ in L′; let it correspond to a degree ` polynomial c(x) ∈ Z[x].
5. Find all integer roots m of c(x) (for example, by factoring c(x) over Z[x] using [10]).
6. For each root m with |m| ≤ K/2, define the vector ~a = (a1, a2, . . . , an) by ai = 1 if m ≡ ri(modpi),

and ai = 0 otherwise. Output m if ~a satisfies Condition (6).

Figure 1. The list decoding algorithm

vj = 0 for all j > ` + 1. Thus, by construction, v will
be, for each i, an integer linear combination of the rows of
M (i), and therefore correspond to a polynomial satisfying
Condition (*) for all i.

Hence, there exists a lattice vector v ∈ L such that
‖v‖ ≤

√
`+ 1 · G. We use the LLL lattice basis reduc-

tion algorithm to find a short vector v′ in this lattice L. The
standard analysis of LLL would only guarantee that ‖v′‖ is
within a 2((n+1)·(`+1)−1)/2 factor of the shortest vector, but
because of the special structure of the lattice L, we show
that LLL returns a vector that is within a 2`/2 factor of the
shortest vector:

Lemma 4 When the LLL algorithm is applied to the lattice
L above, the first basis vector b1 returned by LLL is such
that ‖b1‖ ≤ 2`/2 · λ1(L), where λ1(L) is the norm of the
shortest nonzero vector in L.

Proof: Let ñ = (n + 1) · (` + 1) be the dimension of the
lattice L. We will refer to standard facts about LLL-reduced
bases and shortest vectors in a lattice, which can be found
for example in Section 2.6 of Cohen [2].

We recall two basic facts. Let b∗1, . . . , b
∗
ñ be the orthogo-

nalization of the LLL-reduced basis b1, . . . , bñ returned by
the algorithm. In other words, b∗i is defined inductively to
equal bi −

∑
j<i〈bi, b∗j 〉 · b∗j . Then we have:

1. For any i, j such that 1 ≤ j ≤ i ≤ ñ, we have that
‖b∗j‖ ≤ 2(i−j)/2 · ‖b∗i ‖.

2. λ1(L) ≥ min
j∈{1,...,ñ}

‖b∗j‖.

These two facts together imply that ‖b1‖ ≤
2(ñ−1)/2λ1(L). We show that in fact: λ1(L) ≥

min
j∈{1,...,`+1}

‖b∗j‖, which when combined with the first

fact, establishes the Lemma.
Recall that L is constructed so that any non-zero entry

of a lattice vector beyond the first (`+ 1) coordinates must
have magnitude at least q =

√
`+ 1 ·G · 2ñ. We know that

a vector in L exists that has norm at most
√
`+ 1 · G. We

thus know already that ‖b1‖ ≤ 2ñ/2 · λ1(L) ≤ q/(2ñ/2).

Hence, b1 can be non-zero only in the first ` + 1 coordi-
nates. On the other hand, at least one of the basis vectors
b1, . . . , b`+2 must have a non-zero component beyond the
first `+ 1 coordinates by linear independence. Let ba be the
first vector to have a non-zero component in some coordi-
nate t > `+ 1 (by the previous statement, a ≤ `+ 2). Then
‖ba‖ ≥ q, and by construction of orthogonalization, it must
be that ‖b∗a‖ ≥ q as well, since b∗a must also have a non-zero
component in coordinate t.

Now, for all i ≥ a, we have that:

‖b∗i ‖ ≥ 2(a−i)/2 · ‖b∗a‖ ≥ q/(2ñ/2) ≥ ‖b1‖ = ‖b∗1‖.

Thus, min
j∈{1,...,`+1}

‖b∗j‖ = min
j∈{1,...,ñ}

‖b∗j‖, and the

Lemma is established. 2 (Lemma 4)

Thus, the polynomial corresponding to the vector b1 re-
turned by the LLL lattice basis reduction algorithm has the
property we seek:

Lemma 5 Let v′ be the lattice vector returned by the LLL
lattice basis reduction algorithm when applied to the lattice
L, and let c(x) be the corresponding polynomial. Then for
any m with |m| ≤ K/2 such that:

n∏
i=1

paizii > (`+ 1) ·

(
n∏
i=1

p
(zi+1

2 )
i

) 1
`+1

·K`/2

we have that m will be an integer root of the polynomial
c(x).

Proof: By the existence of a vector in the lattice with norm
at most

√
`+ 1 · G and Lemma 4, we have that ‖v′‖ ≤(

2`/2
)
·
√
`+ 1 · G. Hence, ‖v′‖1 ≤

√
(`+ 1) · ‖v′‖2 ≤(

2`/2
)
· (` + 1) · G. This corresponds to a polynomial

c(x) such that for all integers m with |m| ≤ K/2, we
have that |c(m)| ≤

(
2`/2

)
· (` + 1) · G. On the other

hand, since v′ is 0 in all coordinates beyond the first ` + 1,
the corresponding polynomial c(x) satisfies Condition (*),
and so c(m) ≡ 0 mod (

∏
i p
aizi
i ). The Lemma follows.

2 (Lemma 3)



Thus, we see that under the condition prescribed by the
Theorem, we can efficiently find a polynomial whose set of
roots contains all codewords with sufficient weighted agree-
ment with the received word, and the decoding can then be
completed by finding all integer roots of this polynomial
using the polynomial time algorithm for factoring polyno-
mials in Z[x] from [10]. 2 (Theorem 3)

3.4 Decoding for Interesting Weightings
We now get specific results for the CRT code for interest-

ing choice of weights on the coordinate positions through an
appropriate choice of parameters (like `, zi) in Theorem 3.
We begin by stating a version of Theorem 3 with arbitrary
(not necessarily integer) values of zi. This result is not diffi-
cult and involves scaling the weights by a large integer and
then taking ceilings to convert them to integer weights; a
formal proof can be found in the full version of the paper.

Theorem 4 For list decoding of CRT codes, for any toler-
ance parameter ε > 0, and non-negative reals zi, given a
received word r, we can in time polynomial in n, logN and
1/ε, find a list of all codewords such that

n∑
i=1

aizi log pi ≥

√√√√logK
( n∑
i=1

z2
i log pi + εz2

max

)
. (8)

Corollary 4 For list decoding of CRT codes, for any tol-
erance parameter ε > 0, and non-negative real weights
βi, given a received word r, we can, in time polynomial
in n, logN and 1/ε, find a list of all codewords whose ~β-
weighted agreement with r satisfies:

n∑
i=1

aiβi ≥

√√√√logK

(
n∑
i=1

β2
i

log pi
+ εmax

j

β2
j

log pj

)
. 2

Note that the above Corollary implies that, in the limit of
large pi, we can decode up to (essentially) the combina-
torial bound of Theorem 1 with αi = log pi and Dα =
log(N/K). Let us now collect further results for the “usual”
uniform weighting of the codeword positions, i.e., βi = 1
for all i.

Theorem 5 For list decoding of CRT codes, for any ε > 0,
we can in time polynomial in n, logN and 1/ε, find a list of
all codewords which agree with a received word in t places
provided t ≥

√
k(n+ ε).

Proof: Let us apply Theorem 4 with zi = 1/ log pk+1 for
1 ≤ i ≤ k, zi = 1/ log pi for k < i ≤ n, and ε′ =
ε log pk+1. This gives that we can decode whenever the
number of agreements t is at least

k− logK
log pk+1

+

√√√√ logK
log2 pk+1

(
logK +

n∑
i=k+1

1
log pi

+ ε′

)
.

Define ∆ def= k − logK
log pk+1

; clearly ∆ ≥ 0. Since
log pk+1 ≤ log pi for i = k + 1, · · · , n, the above con-
dition is met whenever t ≥ ∆ +

√
(k −∆)(n−∆ + ε).

Now, a simple application of Cauchy-Schwartz shows ∆ +√
(k −∆)(n−∆ + ε) ≤

√
k(n+ ε), and thus our decod-

ing algorithm works whenever t ≥
√
k(n+ ε). 2

Theorem 6 For list decoding of CRT codes, for any ε > 0,
we can in time polynomial in n, logN and 1/ε, find a list of
all codewords which agree with a received word in t places

provided t ≥
√

logK
(∑n

i=1
1

log pi
+ ε
)

.

Proof: This follows from Corollary 4 with βi = 1 for 1 ≤
i ≤ n. 2

Note that the above matches the combinatorial bound of
Corollary 2. The bounds in Theorem 5 and Theorem 6 are
incomparable in general.

Acknowledgments
We thank Dan Boneh for informing us of his work [1] and
making a copy of his paper available on his homepage. We
thank Daniele Micciancio for useful discussions on Lattices
and pointers to [13].

References
[1] D. Boneh. Finding Smooth integers in short intervals using

CRT decoding. Proc. of STOC 2000, to appear.

[2] H. Cohen. A Course in Computational Algebraic Number
Theory. Springer Verlag, Berlin-Heidelberg, 1993.

[3] P. ELIAS. List decoding for noisy channels. Wescon Conven-
tion Record, Part 2, Institute of Radio Engineers (now IEEE),
pp. 94-104, 1957.

[4] G. D. Forney. Generalized Minimum distance decoding.
IEEE Trans. on Information Theory, Vol. 12 (1966), pp. 125-
131.

[5] O. Goldreich, D. Ron and M. Sudan. Chinese Remaindering
with errors. IEEE Trans. on Information Theory, to appear.
Preliminary version appeared in Proc. of 31st STOC, 1999,
pp. 225-234.

[6] V. Guruswami and M. Sudan. Improved decoding of Reed-
Solomon and Algebraic-geometric codes. IEEE Trans. on
Information Theory, 45 (1999), pp. 1757-1767. Preliminary
version appeared in Proc. of FOCS’98.

[7] V. Guruswami and M. Sudan. List decoding algorithms for
certain concatenated codes. Proc. of STOC 2000, to appear.

[8] J. Håstad and M. Näslund. The security of all RSA and Dis-
crete Log bits. Proc. of 39th FOCS, 1998, pp. 510-519.

[9] H. Krishna, B. Krishna, K. Y. Lin and J. D. Sun. Computa-
tional Number Theory and Digital Signal Processing: Fast
algorithms and error control techniques. Boca Raton, FL:
CRC, 1994.



[10] A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen,
261 (1982), pp. 515-534.

[11] D. M. Mandelbaum. On a class of arithmetic codes and a
decoding algorithm. IEEE Trans. on Information Theory, 21
(1976), pp. 85-88.

[12] D. M. Mandelbaum. Further results on decoding arithmetic
residue codes. IEEE Trans. on Information Theory, 24
(1978), pp. 643-644.

[13] D. Micciancio. Lecture notes on Lattices in Cryp-
tography and Cryptanalysis, Fall 1999, UCSD.
Available at http://www-cse.ucsd.edu/
d̃aniele/cse291fa99.html.

[14] M. A. Shokrollahi and H. Wasserman. List decoding of
algebraic-geometric codes. IEEE Trans. on Information The-
ory, Vol. 45, No. 2, March 1999, pp. 432-437.

[15] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J.
Taylor. Residue Number System Arithmetic: Modern Appli-
cations in Digital Signal Processing. New York: IEEE Press,
1986.

[16] M. Sudan. Decoding of Reed-Solomon codes beyond the
error-correction bound. Journal of Complexity, 13(1):180-
193, March 1997.

[17] J. M. Wozencraft. List Decoding. Quarterly Progress Report,
Research Laboratory of Electronics, MIT, Vol. 48 (1958), pp.
90-95.

A Ideals and Error-correcting codes
In this section we describe a framework for studying al-

gebraic error-correcting codes and the decoding problem in
the setting of ideals in commutative rings. We give a de-
coding algorithm in the same framework — this decoding
algorithm abstracts and unifies known algorithms for this
task, and specializes to the algorithm given in Section 3.2
for CRT decoding. Here we focus only on the qualitative
features of codes and decoding. A more quantitative ver-
sion of this abstraction can be developed using norms on the
underlying rings. We assume the reader is familiar with the
concept of commutative rings, integral domains and ideals.

Definition 1 (Ideal error-correcting code) An Ideal Code
C is given by an integral domainR and ideals J1, . . . , Jn ⊆
R. The message space of C is some subset M ⊆ R. The
alphabets of C are given by Σi = R/Ji. (Note that the def-
inition is interesting only if R/Ji is finite.) The code maps
the element a ∈M to the sequence 〈a+ J1, . . . , a+ Jn〉.

While not every linear code is an ideal code, many
commonly studied ones, including Reed-Solomon codes,
Algebraic-geometry codes and the CRT codes, are ideal
codes. Now, consider an instance of the list-decoding prob-
lem with a received vector 〈r1, . . . , rn〉. Informally, the al-
gorithm of [16, 14, 6, 5, 1] cast this problem as follows:

Definition 2 (“Ideal”-lic list-decoding) Let R[x] be the
ring of polynomials in x with coefficients from R. Let
Ii = (x − ri) + Ji be the ideal {a(x) · (x − ri) + b(x) ·
p|a(x), b(x) ∈ R[x], p ∈ Ji}. Find a list of all elements of
R[x] of the form x − f , with f ∈ R, such that x − f ∈ Ii
for “many” values of i ∈ {1, . . . , n}.

From this formulation, their algorithms (and the use of
factoring there) emerge naturally.

(Weighted) List-decoding algorithm

1. Pick vector z1, . . . , zn appropriately.

2. Find a non-zero polynomial c(x) (with “small”
coefficients) such that c ∈

∏n
i=1 I

zi
i .

3. Factor c and report the list of linear factors x−f .

Note that the notion of products of ideals is a well-
studied one. When the ideals Ji and Jj are relatively prime,
the product of the ideals Izii and Izjj equals their intersection
and this fact often leads to some quantitative improvements
in the bounds; however is not critical to the correctness of
the approach.

In specializing the algorithm above to specific cases, the
following ingredients need to be added: (1) Algorithms for
finding representations of intersections and products of ide-
als. (2) Explicit notion of “small” and algorithms for finding
“small” elements in the ideal. (3) Choice of zi’s and a quan-
titative analysis of the performance of the algorithm (since
a list-decoding algorithm to recover from zero errors may
not be very interesting). The application to CRT decoding
in Section 3.2 is obtained by finding and adding these in-
gredients.

B Lattice Algorithms
We recall some standard techniques in the algorithmics

of lattices, in particular computing the intersection of full-
dimensional lattices. A more formal treatment may be
found in [2, 13].

Let L be any full-dimensional lattice of dimension d,
with basis given by the rows of the matrix M . We define
the dual L∗ of the lattice L to be {u ∈ Rd : u · v ∈
Z for all v ∈ L}. Note that the rows of

(
M−1

)>
give a

basis for L∗.
Note also that given bases for two lattices L1 and L2, a

basis for the closure of union of the two lattices (denoted
L1∪L2) can be found efficiently using algorithms for com-
puting the Hermite Normal Form of a generating set of vec-
tors. Now, to compute a basis for the intersection of two
lattices L1 and L2, observe that L1 ∩ L2 = (L∗1 ∪ L∗2)∗.
Therefore, by combining the facts above, one obtains an
efficient algorithm for computing the intersection of full-
dimensional lattices.


