
Harmonic Broadcasting Is Bandwidth-Optimal

Assuming Constant Bit Rate

Lars Engebretsen1,? and Madhu Sudan2,??

1 Department of Numerical Analysis and Computer Science
Royal Institute of Technology

SE-100 44 Stockholm
SWEDEN

E-mail: enge@kth.se
2 MIT Laboratory for Computer Science

Stata Center, Room G640
32 Vassar Street

Cambridge, Massachusetts 02139
USA

E-mail: madhu@mit.edu

November 2005

Abstract. Harmonic broadcasting was introduced by Juhn and Tseng in 1997
as a way to reduce the bandwidth requirements required for video-on-demand
broadcasting. In this paper, we note that harmonic broadcasting is actually a spe-
cial case of the priority encoded transmission scheme introduced by Albanese
et al. in 1996 and prove—using an information theoretic argument—that it is im-
possible to achieve the design goals of harmonic broadcasting using a shorter
encoding.

1 Introduction

One way to broadcast an m-minute movie in such a way that a viewer can
start viewing the movie every m/k minutes is to simply allocate k channels
and broadcast identical copies of the movie on each channel in such a way that
there is one copy of the movie starting every m/k minutes. This requires a
total of k channels. To reduce the bandwidth requirement, Juhn and Tseng [7]
introduced the notion of harmonic broadcasting, a scheme where early parts of
the movie are broadcasted more frequently than later parts. For a movie with
lengthm minutes, they were able to reduce the waiting time to 2m/k−m/k2
minutes by using Hk channels, where Hk is the kth harmonic number. This
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Figure 1. If a 2-hour movie is broadcasted in parallel on 12 channels, a user
trying to watch the movie gets a maximum waiting time of 10 minutes. With
Harmonic broadcasting, the same waiting time can be achieved using approxi-
mately 3 channels.

construction was improved by Pâris, Carter and Long [10, 11] to give a waiting
time of m/k needing only slightly more than ln(k + 1) channels (Figure 1).
Pâris, Carter and Long [11] also identified the question regarding optimality
of harmonic broadcasting, i.e., the question whether it is possible or not to
achieve the design goals of harmonic broadcasting using even less bandwidth.

Question 1. Suppose that we want to broadcast an m-minute movie in such a
way that the maximum waiting time is m/k minutes. What is the minimum
number of channels we need?

In this paper, we study the above question under the assumption that the
message is broadcasted with constant bit rate and that the clients have no
particular bandwidth restrictions on their own. We first note that harmonic
broadcasting is actually a special case of priority encoded transmission, a scheme
proposed by Albanese et al. [1], and we show that a direct application of
priority encoded transmission gives results comparable to those obtained by
harmonic broadcasting. In their paper, Albanese et al. also provide a lower
bound, showing that their encoding is optimal. Since harmonic broadcasting
is a special case of priority encoded transmission, this lower bound is not
directly applicable to the less general harmonic broadcasting.

The second contribution of this paper consists of two lower bounds. We
first show that if a message of size m is divided into k equally sized blocks
and those blocks are encoded in such a way that the ith message block can
be recovered from any i consecutive blocks of the encoding, the total size of
the encoding must be at leastmHk. We then study the setting where anm bit
message is encoded as a bit stream in such a way that a client observing the
bit stream has to wait at most w bits before it can start displaying the message,
and prove that at least ln(1 +m/w) + (2w(1 + w/m))−1 + O(w−2) channels
are needed in this case. With w = m/k, this resolves Question 1 and in fact
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also proves that the improved version of harmonic broadcasting due to Pâris,
Carter and Long [11] is optimal.

The lower order terms in our lower bound come from the fact that we treat
the message as a stream of bits. Indeed, there already exists a construction
with a provably optimal bandwidth demand of exactly ln(k + 1) under the
assumtion that the broadcasted stream is a continuum of information rather
than a stream of bits [6].

2 Harmonic Broadcasting

Suppose that we want to broadcast an m-minute movie in such a way that a
client has a maximum waiting time of m/k until the movie can be viewed.
The naive way to accomplish this goal is to simply allocate k channels and
broadcast one copy of the movie on each channel in such a way that there is
one copy of the movie starting everym/k minutes. This requires a bandwidth
that is k times the bandwidth required to broadcast one move.

Harmonic broadcasting was invented by Juhn and Tseng [7] to reduce the
bandwidth requirements for video-on-demand broadcasting. The harmonic
broadcasting scheme can be viewed as follows: The movie is first divided
into k equally sized segments 〈M1,M2, . . . ,Mk〉. Each segment but the first
is then divided into equally sized subsegments; the ith segment is divided
into the i subsegments 〈Mi,0,Mi,1, . . . ,Mi,i−1〉. An encoding 〈E1, E2, . . . , Ek〉
consisting of k equally sized blocks is then transmitted. The ith block in the
encoding is constructed by concatenating

Ei =M1M2,i mod 2M3,i mod 3 · · ·Mk,i mod k.

By the encoding procedure, the total size of the encoded move is

k ·
k∑
i=1

m

ki
= m

k∑
i=1

1
i
= mHk.

The crucial property of the above construction is that the client can recon-
structMi from any i consecutive blocks from the encoding.

Proposition 1 [7]. Harmonic broadcasting has the property that the client can re-
construct the ith segment of the movie given any i consecutive blocks from the encoding.
Moreover, the total size of the encoding is at mostmHk, whereHk is the kth harmonic
number.

Juhn and Tseng [7] claimed that harmonic broadcasting gives a maximum
waiting time of m/k at the client end, but this is not the case. It was ob-
served by Pâris, Carter and Long [10] that the client actually may not get all
data it needs to reconstructMi on time and that the maximum waiting time is
in fact 2m/k − m/k2 at the client end before the movie can start playing.
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In their papers [10, 11], Pâris, Carter and Long propose three protocols—
cautious harmonic broadcasting, quasi-harmonic broadcasting and polyhar-
monic broadcasting—that can guarantee a maximum waiting time of m/k.
Specifically, their polyharmonic broadcasting protocol [11] divides the mes-
sage into s segments. To get a maximum waiting time of wm/s, the protocol
usesHs+w−1−Hw−1 channels. We establish in Corollary 2—using an informa-
tion theoretic argument—that this protocol is optimal in the constant bit-rate
model if the message is viewed as a bit stream.

3 Priority Encoded Transmission

Priority encoded transmission was introduced by Albanese et al. [1] as a way
to transmit a message over a noisy channel in such a way that certain parts of
the message are delivered more quickly than others. The message is assumed
to consist ofm words, a word consists of w bits.

Definition 1. For a message of lengthm, a priority encoded transmission system
with packet size ` , n packets and encoding length e = n` consists of:

1. An encoding function that maps a message of lengthm onto an encoding of total
length e consisting of n packets of ` words each.

2. A decoding function that maps sets of at most n packets ontom words.

3. A priority function ρ that maps {1, 2, . . . ,m} to the interval (0, 1].

The guarantee of the system is that, for all messages of length m and for all i ∈
{1, 2, . . . ,m}, the decoding function is able to decode the ith message word from any
ρi fraction of the n encoding packets.

In their paper, Albanese et al. show that given a priority function, it is possible
to construct a priority encoded transmission system with a priority function
that closely approximates the given one.

Proposition 2 [1, Theorem 4.3]. On input message length m, packet length ` ,
a k-partition of the message, i.e., positive integers m1,m2, . . . ,mk such that m =
m1 +m2 + · · · +mk, and corresponding priority values ρ1, ρ2, . . . , ρk, there is an
efficient procedure that produces a priority encoded transmission system with priority
function ρ′ and n encoding packets such that the total encoding length is

n` ≤
1

1− k/`

k∑
i=1

mi

ρi
+ `

and that all words of the message in the ith block of the k-partition have priority value
ρ′
i ≤ ρi + `/m.

In the video-on-demand setting, we have a message of sizem which we divide
into k equally sized blocks. We want to encode this message in such a way
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that we can always decode the ith block from a fraction i/k of consecutive
encoding packets.

Theorem 1. For any packet length ` such that k < ` < m/k, there exists a pri-
ority encoded transmission system fulfilling the design goals of harmonic broadcasting.
Moreover, the total length of the encoding is at most

m

1− k/`

(
Hk +

π2/6
m/k` − 1

)
+ `

where Hk is the kth harmonic number.

Before proving the theorem, we note that typical values of k, ` and m satisfy
k � ` � m/k; in this case the bound given above is approximately mHk.
Also, since the client has to receive a fraction 1/k of the packets in the encod-
ing before starting to view the movie, the maximum waiting time is less than
` +m/k, which is approximatelym/k when ` � m/k.

Proof of Theorem 1. By Proposition 2 with mi = m/k and priorities ρi = i/k −
`/m, there is an efficient procedure that produces a priority encoded trans-
mission system with a priority function ρ′ satisfying ρ′

i ≤ i/k and having a
total encoding length at most

1
1− k/`

k∑
i=1

mi

ρi
+ ` =

m

1− k/`

k∑
i=1

1
i− k`/m

+ `. (1)

To give the above expression a more convenient form, we let ε = k`/m < 1
and rewrite the sum in (1) as

k∑
i=1

1
i− ε

=
k∑
i=1

1
i(1− ε/i)

=
k∑
i=1

1
i

∞∑
j=0

(ε/i)j =
∞∑
j=0

εj
k∑
i=1

1
ij+1 .

The term corresponding to j = 0 above evaluates to Hk; the rest of the sum
can be upper bounded by

∞∑
j=1

εj
k∑
i=1

1
ij+1 ≤

∞∑
j=1

εj
k∑
i=1

1
i2

≤
∞∑
j=1

εj
∞∑
i=1

1
i2

=
π2

6

∞∑
j=1

εj =
π2

6
ε

1− ε
.

The first of the two equalities above follows, e.g., from [4, § 1.443, equation (3)]
with x = 0. To conclude, the entire sum in (1) is at most

Hk +
π2

6
k`/m

1− k`/m
= Hk +

π2/6
m/k` − 1

and therefore the total encoding length is at most

m

1− k/`

(
Hk +

π2/6
m/k` − 1

)
+ `.
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4 Optimality Of Harmonic Broadcasting

Albanese et al. [1] also provide a lower bound on the total length of the trans-
mitted message in their paper.

Proposition 3 [1, Theorem 3.3]. For any given priorities 0 < ρ1 ≤ ρ2 ≤ . . . ≤
ρm ≤ 1, if there is a priority encoded transmission system with these priorities, the
total encoding length is at least 1/ρ1 + 1/ρ2 + · · ·+ 1/ρm.

Applied to harmonic broadcasting, i.e., a partition of m into k equally sized
blocks and priorities such that all words in the ith block have priority i/k, the
above theorem lower bounds the size of the encoding bymHk.

Since a priority encoded transmission system with the above priorities
satisfies the requirement that it should be possible to reconstruct the first
k parts from any collection of k different received blocks, it is conceivable
that there exists a shorter encoding that still satisfies the weaker requirement
that it should be possible to reconstruct the first k parts from any sequence
of k consecutive received blocks. In this section, we rule out that possibility
by proving that also under this latter, weaker, requirement, the above lower
bound holds.

Theorem 2. Suppose that a message 〈M1,M2, . . . ,Mm〉 ∈ τ1 × τ2 × · · · × τm
is encoded as 〈E1, E2, . . . , En〉 ∈ σ1 × σ2 × · · · × σn in such a way that the value
of Mi can be recovered from any ρin consecutive packets from the encoding, where
0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρm = 1. Then

m∑
i=1

log2 |τi|
ρi

≤
n∑
i=1

log2 |σi|.

Before proving Theorem 2, we state some applications of it. The first applica-
tion shows that given the assumption that we encode equally sized blocks of
the message in such a way that the ith block can be recovered from i consec-
utive packets of the encoding, it is impossible to achieve a shorter encoding
than that achieved by harmonic broadcasting.

Corollary 1. Suppose that a message containing m bits is divided into k equally
sized blocks 〈M1,M2, . . . ,Mk〉 and that these blocks are then encoded into k packets
〈E1, E2, . . . , Ek〉 in such a way that it is possible to recoverMi from any i consecutive
packets of the encoding. Then the encoding contains at leastmHk bits whereHk is the
kth harmonic number.

Proof. Use Theorem 2 with m = n = k, τi = {0, 1}m/k and ρi = i/k. Then the
total number of bits in the encoding is at least

k∑
i=1

log2 |τi|
ρi

=
k∑
i=1

m/k

i/k
= m

k∑
i=1

1
i
= mHk.
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In the second application of Theorem 2 we drop the assumption on the block
size from Corollary 1. Instead, we assume that we want a certain maximum
waiting time at the client end and prove a lower bound on the number of
channels needed to achieve this waiting time. This answers Question 1 and
establishes, with the substitution w = m/k in Corollary 2 below, that polyhar-
monic broadcasting is optimal.

Corollary 2. Suppose that we want to transmit a movie consisting of m bits at
constant bit rate α in such a way that the maximum waiting time until the client can
start viewing the movie is w. Then α must be at least

Hm+w−1 −Hw−1 = ln(1+m/w) +
1

2w(1+w/m)
+O(w−2)

times the bit rate needed to transmit one copy of the movie.

Proof. If we let τi = {0, 1} and σi = {0, 1} in Theorem 2, we get the bound
m∑
i=1

1
ρin

≤ 1. (2)

Now suppose that we use α channels, i.e., a total bandwidth of α times the
bandwidth required to transmit one copy of the movie. Since we assumed
a maximum waiting time of w, ρ1n ≤ αw since we must be able to decode
the first bit in the message after time w. Similarly, ρin ≤ α(w + i − 1), since
we must be able to decode the ith bit in the message after time w + i − 1.
Therefore,

m∑
i=1

1
ρin

≥
m∑
i=1

1
α(w + i− 1)

. (3)

By combining the bounds (2) and (3), we obtain

α ≥
m∑
i=1

1
i+w − 1

=
m−1∑
i=0

1
i+w

= ψ(m+w)− ψ(w),

where ψ is the digamma function [4, § 8.36]. Since

ψ(x) = ln x −
1
2x

− 2
∫∞

0

t dt

(t2 + x2)(e2πt − 1)
= ln x −

1
2x

+O(x−2)

for positive x we obtain the bound

α ≥ ln(1+m/w) +
1

2w(1+w/m)
+O(w−2).

We now turn to the proof of Theorem 2. The proof uses an information theo-
retic argument along the lines of Albanese et al. [1], the main difference being
that we consider only consecutive blocks of the encoding instead of arbitrary
sets of blocks. This requires us to derive an information theoretic inequality
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that, to our knowledge, has not been given explicitly in the literature before
and might be of independent interest.

Definition 2. For a random variable X with probability density P , the binary
entropy of X is H (X ) = EP [− log2 P (X )].

Definition 3. Let X = 〈X1,X2, . . . ,Xk〉. For any set Q ⊆ {1, 2, . . . , k}, let
XQ = 〈Xi〉i∈Q.

Definition 4. Let Bq,k be the set of all blocks of size q from {1, 2, . . . , k}, wrapping
is allowed. I.e.,

Bq,k = {{i, i+ 1 mod k, i+ 2 mod k, . . . , i+ q − 1 mod k} : i ∈ [k]}

where [k] denotes the set of integers from 1 to k.

Definition 5. Let X = 〈X1,X2, . . . ,Xk〉 be a random variable. For any q ∈
{1, 2, . . . , k}, define

Hq(X ) =
k/q

|Bq,k|
∑

Q∈Bq,k
H (XQ).

Intuitively, the quantity qHq(X )/k expresses the entropy of a randomly se-
lected block of q consecutive random variables and Hq(X ) expresses the av-
erage entropy per block in a random interval of q successive blocks. The
following lemma is a modification of an inequality due to Han [5]; we provide
a proof along the lines of Chung et al. [2] in Sec. 5.

Lemma 1. Let X = 〈X1,X2, . . . ,Xk〉 and let P be a probability distribution
on X . Then H1(X ) ≥ H2(X ) ≥ · · · ≥ Hk(X ) = H (X ) where the entropy is
computed according to the distribution P .

Using the above lemma together with the identity H (X,Y | Z ) = H (Y |
Z ) +H (X | Y,Z ), the proof of Theorem 2 proceeds by relating the entropy
of the encoding to the entropy on the message.

Lemma 2. Given a message space τ1 × τ2 × · · · × τm, a probability distribution
on this space, and an encoding space σ1 × σ2 × · · · × σn, suppose that a message
〈M1,M2, . . . ,Mm〉 from the message space is encoded as 〈E1, E2, . . . , En〉 in such a
way that the value of Mi can be recovered from any ρin consecutive encoded packets,
where 0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρm = 1. Then

n∑
i=1

H (Ei) ≥
m∑
i=1

H (Mi |M[i−1])

ρi
.

where [j] denotes the set of integers from 1 to j and the entropies are computed according
to the probability distribution on the message space.
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Proof. Define ρ0 = 1/n. We first prove by induction on j that

Hρjn(E |M[j]) ≤ H1(E)−
j∑
i=1

H (Mi |M[i−1])

ρi
(4)

for all j ∈ {0, 1, . . . ,m}. The base case j = 0 is clear since Hρ0n(E | M[0]) =
H1(E). Now we assume that (4) holds for j and prove that this implies the
inequality for j + 1. Define q = ρj+1n and fix a Q ∈ Bq,n. Then

H (EQ |Mj+1,M[j]) = H (EQ,Mj+1 |M[j])−H (Mj+1 |M[j])

= H (EQ |M[j])−H (Mj+1 |M[j]),

where the last equality follows since

H (EQ,Mj+1 |M[j]) = H (EQ, |M[j]) +H (Mj+1 | EQ,M[j])

= H (EQ |M[j]),

which, in turn, follows since the value of EQ determines that ofMj+1. Thus,∑
Q∈Bq,n

H (EQ |M[j+1]) =
∑

Q∈Bq,n
H (EQ |M[j])− |Bq,n|H (Mj+1 |M[j]).

Dividing this relation with q|Bq,n|/n = ρj+1|Bq,n|, we obtain

Hq(E |M[j+1]) = Hq(E |M[j])−
H (Mj+1 |M[j])

ρj+1

by the definition of Hq and the fact that n/q = 1/ρj+1. Since, by Lemma 1,
Hq(E |M[j]) ≤ Hr (E |M[j]) for all q ≥ r ,

Hq(E |M[j+1]) = Hρj+1n(E |M[j+1]) ≤ Hρjn(E |M[j])−
H (Mj+1 |M[j])

ρj+1

and when this is combined with the induction hypothesis, we obtain

Hρj+1n(E |M[j+1]) ≤ H1(E)−
j+1∑
i=1

H (Mi |M[i−1])

ρi

and conclude that (4) holds for all j ∈ {0, 1, . . . ,m}. The upper bound on j
follows from the fact that ρm = 1.
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Setting j = m in (4) gives Hρmn(E | M[m]) = 0 since the encoding is
completely determined by the message, and thus

H1(E)−
m∑
i=1

H (Mi |M[i−1])

ρi
≥ 0.

Since

H1(E) =
n∑
i=1

H (Ei)

we have obtain the bound we set out to prove.

The proof of Theorem 2 is a direct application of the above result.

Proof of Theorem 2. Apply Lemma 2 to the case when 〈M1,M2, . . . ,Mm〉 at-
tains each value in τ1 × τ2 × · · · × τm with equal probability. Then H (Mi |
M[i−1]) = log2 |τi|. Furthermore, H (Ei) is always at most log2 |σi|, no matter
the distribution of the encodings.

5 Proof of Lemma 1

The proof uses the following basic entropy identities:

H (Y | X,Z ) ≤ H (Y | X ), (5)

H (X,Y ) = H (X ) +H (Y | X ), (6)

where X , Y and Z can be arbitrary collections of random variables [8, 3].
There are two cases—notice that |Bq,k| = k for all q such that 1 ≤ q ≤ k − 2
and that |Bk,k| = 1. Let us first show that Hk−1(X ) ≥ Hk.

Lemma 3. Let X = 〈X1,X2, . . . ,Xk〉 and let P be a probability distribution
on X . Then Hk−1(X ) ≥ Hk(X ) where the entropy is computed according to the
distribution P .

Proof. We first rewrite H (X1,X2, . . . ,Xk) by conditioning on Xi according
to equation (6): H (X1,X2, . . . ,Xk) = H (X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xk) +
H (Xi | X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xk) for any i such that 1 ≤ i ≤ k. Ap-
plying the bound (5) to the last term above then gives H (X1,X2, . . . ,Xk) ≤
H (X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xk) +H (Xi | X1,X2, . . . ,Xi−1) for any i such
that 1 ≤ i ≤ k. Summing the above inequality over all i gives the inequality

kH (X1,X2, . . . ,Xk) ≤
∑

Q∈Bk−1,k
H (XQ) +

k∑
i=1

H (Xi | X1,X2, . . . ,Xi−1)
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=
∑

Q∈Bk−1,k
H (XQ) +H (X1,X2, . . . ,Xk),

where the last equality follows from equation (6). To conclude,

(k − 1)H (X1,X2, . . . ,Xk) ≤
∑

Q∈Bk−1,k
H (XQ),

which is equivalent to Hk−1(X ) ≥ Hk(X ).

The remaining case follows by a slight extension of the above argument.

Lemma 4. Let X = 〈X1,X2, . . . ,Xk〉, q be an integer such that 1 ≤ q ≤ k − 2,
and P be a probability distribution on X . Then Hq(X ) ≥ Hq+1(X ) where the
entropy is computed according to the distribution P .

Proof. In this proof, the indices are cyclic: k + j is interpreted as j. By equa-
tion (6)

H (Xi,Xi+1, . . . ,Xi+q)

= H (Xi+1,Xi+2, . . . ,Xi+q) +H (Xi | Xi+1,Xi+2, . . . ,Xi+q)

for any integer i such that 1 ≤ i ≤ q. Summing the above equation over all i
and multiplying by q + 1 gives

(q + 1)
∑

Q∈Bq+1,k
H (XQ)

= (q + 1)
∑

Q∈Bq,k
H (XQ) + (q + 1)

k∑
i=1

H (Xi | Xi+1,Xi+2, . . . ,Xi+q).

We now claim that

(q + 1)
k∑
i=1

H (Xi | Xi+1,Xi+2, . . . ,Xi+q) ≤
∑

Q∈Bq+1,k

H (XQ). (7)

This is enough to complete the proof, since then

q
∑

Q∈Bq+1,k
H (XQ) ≤ (q + 1)

∑
Q∈Bq,k

H (XQ).

To see that (7) holds, we rewrite the left-hand side as
q∑
j=0

k∑
i=1

H (Xi | Xi+1,Xi+2, . . . ,Xi+q)

and reorder the terms in the sum to get the equivalent expression

k∑
i=1

q∑
j=0

H (Xi+j | Xi+j+1,Xi+j+2, . . . ,Xi+j+q).
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By the bound (5), this sum is at most

k∑
i=1

q∑
j=0

H (Xi+j | Xi+j+1,Xi+j+2, . . . ,Xi+q),

which, by equation (6), can be rewritten as

k∑
i=1

H (Xi,Xi+1, . . . ,Xi+q) =
∑

Q∈Bq+1,k

H (XQ).
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