
Reconstructing Curves in Three (and Higher) Dimensional
Space from Noisy Data

Don Coppersmith
∗

Madhu Sudan
†

ABSTRACT
We consider the task of reconstructing a curve in constant
dimensional space from noisy data. We consider curves of
the form C = {(x, y1, . . . , yc) | yj = pj(x)}, where the pj ’s
are polynomials of low degree. Given n points in (c + 1)-
dimensional space, such that t of these lie on some such
unknown curve C while the other n− t are chosen randomly
and independently, we give an efficient algorithm to recover
the curve C and the identity of the good points. The success
of our algorithm depends on the relation between n, t, c and
the degree of the curve C, requiring t = Ω(ndeg(C))1/(c+1).
This generalizes, in the restricted setting of random errors,
the work of Sudan (J. Complexity, 1997) and of Guruswami
and Sudan (IEEE Trans. Inf. Th. 1999) that considered
the case c = 1.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computation
on Polynomials; E.4 [Coding and Information Theory]:
Error control codes

General Terms
Algorithms, Reliability, Theory

Keywords
Error-correction, Maximum Distance Separable Codes, Ran-
dom Errors, Decoding Algorithm, Algebraic Codes

1. INTRODUCTION
∗IBM Thomas J. Watson Research Center, Yorktown
Heights, New York 10598. email: dcopper@us.ibm.com.
†Massachusetts Institute of Technology, Laboratory for
Computer Science, 200 Technology Square, Cambridge, MA
02139. email: madhu@mit.edu. Supported in part by NSF
Awards CCR 0205390 and MIT NTT Award 2001-04.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Inspired by a cryptosystem proposed by Kiayias and Yung [5]
we consider a variant of the standard polynomial reconstruc-
tion problem. In the standard problem, one is given a se-
quence of distinct pairs 〈(αi, βi)〉ni=1, where αi, βi ∈ F for
some field F, and a degree parameter k and an agreement
parameter t; and one wishes to find a degree k polynomial
p ∈ F[x] such that p(αi) = βi for at least t values of i ∈ [n].
(Here and later, [n] denotes the set of integers {1, . . . , n}.)
This problem is well-known to be equivalent to the decod-
ing problem for Reed-Solomon codes and has been studied
extensively in the past. The “list-decoding” algorithms of
Sudan [6] and Guruswami and Sudan [4] solve the above

problem provided t >
√
kn, and in fact produce a list of all

polynomials that have the desired agreement with the given
sequence of points.

The variant of the problem we consider is the following:
Curve Reconstruction Problem:
Given: A sequence 〈(αi, βi,1, . . . , βi,c)〉ni=1 with αi, βi,j ∈ F,
αi’s being distinct; and degree parameters k1, . . . , kc and
agreement parameter t.
Goal: Find polynomials p1, . . . , pc with deg(pj) ≤ kj for all
j ∈ [c], such that for every j ∈ [c] there exist at least t values
of i ∈ [n] such that pj(αi) = βi,j .

Thus in the variant we are considering we are looking to
reconstruct a curve in somewhat higher (though constant)
dimensional space from erroneous evaluations. The only
kind of curves we consider here are those formed by the
intersection of surfaces of the form 〈yj − pj(x)〉j∈[c]. Our
goal is to be able to do so with far less agreement than re-
quired by the results of [4], as c grows large. To get such im-
provements, without actually improving the state of affairs
vis-a-vis Reed-Solomon decoding, we need to make some ad-
ditional assumptions and we do so below.

Restricting Assumptions:

Synchronized error locations: There exists a set I ⊆ [n]
with |I| ≥ t and polynomials p1, . . . , pc with deg(pj) ≤
kj , such that for every i ∈ I and j ∈ [c], pj(αi) = βi,j .

Random errors: For every i 6∈ I and j ∈ [c], the value βi,j
is distributed uniformly at random in F (independent
of all other values in the sequence).

We use the term Restricted Curve Reconstruction Prob-
lem to describe the Curve Reconstruction Problem under the
restricting assumptions above. In order to justify the two as-
sumptions, note first that without the random error assump-
tion, the standard Reed-Solomon decoding problem trivially
reduces to the problem above: Given 〈(αi, βi)〉ni=1, we set
βi,1 = βi and βi,2, . . . , βi,c = 0. A solution to the Curve

Reconstruction Problem, now gives a solution to the Reed-
Solomon decoding problem. Next, we note that without the
synchronized error assumption, the problem above decom-
poses into c independent Reed-Solomon decoding problems
with random error. In particular, the case c = 1 reduces to
the case of larger c. While it is possible that this problem
is easier than the list-decoding problem (with adversarial
error), no better algorithms are known for this case either.

The main result of this paper is the following:

Theorem 1. For every fixed constant c, the Restricted
Curve Reconstruction Problem can be solved in polynomial
time, with probability at least 1−O(nO(c)/|F|) over the ran-

dom choice of errors, provided t >
“
n
Qc
j=1 kj

”1/(c+1)

+

maxj∈[c]{kj}+ 1,

Note that the state of affairs does not improve for the stan-
dard case (c = 1) even if the errors are random. However as
c grows, the requirement on the agreements above reduces.
This is best seen by setting all kj ’s equal to some k and notic-
ing that requirement above simplifies to t >≈ k·(n/k)1/(c+1)

which gets closer to O(k) as c→∞.

1.1 Coding theoretic interpretation
As mentioned earlier, our investigation was inspired by

a cryptographic scheme proposed by Kiayias and Yung [5].
Our results show that their system breaks for certain choices
of the parameters. Independent of our work, Bleichenbacher,
Kiayias, and Yung [1] also give a solution to the Restricted
Curve Reconstruction Problem. Their solution is weaker
than ours (requires more agreement), and is incomparable
with known results for list-decoding.

Our results also have a coding theoretic interpretation
(analogous to those of [1]). Let Σ = F× F and let Q = |Σ|.
Let α1, . . . , αn be distinct elements of F (and so

√
Q ≥

n). Consider an error-correcting code whose messages are
pairs of polynomials (p1, p2) of degree at most k (interpreted
as elements of Σk+1), and whose encoding is the sequence
〈(p1(αi), p2(αi))〉ni=1 (viewed as elements of Σn). This en-
coding scheme gives a code of minimum distance n−k mak-
ing it a Maximum Distance Separable (MDS) code. Our re-
construction algorithm shows how to recover the codeword
from random errors over a Q-ary symmetric channel with
error probability 1−O((k/n)c/(c+1)).

Reinterpreting the above, for any α > 1 we can get codes
of rate Ω(εα) that can correct 1−ε fraction of random errors,
with alphabet size that is polynomially large in the length
of the message. The best previous results we are aware
of, due to Guruswami and Indyk [2, 3], had rate growing
quadratically in the parameter ε (though their results are
stronger in that they can tolerate adversarial error, require
only constant sized alphabets, and their decoding algorithm
are (nearly) linear time).

1.2 Techniques
Our algorithm(s) have some similarities in their setup with

algorithms of [6, 4]. But some of the ingredients in the
algorithm, as well as their analysis are conceptually quite
different. Here we stress some of the novelties.

First, let us describe the basic setup of the algorithms of
[6, 4]. For the standard polynomial reconstruction problem
with inputs 〈(αi, βi)〉ni=1 their algorithm first finds a non-
zero polynomial Q(x, y) such that Q(αi, βi) = 0 for every

i ∈ [n] (and possibly some additional conditions). Then they
factor this polynomial Q, and show that factors of the form
y− p(x) for degree k polynomials p reveal all polynomials p
with significant agreement with the input pairs.

Our approach starts off similarly. Note that the first step
in the algorithms of [6, 4] amounts to solving a homogeneous
linear system. Say, the linear system they create defines a
matrix A where they are looking for a vector in the left
kernel (i.e., a vector c such that c ·A = 0). In our algorithm
also we create a matrix, which turns out to be the same
matrix A when c = 1. However we don’t look for a vector
in the left kernel of this matrix, but rather in its right kernel!
We note that the coordinates of the vector in the right kernel
correspond to the n given points; and that the non-zero
coordinates of this vector are very likely to be the error-
free locations. We this use this information to reduce the
decoding problem to one of decoding with erasures - which is
quite simple for any linear code. This makes our approach
similar in spirit to the classical decoding algorithms that
worked using “error-locator” polynomials.

The distinction between working with vectors in the left
kernel versus vectors in the right kernel forces us to alter our
analysis almost completely. For instance, where previously
the task of proving that there is a vector in the kernel was
a mere counting argument, in our case this becomes non-
trivial and requires large number of agreements between the
given point and some degree k polynomial. On the other
hand we don’t/can’t handle non-unique solutions. In fact,
the hard steps in our analyses show that for generic points
the right kernel does not contain any non-zero vectors. Thus
the only reason the right kernel has any non-zero vectors is
because of the large agreement with some low-degree poly-
nomial; and this manifests itself by forcing the null vector
to have its support entirely on the “non-error” points.

We feel the new analysis, in addition to providing much
stronger results in our setting, sheds new light on the pre-
vious decoding algorithms. Furthermore, the fact that we
do not rely on a heavy duty tool such as factoring of multi-
variate polynomials, leads to hope that our algorithm may
be applicable in settings where the previous approaches did
not work.

Furthermore, while we only treat the case of special fami-
lies of curves in Fc+1 in this paper, our approach seems quite
suitable to handle the case of general algebraic varieties in
constant dimensional space. Indeed the main parameters
of the problem space that the algorithm rely on seem inti-
mately related to the algebraic notions of dimensions and de-
grees of varieties, suggesting that the algorithm could work
in essentially the same way in the general setting.

1.3 Organization of this paper
In Section 2 we give some intuition into our approach and

give a basic algorithm which corrects n−Ω

„“
n
Qc
j=1 kj

”1/(c+1)
«

errors. (See Theorem 9.) This algorithm is analogous to the
one of [6]. In Section 3, we augment our algorithm to cor-

rect up to n−
“
n
Qc
j=1 kj

”1/(c+1)

−maxj∈[c]{kj} errors, thus

yielding a proof of Theorem 1. This step is analogous to that
of [4].

2. THE BASIC ALGORITHM(S)
Recall the problem we wish to solve. We are given a se-

quence 〈(αi, βi,1, . . . , βi,c)〉ni=1 and parameters k1, . . . , kc and
t. We wish to find polynomials p1, . . . , pc with deg(pj) ≤ kj ,
and a set I ⊆ [n] such that |I| ≥ t and pj(αi) = βi,j for
every i ∈ I and j ∈ [c].

In this section we’ll give an algorithm to solve this problem
with high probability in restricted case (correlated error lo-

cations and random errors), provided t = Ω((n
Qc
j=1 kj)

1/(c+1)).

2.1 Intuition and Motivation
We start by motivating our algorithm for the classical —

“error less than half the minimum distance” — case with
c = 1. So we wish to recover a single polynomial of degree
at most k. We will skip the second subscript on βi,j ’s since
it is always “1”.

For every data point (αi, βi) we build a (column) vec-
tor fαi,βi as follows: Let ` be a parameter. Then fαi,βi ∈
F2(`+1)−k has its coordinates indexed by monomials of the
form xm, 0 ≤ m ≤ ` or xm · y, 0 ≤ m ≤ ` − k. The
coordinate corresponding to xmyj in fαi,βi is αmi β

j
i . Now

given a collection of points 〈(αi, βi)〉i=n, we build a matrix

A ∈ F(2(`+1)−k)×n whose columns are indexed by points
i ∈ [n] and whose ith column is fαi,βi .

The interest in the vectors fαi,βi and the matrix A arises
from the following simple fact: If βi = p(αi) for some degree
k polynomial p and every i ∈ [n], then the matrix A has
rank at most ` + 1, independent of n. (To see this, note
that the rows of A correspond to monomials of the form
xmyj . Furthermore, since y = p(x), rows corresponding to
monomials of the form y · xm are really just degree m +
k ≤ ` polynomials in x and thus can be expressed as linear
combinations of the first `+1 rows of A.) Now if we consider
the case when k � ` � n, then this upper bound on the
rank of A is nearly a factor of two saving over the obvious
rank of 2(`+ 1)−k ≈ 2`. In fact, it can be shown (and we’ll
do something like this later) that if the βi’s were generic or
random, then indeed the rank A would be full.

Now if we introduce e errors, (i.e, for e values of i ∈ [n],
βi 6= p(αi)), we still have that the matrix A has rank at
most ` + e + 1 which is still non-trivially small provided
` + e + 1 < min{n, 2(` + 1) − k}. Setting ` ≈ (n + k)/2
maximizes e under these constraints and gives e ≈ (n−k)/2.

Thus the matrix A distinguishes a random sequence of
βi’s from a sequence generated from a sequence obtained
from the values of p with few (e) corruptions. To make con-
structive use of the above distinguishing property, we look
into the set of columns that are linearly dependent. We
show that if the field size is sufficiently large, then no such
dependence could involve a random βi. Thus we conclude
that the linear dependence “identifies” a large collection of
good columns and this can be used to find the message poly-
nomial p.

To correct errors beyond half the minimum distance, we
now adopt a completely natural idea. We’ll throw in more
monomials of the form xmyj provided we don’t increase the
rank of the matrix A that we develop this way (when all
data points come from polynomial evaluations). It is clear
that the rank remains bounded from above by ` provided
m + kj ≤ `. So we increase the dimension of the vectors
fα,β by throwing in all such monomials. The resulting algo-

rithm (analyzed later) corrects at least n −
√

2kn random
errors (matching the bound of [6]). Indeed the matrix we
work with is the same as the one used by [6], however the

reasoning leading to it is quite different. Finally with little
modification, we enhance our algorithms so as to handle the
cases c = 2, 3, . . . and get significantly better results as c
increases.

2.2 Notations and Definitions
We’ll use the letters x, y, z, sometimes with subscripts, to

denote indeterminates. We’ll use α, β, γ, again possibly with
subscripts, to denote field elements.

For degree parameters k1, . . . , kc and a monomial M =
xmyj11 · · · yjcc , its (k1, . . . , kc)-weighted degree is

Pc
i=1 kiji.

If k1, . . . , kc are clear from context (i.e., whenever we wish
to) we’ll drop the parameters k1, . . . , kc and just refer to
the weighted degree of a monomial. For degree parameters
k1, . . . , kc and a bound `, letMk1,...,kc,` be the set of mono-
mials in x, y1, . . . , yc of weighted degree at most `. For a set
of monomialsM in x, y1, . . . , yc, and α, β1, . . . , βc ∈ F, we’ll
let fα,β1,...,βc;M be the vector in F|M| whose coordinates are
indexed by monomials M in M and whose Mth coordinate
is αmβj11 · · ·βjcc if M = xmyj11 · · · yjcc . Similarly fx,y1,...,yc;M
will simply be the vector whose Mth coordinate is the (for-
mal) monomial M . TypicallyM will just beM` for some `
that will be fixed once the input parameters to the algorithm
are fixed. So, we’ll omit ` and M in the subscripts.

For a positive integer r, and implicit positive integer c,
set Sr = {(d, e1, . . . , ec)|d, ei ≥ 0; d +

P
ei < r}, and Sr =

|Sr| =
`
c+r
c+1

´
. Given (d, e1, . . . , ec) ∈ Sr, let f

[d,e1,...,ec]
α,β1,...,βc;M be

the vector in F|M| whose coordinates are indexed by mono-
mials M in M and whose Mth coordinate is the coefficient
of udve11 · · · vec

c in (α+ u)m(β1 + v1)j1 · · · (βc + vc)
jc if M =

xmyj11 · · · yjcc , namely
`
m
d

´`
j1
e1

´
· · ·
`
jc
ec

´
αm−dβj1−e11 · · ·βjc−ec

c .

By f
[r∗]
α,β1,...,βc;M we denote the collection of all Sr such columns

indexed by Sr.
Similarly f

[d,e1,...,ec]
x,y1,...,yc;M is the vector whose Mth coordinate

is the formal monomial`
m
d

´`
j1
e1

´
· · ·
`
jc
ec

´
xm−dyj1−e11 · · · yjc−ec

c .

2.3 Reconstructing a single polynomial
Again we start with the case of c = 1 to describe our

algorithm and analysis.

2.3.1 Algorithm
Given the outline and notation from earlier sections, our

algorithm is easy to describe. The only issue is the choice
of `. We’ll pick ` so that |M`| ≥ n.

Given 〈(αi, βi)〉ni=1 and degree parameter k, let ` =
√

2kn
and M =M`. Let m = |M|.

Step 1 Let A ∈ Fm×n be the matrix whose ith column
is fαi,βi . Find a non-zero vector b ∈ Fn such that
A · b = 0, if one exists.

Step 2 Let J ⊆ [n] be the set of coordinates where b is
non-zero. If there exists exactly one polynomial p′ of
degree at most k such that p′(αi) = βi for every i ∈ J ,
then output p′, else output FAIL.

2.3.2 Analysis
The algorithm obviously runs in polynomial time with

the dominating cost being that of solving the homogeneous
linear system in Step 1. Here we analyze the correctness of
the algorithm.

For the analysis assume that there exists a polynomial p
and a set I ⊆ [n] with |I| > `, such that βi = p(αi) for every
i ∈ I. Further, we’ll assume that the sequence 〈βi〉i∈[n]−I
are uniform and independent random variables from F. Our
goal is to show that the output p′ of the algorithm is the
polynomial p, with high probability.

Our analysis goes via two simple claims and a harder
lemma. The claims show that the matrix A does have a
non-trivial right kernel and that the support of the vectors
in the kernel is large enough to determine the polynomial p′

uniquely in Step 2. The lemma shows that the support is
contained entirely among the non-error points, with high
probability. Together this shows that the reconstruction
finds the right set of points with high probability.

Claim 2. If |I| > `, then Step 1 is successful. I.e., there
exists a non-zero vector b such that Ab = 0.

Proof. Permute the columns of A and write it as [B|C]
where B corresponds to the columns in I and C to the rest.
The rank of C is at most the number of columns and thus
at most n− |I|. On the other hand, as noted in Section 2.1,
the rank of B is at most ` since the rows corresponding to
the monomials x0, . . . , x`−1 generate it. Thus the rank of
A is at most n − |I| + ` < n. Thus it has less than full
column rank and thus there exists a non-zero vector b such
that Ab = 0.

Claim 3. In Step 2, the J produced by the algorithm sat-
isfies |J | > ` > k.

Proof. This is simple since restricting the matrix A to
the rows corresponding to the monomials xm makes it a Van-
dermonde matrix with ` rows. Thus every set of ` columns
of this matrix are linearly independent.

Lemma 4. If m ≥ n, then with probability at least 1 −
n`/(kq), we have J ⊆ I.

Proof. Let t = |I| be the number of non-errors. Assume,
without loss of generality, that I = [t]. Let Ai denote the
m× i matrix obtained by restricting A to its first i columns.
Let Bi be the m × i matrix obtained by replacing the ith
column of Ai by the vector fαi,y. (Thus the ith column of Bi

has as entries, formal polynomials in y.) We’ll show below
that: (1) For every i ∈ [n], the matrix Bi has rank strictly
larger than the rank of the matrix Ai−1 (assuming m ≥ i).
(2) For any fixed i ∈ [n]− [t], the probability that the rank
of Ai is less than that of Bi is at most `/(kq). Thus with
probability 1− (n− t) · `/(kq) none of the last n− t columns
are involved in any linear dependency and this implies the
lemma.

(1) Assume Bi has the same rank as the matrix Ai−1.
This implies that for every vector c that satisfies c·Ai−1 = 0,
it is also the case that c · Bi = 0. Recalling that the rows
of A correspond to monomials of weighted degree at most `
and columns correspond to points, this is equivalent to the
following assertion: Every non-zero polynomial Q(x, y) of
weighted degree at most ` that satisfies Q(α1, β1) = · · · =
Q(αi−1, βi−1) = 0 also satisfies Q(αi, y) = 0. But now
consider the smallest degree non-zero polynomial Q that
satisfies Q(α1, β1) = · · · = Q(αi−1, βi−1) = 0. (Such a
polynomial does exist, since m ≥ n > rank(Ai).) Since
Q(αi, y) = 0, we must have (x − αi) divides Q(x, y). But
then the polynomial Q′(x, y) = Q(x, y)/(x − αi) also satis-
fies Q′(α1, β1) = · · · = Q′(αi−1, βi−1) = 0 and has smaller

degree than Q, contradicting the minimality of Q. Thus we
conclude that Bi has rank greater than the rank of Ai−1.

(2) Now we need to show that Ai is unlikely to have
smaller rank than Bi. For this consider a full rank square
submatrix C in Bi. Let g(y) denote the determinant of C.
(By part (1), we know that this matrix includes the ith col-
umn, and so the determinant will be a formal polynomial
in y.) Since C is non-singular, g(y) 6= 0. Furthermore, the
degree of g is at most `/k, since it is a linear polynomial in
the entries of the ith column which are, in turn, of degree
at most `/k in y. Now, the matrix Ai is obtained from Bi

by picking βi at random from F and setting y = βi. Thus
the square submatrix corresponding to C in Ai has deter-
minant g(βi). The probability that this is zero is at most
(`/kq) where q = |F|.

This concludes the proof of the lemma.

We thus conclude with the following theorem:

Theorem 5. The algorithm of Section 2.3.1 solves the
restricted curve reconstruction problem for c = 1, with prob-
ability at least 1−O(n1.5/q), provided the number of errors

is less than n−
√

2kn.

Proof. By Claims 2 and 3 it follows Step 1 will find a
non-zero vector b whose support is at least k+1. Thus there
will be at most one polynomial satisfying the condition of
Step 2. Furthermore, by Lemma 4, we get that the support
of b is completely over the non-errors with high probability
and in such case, the polynomial output by the algorithm
will be p.

2.4 Recovering curves in higher dimensions
We now move to the case of larger, but constant, c. The

algorithm as well as the analysis are easy to generalize.
Again we need to pick ` so that |M`| ≥ n. Using the ap-

proximation, |M`| ≈ `c+1

(c+1)!
Qc

j=1 kj
, we find we need to set

` =
“

(c+ 1)!n
Q
j kj
”1/(c+1)

.

2.4.1 Algorithm
Given 〈(αi, βi,1, . . . , βi,c)〉ni=1 and degree parameters

k1, . . . , kc, let ` =
“

(c+ 1)!n
Q
j kj
”1/(c+1)

and M = M`.

Let m = |M|.

Step 1 Let A ∈ Fm×n be the matrix whose ith column is
fαi,βi,1,...,βi,c . Find a non-zero vector b ∈ Fn such that
A · b = 0, if one exists.

Step 2 Let J ⊆ [n] be the set of coordinates where b is non-
zero. For j ∈ [c] do: If there exists exactly one poly-
nomial p′j of degree at most kj such that p′j(αi) = βi,j
for every i ∈ J , then output p′j as the jth polynomial;
else output FAIL.

2.4.2 Analysis
Once again, for the analysis we assume that there exists

a sequence of polynomials p1, . . . , pc and a set I ⊆ [n] such
that βi,j = pj(αi) for every i ∈ I and j ∈ [c]. We’ll also
assume that the errors (βi, j for i 6∈ I) are random. The
claims below follow in essentially the same manner as earlier,
and we skip their proofs.

Claim 6. If |I| > `, then Step 1 is successful. I.e., there
exists a non-zero vector b such that Ab = 0.

Claim 7. In Step 2, the J produced by the algorithm sat-
isfies |J | > ` > k.

We now move to the main lemma and its proof.

Lemma 8. If m ≥ n, then with probability at least 1 −
n`/(kq), we have J ⊆ I.

Proof. Again we let t = |I| and assume w.l.o.g. that I =
[t]. Let Ai denote the m× i matrix obtained by restricting
A to its first i columns. Let Bi be the m×i matrix obtained
by replacing the ith column of Ai by the vector fαi,y1,...,yc .

First we show that rank(Bi) > rank(Ai−1): Assume oth-
erwise, then this implies that every non-zero polynomial
Q(x, y1, . . . , yc) of weighted degree at most ` that satisfies
Q(αi′ , βi′,j) = 0 for every i′ ∈ [i − 1] and j ∈ [c], also sat-
isfies Q(αi, y1, . . . , yc) = 0. But now consider the smallest
degree polynomial Q that satisfies Q(α1, β1,1, . . . , β1,c) =
· · · = Q(αi−1, βi−1,1, . . . , βi−1,c) = 0. (Again, the fact that
m > rank(Ai−1) implies such a polynomial Q must exist.)
Since Q(αi, y1, . . . , yc) = 0, we now have (x − αi) divides
Q(x, y1, . . . , yc). But then the polynomialQ′(x, y1, . . . , yc) =
Q(x, y1, . . . , yc)/(x−αi) also satisfiesQ′(α1, β1,1, . . . , β1,c) =
· · · = Q′(αi−1, βi−1,1, . . . , βi−1,c) = 0 and has smaller degree
than Q, contradicting the minimality of Q. Thus we con-
clude that Bi has rank greater than the rank of Ai−1.

Next we note, as in the proof of Lemma 4, that the prob-
ability that the rank of Ai less than the rank of Bi is at
most `/(kq), where k = minci=1{kj}. Thus with probability
at least 1 − (n − t) · `/(kq) none of the last n − t columns
are involved in any linear dependency and this implies the
lemma.

We thus conclude with the following theorem:

Theorem 9. The algorithm of Section 2.4.1 solves the
restricted curve reconstruction problem, with probability at
least 1−O(n(c+2)/(c+1)/q), provided the number of errors is

less than n−
“

(c+ 1)!n
Qc
j=1 kj

”1/(c+1)

.

Proof. Follows immediately from Claims 6 and 7 and
Lemma 8.

3. AN IMPROVED ALGORITHM
In this section we improve the algorithms of the previous

section to correct roughly n −
“
n
Qc
j=1 kj

” 1
c+1

errors. We

use technique analogous to those of [4], who improve the

n −
√

2kn bound to n −
√
kn. They achieve their improve-

ment by first finding a polynomial Q(x, y) that vanishes with
multiplicity r, for some suitably large r, at each input point
(αi, βi). They then factor this polynomial Q, showing that
all solution polynomials p(x) are included as factors of the
form y − p(x) of Q(x, y).

We will follow a similar strategy. We define a similar
homogeneous linear system (same if c = 1) as they do to
find the polynomial Q(x, y). Now we look for a vector in
the right kernel of the associated matrix (while the Q of [4]
corresponds to a vector in the left kernel). We then interpret
the non-zero coordinates of the vector in the right kernel as
flagging “correct” data points (as opposed to the errors)
and interpolate through these points to (hopefully) find the
polynomials p1, . . . , pc. We describe the algorithm without
further motivation.

First, recall some notation, already introduced in Sec-
tion 2.2. Let Mk1,...,kc,` denote the set of monomials in
x, y1, . . . , yc of (k1, . . . , kc)-weighted degree at most `. For a
collection of monomialsM in x, y1, . . . , yc, α, β1, . . . , βc ∈ F,

and integers d, e1, . . . , ec, we let f
[d,e1,...,ec]
α,β1,...,βc;M be the vec-

tor in F|M| whose coordinates are indexed by monomials in
M whose value on the coordinate corresponding to M =
xiyj11 · · · yjcc is the coefficient of xdye11 · · · yec

c in (x+α)i(y1 +
β1)j1 · · · (yc+βc)jc . Similarly for indeterminates u, v1, . . . , vc,

we’ll let f
[d,e1,...,ec]
u,v1,...,vc;M be the vectors whose coordinates are

the corresponding formal polynomials in u, v1, . . . , vc. No-
tice that the old notation fα,β1,...,βc;M corresponds, in the

new notation, to f
[0,...,0]
α,β1,...,βc;M.

For positive integer r, let Sr = {(d, e1, . . . , ec)|d+
P
i ei <

r} and let Sr = |Sr|. Note Sr =
`
c+r
c+1

´
. Let f

[r∗]
α,β1,...,βc;M

denote the collection of all (column) vectors f
[d,e1,...,ec]
α,β1,...,βc;M

for (d, e1, . . . , ec) ∈ Sr. This collection of vectors will be
central to our algorithm of this section.

3.1 The Algorithm
Given as input, n tuples {(αi, βi,1, . . . , βi,c)|i ∈ [n]}, we

proceed as follows:

Parameters Let r be a sufficiently large integer, and ` such
that |M`| ≥ n · Sr. Let m = |M`| and N = n · Sr.

Step 1: Let A ∈ Fm×N be the matrix whose columns are
indexed by pairs (i, (d, e1, . . . , ec)) with i ∈ [n] and
(d, e1, . . . , ec) ∈ Sr where the (i, (d, e1, . . . , ec))th col-

umn is f
[d,e1,...,ec]
αi,βi,1,...,βi,c;M`

. Let b ∈ FN be a non-zero

vector such that A · b = 0.

Step 2: Let J be the set of all indices i ∈ [n] such that
there exists a tuple (d, e1, . . . , ec) ∈ Sr for which the
(i, (d, e1, . . . , ec))th coordinate of b is non-zero. If for
every j ∈ [c] there exists exactly one polynomial p′j
such that p′j(αi) = βi,j for every i ∈ J , then output
the tuple (p′1, . . . , p

′
j), else output FAIL.

Notice that the algorithm above specializes to the algo-
rithm of Section 2.4.1 if we set r = 1. We show below that if
r is sufficiently large, and so is |F|, then the algorithm above
terminates successfully.

3.2 Analysis
Let I denote the set of non-errors with t = |I|, and let

p1, . . . , pc be the correct polynomials. We wish to show
that, with high probability over the random choice of the
error values, the algorithm does not output FAIL, and that
the outputs p′1, . . . , p

′
c satisfy p′j = pj . We show this in a

sequence of three claims: (1) The matrix A does have rank
less than N and thus a vector b as required in Step 1 does
exist. (2) With high probability, the subset J found in Step
2 is a subset of I. More specifically, we claim that with high
probability, the columns of A do not have any linear depen-
dencies involving any of the block of columns corresponding

to f
[r∗]
αi,βi,1,...,βi,c;M`

for i 6∈ I. (3) For any vector in the right

kernel of A the associated set J (as found in Step 2) must
be of size at least max j{kj + 1} and so there is at most one
polynomial p′j , for every j ∈ [c], in Step 2. Combining the
three claims with the observation that pj ’s are polynomials
satisfying the condition in Step 2, if J ⊆ I, we get that the
outputs satisfy p′j = pj with high probability.

We start by showing that the matrix A does show a col-
umn dependency. Let B be the (

`
c+r
c+1

´
·t)×m matrix consist-

ing of those columns of A corresponding to i ∈ I. We show
in the claim below that the rank of B is less than

`
c+r
c+1

´
· t,

while the number of columns equals
`
c+r
c+1

´
· t. Thus, we get

that the columns of B, and hence some columns of A, are
linearly dependent.

Claim 10. If t > `/r, then the matrix B has a column
dependency.

Proof. Let T =
`
c+r
c+1

´
· t. Notice that B has T columns.

We’ll show that there exist strictly fewer than T vectors of
dimension T that generate all the rows of B, and thus its
rank is smaller than the number of columns. Note that the
rows of B correspond to monomials in x, y1, . . . , yc. Let bM
be the row corresponding to the monomial M . Let M[r,t]

`

be the set of monomials xdye11 · · · yec
c such that (d/t) + e1 +

· · · + ec < r and d + eiki < `. We’ll show specifically that

the set of vectors {bM |M ∈M[r,t]
` } generate all the rows of

B. Note that |M[r,t]
` | < T provided t > `/r.

In order to show this we use the following interpretation
of a row dependency: Suppose

P
M cMbM = 0. Then the

polynomial Q(x, y1, . . . , yc) =
P
M cM · M vanishes with

multiplicity r at the points (αi, βi,1, . . . , βi,c) for every i ∈ I.
In other words, if we let I be the ideal generated by the poly-
nomials y1−p1(x), . . . , yc−pc(x) and

Q
i∈I(x−αi); and let Ir

denote the rth power of this ideal. Then Q(x, y1, . . . , yc) ∈
Ir. Conversely ifQ =

P
M cMM is in Ir, then

P
M cmbM =

0. Thus it suffices to show, for every monomial M ∈ M`

that there exists coefficients cM′ such that the polynomial
Q = M +

P
M′∈M[r,t]

`

cM′M ′ is in Ir. Equivalently, it suf-

fices to show that any monomial M ∈ M` can be reduced,
modulo polynomials in Ir, to a polynomial whose support

lies in M[r,t]
` .

Fix a lexicographic total ordering on all monomials with
yc > · · · > y1 > x. Extend the ordering to a partial ordering
on all polynomials where Q1 > Q2 if the largest monomial
of Q1 is larger than the largest monomial of Q2, else, if the
two are the same, then if the second largest monomial of
Q1 is larger than the second largest of Q2 and so on. (So
two polynomials are incomparable iff they have the same
monomials in their support.) For a polynomial M ∈ M`,
let Q be a smallest polynomial equivalent to M(mod Ir)
with all its support from M`. We claim that all monomials

in Q must be from M[r,t]
` . Assume otherwise and let M ′ =

xdye11 · · · yec
c be the largest monomial of Q that is not in

M[r,t]
` . Let cM′ be the coefficient of M ′. Let d′ = bd/tc. By

hypothesis we have d′ + e1 + · · · ec ≥ r. So the polynomial

P = (
Q
i∈I(x−αi))

d′ ·
Qc
j=1(yj−pj(x))ej belongs to Ir and

thus M ′ = M ′−xd−td
′
P (mod Ir). Furthermore P has no

larger weighted degree than M ′ and thus P has support in
M`. Finally the leading term of P is strictly smaller than
M ′ (in our ordering of monomials) and so the polynomial

Q′ = Q − cM′(M ′ − xd−td
′
P) equals Q modulo Ir, has all

its support in M` and is smaller than Q′ (in our ordering
on polynomials), thereby contradicting our hypothesis.

Next we show that there are no dependencies involving a
column (i, (d, e1, . . . , ec)) where i 6∈ I.

Claim 11. With probability at least 1−(N ·`)/(q·minj{kj}),
the matrix A has no linear dependencies involving any of the

columns indexed by (i, (d, e1, . . . , ec)) where i 6∈ I, provided
|M`−(r−1)·maxj{kj}| > N .

Proof. For this part we assume I = [t] and that we in-
sert the columns of A one block at a time with the ith block
being the vectors of f

[r∗]
αi,βi,1,...,βi,c;M`

. Let Ai be the ma-

trix obtained after including i blocks. For i > t, we show

that with high probability the vectors f
[r∗]
αi,βi,1,...,βi,c;M`

are

involved in no linear dependency involving themselves and
the vectors in Ai−1. We do so in two steps: First we show
that when we insert the block corresponding to the generic
point (αi, z1, . . . , zc), where z1, . . . , zc are indeterminates,
there are no linear dependencies involving the new columns.
Next we show that when we perform the random substi-
tutions, z1 = βi,1, . . . , zc = βi,c, with high probability, we
don’t introduce any dependencies.

Phase 1: Assume we insert the columns f
[d,e1,...,ec]
αi,z1,...,zc;M`

into

the matrix Ai−1 in order of non-decreasing d+
Pc
j=1 ej . Let

f
[d,e1,....ec]
αi,z1,...,zc;M`

be the first column that is linearly dependent
on lower numbered columns. This implies that every poly-
nomial Q(x, y1, . . . , yc) (with coefficients from F(z1, . . . , zc)
and monomials fromM`) that (1) vanishes with multiplicity
r at the first i − 1 points, and (2) whose “partial deriva-
tives” corresponding to (d′, e′1, . . . , e

′
c), for previously in-

serted columns are zero at (αi, z1, . . . , zc), also (3) has a van-
ishing (d, e1, . . . , ec)th partial derivative at (α1, z1, . . . , zc).
We’ll show a polynomial with properties (1) and (2), which
does not satisfy property (3), giving the desired contradic-
tion.

Let Q1(x, y1, . . . , yc) be a polynomial satisfying property
(1) of minimal weighted degree. By choice of ` we have
such a polynomial Q1 with weighted degree at most ` −
(r − 1) ·maxj{kj} exists. As in proof of Lemma 8, we have
that Q1(αi, z1, . . . , zc) 6= 0, or else (x − αi) would divide
Q1 and then Q1/(x − αi) would be a lower degree poly-
nomial satisfying property (1). Now let Q(x, y1, . . . , yc) =
Q1 · (x − αi)d ·

Qc
j=1(yi − zi)ei . We claim that Q satisfies

the required properties. First we have its weighted degree
is at most ` as required. Next it satisfies property (1) since
Q1 satisfies this property. Next we observe, by inspection,
that the only non-zero coefficient of total degree at most
d +

Pc
j=1 ej in Q(x + αi, y1 + z1, . . . , yc + zc) is the coeffi-

cient of xdye11 · · · yec
c which equals Q1(α1, z1, . . . , zc). Thus

we have that Q satisfies property (2), but not (3), giving the
desired contradiction.
Phase 2: Next we argue that the random substitution is
unlikely to create any linear dependencies. Let Bi denote
the matrix obtained above after inserting the columns corre-
sponding to the generic point (αi, z1, . . . , zc). Let C denote
a full rank submatrix of Bi and let p(z1, . . . , zc) be its deter-
minant. By construction, we have p is a non-zero polynomial
in z1, . . . , zc of degree at most

`
c+r
c+1

´
·`/(minj{kj}). After the

random substitution the value of determinant of the matrix
corresponding to C is p(α1, . . . , αc) which is non-zero with
probability at least 1− (

`
c+r
c+1

´
· `)/(q ·minj{kj}).

Taking the union bound over i = t + 1, . . . , n yields the
probability claimed in the claim.

By now we have argued that a dependent vector b can be
found in Step 1, and with high probability the resulting set
J will be contained in I. To conclude we show that the size
of J is at least maxj{kj}. We do so next.

Claim 12. There are no column dependencies in A in-
volving fewer than maxj{kj}+1 blocks of columns, provided
` ≥ 2r ·maxj{kj}.

Proof. Assume there is a linear dependency involving
the first i blocks of columns, where i ≤ maxj{kj}. We will
show that this yields a contradiction. Assume the depen-
dency involves the ith block of columns. Insert the columns
of this block one at a time, in non-decreasing order of the
quantity d+

P
j ej . Suppose the first column to become de-

pendent on previous blocks or previously inserted columns
of this block is the one indexed (i, (d, e1, . . . , ec)). Apply-
ing the interpretation of dependencies in terms of polyno-
mials, we see that this implies that given any polynomial
Q of weighted degree at most ` that (1) vanishes with mul-
tiplicity r at the first i − 1 points, and further (2) has its
(d′, e′1, . . . , e

′
c)th partial derivatives zero at the ith point if

d′+
P
j e
′
j ≤ d+

P
j ej and (d′, e′1, . . . , e

′
c) 6= (d, e1, . . . , ec), it

must be the case that (3) its (d, e1, . . . , ec)th partial deriva-
tive at the ith point must also be zero.

To contradict the above, take the polynomial

Q = (

i−1Y
i′=1

(x− αi′))r · (x− αi)d ·
cY
j=1

(yj − βi,j)ej .

Q satisfies conditions (1) and (2) above, but not (3). Fur-
thermore, the weighted degree of Q is at most

r · (i+ max
j
{kj}) ≤ 2r · (max

j
{kj}) ≤ `.

This yields the desired contradiction.

Theorem 13. The algorithm of Section 3.1 solves the re-
stricted c-polynomial reconstruction problem, with probabil-
ity at least 1−O(nO(c)/q), provided the number of errors is

less than n − max{
“
n
Qc
j=1 kj

”1/(c+1)

+ kmax + 1, 2kmax},
where kmax = maxj{kj}.

Proof. We set r = O(cn) and ` to be

max

8<:
2rkmax,

r ·
„
kmax + c+ (1 + c

r
) ·
“
n
Qc
j=1 kj

” 1
c+1
« 9=; .

For this choice of ` we verify that the conditions of Claims 10-
12 are satisfied. First, we have directly from the definition
that ` ≥ 2r · kmax as required for Claim 12. Next, we have

`/r

≤ max

8<:2kmax, kmax +
c

r
+ (1 +

c

r
) ·

n

cY
j=1

kj

! 1
c+1

9=;
≤ max

8<:2kmax, kmax +

n

cY
j=1

kj

! 1
c+1

+ 1

9=;
< t,

as required for Claim 10. Finally, we also have

|M`−rkmax | ≥
(`− rkmax − c)c+1

(c+ 1)!
Qc
j=1 kj

≥
(r + c)c+1 · n ·

Qc
j=1 kj

(c+ 1)!
Qc
j=1 kj

>

r + c

c+ 1

!
· n

= N

So we conclude that Claim 11 holds with probability 1 −
O(N · `/q) = 1 − O(nO(c)/q). We conclude that in Step 1,
we do find a null vector b (from Claim 10), and that the
corresponding set J ⊆ I (from Claim 11) and that J is large
enough to specify the polynomials pj uniquely (Claim 12).

So with probability 1 − O(nO(c)/q), we have that the algo-
rithm correctly outputs p1, . . . , pc.

4. REFERENCES
[1] D. Bleichenbacher, A. Kiayias, and M. Yung.

Manuscript, 2002.

[2] V. Guruswami and P. Indyk. Expander-based
constructions of efficiently decodable codes. In
Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science, pages 658–667, Las
Vegas, NV, October 2001.

[3] V. Guruswami and P. Indyk. Near-optimal linear-time
codes for unique decoding and new list-decodable codes
over smaller alphabets. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing,
pages 812–821, Montreal, Quebec, 19-21 May 2002.

[4] V. Guruswami and M. Sudan. Improved decoding of
Reed-Solomon and algebraic-geometric codes. IEEE
Transactions on Information Theory, 45:1757–1767,
1999.

[5] A. Kiayias and M. Yung. Manuscript, 2002.

[6] M. Sudan. Decoding of Reed-Solomon codes beyond the
error-correction bound. Journal of Complexity,
13(1):180–193, 1997.

