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LECTURE 1
Introduction to PCPs

1. Overview

Research in the 1990’s has led to the following striking theorem: There is a format
of writing proofs and a probabilistic method of verifying their validity, such that
the verifier needs to reads only 3 bits of the proof (irrespective of the length of the
proof) to obtain probabilistic confidence in the correctness of the proof. Specifically,
the verifier accepts correct proofs with probability 1 (Completeness) and given any
purported “proof” of an incorrect assertions it accepts with probability at most
3/4 (Soundness). In fact, this probability can be made arbitrarily close to 1/2.
Furthermore, the proof in the new format is only polynomially longer than the
original “classical” proof.1

In addition to being a surprising result bridging probability and logic, the above
result also turns out to have applications to proving intractability results for finding
near-optimal solutions to many NP-hard optimization problems. Our goal in these
lectures will be to provide insight into the construction of these proof systems
and the associated probabilistic verifiers. We will not pursue the applications to
hardness of approximations (i.e., solving optimization problems near-optimally).
The interested reader is referred to the survey article of Arora and Lund [1] for
more information on such consequences. Our specific target will be to describe the
main steps that lead to a weaker result (which we call the PCP Theorem) that the
complexity class NP has Probabilistically Checkable Proofs in which the verifier uses
logarithmic randomness, queries the proof in only O(1) locations, accepts correct
proofs with probability 1, and accepts false proofs with probability bounded away
from 1 (say (1 − ε) for some constant ε > 0).2 We will also outline some of the
ingredients that lead to the sharper result described in the opening sentence.

In the first lecture, we will formally define a Probabilistically Checkable Proof
(henceforth PCP). We will briefly discuss the history of its definition and the main
initial results in this area. We also define the notion of “gap problems” – the
NP-hardness of certain gap problems turns out to be equivalent to the existence
of PCPs of the type we seek. Our goal thus leads us to the task of establishing
NP-hardness of some convenient (and yet interesting) gap problem. To this end we
will define a constraint satisfaction problem based on polynomials that we call PCS
(for Polynomial Constraint Satisfaction). We will then state an NP-hardness result
of a gap version of PCS and two algorithmic results about polynomials. We will
then show that putting these ingredients together, we will see how we can build a
non-trivial (but not our final) PCP.

1The result alluded to here is that of H̊astad [20]. The picky reader may note some minor

discrepancies between result as claimed above and the main result of [20]. Such a reader is
directed to the work of Guruswami et al. [19] (a derivative of [20]), which certainly achieves all
the claimed properties.
2This result was proven by [3, 2]. Our presentation of even this result will not be complete

— the reader is referred to the original articles for full details. However, we do hope to give a

fairly detailed overview of the steps involved. It may be pointed out that the presentation here is
somewhat different than in the original works.
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Looking ahead to future lectures, in the second lecture we will show how to
establish the hardness of PCS with a gap; as well as some overview of the algorithmic
results for polynomials. This will conclude the first phase of our task — that of
establishing a non-trivial PCP construction. In the third lecture, we will launch
into a second phase of PCP constructions. We will see how to construct a variety
of PCPs with very different parameters using algebraic methods. None of these
PCPs will come close to our specific target PCP. However, they give an idea of the
nature of the tools that are available and useful to build PCPs. In the fourth and
final lecture, we will introduce a non-algebraic tool in the construction of PCPs,
specifically a composition theorem for PCPs. We will show how the composition
theorem allows us to use the PCPs constructed in the third lecture (or to close
variants of the same) and compose them with each other to get a new PCP that
has all the desired properties (for our specific target).

2. Definitions and Formal Statement of Results

The central ingredient of a PCP system is the verifier: a probabilistic polynomial
time machine with oracle access to a proof π. The primary resources used by the
verifier that are of interest to PCP are the amount of randomness used, and the
number of bits of π that are queried by the verifier (once the random coins tossed
by the verifier are fixed). This leads to the notion of an (r, q)-restricted verifier:
For integer valued functions r(·) and q(·), a verifier is said to be (r, q)-restricted if
on every input of length n, it tosses at most r(n) coins and queries the proof for at
most q(n) bits.

Definition 1. For integer valued functions r(·), q(·) defined on integers, and func-
tions c(·), s(·) , the class PCPc,s

[
r, q
]

consists of all languages L for which there
exists a (r, q)-restricted verifier V with the following properties:

• [Completeness]: x ∈ L ⇒ ∃ π s.t V π(x) accepts with probability at least
c (over the coin tosses of V ).

• [Soundness]: x /∈ L ⇒ ∀ π V π(x) accepts with probability < s (over the
coin tosses of V ).

In this notation the PCP Theorem states that there exists a constant q such
that

NP = PCP1, 12

[
O(log n), q

]
.

At this point some explanation of the role and interrelationships of the param-
eters may be in order. Note that the definition has four parameters: c, s, r and
q. Of these four, the randomness (r)and query (q) parameters are the ones of pri-
mary interest. Usually, the other two parameters will be of subordinate interest. In
particular, most PCP constructions today set c = 1. Such PCPs are said to have
perfect completeness, so that “correct” proofs are accepted with probability 1. It
is sometimes useful to have the extra flexibility of having c < 1 as offered by the
definition. However, we won’t construct any such PCPs in these lectures. so that
is one less parameter to worry about. The soundness of a PCP, in turn, is related
to the query complexity and the two can be traded of against each other. Stan-
dard techniques used for amplication of error in probabilistic algorithms show how
soundness may be reduced by increasing the number of queries. On the other hand,
the classical reduction from SAT to 3SAT can be employed to reduce the queries to
3, from any constant, while increasing the soundness but preserving boundedness
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away from one. Thus to simplify our study we may fix the soundness to some fixed
value and then try to minimize the randomness and query complexity. Our choice
for this value will be s = 1

2 . When we omit subscripts in the notation PCP[r, q], it
is implied that c = 1 and s = 1

2 . Finally, we remark on a parameter that we seem
to have omitted in the definition, namely the size of the proof. While some papers
in the literature study this parameter explicitly, we don’t do so here. Instead we
let this parameter be captured implicitly by the other parameters. Note that a
(r, q)-restricted verifier can make at most 2r+q distinct queries to the proof, and
thus the proof size need not be larger than 2r+q. Thus the randomness complexity
and query complexity implicitly capture the size of the proof required by a PCP
verifier, and we will be satisfied with studying this rough upper bound.

2.1. Some History of Definitions

The definition of PCP actually evolved over a series of surprising developments in
the late 80s and early 90s. The notion of checking proofs in a probabilistic sense
(where the verification process is allowed to err with small probability) dates back to
the seminal work of Goldwasser, Micali and Rackoff [18] and Babai [4] on Interactive
Proofs (IP). In the IP proof system, a probabilistic verifier interacts with a prover
who wishes to convince the verifier that some assertion is true. The model of the
interactive proofs evolved over time, partly motivated by efforts to understand the
model better. One such model was that of “multi-prover interactive proof systems”
(MIP) introduced by Ben-Or, Goldwasser, Kilian and Wigderson [12]. In this
model, a single verifier interacts with multiple provers to verify a given assertion.
The MIP proof systems influenced the development of PCPs in two significant
ways. On the one hand, many technical results about PCPs go through MIP proof
systems, in essential ways. More important to our current context, it led to the
definition of the notion of the PCP verifier (though it was not so named then),
i.e., a probabilistic verifier with access to an oracle. This notion originated in the
work of Fortnow, Rompel and Sipser [16] as part of an effort to understand the
complexity of MIP proof systems.

All the above works did not place any explicit restrictions on the resources used
by the verifier, except the minimal one that it run in (probabilistic) polynomial time.
Focus on the efficiency of the verification process started with the work of Babai,
Fortnow, Levin and Szegedy [5]. Their work focussed on the computation time
of the verifier and the size of the proof. They defined the notion of transparent
or holographic proofs, which are proofs that can be checked very efficiently (in
polylogarithmic time). The resources of focus in Definition 1 were highlighted by
the seminal paper of Feige, Goldwasser, Lovász, Safra and Szegedy [14]. Feige et al.
established an astonishing connection between probabilistic proof systems for NP
and the hardness of approximate solutions to the Max Clique problem. It became
evident from their work that the randomness and query complexity of proof systems
were parameters of central interest to inapproximability. However, their work did
not abstract a definition of the complexity class PCP. Such a definition was finally
abstracted in the work of Arora and Safra [3]. Their work explicitly defines the two
resources: randomness and query complexity; and maintains them as parameters
(rather than placing absolute bounds on them), reflecting the importance of the
two resources and the very distinguishable impact that they tend to have on the
verification capabilities of the PCP.
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2.2. History of Results

The sequence of results culminating in the PCP Theorem is a long one. We will
attempt to give a bird’s eye view of this history, presenting some of the landmark
results. We break this history into four phases.

Phase 0. Some properties of PCPs follow immediately from their definition.
These properties, typically attributed to folklore, include results such as NP =
PCP

[
0,poly(n)

]
. This is the case because, for any language L ∈ NP, the verifier

can deterministically read the entire polynomial size witness of the membership of
x ∈ L and then choose to accept or reject. It is also not hard to see that NP =
PCP

[
log n, poly(n)

]
. In particular, the the containment PCP

[
log n,poly(n)

]
⊆ NP

is obtained as follows:
Given a PCP verifier V, tossing r = O(log n) coins and querying
(possibly non-adaptively) poly(n) queries, a non-deterministic
Turing machine can determine if it accepts with probability 1,
by guessing, for each random string, the sequence of queries made
and the answers receieved, and then by verifying in polynomial
time the following two conditions (1) On each random string
verify that the sequence of guessed queries is consistent with V ’s
actions and the responses received lead to acceptance by V . (2)
For every pair of random strings identical queries lead to same
response.

Thus a little bit of randomness does not increase the power of the PCP verifiers
in terms of the languages for which they can verify membership. However it does
allow them to be significantly more efficient. (A collection of these and other such
folklore results about PCPs may be found in [9].)

Phase 1. The first non-trivial result on PCPs did not talk about the class NP but
rather about the class NEXP. This result, due to Babai, Fortnow, and Lund [6],
showed that NEXP = PCP[poly(n),poly(n)]. Note that the traditional verifier of
NEXP languages looks at a proof in exponentially many places, while the PCP veri-
fier is only allowed to look at it in polynomially many places. Thus this landmark re-
sult reduced the number of queries by a poly-logarithmic amount by using the power
of randomness. Subsequently, scaling this result down to NP, Babai, Fortnow, Levin
and Szegedy [5], NP ⊆ PCP

[
poly log n,poly log n

]
. The result of [5] actually got

extremely small blowups, nearly linear, in proof size too, though the implicit bound
promised by examining the randomness and query complexity is not even polyno-
mially bounded. The next improvement in the parameters was brought about by
Feige et al. who improved the result to NP ⊆ PCP

[
log n log log n, log n log log n

]
.

The good news about results in this phase was that they reduce the number
of queries made by the verifier by a poly-logarithmic amount (from poly(n) to
poly log n), a result that was completely unexpected at the time. However the bad
news, is that the randomness and query complexities were still super-logarithmic
and hence the above containment are not equalities and thus these do not give
characterizations of NP in terms of (non-trivial) PCP classes.3

3Actually a careful analysis of the protocol in [5] shows that the randomness can be made log-

arithmic; a fact that is related to the fact that the proof size can be made n1+ε for arbitrarily
small ε > 0.
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Phase 2. The first exact characterization of NP came in the work of Arora and
Safra [3] who showed that NP = PCP

[
O(log n), o(log n)

]
. This work also intro-

duced the powerful idea of recursive composition of proofs which played a critical
role in their and all subsequent improvements to PCP constructions. The PCP The-
orem itself (i.e., NP = PCP

[
O(log n), O(1)

]
) was proved by Arora, Lund, Motwani,

Sudan and Szegedy [2].4

As in the results of Phase 1, the results of Phase 2 were startling surprises.
The query complexity is independent of the proof size! And both parameters can
be reduced to functions which were within constant factors away from the smallest
amount conceivable.5 However these were not yet the ultimate possible PCP results.
Specifically, they were not tight in either the randomness complexity (or equivalently
the proof size) or the query complexity.

Phase 3. Examination of the (non-asymptotic) tightness of the parameters of
the PCP theorem was initiated by Bellare, Goldwasser, Lund and Russell [10].
Several intermediate results improved the constants in the parameters [15, 11,
9]. Eventually near-tight results which optimize both these parameters (but not
simultaneously!) were shown. Specifically:

• Polishchuk and Spielman [23] showed that Sat ∈ PCP
[
(1 + ε) log n,O(1)

]
for every ε > 0.

• It is a folklore result that the number of queries required in the PCP
Theorem is at least 3. H̊astad [20] proved the tight result that for ev-
ery ε > 0, NP = PCP1−ε, 12

[
O(log n), 3

]
. (Note that this result does

not have perfect completeness: a later result in [19] shows that NP =
PCP1, 12+ε

[
O(log n), 3

]
.)

The result of H̊astad, once again, was a startling development. A folklore result
shows that any PCP for an NP-complete language must use q ≥ 3 to attain perfect
completeness. It was also believed that such a PCP could not have soundness s ≤ 1

2
(though this was not proven till much later). Work prior to H̊astad’s however were
far from show that any s > 1/2 could be achieved with q = 3. In fact, if any-
thing, the belief in days just prior to H̊astad’s works tended to the conjecture that
PCP1,s[O(log n), 3] may be contained in P for some s > 1/2. These beliefs were
bolstered by the strong algorithmic techniques, based on “semidefinite program-
ming”, introduced in the work of Goemans and Williamson [17]. H̊astad’s results
thus brought about (yet another) unexpected settlement of these conjectures. Sub-
sequently, Karloff and Zwick [22] used semidefinite programming methods to show
the optimality of H̊astad’s results by showing that PCP1,1/2[O(log n), 3] = P. Our
lectures will unfortunately not be able to go into this phase of developments in the
constructions of PCPs; however, we will attempt to provide pointers to this in the
concluding lecture.

3. Broad Skeleton of the proof

We now move towards the proof of the PCP theorem. The proof that we present
will roughly follow the historical path to the proof. We will start by proving

4More formally, by a statement like NP = PCP[O(log n), O(1)], we mean the following: ∃cq such

that ∀L ∈ NP, ∃cr such that L ∈ PCP[cr · log n, cq ].
5That Ω(1) queries are required is clear, and a result in [3] shows that if NP ⊆
PCP[o(log n), o(log n)] then NP = P.
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a statement similar in spirit to the principal results of Phase 1. Namely, we
will first prove (modulo some technical theorems that we will only state) NP =
PCP

[
O(log n),poly log n

]
. Two fundamental techniques that will be used in its

proof are Arithmetization and Low-degree testing. This will occupy the first two
lectures. We will then take some digressions. The first one will take us into MIPs
and show how the poly log n queries in the above PCP can be “aggregated” so that
the verifier needs to read only O(1) locations of the proof (and receive poly log n size
answers from each location). This will be very useful for us in the final step(s) when
we will apply proof composition to reduce the number of queries down to O(1). As
a second digression we will show a new PCP verifier for NP that makes only O(1)
queries (thus is very good from this perspective) but uses poly(n) randomness (and
hence results in exponential sized proofs). Finally, in the final lecture, we will sketch
how to prove the PCP Theorem itself by applying the idea of proof composition to
the MIP system and this verifier, and show NP = PCP[O(log n), O(1)].

4. Gap Problems and Polynomial Constraint Satisfaction

4.1. Constraint Satisfaction Problems

Constraint satisfaction problems are a special category of optimization problems
that arise naturally in the study of PCP. An instance of the problem consists
of a collection of constraints on some variables that take values from some set
[B] = {1, . . . , B}. The goal is to find an assignment to the variables that maximizes
the number of satisfied constraints. More formally, an instance of Max w-CSP(B)
consists of n B-ary variables V = {x1, . . . , xn} and t w-ary constraints C1, . . . , Ct
defined on subsets of V of size w. The goal is to find an assignment a1, . . . , an ∈ B
to the variables V that maximizes the number of satisfied constraints. A well-known
example of a constraint satisfaction problem is Max 3-SAT where w = 3, B = 2
and the constraints are of the form (`i1 ∨ `i2 ∨ `i3) where each `ij is either xij or
x̄ij .)

As mentioned earlier the Constraints Satisfaction Problems (henceforth, CSPs)
arise naturally in the study of PCP. Informally, PCP[r, q] “corresponds” to Max
w-CSP(2) with appropriate relation between the parameters. Roughly, the bits of
the proof correspond to the variables (which is why B = 2). Each condition checked
by the verifier corresponds to a constraint (thus the number of constraints is t = 2r,
assuming the verifier is non-adaptive in its queries). The number of queries q equals
the “width” w of the CSP. Finally, the acceptance probability of the verifier on a
proof equals the fraction of satisfied constraints in the associated assignment to
the variables. Thus computing (or even approximating) the maximum number of
satisfiable constraints amounts to answering the question: Is the verifier’s accep-
tance probability greater than the completeness, or not? To formally, study the
correspondence one needs to work with the notion of gapped problems.

4.2. Gap problems

When dealing with hardness of approximations, it is useful to formulate optimiza-
tion problems as decision problems with “gaps” associated with them. Gap prob-
lems fall into the more general class of “promise” problems whose instances are
partitioned into disjoint YES, NO and Don’t Care sets. The computational ques-
tion associated with such a problem is that of deciding whether a given instance
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is a YES or a NO instance under the promise that the given instance is either a
YES instance or a NO instance. (In particular, any answer on an instance from the
Don’t care set is acceptable.) For CSPs, the associated gap problem, called Gap
w-CSPc,s(B) where s ≤ c, is the following:

YES instances: ∃ assignment that satisfies at least c fraction of the constraints.
NO instance: No assignment satisfies s fraction of the constraints.

The correspondence between PCP and CSP sketched above implies the follow-
ing which we leave as an (instructive) exercise:

Lemma 1 (Exercise). NP = PCP1,1−ε
[
O(log n), 3

]
if and only if Gap 3-CSP1,1−ε(2)

is NP-hard.

(In proving the above, assume that NP-hardness is shown via a many-one
reduction from a standard NP-complete problem such as SAT.)

4.3. Polynomial Constraint Satisfaction

From the previous section, to construct PCPs we need to prove NP-hardness of
certain gap problems. But then this is only a restatement of the question, and to
prove NP-hardness of a gap problem, we need a CSP whose constraints are “robust”
in the sense that either all of them can be satisfied or at most a small fraction of
them can be satisfied. Low-degree polynomials (over fields) have such a robustness
property: if they are zero at “many” places, then are in fact zero everywhere. We
now define a CSP called Polynomial Constraint Satisfaction (henceforth referred to
as PCS).

Consider a Max w-CSP(B) problem where B = F is a finite field and the
number of variables n = |F|m for some integer m. Thus assignments to the variables
can be viewed as functions f : Fm → F. The PCS problem is obtained by restricting
the assignments f to be some polynomial of (total) degree at most d over F. The
formal definition, formulated as a gap problem follows:

Polynomial Constraint Satisfiability Gap PCS1,ε(t,m,w, s, d, q):
Instance: Integer valued functions m,w, s, d, q; Finite field F with |F| =
q(t); Constraints C̃1, C̃2, . . . , C̃t with each C̃j =

(
Cj ; 〈x(j)

1 , . . . , x
(j)
w(t)〉 ∈

Fm(t)
)

where each Cj : Fw(t) → {0, 1} is a w(t)-ary constraint over F that
can be computed by a size s(t) algebraic circuit).

YES instances: ∃ a degree d(t) polynomial p : Fm(t) → F such that for all
j ∈ {1, 2, . . . , t}, Cj

(
p(x(j)

1 ), . . . , p(x(j)
w(t))

)
= 0.

NO instances: ∀ degree d(t) polynomials p : Fm(t) → F, the number of
j ∈ {1, 2, . . . , t} such that Cj

(
p(x(j)

1 ), . . . , p(x(j)
w(t))

)
= 0 is less than εt.

For notational convenience we will often omit the parameter t and refer tom(t), w(t),
s(t), d(t), q(t) as simply m,w, d, q.

4.4. Hardness of Gap-PCS

The following Lemma (which will be proved in the next Lecture) shows that a Gap
version of the PCS problem is NP-hard and thus forms the stepping stone for our
PCP constructions.
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Lemma 2. For all constants ε > 0, Gap-PCS1,ε(m,w, s, d, q) is NP-hard, for
w, s, d, q = poly log t and m = O

(
log t

log log t

)
.

First note all the good things which the above Lemma gives us. To begin
with, we have a gap! Also by the choice of parameters in the NP-hardness, we
have |F|m = poly(t) and thus the table of values of f is a reasonable proof to
ask the prover to provide. Also the verifier can just pick a random one of the t
constraints (which takes only log t randomness), reading the corresponding w =
poly log t locations from the table for f and verify that the constraint is satisfied in
time poly(s(t)) = poly log t. Thus by Lemma 1 we seem to have our first non-trivial
PCP characterization (namely NP ⊆ PCP[O(log),poly log]). There is a caveat,
however; namely the gap (and hence the soundness of the PCP) is guaranteed only
when f is restricted to a degree d polynomial, and there is no guarantee that the
prover will oblige by conforming to this restriction. Thus we need an efficient way
to enforce this low-degree restriction on f which is given by low-degree tests.

5. Low-degree Testing

Ideally, we would like a low-degree test to have the following specification:
Given: d ∈ Z+; and oracle f : Fm → F
Task: Verify that f is a degree ≤ d polynomial in time poly(m, d); i.e.,

Completeness: If deg(f) ≤ d then accept with probability 1.
Soundness: If deg(f) > d then reject with high probability.

The above, however, is not possible, since, for every a ∈ Fm, one can have an f
which disagrees with a degree d polynomial at a ∈ Fm and agrees with p everywhere
else, and thus will pass any test that only queries f at poly(m, d) places with high
probability. We thus need to relax the soundness condition.

Definition 2. Functions f, g : Fm → F are said to be δ-close if Pr
x

[
f(x) 6= g(x)

]
≤

δ when x is drawn uniformly at random from Fm.

Low-degree Test (revised definition):
Given: δ > 0, d ∈ Z+; and oracle f : Fm → F
Task: Verify that f is close to a degree ≤ d polynomial; i.e.,

Completeness: If deg(f) ≤ d then accept with probability 1.
Soundness: Reject with high probability if f is not δ-close to any

degree ≤ d polynomial.

The following result from [2] building upon the previous analyses in Rubinfeld and
Sudan [25] and Arora and Safra [3], shows that very efficient low-degree testers
do indeed exist. The proof of this result is complicated and we will not delve into
it here. We will describe the testing algorithm fully in the second lecture. The
interested reader can find all details of the proof in [2] and the references cited
therein.

Lemma 3 ([2]). There exists a δ0 > 0 such that for every δ < δ0 there exists a
probabilistic solution to the low-degree test that has running time poly(m, d, 1

δ ) and
that tosses O(m log |F|) random coins.
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6. Self-correction of polynomials

For the choice of parameters in the hardness result of Lemma 2, it follows that the
low-degree test of Lemma 3 uses O(log t) randomness and makes poly log t queries
to the oracle f . However the gap between the completeness and the soundness of
the low-degree test still leaves us with a problematic situation: What to do if the
prover provides as proof, a function that is δ-close to a degree d polynomial, which
satisfies most constraints? In this case, we get around the problem by testing if
the degree d polynomial g that is δ-close to the oracle f satisfies most constraints.
But how can we get our hands an oracle for g? It turns out we can implement
such an oracle, probabilistically, using the oracle for f . The self-correction problem
formalizes the task at hand; and the subsequent lemma shows how efficiently this
problem can be solved.

Self-correction of Multivariate polynomials:
Given: δ > 0; d ∈ Z+; x ∈ Fm; oracle f : Fm → F such that f is δ-close to

some degree d polynomial p. (We assume δ < d
2|F| so that a polynomial p

that is δ-close to f , if one exists, is unique.)
Task: Compute p(x).

The following result from [7] shows the existence of randomized self-correctors for
multivariate polynomials.

Lemma 4. There exists a randomized algorithm that solves the self-correction prob-
lem that runs in time poly(m, d, 1

δ ) and tosses O(m log |F|) random coins, and
outputs the right answer (for every x) with probability at least (1 − ε) provided
δ < min{ d

2|F| ,
ε
d+1}.

The proof of the above lemma is not difficult and will be presented in the next
lecture. For now we just assume this lemma for a fact and move towards the PCP
that gives us the result of Phase 1.

7. Obtaining a non-trivial PCP

Armed with Lemmas 2, 3 and 4 we can now give our first PCP verifier that works
as follows. Let L ∈ NP. Given x purportedly in L, the verifier computes (in
polynomial time) an instance φ of Gap-PCS as guaranteed in the NP-hardness
result of Lemma 2. The prover supplies an oracle for an assignment f : Fm → F
(plus other auxiliary information which may be used by the low-degree test). The
verification process proceeds as follows:

(1) Run the Low-degree test from Lemma 3 on f . Reject if the test rejects.
(2) Pick a random constraint C of φ and verify that Self-correct(f) satisfies

C (where the algorithm Self-correct is obtained from Lemma 4). Reject
if not.

(3) Accept otherwise.

From the statements of Lemmas 2, 3 and 4, it follows that the above verifier
queries poly log |x| bits in the proof, tosses O(log |x|) random coins, has perfect
completeness c = 1 and soundness s� 1

2 . We thus have our first step:

Theorem 1. NP = PCP
[
O(log n),poly log n

]
.
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The agenda for the next lecture is to give further details on the proofs of Lemmas 2-
4 on the NP-hardness of Gap-PCS.



LECTURE 2
NP-Hardness of PCS

In this lecture we will set out and prove the NP-hardness of Gap-PCS (Lemma 2
from previous lecture) and present a self-corrector for multivariate polynomials
(Lemma 4 from previous lecture) and there by complete Phase I of the proof; i.e.,
establish NP = PCP[O(log n),poly log n]. (For the other result, Lemma 3, on low-
degree tests, we will only present a test and and take its analysis on faith.)

1. Multivariate polynomials

All of our lemmas seem to involve polynomials, while our original goal of construct-
ing PCPs (seemingly) had nothing to do with polynomials. Before, plunging into
the proofs of the lemmas, it may be worth our while to see why polynomials arise
naturally in this context.

We first note a robustness property that proofs in the PCP format seem to
have. Specifically, if we take a valid proof (accepted with probability 1) in the
3-query PCP of, say H̊astad, the proof has the property that when 1% of the bits
are flipped at random then its acceptance probability is still at least 97%. Thus
PCP proofs are special in that they retain the power to convince a verifier even
when a reasonably large fraction of their bits are flipped, completely at random.
A natural question to ask is: How does the proof develop this resilience to error?
Turns out that a previous context in which similar resilience to error was explored
was in the context of information transmission over noisy channels. This research
led to the development of error-correcting codes. Informally, an error-correcting
code consists of an encoding function that maps a small string (message) into a
large one (codeword) such that flipping a few bits of the codeword, still allows for
recovery of the message. Our strategy to endow the PCP proofs with redundancy
will exploit the theory directly. We will simply encode traditional proofs using well-
known error-correcting encodings and this will bring about the necessary resilience.
However an arbitrary error-correcting code will not suffice for our purposes. We will
use a special construction of error-correcting codes: those obtained by employing
(multivariate) polynomials over finite fields.

Polynomials (over a field) are known to have excellent error-correction proper-
ties (in addition to their nice algebraic structure). As an example, consider the fol-
lowing encoding of a string a1, . . . , an ∈ {0, 1}n. Pick a finite field F of size about n2

13
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and let f be a polynomial of degree less than n such that f(1) = a1, · · · , f(n) = an
1.

Note that such a polynomial does indeed exist, and can be found be interpolation.
Then 〈f(x)〉x∈F is a redundant encoding of a1, . . . , an in the following sense: Given
the value of f at any subset of F of size n, we can interpolate to find f and thus
the coefficients a1, . . . , an. The original string can be reconstructed even if |F−n|2 of
the symbols in its encoding are in error.

Codes based on univariate polynomials gives robustness against a huge fraction
of errors and is extremely efficient in this sense. For our purposes the primary
disadvantage of these codes is that to encode an n-bit string, it needs degree Ω(n).
In particular, this implies that any version of the Low-degree test would need to
query the value of any function f at Ω(n) places at the very least, before being able
to conclude that the given function is not a degree n polynomial.

To get better low-degree tests, one needs to find functions whose algebraic
degree is somehow smaller than the number of degrees of freedom that the function
exhibits. Bivariate polynomials already exhibit better tradeoffs. For example we
may pick a field F of cardinality ≈ n and pick a polynomial f in two variables
x and y of degree at most

√
n in each such that the value of f at the points

{(i, j)|0 ≤ i ≤
√
n} correspond to the values a1, . . . , an ∈ {0, 1}. (Again, one needs

to verify that such an f exists, and can be found. This task is left to the reader as
an exercise.) Now the sequence 〈f(x, y)〉x,y∈F forms another redundant encoding of
the string a1, . . . , an.

We can now generalize this idea further to m-variate polynomials over a large
enough field F as follows: Pick a subset H ⊆ F of size n1/m so that the information
a1, . . . , an can be viewed as a function a : Hm → {0, 1}. In this case, it can be shown
(again left as an exercise to the reader) that there exists an m-variate polynomial
f of degree less than |H| in each variable such that f(x) = a(x) for each x ∈ Hm.
Now encode a by 〈f(x)〉x∈Fm . This construction will be invoked often in the sequel,
and it will be useful to give it a name — we call f the low-degree extension of a.
The redundancy of this encoding follows by the following lemma, referred to in the
computer science literature as the Schwartz-Zippel lemma.

Lemma 5. For every integer m, d, field F and finite subset S ⊆ F, if P : Fm → F is
a non-zero polynomial of total degree at most d, then the probability that P (x) = 0,
when x is chosen uniformly at random from Sm, is at most d/|S|.

The lemma is easy to prove by induction on the number of variables and we
skip the proof.

For our application to PCS, we will pickm(n) = O( logn
log logn ) and |H| = poly log n.

Thus the degree of the low-degree extension of a is poly log n (which is good) and
we can work with a field F of size poly log n and still have |F|m = poly(n) so that
the size of encoding is polynomial in n.

1Note that we are abusing notation by using integers to represent elements of the finite field. We
do so only for notational convenience.
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2. Hardness of Gap-PCS

2.1. Arithmetizing 3-SAT

We will establish the NP-hardness of Gap-PCS by reducing from 3-SAT. We begin
by describing the powerful idea of arithmetizing 3-SAT which is at the heart of the
reduction.

An instance φ of 3-SAT consists of n variables and t clauses C1, . . . , Ct where
each clause Cj is of the form

[
xi1 = b1 or xi2 = b2 or xi3 = b3

]
where each bj ∈

{0, 1}. We find it convenient to view φ as an indicator function φ : {1, 2, . . . , n}3 ×
{0, 1}3 → {0, 1} where φ(i1, i2, i3, b1, b2, b3) = 1 exactly if the clause

[
xi1 =

b1 or xi2 = b2 or xi3 = b3
]

is present in the instance φ.
To arithmetize φ, we begin by picking h,m where h = poly log n and m =

O(log n/ log log n) such that hm = n. Now, set H = {1, 2, . . . , h} and identify
{1, . . . , n} with Hm in some canonical way. Extending {0, 1} to H, the instance φ
can be viewed as a function φ : H` → {0, 1} where ` = 3m + 3 (we set φ(· · · ) = 0
if the arguments do not make sense).

In this language, 3-SAT can be restated as follows: we want an “assignment”
a : Hm → {0, 1} such that ∀i1, i2, i3 ∈ Hm and ∀b1, b2, b3 ∈ H,

φ(i1, i2, i3, b1, b2, b3) = 0 or a(i1) = b1 or a(i2) = b2 or a(i3) = b3 .

Let F be a field that contains H and let φ̂ and A be low-degree extensions of φ
and a respectively. Now the “proof” of satisfiability is an m-variate polynomial (of
degree h in each variable) A : Fm → F and the goal of the verifier is to check that
for all z = 〈i1, i2, i3, b1, b2, b3〉 ∈ H`,

(1) φ̂(z) · (A(i1)− b1) · (A(i2)− b2) · (A(i3)− b3) = 0 .

It is easy to see that such an m-variate polynomial A exists iff φ is satisfiable.
Thus if we consider the instance of the PCS problem, consisting of t = |H|` con-
straints of the form (1) for every z ∈ H`, we obtain an instance of the PCS problem
for which it is NP-hard to decide if all constraints are satisfiable or not. Thus we
have the NP-hardness of a PCS problem. However, there is no gap in the number
of constraints (1) that can be satisfied.

2.2. Making Constraints Robust

We now show how to make the constraints above robust, i.e., transform them
into a different collection in which either all of them can be satisfied, or few can
be satisfied. To this end we define an `-variate polynomial P̃0 as follows: ∀z =
〈i1, i2, i3, b1, b2, b3〉,

(2) P̃0(z) def= φ̂(z) · (A(i1)− b1) · (A(i2)− b2) · (A(i3)− b3) .

Since φ̂ and A have degree at most |H| in each variable, P̃0(z) is an `-variate
polynomial of degree at most 2|H| in each variable and thus has (total) degree at
most 2`|H|. Let us assume that the prover gives not only the polynomial A, but
also a polynomial P0 (of degree at most 2`|H|) that is supposedly P̃0. The goal of
the verifier is now to check the constraints

(1) (C0): ∀z ∈ F` P0(z) = P̃0(z) (note that the verifier can efficiently compute
φ̂(z) and thus also P̃0(z) once it is given the assignment polynomial A).

(2) (C0′) ∀z ∈ H` P0(z) = 0.
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Since both P0 and P̃0 are low-degree polynomials (they have degree at most
2`|H|), the constraints (C0) are robust (either all of them are satisfied or a small
fraction (at most 2`|H|

|F| : see lemma below) of them are satisfied.

Lemma 6. If P0, P̃0 are degree d polynomials that violate (C0) for some z, then
they violate (C0) for at least

(
1− d

|F|
)

fraction of the z’s.

Proof: Follows from the Schwartz-Zippel Lemma applied to P0− P̃0 since a degree
d polynomial is zero on at most d

|F| fraction of the domain.

The constraints (C0′) are not robust, since it is possible for a degree 2`|H|
polynomial to be zero on all but one point of H`. Our idea would be to increase the
size of the domain on which we would like the polynomial to be zero. Specifically we
will define a sequence of (low-degree) polynomials P1, P2, . . . , P` such that P1 = 0
over F × H`−1 iff P0 = 0 over H`, and similarly for 1 < i ≤ `, Pi = 0 over
F i ×H`−i iff Pi−1 = 0 over F i−1 ×H`−i+1. Hence P` will be identically zero on
F ` iff P0(z) = 0 ∀z ∈ H`. Each of these constraints (and in particular P`(z) = 0
∀z ∈ F ` are all robust constraints and this will give us the desired “gap” in the
PCS instance.

As a motivation for defining these polynomials, let us first look at an analogous
transformation for univariate polynomials. Let {h1, h2, . . . , h|H|} be an enumeration
of the elements of H. Given a univariate polynomial p ∈ F[X], define a polynomial
q by:

q(y) =
|H|∑
j=1

p(hj)yj .

Clearly, if p(h) = 0 for all h ∈ H, the q ≡ 0. Conversely, if p|H 6≡ 0, then q is some
non-zero polynomial of degree at most |H| and so is non-zero on at least |F \ H|
points. Thus q is identically zero on F iff p is identically zero on H.

In the multivariate case, we will apply the above transformation, once in each
variable. Starting with a polynomial P0 in formal variables (x1, x2, . . . , x`), we will
obtain a sequence of polynomials

P1(y1, x2, . . . , x`)
P2(y1, y2, x3, . . . , x`)

...
Pi(y1, y2, . . . , yi, xi+1, . . . , x`)

...
P`(y1.y2, . . . , y`)

where each transition from an x-variable to a y-variable follows the scheme described
above for univariate polynomials, namely, for 1 ≤ i ≤ `, define

(3) Pi(y1, . . . , yi, xi+1, . . . , x`) =
|H|∑
j=1

Pi−1(y1, . . . , yi−1, hj , xi+1, . . . , x`)y
j
i .

Note that if Pi−1 has degree di−1, then the degree di of Pi is at most di−1 + |H|.
Since P0 has degree at most 2`|H|, the degree of each Pi for i ∈ {0, 1, . . . , `} is
clearly at most 3`|H|. By the same reasoning as in the univariate case, we have

Pi |F i×H`−i ≡ 0⇐⇒ Pi−1 |F i−1×H`−i+1 ≡ 0 .
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(By our definitions, we have

P`(y1, . . . , y`) =
∑

1≤i1,i2,...,i`≤|H|

P0(hi1 , . . . , hil)y
i1
1 · · · y

i`
` .

and this is another way of verifying that P` ≡ 0 on F ` iff P0 is identically zero on
H`.)

2.3. The Gap-PCS instance

We are now ready to describe the constraints of our Gap-PCS instance. Given a
3-SAT instance φ, consider the following (polynomial) constraint satisfaction prob-
lem: The required “solution” consists of polynomials A,P0, P1, . . . , P` where A is
an m-variate polynomial of degree at most m|H| and P0, . . . , P` are `-variate poly-
nomials of degree at most 3`|H|. The “constraints” placed on the polynomials are
the following.

For all z = (z1, . . . , z`) ∈ F `:

(C0): P0(z) = P̃0(z) where P̃0(z) is defined based on φ and A : Fm → F as in
Equation (2).

For i = 1, 2, . . . , `,
(Ci): Pi(z1, . . . , zi, zi+1, . . . , z`) =

∑|H|
j=1 Pi−1(z1, . . . , zi−1, hj , zi+1, . . . , z`)z

j
i

(the condition from Equation (3) at the point z).
(C(`+ 1)): P`(z) = 0.

By the “robustness” of all these constraints (see Lemma 6 above), we have the
following:

Lemma 7. If P0, . . . , P` and P̃0 are polynomials of degree at most d, then for each
set of |F|` constraints (Ci), 0 ≤ i ≤ `+ 1, either all of them are satisfied or at most
a fraction (d+ |H|)/|F| of them are satisfied.

Proof: Follows from Lemma 6 since all polynomials involved in the constraints
have degree at most d+ |H|.

Bundling polynomials into a single polynomial. Note that in a PCS instance
the “solution” asked for is a single low-degree polynomial, where as in the above
we have several polynomials (A,P0, . . . , P`) involved in the constraints. There is a
simple trick to handle to this: we just require that all the polynomials be “bundled
together” and presented as a single degree D = (3`|H| + ` + 1) polynomial Q :
F`+1 → F such that for 0 ≤ i ≤ `, Q(i, · · · ) = Pi(· · · ) and Q(` + 1, 〈z1, . . . , z`〉) =
A(z1, . . . , zm). The existence of such a polynomial is guaranteed by the following
Lemma:

Lemma 8. Given polynomials q0, . . . , qt : F` → F over a finite field F with |F| > t,
each of (total) degree at most α, there exists a degree α+t polynomial Q : F`+1 → F
such that for i = 0, 1, . . . , t and all z ∈ F`, Q(i, z) = qi(z).

Proof: For each i ∈ {0, 1, . . . , t}, there is a unique univariate polynomial δi of
degree t such that

δi(v) =
{

1 if v = i
0 if 0 ≤ v ≤ t but v 6= i.
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Now define the polynomial Q as

Q(v, z) =
t∑
i=0

δi(v)qi(z) .

Clearly Q(i, · · · ) ≡ qi(· · · ) for each i ∈ {0, 1, . . . , t}.

Suppose such a polynomial Q is given (as a solution to the PCS instance con-
structed from φ). We wish to describe the constraints of the PCS instance. First
we make explicit the definition of a polynomial P ′0 from Q that will serve the role of
P̃0 from definition (2). For z = 〈z1, . . . , z`〉 ∈ F` where ` = 3m+ 3, P ′(z) is defined
as:

P ′0(z) def= φ̂(z) ·
(
Q(`+ 1, 〈z1, . . . , zm, 0, . . . , 0〉)− z3m+1

)
·
(
Q(`+ 1, 〈zm+1, . . . , z2m, 0, . . . , 0〉)− z3m+2

)
(4)

·
(
Q(`+ 1, 〈z2m+1, . . . , z3m, 0, . . . , 0〉)− z3m+3

)
Note that P ′0 has total degree at most 10`|H|+ 3`+ 3 < 11`|H|.

Summarizing the reduction from SAT to PCS. We are now ready to sum-
marize the reduction T3SAT→PCS which maps instances of 3SAT to PCS: Given an
instance φ of 3SAT, the reducing algorithm sets m = logn

log logn and sets h = n1/m,
and ` = 3m + 3. It then picks a field F of sufficiently large size, say q ≥ h3. (The
choice of 3 in the exponent is somewhat arbitrary. We will need q � mh and q ≥ h3

suffices for our purpose.) It then computes the function φ̂ : F` → F, and using this,
it generates t = |F|` constraints (C)(z), one for every z ∈ F`. The constraint for z
is:

(C)(z) =
`+1∧
i=0

(Ci)(z)

where (Ci) are the constraints described earlier in this section. The main exception
is that these constraints are defined over a single polynomial Q : F`+1 → F, and
thus every occurence of Pi(·), 0 ≤ i ≤ ` + 1 is replaced with Q(i, ·). Similarly
instead of the polynomial P̃0 one uses the polynomial P ′0 defined in Equation (4).
All polynomials involved in constraints (C)(z) have degree at most 11`|H|, and
hence we get by Lemma 6 that, for any degree D polynomial Q, either all the
constraints (C)(z) are satisfied or at most a fraction 11`|H|/|F| of the constraints
are satisfied. By choice of |F| this fraction is a o(1) function and thus is smaller
than ε, for any ε > 0, for sufficiently large n.

2.4. The hardness result

From the discussion in the preceding paragraph, we can now conclude:

Lemma 9. For every ε > 0, the reduction T3SAT→PCS maps an instance φ to an
instance of PCS with m = O(log n/ log log n) and w, d, q = poly log n such that the
following conditions are satisfied:

Completeness: If φ is satisfiable, then there exists a polynomial Q of degree
at most d that satisfies all the constraints.

Soundness: If there exists a polynomial Q of degree at most D that satisfies
more than an ε-fraction of the constraints, then φ is satisfiable.
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Proof: The completeness is clear since we can just take Q to be the polynomial
such that Q(` + 1, ·) = A, Q(0, ·) ≡ P̃0(·) (where P̃0 is defined in Equation (2))
and Q(i, ·) = Pi(·) (where Pi is defined as in Equation (3)) for 1 ≤ i ≤ `. For the
soundness, we know by the discussion at the end of the previous subsection, that if
more than an ε-fraction of the constraints are satisfied, then in fact all of them are
satisfied. This in turn implies that P̃0(·) = Q(0, ·) is identically zero on H`, which
implies that the assignment A def= Q(`+ 1, ·) satisfies φ.

Note that by the choice of the parameters, we have m = O(log n/ log log n) and
w, d, q = poly log n as required. Finally, for each z ∈ Fl, the constraint (C)(z) can
be checked in polylogarithmic time. We have thus proved the first of the lemmas
from last lecture that we set out to prove:

Lemma 2: For all constants ε > 0, Gap-PCS1,ε(m,w, s, d, q) is NP-hard, for
w, s, d, q = poly log t and m = O

(
log t

log log t

)
.

3. Low-degree Testing

Recall the following Lemma from the previous lecture:

Lemma 3: There exists a δ0 > 0 such that for every δ < δ0 there exists a proba-
bilistic solution to the low-degree test that has running time poly(m, d, 1

δ ) and that
tosses O(m log |F|) random coins.

We will not be able to prove the above lemma, but we will present the testing
algorithm which has the properties claimed in the lemma. The idea behind the test
is the following: For x, y ∈ Fm, define fx,y(t) = f(x + ty) (i.e., fx,y is f restricted
to the “line” passing through x with slope y). If f is a degree d polynomial, then
for every x, y ∈ Fm, fx,y is a (univariate) polynomial of degree d, and in fact the
converse also holds. This suggests the following test:

Pick random x, y and verify that fx,y is a degree d polynomial.

We in fact consider the following weaker test Low-Deg-Test:

• Pick x, y ∈ Fm and t ∈ F at random.
• Ask prover for (the at most (d+ 1)) coefficients of the “polynomial” fx,y
• Verify that fx,y(t) = f(x+ ty).

The following theorem [25, 3, 2] shows that the above test indeed satisfies the
conditions of Lemma 3.

Theorem 2. Consider the test Low-Deg-Test specified above.

(1) Easy part: If f is a degree d polynomial, then there exist responses fx,y
such that Low-Deg-Test always accepts.

(2) Hard part: There exists a constant δ0 > 0 such that for all m, d,F, if f
is any function such that there exist responses fx,y that make Low-Deg-
test reject with probability δ ≤ δ0, then f is 2δ-close to some degree d
polynomial.
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4. Self-correction

We now move to the third and final component we need to complete our first PCP
characterization (NP = PCP[O(log n),poly log n]), namely self-correction. Recall
the problem definition:

Given: δ > 0; d ∈ Z+; x ∈ Fm; oracle f : Fm → F such that f is δ-close to
some degree d polynomial p. (We assume δ < d

2|F| so that a polynomial p
that is δ-close to f , if one exists, is unique.)

Task: Compute p(x).
We will prove:

Lemma 4: There exists a randomized algorithm that solves the self-correction
problem that runs in time poly(m, d, log 1

ε ) and tosses O(m log |F|) random coins,
and outputs the right answer (for every x) with probability at least (1− ε) provided
δ < d

2|F| .

Proof: Consider the following self-correction procedure. Given x ∈ Fm and oracle
for f which is δ-close to a polynomial p, compute p(x) as follows:

(1) Pick y ∈ Fm at random.
(2) Query f(x+ y), f(x+ 2y), · · · , f(x+ (d+ 1)y) and let b1, . . . , bd+1 be the

responses.
(3) Find, by interpolation, a degree d (univariate) polynomial h such that

h(i) = bi for 1 ≤ i ≤ d+ 1.
(4) Output h(0) as the value of p(x).

Note that the algorithm tosses O(m log |F|) random coins, probes f in d+ 1 places
and runs in time polynomial in m, d. It remains to prove the correctness of
the procedure. If f is a degree d polynomial, then the output is clearly cor-
rect. But f is only δ-close to a degree d polynomial p. However, for every
i, 1 ≤ i ≤ d + 1, x + iy is a random point in Fm (we are ignoring the pos-
sibility that y = 0 here, but this happens with negligible probability). Thus,
Pr
y

[f(x + iy) 6= p(x + iy)] ≤ δ by the definition of δ-closeness. Hence, by the

union bound, Pr
y

[∃i, f(x + iy) 6= p(x + iy)] ≤ (d + 1)δ which is at most ε since

δ < ε/(d + 1). Thus, with probability at least (1 − ε), b1, . . . , bd+1 are the “right”
values of p(x + y), . . . , p(x + (d + 1)y) and thus the interpolation step correctly
computes p(x).

This completes the proof of the PCP characterization NP = PCP[O(log n),poly log n].
(Recall that the easier direction of the containment was already shown in Sec-
tion 2.2.) This completes Phase 1 of our goals.



LECTURE 3
A couple of digressions

We now move on Phase 2 of the proof of the PCP Theorem. We will approach
this phase somewhat tangentially. In this lecture, we will show two results, that will
essentially be digressions for now, and then linked to Phase 2 in the final lecture.
The first result will be an “MIP” characterization of NP. We will show how the
PCP verifier of Phase 1 can be modified into an MIP verifier that “aggregates” the
poly log n queries of the PCP verifier into a constant number of queries that it will
send to multiple (mutually non-interacting) provers that respond with poly log n
bits each. While the advantage of this modification will be unclear for now, we
will exploit this MIP verifier in the final lecture. The second result will give a
highly query-efficient PCP verifier for NP: specifically we will prove that NP =
PCP[poly(n), O(1)]. Note that this verifier just makes a constant number of queries
(as is our final goal), however that the randomness used by the verifier is very large.

Part I: Multiprover Interactive Proofs (MIP)

The informal question behind the definition of MIP is the following: What
can a probabilistic verifier interacting with p non-communicating provers verify, if
allowed to ask one question to each prover? More formally, we have the following
definition:

Definition 3. For an integer p and integer valued functions r, a : Z+ → Z+, a
(p, r, a)-restricted MIP verifier is a probabilistic verifier that tosses r(n) coins, asks
one question to each of p provers and receives a(n)-bit answers, on inputs of length
n.

We can now define MIP classes similar to PCP classes.

Definition 4. For an integer p and integer valued functions r, a : Z+ → Z+,
a language L is said to be in MIPc,s[p, r, a] if there is a (p, r, a)-restricted MIP
verifier that checks x ∈ L with completeness c and soundness s.

A p-prover MIP is also called a p-prover 1-round protocol, since there is only
one round of verifier-prover interaction. A few comments on the MIP model. MIP
seems to be a natural model within the context of interactive proofs. It is more
restrictive than PCP as MIPc,s[p, r, a] ⊆ PCPc,s[r, pa] (since the responses of the

21
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p provers can be written down as one big proof, and the verifier will query pa(n)
bits from this proof), and thus good MIP constructions suffice to construct good
PCPs. We will now do the opposite and show how to covert a PCP into a MIP
(with some loss in parameters), and this will be a central intermediate step in our
goal of proving the PCP Theorem.

1. A 3-prover MIP for NP

We will construct a 3-prover MIP from the PCP[O(log n),poly log n] verifier of
Phase 1. To do this, let us first recall how the verifier worked (at a high level).
The verifier is based on a hard instance of PCS with a “gap”. It expects as proof
a low-degree polynomial expressed as a table of values f : Fm → F, and a “lines
oracle” flines that it uses for performing a low-degree test. Given access to oracles
for f and flines, the verifier worked in two steps:

(1) Perform a low-degree test on f .
(2) Pick a random constraint of the PCS instance and check it is satisfied by

the self-corrected version of the oracle f .

The first step above is already structured as a 2-prover 1-round protocol: The
verifier asks one prover for the value of f at a point and a second prover for the
coefficients of the polynomial fx,y for a line `x,y = {x + ty : t ∈ F} for some
x, y ∈ Fm. The second step, however, queries the table f in many places, and we
somehow need a way to “aggregate” these queries into one “big” query.

1.1. Parallelization: Reconstruction via curves

Suppose we need to query f : Fm → F at w places x1, . . . , xw. In this section we will
show how to find the value of f at all these points correctly, with high probability,
using only a constant number of queries to two provers. This solution will work
using the “algebraic” and “randomness” properties of “curves” in m-dimensional
space (where all terms in quotes will be explained later). Using such curves, our
strategy can be described at a high-level as follows: We will pick a random curve
C through x1, . . . , xw and ask a third prover for a description of the function f on
the entire curve C. Denote this restriction by f |C . If the prover responds honestly
with f|C we are in good shape, while if it responds with a wrong polynomial h,
then we will show that a random point we will have f(C(t)) 6= h(t) and we will be
able to detect this.

We now define what we mean by a “random curve” in Fm. A curve is simply a
function C : F→ Fm. Note that this curve can be considered to be a collection of
m functions Ci : F → F, where C(t) = 〈C1(t), . . . , Cm(t)〉. We can now define the
degree of a curve: The degree of C is simply the maximum of the degrees of the
functions Ci; i.e., deg(C) = maxi deg(Ci).

Curves of low-degree turn out to be useful for this section, and the following
proposition asserts that curves of reasonably small degree do exist passing through
any small set of points. (The proof is omitted, but can be easily seen to be a
consequence of the interpolation theorem for univariate polynomials.)

Proposition 1. For any set of (w1) points x0, x1, . . . , xw ∈ Fm, there exists a
unique degree w curve C with C(j) = xj for j = 0, 1, . . . , w.
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A “random curve” through x1, . . . , xw is defined to the curve from the above
proposition for a random value of x0 ∈ Fm. The reason we label such a curve to be
random, is that most points on this curve (all except the ones that are explicitly
determined) are randomly distributed (though not independently so) over Fm. This
is claimed in the next proposition.

Proposition 2. For every x1, . . . , xw ∈ Fm, if x0 ∈ Fm is picked at random and
C is the unique degree w curve such that C(j) = xj for 0 ≤ j ≤ w, then for any
t /∈ {1, . . . , w}, C(t) is a random point in Fm.

Recall that our intention is to ask a (third) prover for a description of the
function f |C for some curve C. How does the prover describe this function f |C?
Turns out that for low degree polynomial functions, their restriction to a low-degree
durve is still a low-degree polynomials. This is asserted in the next lemma.

Lemma 10. If P : Fm → F is a degree d polynomial and C : F → Fm is a degree
w curve, then P|C (defined by P|C(t) = P (C(t))) is a univariate polynomial over F
of degree wd.

Proof. Follows by susbstituting for each variable xi occuring in the polynomial P ,
the polynomial Ci(t). �

1.2. The 3-prover MIP

We are now ready to present the promised 3-prover MIP for NP in full detail.

Input: An instance of Gap-PCS1,ε(t,m,w, s, d, q)

Provers: There will be 3 provers Π1, Π2, Π3. We will also refer to the Πi’s as
proofs or oracles: the “proof” corresponding to a prover simply consists of all the
responses of that prover to the various questions it might be asked. The proof Π1

will comprise of the values of the purported “polynomial” P that is a solution to
the Gap-PCS instance. Π2 will be the “lines oracle” used to perform the low-degree
test, and Π3 will be the “curves oracle” used to perform the parallelization step.

The verifier operates as follows:
• [Random Choices:]

(1) Pick a constraint Cj of the Gap-PCS instance at random.
(2) Pick a random curve C through the w points x1, . . . , xw ∈ Fm that Cj

depends on. (Do this by picking a random x0 ∈ Fm and determining
the unique degree w curve C such that C(j) = xj for j = 0, 1, . . . , w.)

(3) Pick a random point x on C by picking a random t′ ∈ F−{0, . . . , w}
and setting x = C(t′).

(4) Pick a random line ` through x (i.e., pick y ∈ Fm at random and
random t′′ ∈ F and set ` = {x+ (r − t′′)y : r ∈ F}).

• [Queries:]
(1) Queries Π1 for the value P (x); let response be a ∈ F.
(2) Queries Π2 for the polynomial P|`x,y

; let g be the (degree d univariate)
polynomial obtained as response.

(3) Queries Π3 for the degree wd polynomial P|C ; let h be the response.
• [Action (Accept/Reject):]

– Reject unless g(t′′) = h(t′) = a.
– Reject if 〈h(1), h(2), . . . , h(w)〉 ∈ Fw does not satisfy the constraint
Cj .
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– Accept otherwise.

1.3. Analysis

Presenting the analysis of the above (3-prover) MIP in full rigor with proper choice
of the several parameters involved will take too long; we therefore only sketch the
main ideas in the analysis. The reader is referred to [2] for a rigorous proof.

Completeness: It is clear that if the Gap-PCS instance is satisfiable, say by a
low-degree polynomial P0, then Π1 = P0 and Π2, Π3 defined as the restrictions
of P0 to lines and degree w curves respectively, will always satisfy the tests of the
verifier. We thus have perfect completeness c = 1.

Soundness: Suppose we have a NO instance of Gap-PCS as input to the MIP
verifier, i.e., any degree d m-variate polynomial P satisfies at most an ε fraction
of the t constraints. Let P̃ be the response of Π1; if P̃ is not δ-close to a degree
d polynomial, then by the Lemma on low-degree testing from last lecture, we will
have g(t′′) 6= a (recall that a def= P̃ (x)) with probability at least δ/2, and thus the
verifier will reject with probability at least δ/2.

Now suppose P̃ is δ-close to a (unique) degree d polynomial P . Since we have
a NO instance of Gap-PCS, with probability at least (1 − ε), the verifier picks a
constraint Cj that is not satisfied by P . Now two cases arise:

• If h = P|C , then 〈h(1), . . . , h(w)〉 = 〈P (x1), . . . , P (xm)〉 and thus does not
satisfy the constraint Cj , and the verifier rejects in this case.

• If h 6= P|C , then since both h, P|C are degree wd polynomials, h(t′) 6= P (x)
with probability at least

(
1 − wd

|F|−w−1

)
by the Schwartz-Zippel Lemma

(since t′ is a random element of F− {0, . . . , w}). Also P, P̃ are δ-close, so
P (x) = P̃ (x) with probability at least (1 − δ). Thus with probability at
least (1 − δ − wd/(|F| − w − 1)), we will have h(t′) 6= a and the verifier
will reject.

From the preceding discussion, there is a constant γ > 0, such that the verifier
rejects NO instances of Gap-PCS with probability at least γ, and this gives our
desired MIP characterization:

Theorem 3 ([2]). There exists γ > 0 such that

NP ⊆ MIP1,1−γ
[
3, O(log n),poly log n

]
.

Part II: A Query-efficient PCP Verifier

We now turn to giving a highly query-efficient PCP verifier for NP. The verifier
will only read O(1) bits from the proof. On the down side, it will use polynomial
randomness, and reducing the randomness to logarithmic while retaining the query
complexity at O(1) will be the subject of the next lecture.

2. NP ⊆ PCP[poly, O(1)]

2.1. Quadratic Polynomials

Just as in the case of Gap-PCS, we will first show (sketch) the NP-hardness of an
algebraic problem, namely “Satisfiability of quadratic polynomials” QP-SAT which
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tests if a set of multivariate degree two polynomials (over F2), say P1, . . . , Pt, have
a common zero. This problem will form the basis of our new PCP verifier. We first
formally define the QP-SAT problem:

QP-SAT (Satisfiability for Quadratic Polynomials)

Instance: t quadratic (degree 2) polynomials P1, . . . , Pt on n variables x1, . . . , xn
over F2.

Question: Do these polynomials have a common zero? I.e., is there an assignment
a = (a1, . . . , an) to x1, . . . , xn such that Pj(a) = 0 for j = 1, 2, . . . , t.

Lemma 11. QP-SAT is NP-complete.

Proof: The problem is clearly in NP since, for Yes instances, we can guess
(a1, . . . , an) and then verify that it is indeed a common zero. To prove NP-hardness,
we reduce from Circuit Sat. An instance of Circuit Sat consists of a Boolean
circuit C comprising of Not gates and And, Xor gates of fan-in two, and the
goal is to decide if C has a satisfying input. It is well-known that Circuit Sat is
NP-complete.

To reduce Circuit Sat to QP-SAT, we introduce one variable xi for each
input and for each gate of the circuit. We place a constraint for each gate of the
circuit which enforces that the output of that gate is consistent with its inputs and
the operation of the gate. For example, for an And gate with associated variable
xj that receives its inputs from the gates associated with variables xi1 and xi2 , we
would place the constraint xj − xi1xi2 = 0. Similar constraints are place for Xor
and Not gates. We also place a constraint corresponding to the output gate which
forces it to equal 1 (so C is satisfied). Note that these constraints check for the
existence of a common zero of certain degree 2 polynomial, and it is easy to see
that a common zero exists for these polynomials if and only if C was satisfiable.
This completes the proof.

2.2. Intuition for the Verifier

Given an instance of QP-SAT the verifier must check that all there exists a such
that Pj(a) = 0 for all j = 1, 2, . . . , n. For now, pretend there were only one
polynomial P (we will see how the many polynomials case reduces to this situation
later). Since P is a degree two polynomial, it is of the form:

(5) P (x1, . . . , xn) = s0 +
n∑
i=1

sixi +
∑

1≤i,j≤n

cijxixj .

where s0, s1, . . . , sn and the cij ’s are all elements of F2. We would like to check
that P (a1, . . . , an) = 0; since we want to read very few bits from the proof, just
asking the prover to provide a1, . . . , an will not work for us. Instead we will ask the
prover to write down an appropriate encoding of a1, . . . , an. Considering the form
of P , encoding a1, . . . , an using the Hadamard code and the Quadratic functions
code will be useful, and we turn to the description of these codes next.

2.3. Hadamard and Quadratic Functions Code

The Hadamard Code: The Hadamard code is the most redundant linear code
and consists of the evaluations of all linear functions at the message that is being
encoded. More formally, given a string (a1, . . . , an) ∈ Fn2 , define A : Fn2 → F2 as
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A(x) def=
∑n
i=1 aixi. The Hadamard encoding of a is simply 〈A(x)〉x∈Fn

2
. Note that

a message of length n is encoded into 2n bits under the Hadamard code. It is easy
to prove that the Hadamard encodings of distinct strings differ in exactly half the
bits.

Given the Hadamard encoding A of (a1, . . . , an), we can compute the lin-
ear function

∑n
i=1 siai by just one query into A, since

∑n
i=1 siai = A(s) for

s = (s1, . . . , sn) ∈ Fn2 . Since we are interested in evaluating some degree two
polynomial P at (a1, . . . , an), we will need a more redundant encoding that also
includes values of quadratic functions, and thus one uses the Quadratic functions
code.

The Quadratic Functions Code: Given a1, a2, . . . , an, the quadratic functions
code (henceforth, QF-code), encodes it by the 2n

2
long string 〈Q(a)〉Q where Q

ranges over all homogeneous degree 2 polynomials over F2. Note that such a poly-
nomial is specified by n2 field elements Qij , where Q(x) =

∑
i,j Qijxixj . We

denote by B the QF-encoding of a1, . . . , an, and B defines a map Fn2

2 → F2 by
B(Q) = B(Q11, . . . , Qnn) =

∑
i,j Qijaiaj .

2.4. The “Proof”

The QP-SAT verifier will expect as proof the Hadamard and QF-encodings of a
common zero a = (a1, . . . , an) of the quadratic polynomials P1, . . . , Pt in the QP-
SAT instance. Note that for any degree 2 polynomial P as in Equation (5), the
verifier can check P (a) = 0 by reading A(s) and B(c) from the A and B tables,
thereby just making two queries. Of course, we have no guarantee that the proofs
will be legal Hadamard and QF-encodings of a, and therefore as in multivariate
polynomials case, we need a Testing procedure (called “Linearity Testing” in the
literature) and Self-correcting procedure for the Hadamard and QF-codes.

2.5. Self-correcting the Hadamard and QF-codes

We first deal with self-correction since, as in the low-degree polynomial case, this
is much easier than testing. We will present a self-correction algorithm for the
Hadamard code, and the extension to the QF-code is completely straightforward.
Note that Hadamard code is simply the encoding using multi-linear polynomial
code, and the reader can verify that the algorithm below is in fact the same as the
one for self-correcting multivariate polynomials specialized to the multi-linear case.

First let us formalize the self-correction question for the Hadamard code.

Self-Corr(A, x):

Given: x ∈ Fn2 and an oracle A : Fn2 → F2 which is δ-close to a linear function Ã

(for some δ < 1/4 so that there is a unique δ-close linear function Ã to A).

Task: Compute Ã(x).

Lemma 12. There is a self-correction procedure that uses O(n) random bits, makes
two queries and which, for every x ∈ Fn2 , returns the correct value of Ã(x) with
probability at least (1− 2δ).

Proof: Consider the following self-correction procedure. Given x ∈ Fn2 and oracle
for A which is δ-close to a linear function Ã, compute Ã(x) as follows:
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(1) Pick y ∈ Fn2 at random.
(2) Output A(x+ y)−A(y).

To prove the claim of the Lemma, note that since y and x+y are random points
in Fn2 , we have Pr

y
[A(y) 6= Ã(y)] ≤ δ and Pr

y
[A(x+ y) 6= Ã(x+ y)] ≤ δ. Thus with

probability at least (1 − 2δ), we will have A(y) = Ã(y) and A(x + y) = Ã(x + y),
and by linearity of Ã, this implies we output Ã(x).

2.6. Linearity Testing

A function f : Fm2 → F2 is called linear if f(x+ y) = f(x) + f(y) for all x, y ∈ Fm2 .
This is equivalent to < f(x) >x∈Fm

2
being a Hadamard codeword. The verifier for

QP-SAT we wish to construct, needs to check linearity of both the A and B tables
it is presented as proof, and thus Linearity Testing is a crucial component in this
construction. It is also a very natural combinatorial problem in its own right.

Formally, the specification of the linearity testing problem is the following:

Given: δ > 0; oracle f : Fm2 → F2.

Task: Test if f is δ-close to a linear function f̃ .
The following asserts the existence of a good Linearity test:

Lemma 13. There is a Linearity Test which uses O(m) random bits, makes just
3 queries into f , and has the following properties:

(i) It accepts with probability 1 if f is linear.
(ii) It accepts with probability at most (1− δ) if f is not δ-close to linear.

Proof: The test itself is quite simple:

(1) Pick x, y ∈ Fm2 at random
(2) Accept iff f(x) = f(x+ y)− f(y).

It is clear that the test makes only 3 queries into f and that it always accepts if f is
a linear function. The soundness claim (ii) above is, however, not straightforward to
prove, and was first proved (with a weaker dependence of the acceptance probability
on the closeness to linearity) by Blum, Luby and Rubinfeld [13] in their seminal
paper. The result in the form claimed was shown by Bellare, Coppersmith, H̊astad,
Kiwi and Sudan [8].

2.7. Testing “Consistency”

From the preceding two subsections, we are equipped to test that the tables A,B
which are purportedly the Hadamard and QF-encodings of some (a1, . . . , an) (which
ought to be a common zero of the QP-SAT instance we are testing for satisfiability)
are close to linear functions and to self-correct them. Now, suppose we have linear
functions Ã : Fn2 → F2 and B̃ : Fn2

2 → F2 that are δ-close to A and B respectively.
Since Ã is linear, there exists a = (a1, . . . , an) such that Ã = χa, i.e. Ã(x) =∑n
i=1 aixi for all x ∈ Fn2 . Similarly there exists b = (b11, . . . , bnn) such that B̃ = χb,

i.e. B̃(q) =
∑
i,j bijqij for all q ∈ Fn2

2 . But we would like B̃ to be the QF-encoding
of a, and thus we need to check “consistency”, namely that bij = aiaj for all
1 ≤ i, j ≤ n.
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Lemma 14. Given oracle access to A : Fn2 → F and B : Fn2

2 → F2 which are δ-close
to χa, χb respectively for some a ∈ Fn2 and b ∈ Fn2

2 , there is a probabilistic test that
uses O(n2) random bits, makes 6 queries and satisfies the following properties:

(i) If A = χa, B = χb and bij = aiaj for all i, j, then the test always accepts.
(ii) If there exist i, j such that bij 6= aiaj, then the test rejects with probability

at least ( 1
4 − 6δ).

Proof: The test does the following:
(1) Pick x, y ∈ Fn2 at random; Let q ∈ Fn2

2 such that qij = xiyj for 1 ≤ i, j ≤ n.
(2) Accept iff Self-Corr(A, x)· Self-Corr(A, y) = Self-Corr(B, q).

(In the above Self-Corr(A, x) stands for the element returned by calling the self-
correction procedure from Lemma 12.) Clearly the above only uses O(n2) random
bits. Since the self-correction procedure makes 2 queries, the above test makes a
total of 6 queries. Also the completeness condition (i) is clearly met.

Now consider the soundness Case (ii). Define n × n matrices M1,M2 over F2

as: {M1}ij = aiaj and {M2}ij = bij . By hypothesis, there exist i, j such that
aiaj 6= bij , so we have M1 6= M2. Since A is δ-close to χa and B is δ-close to χb,
by Lemma 12, with probability (1 − 6δ), the test in Step (2) above checks that
χa(x) · χa(y) = χb(q), or in other words

∑
i,j aiajxiyj =

∑
i,j bijxiyj which is the

same as xTM1y = xTM2y. Since M1 6= M2, this happens with probability at most
3/4 for a random choice of x, y ∈ Fn2 (this is easy to show). The overall probability
of acceptance is thus at most 3/4 + 6δ, as claimed.

2.8. Putting Everything Together

To give the verifier in the final form, we need one more trick. To verify satisfiability
of the QP-SAT instance, we need to check Pj(a) for every j = 1, 2, . . . , t. For
efficient checking, we need to “aggregate” these into a single constraint. This is
done as follows:

(1) Pick r = (r1, . . . , rt) ∈ Ft2 at random.
(2) Replace the constraints Pj(a) = 0 for all j = 1, . . . , t by the single con-

straint Pr(a) = 0 where

(6) Pr
def=

t∑
j=1

rjPj .

The key fact about Pr is captured by the following easy lemma.

Lemma 15. (i) If Pj(a) = 0 for all j, then Pr(a) = 0.
(ii) If there exists j such that Pj(a) 6= 0, then Pr(a) 6= 0 with probability

(exactly) 1/2.

The Verifier: We (finally!) present the verifier with all components put together:

Input: An instance (n, P1, . . . , Pt) of QP-SAT.

Goal: Verify that the polynomials Pj have a common zero a ∈ Fn2 .

Expected Proof: Tables A : Fn2 → F2 and B : Fn2

2 → F2 which are supposedly the
Hadamard and QF encodings of a common zero a ∈ Fn2 of the Pj ’s.

The verification procedure operates as follows:



LECTURE 3. A COUPLE OF DIGRESSIONS 29

(1) Perform a Linearity Test on A, B (Lemma 13). Reject it the test fails.
(2) Perform the “Consistency check” (Lemma 14) on A, B. Reject if the check

fails.
(We have now verified with good confidence that A,B are δ-close to χa,
χb respectively where bij = aiaj for all i, j.)

(3) Pick r ∈ Ft2 at random and compute the (coefficients of the) polynomial
Pr =

∑
j rjPj . Let

Pr(x1, . . . , xn) = s0 +
n∑
i=1

sixi +
∑

1≤i,j≤n

cijxixj .

Let s = (s1, . . . , sn) and c = (c11, . . . , cnn).
(4) Accept iff s0 + Self-Corr(A, s) + Self-Corr(B, c) = 0. (This corresponds to

checking that Pr(a) = 0.)

Note that the above verifier used O(t + n2) = O(n2) random bits (from the
proof of Lemma 11, we can assume t ≤ n2 – in fact t = O(n) – for the hard instance
of QP-SAT). The verifier also makes only 16 queries in all (6 in Step 1, 6 in Step
2, and 4 in Step 4 above). From the NP-hardness of QP-SAT (Lemma 11) and
Lemmas 15, 13, 12 and 14, we can show that the verifier has completeness 1 and
soundness at most (1 − ε) for some ε > 0 (we leave it to the reader to fill in the
details, or see [2]). We thus get:

Theorem 4 ([2]). There exists ε > 0 such that

NP ⊆ PCP1,1−ε
[
O(n2), 16

]
.





LECTURE 4
Proof Composition and the PCP Theorem

1. Where are we?

Recall from the last lecture that we now have the following two proof systems for
NP. The first is a 3-prover MIP for NP whose verifier uses O(log n) randomness,
receives answers of poly logn bits from each of the 3 provers, and decides to accept
or reject based on the verdict of a circuit of size poly log n on the (concatenation
of the) received answers. The second is a PCP for NP whose verifier makes only
16 queries into the proof and uses O(n2) randomness. From the high level, the
former proof system has small randomness, but large query complexity; while the
latter has small query complexity, but large randomness. In contrast, our goal is
to have small randomness and small query complexity, and it seems neither the
PCPs obtained so far give us what we want. In this lecture we describe a method
of composing proofs together that magically puts the two PCPs together to get
(close) to our goal. Specifically composition takes an “outer PCP” with small
randomness and an “inner PCP” with small query complexity and combines them
to get a “composed PCP” with small randomness and small query complexity.
Composition also maintains some basic properties on completeness and soundness,
and in particular it preserves perfect completeness and the property of soundness
being bounded away from 1.

In this lecture, we first illustrate composition with an example. This example
already builds a PCP with much better parameters than we know of. But compo-
sition can take us further. We describe from a high-level how composition applies
to a fairly general class of PCPs, and assert that the PCPs we have seen so far are
amenable to composition. Modulo this assertion, we then obtain a proof of the PCP
theorem. In fact, the composition theorem even takes us further — to the optimal
PCP theorem, and we list some of the steps that yield this stronger conclusion.

2. Composing the Verifiers

2.1. A first attempt

Composition is based on the following simple observation. Suppose we have a
power PCP (call it the inner verifier) that knows how to verify that circuits are
satisfiable. Maybe we can use this PCP to make the verification step of another

31
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PCP (called the outer verifier) easier. Note that the outer verifier typically behaves
as follows: It tosses some random coins and based on these it devises a strategy on
how to check the proof. In particular it generates some queries, and then prepares a
Boolean predicate that will determine if a collection of responses to the queries are
acceptable or not. Typically this Boolean predicate is described by a small circuit
C. The outer verifier then sends the queries to some provers, and then obtains
responses to these queries. It then plugs in these responses into the circuit C, to
determine whether to accept or not. The composition paradigm is motivated by
the intuition that it should be possible to use the inner verifier to verify that C is
satisfied by these responses. However the exact description of this paradigm involves
some surprisingly subtle issues and we motivate this by describing an attempt to
compose the two PCP verifiers of the previous lecture together.

(1) Start with the verification procedure of the 3-prover MIP.
(2) Prepare queries q1, q2, q3 and a small circuit C that determines the ac-

cept/reject decision of the verifier.
(3) Send the queries to the provers, but now instead of just receiving the

responses a1, a2, a3 from the three provers (which would cause the query
complexity to be poly log n), ask the prover to write down a proof that
(a1, a2, a3) is a satisfying assignment to the circuit C using the encoding
standard of the 16 query PCP verifier. (Here we are using the fact that
Circuit Sat is in NP and thus there exists a PCP for the fact that
a1, a2, a3 satisfies C.)

Note that above applies a PCP recursively to the task of checking that a1, a2, a3

is a satisfying assignment to C, and thus the above is also referred to in the literature
as “recursive proof checking” or “recursive composition of proofs”. The idea of proof
composition originated in the work of Arora and Safra [3] and has been a crucial
component in all PCP constructions that followed.

Analyzing the above Composition: The above composed verifier makes only
16 queries and uses O(log n) randomness for the initial verification process in Steps
1 and 2 (called “outer” verification) and another O((poly log n)2) = poly log n ran-
domness when it simulates the second verifier in Step 3 (called “inner” verification),
for a total of poly log n randomness. Thus it at least has better quantitative pa-
rameters than both of the verifiers we started with! The verifier, however, does
not inherit the soundness of the two original verifiers. The reason is that we are
asking the prover for a proof that there exists an input (a1, a2, a3) that satisfies
C, which is not the same as asking the prover to prove that a given triple a1, a2,
and a3 combine together to satisfy C. In particular, when the query q1 is asked
in a different context, we do not check to verify that the answer to q1 in the other
context is the same as the answer in the current context. Thus the prover can
“cheat” by using a satisfying assignment for C that has nothing to do with the
3 answers that would have been given by the MIP prover. (To consider a simple
but illustrative example, consider a single prover verifier for 3SAT, who just picks
a random clause in a given formula, whose satisfiability is to be verified, and then
asks a prover for the value of the literals in the clause. Clearly the prover would
have no problem convincing the verifier that this clause can be satisfied, and so the
verifier accepts with probability 1, independent of the satisfiability of the formula.
The composition method described above is functioning analogous to this verifier
and hence does not have a hope to testing anything.)



LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 33

To fix the bug above, somehow we need to make sure that the various answers
given by the prover for the various tests are all “consistent” (i.e. the different
clauses referring to the same variable use the same assignment to that variable)
and would hence “glue together” to give a single global assignment that satisfies all
(or most of) the clauses.

In a nutshell, we need to ensure consistency between the answers committed
to by the prover in response to various different circuit tests C, so that we can
argue that if the composed verifier accepts with large probability then one can fix
responses for the three provers in the “outer” MIP that will cause the MIP verifier
to accept with large probability. Together with the soundness of the MIP, this will
imply the soundness of the composed verifier.

2.2. A modified composition scheme

We now discuss at an intuitive level the way to fix this problem in the composed
verifier. The idea is to force the prover to commit to responses to individual queries
(e.g. q1) by writing down an appropriate (e.g. the Hadamard) encoding of the
answers. We will view such an encoding as a table (denoted Πq1) that we wish
to probe minimally, but something that already commits to the answer to query
q1. In addition to providing such a table for every query that the 3-prover MIP
can possible ask, the prover for the composed verifier is also asked to write down
proofs Π that (a1, a2, a3) satisfies C (for various choices of q1, q2, q3, C made by the
MIP verifier in the first stage of the composed verification). The verifier will now
check that C(a1, a2, a3) accepts by making queries to the corresponding proof Π of
the inner (16-query) PCP, and in addition will perform consistency checks between
the various components of Π and the proofs Πq1 ,Πq2 ,Πq3 . More specifically, for
the verifiers we have, we can require Πq1 to be the Hadamard encoding A1 of
the response a1, and recall from the last lecture that the proof Π for the “inner”
PCP includes the Hadamard encoding, say B, of a1 ◦ a2 ◦ a3 (here ◦ denotes the
concatenation operation). The consistency check between Π and Πq1 will now check
that A1(x) = Self-Corr(B(x◦0b)) for a random x of length |a1| (here b is the suitable
number of zeroes padded at the end of x). Note that the query complexity of this
composed verifier will be 16 plus the 3 queries made in each of the three consistency
checks, for a total of 25 queries.

We have been very informal in our description of proof composition, and the
interested reader can find the formal details in [3, 2]. We now give a semi-formal
summary of the composed verifier for easy reference.

Composed PCP verifier for NP:

Structure of expected proof: The verifier has oracle access to a proof Π which is
expected to have the encodings of all the answers of the 3 provers of the MIP (as
per some suitable error-correcting code) for the various possible queries of the MIP
verifier. More specifically, for 1 ≤ i ≤ 3 and query qi of the MIP verifier to prover
i, Π(i, qi, ·) is the encoding of the response ai of prover i to query qi. In addition,
for each random choice R of the MIP verifier, Π(0, R, ·) will be the encoded proof
(for the inner PCP system) of the satisfiability of the circuit CR corresponding to
R computed by the MIP verifier.

Given access to the oracle Π, the verifier operates as follows:



34 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

• Pick random string R as per the 3-prover MIP verifier (from last lecture)
and generate queries q1, q2, q3 to the three provers and a circuit C.

• Let Ai(·) = Π(i, qi, ·) and B(·) = Π(0, R, ·).
• Now perform “inner verification” for (the satisfiability of) C with oracles
A1, A2, A3, B as below:

– Run the 16 query PCP verifier (from last lecture) on oracle B with
input C (we are testing that B encodes a satisfying assignment to
C).

– Perform consistency checks on oracle pairs (A1, B), (A2, B) and (A3, B).

One can formalize the discussion of the preceding sections and prove that the above
verifier (which we already argued uses poly log n randomness and makes only O(1)
queries – in fact it makes only 25 queries) also has soundness bounded away from
1, and this gives us:

Theorem 5. There exists a γ > 0 such that NP ⊆ PCP1,1−γ
[
poly log n, 25

]
.

Composition as a paradigm: The basic ingredients of composition abstracted
from the preceding construction are the outer and inner verifiers. The outer verifier
is an MIP verifier with a small number of provers p and whose acceptance predicate
is computed by a small circuit, and which has very low soundness error. The answer
size of the MIP governs the size of the problem passed on to the inner verifier.

The inner verifier has low query complexity q and must be able to verify the
commitment to a proof rather than the mere existence of one. The composed
verifier starts out by simulating the outer verifier and after the outer verifier picks
a circuit C which computes its acceptance predicate, the composed verifier uses the
inner verifier on input C. If suitable conditions are met, then one can compose the
outer and inner verifier to get a verifier that combines the randomness efficiency of
the outer verifier with the query efficiency of the inner verifier.

Formalism of the notion of outer and inner verifiers and exactly how they
compose together can be found in work of Arora and Safra [3]. Several refinements
to their “Composition Theorem” can be found in several later works like [2, 9].

3. The PCP Theorem

To prove the PCP Theorem we need to reduce the randomness of the verifier from
Theorem 5 to logarithmic from poly-logarithmic. The reason we had poly log n
randomness was that the outer MIP in the above composition had poly log n answer
and circuit size and the inner verifier used a quadratic number of random bits (as
a function of its input length). Thus in order to reduce the overall randomness, we
would like to reduce the answer size of the outer MIP.

It turns out that the 3-prover MIP construction from the last lecture also yields
an inner verifier which can be used to show that ∀ε > 0, ∃δ > 0 such that

MIP1,1−ε[p, r, a] ⊆ MIP1,1−δ[p+ 3, r +O(log a),poly log a] .

(Such a result is shown in [2].) Combining with the MIP characterization NP =
MIP[3, O(log n),poly log n] from the previous lecture, this gives, upon compos-
ing the MIP verifier with itself as the inner verifier (it is shown in [2] how to
modify this verifier to also function as an inner verifier), the characterization
NP = MIP[6, O(log n),poly log log n]. Composing this 6-prover MIP verifier with
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the O(1)-bit, quadratic randomness verifier from [2] which was discussed in the last
lecture, gives a logarithmic randomness, O(1) query complexity verifier for NP with
perfect completeness and soundness bounded away from 1, or in other words the
PCP Theorem! We would thus get:

Theorem 6 ([3, 2]). There exists an ε > 0 such that

NP = PCP1,1−ε[O(log n), 34] .

4. Towards Optimal PCPs

There are a number of respects in which one can hope to improve Theorem 6.
This has been the focus of a large body of works including [15, 11, 9, 20, 21,
19, 28, 27, 26]. One specific question, for example, is: What is the minimum
number of queries required to obtain a desired soundness error? The quest for
better (and optimal) PCP constructions has also been motivated by applications
to hardness of approximations where improvements in the underlying PCPs often
translate directly into improvements in the related inapproximability result that it
gives.

We will only give an overview of what is involved in obtaining optimal PCPs
and not give any technical details or prove any of the claims. There are two main
ingredients in obtaining optimal PCP constructions. The first one is improved
constructions of MIPs, specifically those with very few provers, preferably 2 provers,
with extremely low soundness error and at the same time having small answer sizes
and logarithmic randomness. The second ingredient(s) are “optimal” inner verifiers
that are tuned to simplifying verifiers for 2-prover proof systems.

We will now elaborate a little on constructions of 2-prover proof systems. The
starting point for such a construction is the PCP theorem (Theorem 6) itself: NP ⊆
PCP1,1−ε[O(log n), 34]. One can convert such a PCP verifier into a verifier for a
2-prover proof system using a technique in [16] as follows:

• Pick a random string R and generate queries q1, . . . , q34 (as the PCP
verifier would do). Send all queries to Prover 1.

• Pick a random index i ∈ {1, . . . , 34} and send query qi to Prover 2.
• Accept iff answers of Prover 1 make the PCP verifier accept, and the

answer of Prover 1 on query qi is consistent with the response of Prover
2.

It is clear that the above verifier has logarithmic randomness and receives O(1)
size answers. It also clearly has perfect completeness since the original PCP had
perfect completeness. It is not difficult to show that the soundness is bounded
away from 1, and thus this gives us a MIP with 2-provers as a starting point. But
the soundness is very close to 1 and we would like to improve the soundness while
keeping the answer size and randomness small.

The natural approach to reducing the error is repeating the verifier’s action
several times with independent random tosses, but doing this sequentially would
increase the number of rounds of interaction between the verifier and the provers.
The approach instead is to repeat the verification many times in parallel (with
independent coin tosses), but, unlike the sequential repetition case, it is now no
longer obvious that the soundness error goes down exponentially with the number
of repetitions.
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An important result of Raz [24], called the Parallel Repetition Theorem shows
that this is indeed the case (the result holds for all 2-prover systems where the
verifier is “canonical” in the sense that its acceptance condition is a check that a
certain projection of the answer of Prover 1 equals the answer of Prover 2). The
proof of this result is complicated, but for our purposes it suffices to understand
that it implies the following error reduction fact for MIPs: For every ε > 0 and
integer a, there exists an ε′ > 0 such that for all k ≥ 2, a canonical verifier for a
2-prover MIP with randomness r and which receives answers of size a and 1 from
the two provers and has soundness (1− ε), can be converted into one with answer
size at most ka, randomness at most kr, and soundness error (1− ε′)k. Informally,
the transformation is

MIP1,1−ε[2, r, a] −→ MIP1,(1−ε′)k [2, kr, ka] .

The above enables us to construct 2-prover MIPs for NP with very low sound-
ness error and constant answer sizes. We do not elaborate on the inner verifiers,
but to obtain improved PCPs one takes such a 2-prover MIP and composes it with
a suitable inner verifier. For the optimal constructions, it turns out that one uses
inner verifiers which take the encoding of the answers of the 2 provers of the outer
MIP by a code called the Long Code (first defined in [9]) and then verify , using
extremely query-efficient procedures, that these are indeed “close to” encodings of
valid answers that would make the verifier of the outer MIP accept. It turns out
that using some machinery from Discrete Fourier Analysis, such Long Code based
inner verifiers can often be analyzed optimally, and this approach was pioneered by
H̊astad in a series of striking results [20, 21]. We do not elaborate on this further,
but just mention that one such tight result from [20] is the following, which shows
that just 3 queries are enough to obtain a soundness error close to 1/2 (it is known
that one cannot do better [29]).

Theorem 7 ([20]). For any ε > 0, we have NP = PCP1−ε,1/2[O(log n), 3].

5. Roadmap to the Optimal PCP

Before winding up, we give a quick high-level recap of the road to a complete proof
of the optimal PCP construction from Theorem 7 above. The main steps are the
following:

(1) 3-prover MIP verifier for NP (NP = MIP1,1−γ [3, O(log n),poly log n]) [2]
(2) Compose the above verifier with itself (using the paradigm of composition

from [3]) to get
NP = MIP1,1−γ′ [6, O(log n),poly log log n] [2].

(3) AnO(1) query, O(n2) randomness verifier for NP from [2] (NP ⊆ PCP1,1−ε[O(n2), O(1)]).
(4) Compose the verifier from Step 2 with the verifier from the previous step

to get NP ⊆ PCP1,1−ε′ [O(log n), O(1)]. At this stage we have the PCP
Theorem [3, 2].

(5) Obtain a 2-prover MIP for NP from the above PCP verifier (as in [16])
and then apply Raz’s Parallel Repetition Theorem [24] to prove that for
all δ > 0, NP ⊆ MIP1,δ[2, cδ log n, aδ] where cδ and aδ are constants
depending only on δ.

(6) Compose the verifier from above 2-prover proof system with a 3-query in-
ner verifier from [20] to get (one) optimal PCP Theorem: NP = PCP1−ε,1/2[O(log n), 3]
for every ε > 0.



LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 37

Note that the main omissions from the above path in our discussion has been
the Parallel Repetition Theorem and a description and analysis of H̊astad’s optimal
inner verifier.

The proof of the PCP Theorem is thus quite complicated and puts together
several ingredients. It is an important open question whether any portions (or all)
of the proof can be simplified. A good starting point in approaching this question
would be to first look at simpler constructions of what are called locally checkable
codes. These are codes with polynomially small rate such that given a string one
can determine if it is a codeword or is sufficiently far off from any codeword by just
looking at the symbols in O(1) positions of the string. Such codes are implied by
the PCP Theorem and the only construction we know of such codes goes via the
PCP Theorem. An alternative, simpler construction of such codes might enable a
shot at simpler proofs of the PCP Theorem, and would also be extremely interesting
and important in its own right.
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6. László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponen-
tial time has two-prover interactive protocols. Computational Complexity, 1:3–
40, 1991. Preliminary version in Proceedings of FOCS’90.

7. Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries.
Proc. of the 7th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, LNCS Vol. 415, Springer-Verlag, 1990.

8. Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi and Madhu
Sudan. Linearity testing over characteristic two. IEEE Transactions on Infor-
mation Theory, 42(6), pp. 1781-1795, 1996.

9. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCP’s and
non-approximability – towards tight results. SIAM Journal on Computing,
27(3):804–915, 1998. Preliminary version in Proceedings of FOCS’95.

10. Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Effi-
cient probabilistically checkable proofs and applications to approximation. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 294-304, San Diego, California, 16-18 May 1993.

11. Mihir Bellare and Madhu Sudan. Improved non-approximability results. In
Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of

39



40 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Computing, pages 184-193, Montreal, Quebec, Canada, 23-25 May 1994.
12. Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-

prover interactive proofs: How to remove intractability assumptions. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 113-131, Chicago, Illinois, 2-4 May 1988.

13. Manuel Blum, Michael Luby and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. Journal of Computer and System
Sciences, 47:549–595, 1993.

14. Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra and Mario Szegedy.
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