
1

Optimal Error Correction for Computationally
Bounded Noise

Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson

Abstract—For adversarial but computationally bounded models
of error, we construct appealingly simple and efficient crypto-
graphic encoding and unique decoding schemes whose error-
correction capability is much greater than classically possible.
In particular:

1) For binary alphabets, we construct positive-rate coding
schemes that are uniquely decodable under a 1/2− γ error
rate for any constant γ > 0.

2) For large alphabets, we construct coding schemes that are
uniquely decodable under a 1 − R error rate for any
information rate R > 0.

Our results for large alphabets are actually optimal, since the
“computationally bounded but adversarial channel” can simulate
the behavior of the q-ary symmetric channel, where q denotes
the size of the alphabet, the capacity of which is known to be
upper-bounded by 1−R.

Our results hold under minimal assumptions on the commu-
nication infrastructure: namely, (1) we allow the channel to be
more powerful than the receiver, and (2) we only assume that
some information about the sender —a public key— is known.
(In particular, we do not require any shared secret key or joint
local state between sender and receivers.)

Index Terms—Channel modelling, Adversarial Error, Compu-
tationally Bounded Channels.

I. INTRODUCTION

Let us briefly recall the setting of the classical theory of
error correction [Sha48], [Ham50]:

A sender starts with some message, which is represented
as a string of symbols over some alphabet. The sender
encodes the message into a longer string over the same
alphabet, and transmits the block of data over a channel.
The channel introduces errors (or noise) by changing
some of the symbols of the transmitted block, then
delivers the corrupted block to the receiver. Finally, the
receiver attempts to decodes the block, hopefully to the
intended message. Whenever the sender wants to transmit
a new message, the process is repeated.

Classically, two quantities are of special interest in this
setting. The first is the information rate, the ratio of the

Silvio Micali is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA.
http://people.csail.mit.edu/silvio.

Chris Peikert is with the School of Computing, Georgia
Institute of Technology, Atlanta, GA. Work done while at MIT.
http://www.cc.gatech.edu/˜cpeikert/.

Madhu Sudan is with the Dept. of EECS at MIT
and Microsoft Research, New England, Cambridge, MA.
http://people.csail.mit.edu/madhu.

David A. Wilson is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

A preliminary version of this paper appeared in the proceedings of the 2005
Theory of Cryptography Conference.

message length to the encoded block length. The second is the
error rate, the ratio of the number of errors to the block length.
Of course, we desire coding schemes that tolerate high error
rates while simultaneously having large information rates. (In
practice, smaller alphabets are desirable too.)

The heart of our work is to prove that the achievable limits
for these and other quantities crucially depends on the assumed
nature of the noise introduced by the communication channel.

A. Modeling Noisy Channels

There are two historically popular ways to model a noisy
channel for communication. In his pioneering 1948 work,
Shannon considered a probabilistic channel, which perturbs
each transmitted symbol independently with some fixed proba-
bility. Shannon demonstrated how information can be encoded
to withstand such noise with probability arbitrarily close to 1/2
for binary channels, and arbitrarily close to 1 for channels with
large alphabets. One could argue, however, that Shannon’s
notion of a probabilistic channel may be too simplistic for
modeling actual sources of noise. In the real world, data
corruption can be the result of complex interactions among
many factors both intrinsic and extrinsic to the communication
system, and errors tend to be distributed neither uniformly
nor independently. For example, both radio interference and
physical defects on storage media tend to be “bursty,” with
periods of very high noise separated by spans of quiescence.

By contrast, Hamming effectively proposed an adversarial
channel that perturbs symbols in a worst-case fashion subject
only to an upper bound on the number of errors per block
of data. Hamming’s model is of course more general and thus
“safer” than Shannon’s one. This generality, however, comes at
a price: it imposes severe limits on the performance of codes.
For instance, in order to correctly decode the intended message
under a binary alphabet, the error rate of the channel must not
exceed 1/4 (unless the information rate is 0).

COMPUTATIONALLY BOUNDED ADVERSARIAL CHANNELS.
As described above, “adversarial channels are computation-

ally unbounded.” That is, in principle, the channel may employ
unbounded amount of computation to decide where and how
to corrupt the transmission. This, however, is an overly pes-
simistic, and possibly outright unrealistic assumption. Natural
processes, included those causing errors in communication
channels, are carried out by Nature in a feasible manner.
From a computer science point of view, this implies that
even the most adversarial channel can only use a feasible
amount of computing to decide where and how to cause
transmission errors. Indeed, in 1994, Lipton proposed the
notion of a feasible channel, which is essentially a Hamming

2

channel restricted to polynomial-time computation [Lip94].
However, for over a decade after this proposal, both a rigorous
formalization of computationally bounded channels and error-
correcting schemes for such channels have been conspicuously
absent. In this paper we aim to remedy both problems.

THE IMPORTANCE OF STATE. We stress that modeling the
channel as an adversarial computational process introduces
concerns not arising in either the simple model of a proba-
bilistic channel or the computationally unbounded adversarial
channel. In particular, central to every computational model
(be it a Turing machine or a modern computer) is the notion
of state, that is, what a computational process is allowed
or required to know beforehand and to retain from one
computation to the next.

In the case of a computationally bounded adversarial chan-
nel, it does matter whether the channel is given knowledge of
the identity of the sender and the receiver, and the details of
the encoding scheme. And even more it matters whether the
adversarial channel can retain memory of past transmissions.
Note that the issue of “state” is totally absent in the simplest
case of a probabilistic channel, since by definition “each error
is independent.” More sophisticated models of probabilistic
channels allow for some Markovian behavior among errors,
and thus for some state retention. However, it is customary
to assume that the length of the transmission is unbounded
while the state information is finite, thereby minimizing any
serious influence of state from one transmission to the next.
For the adversarial, computationally unbounded, channel the
issue of state is also irrelevant, since the adversary is by
definition free to choose the worst error possible for every
transmission. By contrast, retaining state does in principle
enable a computationally bounded adversarial channel to use
the transmission history in order to monitor how well it is
doing, and learn how inject errors that are harder or impossible
to recover from.

The ability to maintain state is also very relevant for the
sender and the receiver, as they too ultimately are computa-
tional processes. And so is any a priori knowledge that the
sender and the receiver may have (e.g., about each other’s
identities). Of course, the more the channel is allowed to know
and the less senders and receivers are required to know the
better the model and the better the results.

B. Our Contributions

OUR SETTING. Our precise model is detailed in Section III.
Informally, sender, recipient and channel are (possibly prob-
abilistic) polynomial-time algorithms capable of maintaining
state.

The sender has a public key pk and a matching secret key
sk, and needs to keep at least a loose track of the number of
messages sent. (He needs to use a counter —e.g., a clock—
whose content increases with the number of messages sent.)
To encode a message, he uses sk and the current content of
his counter. In practice, 100 bits of state are sufficient to keep
track of the counter, and a few hundred bits suffice for sk.

Once he already has selected his public and secret key, the
sender can be deterministic.1

The receiver can always be deterministic and needs to know
even less: namely, pk, “the cryptographic identity” of the
sender. He decodes each message based only on the received
string and pk. (In particular, the decoding algorithm is always
the same.)

The channel can be probabilistic, if it so wants. It has an
unbounded state, and can use it to record essentially anything
known to the receiver and/or the sender, except for sk. In
particular, at the beginning of each transmission, the state of
the channel is allowed to contain the sender’s pk, the exact
number of messages transmitted so far, the exact sequence of
the messages encoded (including the current one), the exact
sequence of their encodings (including the current one), the
exact sequence of all errors it introduced in the past, and
the exact sequence of the receiver’s past decodings (correct
or incorrect as they may be).2 Based on all such inputs, the
channel it allowed to compute the errors he wants to introduce.

Notice that we do not explicitly bound the number of errors
that the adversarial channel introduces. (Indeed, it is free to
introduce 99% or even more errors.) However, as we shall
see, for any given transmission our solution guarantees a
correct and unique decoding whenever the number of errors
introduced in that transmission is below the prescribed limit.

OUR RESULTS. In our setting, we construct coding schemes
both for binary and large alphabets; namely:

1) For the binary alphabet, we construct positive informa-
tion rate coding schemes that are uniquely decodable
under error rate 1/2− γ, for any constant γ > 0.

2) For large alphabets, we construct positive information
rate coding schemes that are uniquely decodable under
error rate 1− γ, for any constant γ > 0.

Recall that the seminal paper of Hamming [Ham50] points
out that a code of relative distance δ can correct at most a
fraction δ/2 of adversarial (in our language) errors. Combining
Hamming’s with Plotkin’s result [Plo60]—asserting that a
binary code of positive rate can have relative distance of at
most 1/2— we get that a 1/4−γ error rate is the best possible
for unique decoding (and positive information rate) over an
adversarial and computationally unbounded channel over the
binary alphabet. Thus by making the channel reasonable we
are able to bypass the classical barrier on the error rate.

Recall too that it is impossible to decode above an error rate
of 1/2 even for Shannon’s simple probabilistic channel model.
Therefore our result allows us to handle a very adversarial
channel with the same error rate achievable for a very benign
channel.

Similarly, for large alphabets, combining Hamming’s result
with the trivial observation that no code can have relative
distance greater than 1, we get that 1/2 − γ is the maximal

1Note that probabilism is required for choosing any secret key, else “any
one could predict the secret by running the secret-selection algorithm.” But
after sk has been chosen, the only advantage for the sender being probabilistic
may be computational efficiency.

2Indeed, as the receiver’s decoding algorithm is public and solely based
on pk and the received string (both known to the channel), the channel can
always predict what the decoding is for the errors it considers.

3

error rate for unique decoding over an adversarial and com-
putationally unbounded channel. Again therefore we are able
to bypass this classical bound and are able to handle quite
adversarial channels with arbitrarily high error rate.

SIMPLICITY, MODULARITY, AND AUTOMATIC IMPROVE-
MENTS. Our results are obtained by a very simple and modular
combination of two powerful components, namely, digital
signature and list-decoding. In essence, our scheme imple-
ments an age-old practice of signing and dating messages!
Specifically, the sender time-stamps the message by adding
the contents of the current counter, digitally signs the time-
stamped message, and then encodes the result using a list-
decodable code. The receiver, list-decodes the received string,
and then outputs as the unique message the element of the list
that is properly signed and has the largest time-stamp.

An immediate consequence of this modular approach is
that any improvement to the performance of either component
yields a corresponding improvement in the performance of
our coding scheme. Indeed, using the recent advances in list-
decoding due to Parvaresh and Vardy [PV05], and Guruswami
and Rudra [GR08] (obtained after the original version of this
result [MPSW05]), our above-stated result for large alphabets
automatically improves as follows:
2′. For large alphabets, we construct coding schemes that

are uniquely decodable under error rate 1−R− γ, with
information-rate R, for any constants R, γ > 0.

Recall that for an error rate of 1−R, the Shannon capacity
of the q-ary symmetric channel is at most R for every q.
Note that the computationally bounded but adversarial channel
can simulate the actions of the q-ary symmetric channel. This
is so because an adversarial channel can simply choose to
just flip each transmitted character with a fixed probability
independently for each character, a behavior that only requires
linear computation time (and no memory at all). Thus, the
capacity of the computationally bounded adversarial channel
is bounded from above by that of the q-ary symmetric channel,
and thus by R.

Thus our result achieves the optimal tradeoff between in-
formation rate and error rate for sufficiently large alphabets.
Thus, again, we are able to handle quite adversarial channels
with the same performance as very benign channels (now for
every information rate).

C. Related Work

We wish to contrast our results with other lines of work
which attempt to go beyond the Hamming bound for error
correction.

SECRET AND SHARED RANDOMNESS. In [Lip94], Lipton
considered going beyond the Hamming bound for adversarial
but computationally bounded channels. This works considers
the transmission of a single message m, assuming that the
sender and the receiver share beforehand a random string ρ
(much shorter than m under proper cryptographic assump-
tions). The result crucially relies on the fact that ρ is secret
that is, totally unknown to the channel. Under the same cryp-
tographic assumptions, Ding, Gopalan, and Lipton [DGL06]

later extended this work to the transmission of multiple
messages with a fixed, short secret ρ.

The fact that senders and receivers share a common secret,
makes these works not suitable to many settings, such as
message broadcast. By contrast, notice that our results are
suitable for broadcasting messages, since the sender need not
share any secret with any of its potential recipients, nor does
he need to know their identities. In addition, the scheme of
[DGL06] assumes that sender and receiver maintain properly
synchronized states, a restriction absent in our result.

For the transmission of a single message, Langberg [Lan04]
has succeeded in extending the Lipton result to computation-
ally unbounded channels, but at the price of making recipient
computationally unbounded as well.

LIST DECODING. List decoding, as defined by Elias and
Wozencraft [Eli57], [Woz58], has been used recently by Sudan
[Sud97] and Guruswami and Sudan [GS99] to go beyond the
Hamming bound. However, we stress that in their setting the
decoder is allowed to output a list of candidate messages
(guaranteed to include the correct message), while in our
setting we insist that the decoder outputs the unique, correct
message.

However, our result shows that list decoding can be used to
yield unique decodability for all practical purposes.

SIDE CHANNELS. Guruswami [Gur03] shows how to bypass
the Hamming bound for messages transmitted over an adver-
sarial channel, even if computationally unbounded, provided
that sender and receiver are able to communicate via an
additional and noiseless side channel. (The interest of this
result comes from the fact that the side channel is only
“sparingly” used.)

By contrast, our sender and receiver are not assumed to have
any side channels for their communication.

II. PRELIMINARIES

Our solution depends on two main notions: (1) list-
decodable codes —from coding theory— and (2) digital
signatures —from cryptography. We thus introduce notation
and briefly recall these two notions.

A. Notation

For a positive integer n, we write [n] = {1, . . . , n}.
For a finite set Σ and a nonnegative integer n, we will refer

to an element of Σn as a string or word over the alphabet Σ.
For a word x ∈ Σn, we write xi to denote the ith component
of x.

ASYMPTOTICS.
For positive functions f(n), g(n), we write f(n) = O(g(n))

and/or g(n) = Ω(f(n)) if limn→∞
f(n)
g(n) = C for some

absolute constant C ≥ 0. We write f(n) = o(g(n)) and/or
g(n) = ω(f(n)) if limn→∞

f(n)
g(n) = 0.

We say that a function f(n) is negligible in n if, for every
positive polynomial p(n), f(n) = o(1/p(n)).

4

B. Coding Theory Background

For a finite set Σ and positive real R < 1, an error-
correcting code over an alphabet Σ and information rate
R is the image of a mapping C : Σk → Σn where
n = n(k) = bk/Rc.

We refer to k as the message length, to n as the block length,
to C as the encoding function, and to the elements of the
set

{
C(x) : x ∈ Σk

}
as codewords. We will often overload

notation and write C to refer to the set of codewords (as well
as the mapping).

The Hamming distance between two words x, y ∈ Σn is the
number of positions i in which xi and yi differ: ∆(x, y) =
| {i ∈ [n] : xi 6= yi} |. It is easy to verify that the Hamming
distance is a metric. A code C has distance (at least) d if
∆(C(x), C(y)) ≥ d for every distinct x, y ∈ Σk.

We also consider asymptotics of infinite families of codes
of information rate R:3

C =
{
Ck : Σk → Σn

}
k∈N .

A family has relative distance δ if for every k, Ck has distance
δ ·n. The aim of most error-correcting codes is to have R and
δ as high as possible.

COMPUTATIONAL COMPLEXITY AND LIST DECODABILITY.
Let C = {Ck} be a family of codes.

We say that C is explicitly constructible if it has a single
efficient (deterministic polynomial-time) algorithm E for com-
puting all the encoding functions Ck, that is E(k, ·) = Ck(·).

We say that C is (ρ, L)-list decodable if, for every k and
r ∈ Σn, there are at most L(k) codewords within distance ρ·n
of r. We further say that C is (ρ, L) efficiently list decodable
if it has a single polynomial-time list decoding algorithm LD
which, on input a string r ∈ Σn, outputs all the codewords in
Ck within distance ρ · n of r.

Accordingly, an efficiently list decodable code C is a pair:
C = (E,LD).

C. Digital Signatures

The intuitive notion of a digital signatures was initially
proposed by Diffie and Hellman [DH76], but not fully for-
malized and rigorously constructed until Goldwasser, Micali,
and Rivest [GMR88]. In essence, a signer generates a pair
of matching keys (strings), (pk, sk). We refer to pk as the
verification key and to sk as the signing key. The signer uses
sk to sign a message m, that is, to compute a short string
σ called the signature of m. Given pk, anyone can easily
verify that σ is the signature of m. But no one should, without
knowing sk, be able to efficiently compute the signature of a
message, even with knowledge of pk. Thus it is in the interest
of the signer to publicize pk as his verification key, and to
keep sk secret. By so doing, he enable all users to verify
his own signatures, while retaining for himself the power of
signing messages. For this reason, pk is mostly referred to as

3Some of the families in the literature, such as Reed-Solomon codes, use
a more general definition, allowing the alphabet to depend on k. While our
methods easily work for such more general notions, for simplicity we are
happy to state all of our results for fixed-alphabet codes.

the public key and sk as the secret key. Let us now elaborate on
the syntax and the semantics of a signature scheme, that is on
the scheme’s algorithmic ingredients and security properties.

Syntactically, a digital signature scheme S consists of a
triple of polynomial-time deterministic algorithms (G,S, V)
with the following functionality.

1) Algorithm G is the key generator. On input a random
binary string r, G outputs a pair of matching keys
(pk, sk), each having the same length as r. We refer
to r’s length as the security parameter.

2) Algorithm S is the signing algorithm. On input two
binary strings sk and m, S outputs a binary signature
σ.

3) Algorithm V is the verification algorithm. On input
three binary strings, pk, m and σ, V outputs either
YES or NO with the following basic constraint: if, for
some r, G(r) = (pk, sk), and if σ = S(sk,m), then
V (pk,m, σ) =YES.

Semantically, we must require that an adversary should not
be able to forge signatures. At the lowest level, this may be
taken to mean that an attacker should not be able to generate
the signature of his favorite message given just the public key.
This, however, is not a sufficiently strong notion of security.
Typically, in fact, an attacker sees several signed message prior
to attempting to forge a new one. In addition, some of the
previously signed messages may have been chosen by him!
(For instance, a notary public typically signs messages chosen
by others.) Thus, not only should forge message be “hard,”
but also not “learnable”. Let us now be more precise.

An attacker is a (possibly probabilistic) interactive algo-
rithm A. An attack of A to a signature scheme (G,S, V) with
security parameter ` consists of the following process. First, a
pair of matching keys (pk, sk) is generated by running G on
a random string of length `. Then pk is provided as the only
input to A. After receiving this input, A computes a query
message m1. This query is answered by providing A with
the signature σ1 = S(sk,m1). At this point A computes a
second query message m2, which is answered by providing A
with the signature σ2 = S(sk,m2). This interactive process
continues until A halts outputting a pair of strings (m,σ). We
say that A’s attack is successful if (1) m 6∈ {m1,m2, . . .}, and
(2) V (pk,m, σ) =YES.

We say that the scheme (G,S, V) is (GMR-)secure if, for
all constants c and for all sufficiently large security parameter
`, for every attacker A that (1) is described by a string of at
most `c bits, and (2) halts within `c steps on every input of
length `, the probability that an attack of A against (G,S, V)
with security parameter ` is successful is at most `−c.

Such signature schemes secure in the above sense were orig-
inally constructed by Goldwasser, Micali, and Rivest [GMR88]
under standard complexity assumptions, such as the com-
putational hardness of factoring integers. Subsequent works
[BM92], [NY89], [Rom90] have progressively weakened the
assumption, eventually showing that secure signature schemes
can be constructed from any one-way function, in essence any
function that is easy to compute but hard to invert.

5

III. FORMAL MODEL OF THE PROBLEM

As discussed, our coding schemes envisage a stateful sender
with a pair of matching public and secret keys. A stateful
sender, on input a first message m1 and its two keys, pro-
duces an encoding of the message together with a first state
information, s1. To encode the i + 1st message, the sender
utilizes, in addition to his two keys and the message itself, the
previous state information si to produce the desired encoding
and the new state information. Since in our construction the
only requirement on such sequences of state information is that
they strictly increase (according to some total order on strings),
for simplicity we define a coding scheme for the special case
in which the state information of the ith encoding is the integer
i.

As usual, we consider coding schemes that work for arbi-
trarily long messages and have a single independent parameter
k, denoting the message length.

Definition 3.1 (Public-Key Coding Scheme): A public-key
coding scheme CS consists of three deterministic, polynomial-
time, Turing machines G, S, and R, (respectively called the
generator, the sender, and the receiver), a finite alphabet Σ,
and two positive reals, a security parameter ε < 1 and an
asymptotic rate R: CS = (G,S,R,Σ, ε, R).

For all sufficiently large message lengths k, letting ` = bkεc
and n = bk/Rc,
• On input an `-bit string, G outputs a pair (pk, sk) of `-

bit strings, where pk is called the public key and sk the
secret key.

• On input (1) an integer i less than 2`, the counter, (2)
the secret key sk, and (3) a string mi ∈ Σk, the message,
algorithm S outputs i+1 (as the new counter) and a string
xi = S(i, sk,mi) ∈ Σn, referred to as an encoding of
mi.

• On input the public key pk and a string r ∈ Σn

(suppositively a corrupted version of an encoding of a
message mi), algorithm R outputs a string m′ ∈ Σk

(hopefully the message mi).

�
To define the error-correction rate of CS , we need to

define how our adversarial channel is entitled to “attack” a
coding scheme. We start by defining purely syntactically what
it means for an adversarial channel to be computationally
bounded. To increase the flexibility of our adversary, we
let it choose totally different strategies for different values
of the message-length parameter k, possibly in a total non-
constructive fashion. (By contrast, our senders and receivers
are fully constructive: they apply the same efficient procedures
to all possible messages/transmissions of all possible lengths.)
Then, in order to maximize the relevance of our result, we
endow a channel attacking a coding scheme with very broad
powers (such as choosing the very messages to be transmitted
in addition to choosing which errors to introduce). Of course,
in any realistic setting, the channel may have only a subset
of such powers. But since our solution is very simple and
resilient to all such powers, we find no point in analyzing a
less powerful adversary.

Definition 3.2: (Computationally Bounded Adversarial
Channels, Attacks and Successes): A computationally
bounded adversarial channel C is a sequence of (stateful)
possibly probabilistic algorithms, C = C1, C2, . . ., one for
any value of the parameter k, such that: for some absolute
constant c > 0, (1) Ck is described by at most kc bits, and
(2) on any input(s), Ck halts within kc steps of computation.

An attack of a computationally bounded adversarial channel
Ck on a public-key coding scheme CS = (G,S,R,Σ, ε, R)
with message length k consists of the following process. First,
G generates a pair of matching keys (pk, sk) on input a
random string of length ` = kε. Then pk is provided as the
only input to Ck. At this point, the channel computes the first
message m1 = Ck(pk) to be transmitted, together with its first
state information ψ1. Then the sender produces an encoding
x1 = S(1, sk,m1) of this message using his counter and
secret key. At this point, the channel computes (r1,m2, ψ2) =
Ck(ψ1, x1), where r1 is the first word received by the receiver,
m2 is the next message to be transmitted, and ψ2 is its new
state information. This process continues, that is at stage i+1
the channels computes (ri,mi+1, ψi+1) = Ck(ψi, xi) and the
sender computes xi+1 = S(i+ 1, sk,mi+1), until the channel
halts upon reaching its prescribed bound kc on the number of
its computational steps.

For positive real ρ < 1, we say that the attack is ρ-successful
if, for some stage i, (1) the Hamming distance between xi and
ri is at most ρ ·n, and (2) the receiver makes a decoding error,
that is, R(pk, ri) 6= mi. �

Note that the channel’s state information may, in particular,
include the current value of the Sender’s counter, as well as
the sequence of all previously chosen messages, and their
corrupted versions. Since the Receiver is deterministic, the
channel can easily compute how each transmission is decoded.

Definition 3.3 (Computationally Secure Coding Scheme):
We say that the public-key coding scheme CS is
computationally secure against an error rate ρ if, for
all computationally bounded adversarial channels C, for
all positive constants c, all sufficiently large k, and every
e ≤ ρ · n, the probability that an attack by Ck on CS with
message length k is e-successful is at most k−c. �

IV. OUR COMPUTATIONALLY SECURE CODING SCHEME

A. Intuitive Description of Our Coding Scheme

Our scheme is perhaps best understood by a “try, error, and
fix” approach, omitting precise details.

As a first try, for each message m, the sender transmits x =
C(m), a list-decodable encoding of m. An adversarial channel
may however foil this simple scheme by finding a different
message m′, whose encoding is x′, together with a string r
sufficiently close to both x and x′ so that, by list-decoding r,
the receiver computes both m and m′ as candidate messages.
We do not know whether this can be done efficiently for every
list-decodable code, but the current state of knowledge does
not rule this out either. Accordingly, the safe thing to do is to
assume that this first try does not work.

An attempt to fix the above problem consists of having the
sender first computes σ, his own digital signature of m, and

6

then transmits x = C(m ◦ σ), the list-decodable encoding of
m concatenated with σ. This way, to be capable to carry out
the above attack, an adversarial channel would need to find a
string r that, list-decoded, yields both m◦σ and some m′ ◦σ′
such that m′ 6= m and σ′ is a valid sender’s signature of m′.
Since digital signature are hard to forge, a computationally
bounded channel should not be able to find such a string r.
However, let us argue that a stateful channel might be able to
bypass this difficulty. In essence, the channel may not need to
find, from scratch, a new message m′ and be able to forge its
digital signature σ′. Rather, the sender may have already sent
x′ = C(m′ ◦ σ′) in the past. In this case, the channels may
simply record such transmission, and wait for an opportunity
to use it: namely, when the sender transmits x = C(m◦σ) such
that x and x′ are sufficiently close. Again, such an occurrence
cannot be ruled out and so the safe thing to do is to assume
that this second try too does not work.

This leads us to a final fix, that we later on formalize
and analyze. Namely, the sender keeps track of how many
messages he has transmitted so far, using a counter i. Letting
m be ith message he wants to send, the sender transmits the
x = C(m ◦ i ◦ σ), where σ is his digital signature of the pair
(m, i). Let us see how this prevents the last problem, assuming
for a moment that the receiver too keeps state information,
and thus knows the current counter value. Assume that the
sender has just transmitted x = C(m ◦ i ◦ σ), that he had
already transmitted x′ = C(m′ ◦ i′ ◦ σ′) in the past, and
that there is a string r sufficiently close to both x and x′.
Thus, even if the channel causes the receiver to receive r
rather than x, the receiver, upon to list-decoding r to compute
m ◦ i ◦ σ and m′ ◦ i′ ◦ σ′ as possible candidates, can use
the current counter value to disambiguate between the two.
Let us now show that he can correctly disambiguate without
keep any state information, and thus without knowing what
the current counter value should be. Notice that having sent
the message m′ prior to sending the message m, the sender
actually transmitted m ◦ i ◦ σ and m′ ◦ i′ ◦ σ′, where i′ < i.
Accordingly, if the receiver list-decodes r to get both m◦ i◦σ
and m′◦i′◦σ′, it suffices for him to choose the unique decoding
to be the one whose alleged counter is larger, in this example
his choice would be m◦ i◦σ. Notice that, to fool the receiver,
the channel would have to find a different m′, an integer i′ ≥ i,
and a string r sufficiently close to both x′ = C(m′ ◦ i′ ◦ σ′)
and x. Furthermore σ′ should be a valid sender’s signature
for the pair (m′, i′). But to find all such strings, he must be
able to forge the sender’s signature on a never signed message
(as opposed to utilizing a previously signed message). In fact,
when his current counter has value i, the sender has never
signed the pair (m′, i′), either because i′ > i, or because i′ = i
but m′ 6= m.

B. Formal Description of Our Coding Scheme
Given a signature scheme S = (G,S, V), a family of list-

decodable codes C =
{
Ck : Σk → Σn

}
with rate R′ >

R and list-decoding algorithm LD, our public-key coding
scheme CS = (G,S,R,Σ, ε, R) works as follows.

For each message length k, letting ` = bkεc and n = b(k+
2`)/R′c:

• G, on input a random `-bit string s, computes the key
pair (pk, sk) = G(s) and sets the counter i to 0.

• S, on input the counter i < 2` and a message m ∈ Σk,
outputs i + 1 as the new counter, computes the digital
signature σi = S(sk, (m, i)), and finally outputs xi =
Ck+2`(m ◦ i ◦ σi) as the encoding of m.
(Above ◦ is the concatenation operator, and i and σi are
represented as elements of Σ`.)

• R, on input the public key pk and a received word r ∈
Σn, works as follows (in essence “it list decodes r and
outputs the most recently signed message”):
1. Runs LD(r) to produce a list of strings Y .
2. Computes the sublist V(Y) of valid strings, that is

the sublist whose elements are the concatenation of
three strings m, i and σ where

— m ∈ Σk,
— i ∈ Σ` represents an integer < 2`, and
— σ ∈ Σ` represents a valid signature of the pair

(m, i), that is, V (pk, (m, i), σ) =YES.
3. Computes the sublist outV(Y) of most recent valid

strings, that is the elements m ◦ i ◦ σ of V(Y) such
that i ≥ i′ for every other element m′ ◦ i′ ◦ σ′ in
V(Y).

4. Outputs the string m if outV(Y) contains a single
element, of the form m ◦ i ◦ σ.
Outputs error if outV(Y) is empty or has more than
one element.

We refer to such CS as a public-key coding scheme with
underlying signature scheme S and list decodable code C.

C. Analysis of the Coding Scheme

We start by noticing that the rate of our code is indeed at
least R, as claimed.

Proposition 4.1: For every code C of rate R′ > R, and
signature scheme S, and for every ε < 1, the public-key
coding scheme CS , with underlying signature scheme S and
list-decodable code C, has rate R.

Proof: We need to verify that for sufficiently large k, the
length of the encoding of messages of length k is at most k/R.
For every k, the length of the encoding is n = (k+2kε)/R′. To
ensure this is at most k/R, we need k(1/R−1/R′) ≥ 2kε/R′

which holds if k1−ε ≥ 2R
R′−R , i.e., when k ≥

(
2R

R′−R

)1/(1−ε)
.

We now analyze the robustness of our public-key coding
scheme.

Lemma 4.2: Let S be a GMR-secure digital signature
scheme. Let C be a (ρ, L) efficiently list decodable code for
some polynomially growing function L(k). Then the public-
key coding scheme CS , with underlying signature scheme S
and list-decodable code C, is computationally secure against
an error-rate ρ.

Proof: We prove the lemma by contradiction. We assume
that the coding scheme CS is not secure against error rate ρ,
that is, that there exists a computationally bounded adversarial
channel C whose attack on CS is ρ-successful. We obtain the
desired contradiction by showing that this implies the existence

7

of a successful attacker A on the signature scheme S, so as to
violate S’s security assumption.

In essence, our proof consists of a reduction “from a
successful adversarial channel C to a successful attacker A for
the underlying signature scheme S.” The successful adversarial
channel C is assumed by hypothesis, while the successful
attacker A is constructed by us, using C as a subroutine.

Recall that, when attacking a signature scheme S, an at-
tacker is assumed to be given (1) a randomly generated public
key pk, and (2) access to a signer who signs any message of the
attacker’s choice relative to pk. The essence of our reduction
is that, on input pk, A attacks S by simulating an attack of the
channel Ck on CS . The difficulty of this approach is that, while
by hypothesis the attacker has access to the signer, the channel
presupposes a access to a sender, but there is no such a sender!
Therefore, it will be A’s responsibility to play the role of the
sender (and the counter maintained by the sender) so that the
channel’s attack can be faithfully reproduced. Our analysis will
then show that, if Ck’s attack on CS is ρ-successful, then A is
successful in forging a signature of a never-signed message.

Let us now give the details of how A operates.

HYPOTHESES

• The (ρ, L) efficient list decodable code is C = (E,LD);
• The signature scheme is S = (G,S, V);
• For a fixed parameter k, G has been run on input a

random `(k)-bit string s and has generated the pair of
matching keys (pk, sk);

• Attacker A is given input pk, oracle access to the signing
function S(sk, ·), and the subroutine Ck;

• Without loss of generality, the channel decides whether
to halt only at the end of a stage.

INITIALIZATION STAGE

Attacker A runs the channel on input pk. The channel
returns the first message-state pair (m1, ψ1) = Ck(pk). If the
channel halts, so does the attacker A. Else, A sets the counter
to 1 and proceeds to Stage 1.

STAGE i

At the start of the stage, the overall state information
consists of the current values of: (1) the counter, i, (2) the
message to be sent, mi, and (3) the channel state, ψi. The
channel Ck now expects the “sender” to provide the encoding
xi of mi. Accordingly, A asks for and receives the signature
σi = S(sk, (mi, i)), computes the encoding xi = E(k +
2`,mi ◦ i ◦ σi), and return xi to the channel. The channel
responds by computing (ri,mi+1, ψi+1) = Ck(ψi, xi), where
ri is the ith received string, mi+1 is the next message to be
transmitted, and ψi+1 is the next channel state. If the channel
halts, so does the attacker A. Else, A runs the receiver R on
input pk and the received word ri so as to compute:

(a) the list of strings Y ,
(b) the sublist of valid strings V(Y),
(c) the sublist of most recent valid strings outV(Y), and
(d) the final output —either error or a message m— and

decides whether to proceed to Stage i + 1 based on the
following cases (proven to be well defined in our analysis):

1. If δ(xi, ri) > ρ, that is if the fraction of errors introduced
by the channel exceeds the prescribed limit, then A sets
the counter to i+ 1 and proceeds to Stage i+ 1.

2. (Else) If R’s final output is mi, then A sets the counter
to i+ 1 and proceeds to Stage i+ 1.

3. (Else) If R’s final output is a message m different from
mi, then A outputs the message-signature pair ((m, j), σ)
such that m ◦ j ◦ σ ∈ outV(Y) and j > i, and HALTS.

4. (Else) If the final output is error, then A outputs
((m, j), σ) such that m ◦ j ◦ σ ∈ outV(Y) and either
j > i or (j = i) ∧ (m 6= mi), and HALTS.

ANALYSIS

Note that Cases 1—4 are exhaustive. Let us now prove that,
whenever the channel is ρ-successful, our attacker succeeds
in forging a signature of a never-signed message. We start
by noting that, if the channel is ρ-successful, then Cases 1
and 2 do not apply. In particular, this means that the fraction
of errors introduced by the channel in the received string ri,
relative to the encoding xi of the message mi, is less than ρ.
This implies that, when the receiver R lists decodes ri, the
list Y includes mi ◦ i ◦ σi, where σi = S(sk, (mi, i)) was
requested and obtained by the attacker A. Furthermore, since
σi is a valid signature of (m, i), the string mi ◦ i ◦ σi is also
included in the sublist V(Y). Let us thus analyze Cases 3 and
4 under this condition.

Assume that Case 3 applies. By the definition of R this
implies that the “most recent element” in the sublist V(Y) is
unique and of the form m◦ j ◦σ, where σ is a valid signature,
relative to the public key pk, of the pair (m, j). However,
since mi ◦ i◦σi is also included in V(Y), it follows that j > i
and thus, by construction of A, that the pair (m, j) was never
signed before. This implies that A’s output, ((m, j), σ), is a
forgery and that A’s attack on the signature scheme has been
successful.

Assume now that Case 4 applies. Since we are working
under the condition that V(Y) contains the string mi ◦ i ◦ σi,
this implies that there multiple “most recent validly signed
messages” in outV(Y), without loss of generality of the form
m1 ◦ j ◦σ1, m2 ◦ j ◦σ2, etc., where j ≥ i. We now distinguish
two sub-cases: j > i and j = i. In the first sub-case, A’s
output is of the form ((mt, j), σt), a forgery of a never-signed
message, because by construction A has only asked for the
signatures of pairs whose second coordinate is at most i. In the
second sub-case, there must exist a t such that mt 6= mi, and
thus A’s output is of the form ((mt, i), σt), again a successful
forgery, because by construction A only asks and receives the
signature of a single pair whose second coordinate is i.

In sum: (1) the attacker A is well defined; (2) A is efficient
because the additional computation it performs, relative to the
computation of the adversarial channel, is trivial; and (3) A’s
attack on the signature scheme S is successful whenever the
channel’s attack on the public key coding scheme CS is ρ-
successful.

This concludes the proof of our lemma.

Our main theorem, stated below, follows immediately from
Proposition 4.1 and Lemma 4.2.

8

Theorem 4.3: For every ε < 1, R′ > R, every GMR-
secure signature scheme S, and every (ρ, L)-efficiently list-
decodable code C of rate R′, the public-key coding scheme
CS = (G,S,R,Σ, ε, R), with underlying signature scheme S
and list-decodable code C, is computationally secure against
error rate ρ.

D. Concrete Instantiations

Here we instantiate our construction with concrete choices
of list-decodable codes, yielding robust coding schemes for a
variety of good parameter sets.

BINARY CODING SCHEMES.
To construct coding schemes over the binary alphabets

Σk = {0, 1} (for all k), we can use the poly-time con-
structible and efficiently list-decodable (concatenated) codes
of Guruswami and Sudan [GS00]. By concatenating Reed-
Solomon codes with inner codes of sufficiently large distance,
they construct codes that are efficiently list decodable under
e = (1

2 − γ) · n errors (for any constant γ > 0) that
have block length η = O(κ/γ8), i.e., the information rate
R = Ω(γ8). A more complicated construction that con-
catenates algebraic-geometry codes with the Hadamard code
yields information rate R = Ω(γ6 log 1

γ). Further work by
Guruswami et al [GHSZ02] gave codes of rate Ω(γ4) having
list size O(γ−2). Most recently, Guruswami and Rudra [GR08]
give codes of rate about Ω(γ3) with list size f(γ) for some
bounded function f correcting 1/2−γ fraction of errors. Any
of these can be used to get our result for the setting of the
binary channel.

CODING SCHEMES FOR LARGER ALPHABETS.
With the use of larger alphabets (whose sizes grow with κ),

we can list-decode under much larger numbers of errors.
The popular family of Reed-Solomon codes [RS60] was

shown by Sudan [Sud97], and later Guruswami and Su-
dan [GS99], to be efficiently list decodable under high error
rates. Specifically, there is a polynomial-time algorithm that
can find all codewords within distance η−√ηκ = (1−

√
R)η

of any word. The number of words in the list is at most η2,
and the alphabet size is |Σκ| ≈ η.

The recent construction by Guruswami and Rudra [GR08]
of Folded Reed-Solomon codes admits list-decoding algo-
rithms with even better performance, correcting from (1 −
R − γ)η errors for any γ > 0. These codes are called
“capacity-achieving,” because the relationship between their
list-decoding radius and information rate is (essentially) opti-
mal.

V. CONCLUSIONS

Modeling channels as adversaries, as opposed to benign
probabilistic processes, is obviously a safer choice. But such
safety comes at a price: namely, the loss of information
transmission rate. Realistically however, adversaries, physical
processes and channels included, cannot be computationally
unbounded. And once we realize this, we can actually leverage
the power of cryptography to ensure that we can adopt the safe
choice without degrading our information transmission rate.

REFERENCES

[BM92] Mihir Bellare and Silvio Micali. How to sign given any trapdoor
permutation. J. ACM, 39(1):214–233, 1992.

[DGL06] Yan Ding, Parikshit Gopalan, and Richard J. Lipton. Error cor-
rection against computationally bounded adversaries. Manuscript
submitted to Theory of Computing Systems.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory, IT-
22(6):644–654, November 1976.

[Eli57] Peter Elias. List decoding for noisy channels. In Wescon
Convention Record, Part 2, Institute of Radio Engineers (now
IEEE), pages 94–104, 1957.

[GHSZ02] Venkatesan Guruswami, Johan Håstad, Madhu Sudan, and David
Zuckerman. Combinatorial bounds for list decoding. IEEE
Transactions on Information Theory, 48(5):1021–1034, 2002.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A
digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving
list decoding capacity: Error-correction with optimal redundancy.
IEEE Transactions on Information Theory, 54(1):135–150, 2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of
reed-solomon and algebraic-geometry codes. IEEE Transactions
on Information Theory, 45(6):1757–1767, 1999.

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algo-
rithms for certain concatenated codes. In STOC, pages 181–190,
2000.

[Gur03] Venkatesan Guruswami. List decoding with side information.
In IEEE Conference on Computational Complexity, pages 300–,
2003.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 29:147–160, 1950.

[Lan04] Michael Langberg. Private codes or succinct random codes that
are (almost) perfect. In FOCS, pages 325–334, 2004.

[Lip94] Richard J. Lipton. A new approach to information theory. In
STACS, pages 699–708, 1994.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson.
Optimal error correction against computationally bounded noise.
In TCC, pages 1–16, 2005.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions
and their cryptographic applications. In STOC, pages 33–43,
1989.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond
the guruswami-sudan radius in polynomial time. In Proc. FOCS,
pages 285–294. IEEE Computer Society, 2005.

[Plo60] Morris Plotkin. Binary codes with specified minimum distance.
IRE Transactions on Information Theory, 6:445–450, September
1960.

[Rom90] John Rompel. One-way functions are necessary and sufficient
for secure signatures. In STOC, pages 387–394, 1990.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. J. SIAM, 8(2):300–304, June 1960.

[Sha48] Claude E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379–423, July 1948.

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the
error-correction bound. J. Complexity, 13(1):180–193, 1997.

[Woz58] J. M. Wozencraft. List decoding. Quarterly Progress Report,
Research Laboratory of Electronics, MIT, 48:90–95, 1958.

Silvio Micali is the Dugald Jackson Professor of EECS at MIT. He recevied
his Ph.D. from the University of California at Berkeley in 1983. His research
interests are in the theory of computation, cryptography, and mechanism
design.

Chris Peikert is an Assistant Professor in the School of Computer Science
at Georgia Tech. He received his Ph.D. from MIT in 2006. His main area
of research is cryptography, and specifically its interaction with lattices and
error-correcting codes.

9

Madhu Sudan is the Fujitsu Professor of EECS at MIT and a Principal
Researcher at Microsoft Research New England. He received his Ph.D. from
the University of California at Berkeley in 1992. His research interests are in
the theory of computation and communication.

David A. Wilson is currently pursuing a PhD in Computer Science at MIT.
His primary research area is cryptography, though he also works in algorithms,
data structures, and automata theory.

