SIAM J. COMPUT. (© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2305-2328

EXTENSIONS TO THE METHOD OF MULTIPLICITIES, WITH
APPLICATIONS TO KAKEYA SETS AND MERGERS*

ZEEV DVIR, SWASTIK KOPPARTY?, SHUBHANGI SARAFf, AND MADHU SUDAN%

Abstract. We extend the “method of multiplicities” to get the following results, of interest
in combinatorics and randomness extraction. (i) We show that every Kakeya set in Fy, the n-
dimensional vector space over the finite field on ¢ elements, must be of size at least ¢"/2™. This
bound is tight to within a 2 4 o(1) factor for every n as ¢ — oo. (ii) We give improved “randomness
mergers”: Mergers are seeded functions that take as input £ (possibly correlated) random variables in
{0,1}" and a short random seed and output a single random variable in {0,1}V that is statistically
close to having entropy (1—9)- N when one of the £ input variables is distributed uniformly. The seed
we require is only (1/6) - log ¢-bits long, which significantly improves upon previous construction of
mergers. (iii) We give improved randomness extractors, based on our improved mergers. Specifically,
we show how to construct randomness extractors that use logarithmic length seeds while extracting
1 — o(1) fraction of the min-entropy of the source. Previous results could extract only a constant
fraction of the entropy while maintaining logarithmic seed length. The “method of multiplicitie” was
used in prior work to analyze combinatorial parameters of “algebraically nice” subsets of vector spaces
over finite fields. The method works by constructing somewhat low-degree interpolating polynomials
that vanish on every point in the subset with high multiplicity. The typical use of this method
involves using the “algebraic niceness” to show that the interpolating polynomial also vanishes on
some points outside the subset. It then uses simple bounds on the number of zeroes of low-degree
polynomials to bound the combinatorial parameter of interest. Our augmentation to this technique
is that we prove, under appropriate conditions, that the interpolating polynomial vanishes with high
multiplicity outside the set. This novelty leads to significantly tighter analyses. To develop the
extended method of multiplicities, we provide a number of basic technical results about multiplicity
of zeroes of polynomials that may be of general use. For instance, we strengthen the Schwartz—Zippel
lemma to show that the expected multiplicity of zeroes of a nonzero degree d polynomial at a random
point in S™, for any finite subset S of the underlying field, is at most d/|S| (a fact that does not
seem to have been noticed in the CS literature before).

Key words. finite fields, list-decoding, polynomial method, randomness extraction
AMS subject classifications. 68Q01, 51E99

DOI. 10.1137/100783704

1. Introduction. The goal of this paper is to improve on an algebraic method
that has lately been applied, quite effectively, to analyze combinatorial parameters
of subsets of vector spaces that satisfy some given algebraic/geometric conditions.
This technique, which we refer to as as the polynomial method (of combinatorics),
proceeds in three steps: Given a subset K satisfying the algebraic conditions, one
first constructs a nonzero low-degree polynomial that vanishes on K. Next, one uses
the algebraic conditions on K to show that the polynomial vanishes at other points
outside K as well. Finally, one uses the fact that the polynomial is zero too often to
derive bounds on the combinatorial parameters of interest. The polynomial method
has seen utility in the computer science literature in works on “list-decoding” starting
with Sudan [17] and subsequent works. Recently the method has been applied to

*Received by the editors January 22, 2010; accepted for publication (in revised form) August 19,

2011; published electronically December 17, 2013.
http://www.siam.org/journals/sicomp/42-6/78370.html

TInstitute for Advanced Study, Princeton University, Princeton, NJ 08540 (zeev.dvir@gmail.com).
This author’s research was partially supported by NSF grant CCF-0832797 (expeditions in computing
grant) and by NSF grant DMS-0835373 (pseudorandomness grant).

FCSAIL, MIT, Cambridge, MA 02139 (swastik@mit.edu, shibs@mit.edu, madhu@mit.edu). The
research of these authors was supported in part by NSF award CCF 0829672.

2305

2306 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

analyze “extractors” by Guruswami, Umans, and Vadhan [7]. Most relevant to this
current paper are its applications to lower bound the cardinality of “Kakeya sets” by
Dvir [2], and the subsequent constructions of “mergers” and “extractors” by Dvir and
Wigderson [4]. (We will elaborate on some of these results shortly.)

The method of multiplicities, as we term it, may be considered an extension of
this method. In this extension one constructs polynomials that vanish with high
multiplicity on the subset K. This requirement often forces one to use polynomials
of higher degree than in the polynomial method, but it gains in the second step by
using the high multiplicity of zeroes to conclude “more easily” that the polynomial
is zero at other points. This typically leads to a tighter analysis of the combinatorial
parameters of interest. This method has been applied widely in list-decoding starting
with the work of Guruswami and Sudan [6] and continuing through many subsequent
works, most significantly in the works of Parvaresh and Vardy [10] and Guruswami
and Rudra [5], leading to rate-optimal list-decodable codes. Very recently this method
was also applied to improve the lower bounds on the size of “Kakeya sets” by Saraf
and Sudan [14].

The main contribution of this paper is an extension to this method that we call
the extended method of multiplicities, which develops this method (hopefully) fully
to derive even tighter bounds on the combinatorial parameters. In our extension, we
start, as in the method of multiplicities, to construct a polynomial that vanishes with
high multiplicity on every point of K. But then we extend the second step where
we exploit the algebraic conditions to show that the polynomial vanishes with high
multiplicity on some points outside K as well. Finally we extend the third step to
show that this gives better bounds on the combinatorial parameters of interest.

By these extensions we derive nearly optimal lower bounds on the size of Kakeya
sets and qualitatively improved analysis of mergers leading to new extractor construc-
tions. We also rederive algebraically a known bound on the list size in the list-decoding
of Reed—Solomon codes. We describe these contributions in detail next, before going
on to describe some of the technical observations used to derive the extended method
of multiplicities (which we believe are of independent interest).

1.1. Kakeya sets over finite fields. Let F, denote the finite field of cardinality
q. A set K CFy is said to be a Kakeya set if it “contains a line in every direction.”
In other words, for every “direction” b € [y, there should exist an “offset” a € Fy
such that the “line” through a in direction b, i.e., the set {a+tb|t € F,}, is contained
in K. A question of interest in combinatorics/algebra/geometry, posed originally
by Wolff [21], is “What is the size of the smallest Kakeya set, for a given choice of
q and n?”

The trivial upper bound on the size of a Kakeya set is ¢", and this can be improved

to roughly z=rq". (Precisely, the bound is 5trq™ + O(q"™1); see [14] for a proof

o7
of this bound due to Dvir.) An almost trivial lower bound is g2 (Every Kakeya
set “contains” at least ¢" lines, but there are at most |K|? lines that intersect K at
least twice.) Until recently even the exponent of ¢ was not known precisely (see [2] for
details of work prior to 2008). This changed with the result of [2] (combined with an
observation of Alon and Tao), which showed that for every n, |K| > ¢,q", for some
constant ¢, depending only on n.

Subsequently the work [14] explored the growth of the constant ¢, as a function
of n. The result of [2] shows that ¢, > 1/n!, and [14] improves this bound to show
that ¢, > 1/(2.6)™. This still leaves a gap between the upper bound, and the lower
bound, and we effectively close this gap.

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2307

THEOREM 1.1. If K is a Kakeya set in Fy, then |K|> =q".
Note that our bound is tight to within a 2 + o(1) multiplicative factor as long as
g = w(2") and in particular when n = O(1) and ¢ — oo.

1.2. Randomness mergers and extractors. A general quest in the computa-
tional study of randomness is the search for simple primitives that manipulate random
variables to convert their randomness into more useful forms. The exact notion of
utility varies with applications. The most common notion is that of “extractors” that
produce an output variable that is distributed statistically close to uniformly on the
range. Other notions of interest include “condensers,” “dispersers,” etc. One such
object of study (partly because it is useful to construct extractors) is a “random-
ness merger.” A randomness merger takes as input A random variables Ay, ... Ay,
which are possibly correlated, along with a short uniformly random seed B, which is
independent of Aq,...,Ax, and “merges” the randomness of Ay,...,Ax. Specifically
the output of the merger should be statistically close to a high-entropy-rate source of
randomness provided that at least one of the input variables Ay, ..., Ay is uniform.

Mergers were first introduced by Ta-Shma [18] in the context of explicit construc-
tions of extractors. A general framework was given in [18] that reduces the problem
of constructing good extractors into that of constructing good mergers. Subsequently,
in [9], mergers were used in a more complicated manner to create extractors which
were optimal to within constant factors. The mergers of [9] had a very simple algebraic
structure: the output of the merger was a random linear combination of the blocks
over a finite vector space. The [9] merger analysis was improved in [3] by using the
connection to the finite field Kakeya problem and the (then) state of the art results
on Kakeya sets.

The new technique in [2] inspired Dvir and Wigderson [4] to give a very simple,
algebraic, construction of a merger which can be viewed as a derandomized version of
the [9] merger. They associate the domain of each random variable A; with a vector
space Fy. With the A-tuple of random variables Aj,. .., Aj, they associate a curve
C:Fy — Fy of degree < A which “passes” through all the points Ay, ..., Ax (that is,
the image of C' contains these points). They then select a random point u € Fy and
output C(u) as the “merged” output. They show that if ¢ > poly(A - n), then the
output of the merger is statistically close to a distribution of entropy rate arbitrarily
close to 1 on Fy.

While the polynomial (or at least linear) dependence of ¢ on A is essential to the
construction above, the requirement ¢ > poly(n) appears only in the analysis. In our
work we remove this restriction to show the following theorem.

INFORMAL THEOREM (merger). For every A, q the output of the Dvir-Wigderson
merger is close to a source of entropy rate 1 —log, A. In particular, there exists an
explicit merger for A sources (of arbitrary length) that outputs a source with entropy
rate 1 — § and has seed length (1/6) -log(A/e) for any error e.

The above theorem (in its more formal form given in Theorem 5.3) allows us to
merge A sources using seed length which is only logarithmic in the number of sources
and has no dependence on the length of each source. Earlier constructions of mergers
required the seed to depend either linearly on the number of blocks [9, 22] or to depend
also on the length of each block [4].1

One consequence of our improved merger construction is an improved construc-

IThe result we refer to in [22, Theorem 5.1] is actually a condenser (which is stronger than a
merger).

2308 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

tion of extractors. Recall that a (k,€)-extractor E : {0,1}" x {0,1}¢ — {0,1}™ is
a deterministic function that takes any random variable X with min-entropy at least
k over {0,1}" and an independent uniformly distributed seed Y € {0,1}? and con-
verts it to the random variable F(X,Y) that is e-close in statistical distance to a
uniformly distributed random variable over {0,1}"™. Such an extractor is efficient if
E is polynomial time computable.

A diverse collection of efficient extractors are known in the literature (see the sur-
vey [15] and the more recent [7, 4] for references), and many applications have been
found for explicit extractors in various research areas spanning theoretical computer
science. Yet all previous constructions lost a linear fraction of the min-entropy of the
source (i.e., achieved m = (1 — €)k for some constant e > 0) or used superlogarith-
mic seed length (d = w(logn)). We show that our merger construction yields, by
combining with several of the prior tools in the arsenal of extractor constructions, an
extractor which extracts a 1 — m fraction of the min-entropy of the source while
still using O(logn)-length seeds. We now state our extractor result in an informal
way (see Theorem 6.3 for the formal statement).

INFORMAL THEOREM (extractor). There exists an explicit (k,€)-extractor for
all min-entropies k with O(logn) seed, entropy loss O(k/polylog(n)), and error e =
1/polylog(n), where the powers in the polylog(n) can be arbitrarily high constants.

As seen in the above theorem, our extractors can handle error which is only poly-
logarithmic. For smaller values of € there are better constructions of extractors (e.g.,
those of [7]).

1.3. List-decoding of Reed—Solomon codes. The problem of list-decoding
Reed—Solomon codes is the following: Given a sequence of points

(1,B1),-- -, (an, Bn) € Fq x Fg,

and parameters k and ¢, find the list of all polynomials p1,...,pr of degree at most
k that agree with the given set of points on ¢ locations; i.e., for every j € {1,...,L}
the set {i|pj(cu) = B;} has at least ¢ elements. The associated combinatorial problem
is “How large can the list size, L, be for a given choice of k,t,n,q (when maximized
over all possible sets of distinct input points)?”

A somewhat nonstandard, yet reasonable, interpretation of the list-decoding al-
gorithms of [17, 6] is that they give algebraic proofs, by the polynomial method and
the method of multiplicities, of known combinatorial upper bounds on the list size,
when t > v/kn. Their proofs also happen to be algorithmic and so lead to algorithms
to find a list of all such polynomials.

However, the bound given on the list size in the above works does not match the
best known combinatorial bound. The best known bound to date seems to be that
of Cassuto and Bruck [1], who show that, letting R = k/n and v = t/n, if 2 > R,
then the list size L is bounded by O(,YQL_R) (in contrast, the Johnson bound and the

analysis of [6] gives a list size bound of O(ﬁ), which is asymptotically worse for,

say, 7 = (1 + O(1))V/R and R tending to 0). In Theorem 7.2 we recover the bound
of [1] using our extended method of multiplicities.

1.4. Technique: Extended method of multiplicities. The common insight
to all the above improvements is that the extended method of multiplicities can be
applied to each problem to improve the parameters. Here we attempt to describe the
technical novelties in the development of the extended method of multiplicities.

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2309

For concreteness, let us take the case of the Kakeya set problem. Given a set K C
[y, the method first finds a nonzero polynomial P € F, [X1,...,X,] that vanishes with
high multiplicity m on each point of K. The next step is to prove that P vanishes
with fairly high multiplicity ¢ at every point in Fy as well. This step turns out to be
somewhat subtle (and is evidenced by the fact that the exact relationship between
m and £ is not simple). Our analysis here crucially uses the fact that the (Hasse)
derivatives of the polynomial P, which are central to the notion of multiplicity of
roots, are themselves polynomials, and also vanish with high multiplicity at points in
K. This fact does not seem to have been needed/used in prior works and is central
to ours.

A second important technical novelty arises in the final step of the method of
multiplicities, where we need to conclude that if the degree of P is “small,” then P
must be identically zero. Unfortunately, in our application, the degree of P may be
much larger than ¢ (or ng, or even ¢™). To prove that it is identically zero, we need
to use the fact that P vanishes with high multiplicity at every point in Fy, and this
requires some multiplicity enhanced version of the standard Schwartz—Zippel lemma.
We prove such a strengthening, showing that the expected multiplicity of zeroes of
a degree d polynomial (even when d > ¢) at a random point in Fy is at most d/q
(see Lemma 2.7). Using this lemma, we are able to derive much better benefits
from the “polynomial method.” Indeed, we feel that this allows us to go beyond the
limitations of the function space mapping Fy to I, and capitalize on the full power
of the polynomial ring F,[X].

Putting these ingredients together, the analysis of the Kakeya sets follows easily.
The analysis of the mergers follows a similar path and may be viewed as a “statistical”
extension of the Kakeya set analysis to “curve” based sets; i.e., here we consider sets
S that have the property that, for a noticeable fraction of points x € Fy, there exists
a low-degree curve passing through x that has a noticeable fraction of its points in
S. We prove that such sets must also be large, and this leads to the analysis of the
Dvir-Wigderson merger.

Organization of this paper. In section 2 we define the notion of the multiplicity
of the roots of a polynomial, using the notion of the Hasse derivative. We present
some basic facts about multiplicities and Hasse derivatives, and we also present the
multiplicity-based version of the Schwartz—Zippel lemma. In section 3 we present our
lower bounds for Kakeya sets. In section 4 we extend this analysis for “curves” and for
“statistical” versions of the Kakeya property. This leads to our analysis of the Dvir—
Wigderson merger in section 5. We then show how to use our mergers to construct
the novel extractors in section 6. Finally, in section 7, we include the algebraic proof
of the list size bounds for the list-decoding of Reed—Solomon codes.

2. Preliminaries. In this section we formally define the notion of “multiplicity
of zeroes” along with the companion notion of the “Hasse derivative.” We also de-
scribe basic properties of these notions, concluding with the proof of the “multiplicity
enhanced version” of the Schwartz—Zippel lemma.

2.1. Basic definitions. We start with some notation. We use [n] to denote the
set {1,...,n}. For a vector i = (iy,...,1,) of nonnegative integers, its weight, denoted
wt(i), equals 37, 7.

Let F be any field, and let F, denote the finite field of ¢ elements. For X =
(X1,...,Xn), let F[X] be the ring of polynomials in X3, ..., X, with coefficients in
F. For a polynomial P(X), we let Hp(X) denote the homogeneous part of P(X) of
highest total degree. Specifically, if P(X) is a polynomial of degree d, then Hp(X)

2310 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

is the homogeneous degree d polynomial such that P(X) — Hp(X) has degree less
than d.

For a vector of nonnegative integers i = (i1,...,4,), let X! denote the monomial
H?:l X;j € F[X]. Note that the (total) degree of this monomial equals wt(i). For
n-tuples of nonnegative integers i and j, we use the notation

6)-1C)

Note that the coefficient of Z'W*~ in the expansion of (Z + W)* equals (}).
DEFINITION 2.1 ((Hasse) derivative). For P(X) € F[X] and nonnegative vector
i, the ith (Hasse) derivative of P, denoted PW(X), is the coefficient of Z! in the

polynomial P(X,Z) 2 P(X + Z) € F[X, Z].
Thus,
(2.1) PX+2Z)=> PYUX)Z.

We are now ready to define the notion of the (zero-)multiplicity of a polynomial
at any given point.

DEFINITION 2.2 (multiplicity). For P(X) € F[X] and a € F", the multiplicity
of P at a € F™, denoted mult(P,a), is the largest integer M such that for every
nonnegative vector i with wt(i) < M, we have PW(a) = 0 (if M may be taken
arbitrarily large, we set mult(P,a) = co).

Note that mult(P,a) > 0 for every a. Also, P(a) = 0 if and only if mult(P,a) > 1.
We also note that the condition P)(a) = 0 imposes a homogeneous linear constraint
on the coefficients of P(X) (for every a € F). A consequence that we will use often
later is the condition that mult(P,a) > M imposes at most (**"~!) homogeneous
linear constraints on the coefficients of P(X), one such constraint corresponding to
each vector i of weight less than M.

The above notation and definitions also extend naturally to a tuple P(X) =
(P1(X),..., Pn(X)) of polynomials with P() € F[X]™ denoting the vector

(P, (Pn) D).

In particular, we define mult(P, a) = min ¢, {mult(P;,a)}.

The definition of multiplicity above is similar to the standard (analytic) definition
of multiplicity with the difference that the standard partial derivative has been re-
placed by the Hasse derivative. The Hasse derivative is also a reasonably well-studied
quantity (see, for example, [8, pp. 144-155]) and seems to have first appeared in the
CS literature (without being explicitly referred to by this name) by way of the work
of Guruswami and Sudan [6]. It typically behaves like the standard derivative, but
with some key differences that make it more useful/informative over finite fields. For
completeness we review basic properties of the Hasse derivative and multiplicity in
the following subsections.

2.2. Properties of Hasse derivatives. The following proposition lists basic
properties of the Hasse derivatives. Parts (1)—(3) below are the same as for the usual
derivative, while part (4) is not! Part (4) considers the derivatives of the derivatives
of a polynomial and shows a different relationship than is standard for the analytic
derivative. However it does show that the jth derivative of the ith derivative is zero

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2311

if (though not necessarily only if) the (i 4 j)th derivative is zero, and this is critical
for our purposes.

PROPOSITION 2.3 (basic properties of derivatives). Let P(X), Q(X) € F[X] and
let i, j be vectors of nonnegative integers. Then,

1. PO(X) +QU(X) = (P +Q))(X).

2. If P(X) is homogeneous of degree d, then either PM(X) is homogeneous of
degree d — wt(i) or PW(X) = 0.

3. Bither (Hp)®(X) = Hpw (X) or (Hp)D(X) = 0.

4. (PO (X) = (H3) pi+i) ().

Proof. Ttem 1 follows immediately from (2.1).

For item 2, observe that if P(X) is homogeneous of degree d, then so is P(X+Z).
Thus by (2.1), P%(X)Z! must be either homogeneous of degree d or 0. Hence P4 (X)
is either homogeneous of degree d — wt(i) or 0.

For item 3, let P(X) = Hp(X) + Q(X), where P(X) is of degree d, Hp(X) is
homogeneous of degree d, and Q(X) is of degree < d. By item 1, (Hp)V(X) =
PO(X) - QW(X). By item 2, if (Hp)®W (X) is nonzero, then it must be homogeneous
of degree d — wt(i). Hence PH(X) — QW(X) is homogeneous of degree d — wt(i),
implying that PO (X) — QW(X) = Hpw _gw (X). Since by item 2, the degree of QW
is strictly less than d — wt(i), it must be that Hpw _ga) (X) = Hpw (X), and item 3
follows.

For item 4, we expand P(X 4+ Z + W) in two ways. First expand

P(X +(Z+W)) ZP(“) NWZ + W)k

=> Z PR(X <)ZJW‘

k i+j=
_ Z P(1+J < >ZJW1
On the other hand, we may write

P(X+2Z)+ W)=Y POX+Z)W ZZ() X)ZI Wi

Comparing coefficients of ZYW?! on both sides, we get the result. 0O

2.3. Properties of multiplicities. We now translate some of the properties of
the Hasse derivative into properties of the multiplicities.

LEMMA 2.4 (basic properties of multiplicities). If P(X) € F[X] and a € F" are
such that mult(P,a) = m, then mult(P® a) > m — wt(i).

Proof. By assumption, for any k with wt(k) < m, we have P®)(a) = 0. Now
take any j such that wt(j) < m — wt(i). By item 4 of Proposition 2.3, (PM)0)(a) =
(1) P+ (a). Since wt(i + j) = wt(i) + wt(j) < m, we deduce that (P1)@(a) = 0.
Thus mult(P®, a) > m — wt(i). O

We now discuss the behavior of multiplicities under composition of polynomial
tuples. Let X = (X3,...,X,) and Y = (Y1,...,Y;) be formal variables. Let
P(X) = (P{(X), ... Pa(X)) € FIX]™ and Q(Y) = (Qu(Y),...,Qu(Y)) € F[Y]",
We define the composition polynomial P o Q(Y) € F[Y]|™ to be the polynomial
P(Q1(Y),...,Q,(Y)). In this situation we have the following proposition.

2312 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

PROPOSITION 2.5. Let P(X), Q(Y) be as above. Then for any a € F¥,
mult(P o Q,a) > mult(P, Q(a)) - mult(Q — Q(a), a).
In particular, since mult(Q — Q(a),a) > 1, we have mult(P o Q,a) > mult(P, Q(a)).
Proof. Let my = mult(P, Q(a)) and mg = mult(Q — Q(a),a). Clearly mo > 0. If

mq = 0, then the result is obvious. Now assume that m; > 0 (so that P(Q(a)) = 0).
Then we see that

P(Qa+2) =P [Q)+ Y. QV(@)z
i£0

=P | Qa)+ Z QW (a)z! (since mult(Q — Q(a),a) = mqy > 0)

wt(i)>mo
=P (Q(a) + h(Z)) (where 1(Z) = 35y m, QM (R)Z)
=P(Q(a) + > _PY(Q(a))n(Z)

J#0
= > PY(Qa)n(z) (since mult(P, Q(a)) = m; > 0).

wt(j)>mq

Thus, since each monomial Z' appearing in h has wt(i) > ms, and since each occur-
rence of h(Z) in P(Q(a + Z)) is raised to the power j, with wt(j) > m1, we conclude
that P(Q(a+Z)) is of the form Y= 40>, .m, ckZ*. This shows that (PoQ)™ (a) =0
for each k with wt(k) < mq - mo, and the result follows. a

COROLLARY 2.6. Let P(X) € F[X], where X = (X1,...,X,). Let a,b € F™.
Let Py p(T') be the polynomial P(a+ T -b) € F[T]. Then for any t € F,

mult(Py p,t) > mult(P,a+1t-b).

Proof. Let Q(T) = a+ Tb € F[T]". Applying the previous proposition to P(X)
and Q(T"), we get the desired claim. O

2.4. Strengthening of the Schwartz—Zippel lemma. We are now ready to
state and prove the strengthening of the Schwartz—Zippel lemma. In the standard
form, this lemma states that the probability that P(a) = 0 when a is drawn uniformly
at random from S™ is at most d/|S|, where P is a nonzero degree d polynomial and
S C F is a finite set. Using min{l, mult(P,a)} as the indicator variable that is
1 if P(a) = 0, this lemma can be restated as saying), g» min{l, mult(P,a)} <
d-|S|"~1. Our version below strengthens this lemma by replacing min{1, mult(P,a)}
with mult(P,a) in this inequality.

LEMMA 2.7. Let P € F[X] be an n-variate nonzero polynomial of total degree at
most d. Then for any finite S C T,

> mult(Pa) < d-|S|"1

acsSn

Proof. We prove it by induction on n.
For the base case when n = 1, we first show that if mult(P, a) = m, then (X —a)™
divides P(X). To see this, note that by the definition of multiplicity, we have that

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2313

Pla+2Z) =3, PY(a)Z! and P (a) = 0 for all i < m. We conclude that Z™ divides
P(a + Z), and thus (X — a)™ divides P(X). It follows that) .qmult(P,a) is at
most the degree of P.

Now suppose that n > 1. Let

t
P(Xy,...,Xn) =Y _ Pi(X1,..., Xp 1)X},
7=0
where 0 <t <d, P,(X1,...,Xn-1) #0, and deg(P;) < d —j.
For any ai,...,an—1 € S, let mq,.. a0, , = mult(P;, (a1,...,an—1)). We will

show that

(2.2) > mult(P, (a1, .., an)) < May,.. a0y - |S] + 1.

an €S

Given this, we may then bound

Do mult(P(aran) < DT Mayan S| [S

a1,y...,an €S A1 yeeey@n—1ES

By the induction hypothesis applied to P;, we know that

Y Maan, S deg(P) - |S"F < (d 1) -S|

Q1,...,an—1€S

This implies the result.

We now prove (2.2). Fix al,...,an_l € S and let i = (41,...,4,—1) be such
that wt(i) = mq,,. 4, _, and P (Xl, ..., Xp1) # 0. Letting (i,0) denote the vector
(i1,-.+,%n-1,0), we note that

t
POO(Xy, LX) =Y PO(Xy, ., Xp1) X,

and hence P19 is a nonzero polynomial.
Now by Lemma 2.4 and Corollary 2.6 (applied on the line through (a1, ..., a,—1,0)
in direction (0,...,0,a,)), we know that

mult(P(X1,...,Xn), (a1,...,a,)) < wt(i,0) + mult(PEO(Xy, ..., X)), (a1,...,a,))
S May,....an_1 + mult(P(i7O) (CLl, ceey,Qp—1, Xn)a an)~

Summing this up over all a,, € S, and applying the n = 1 case of this lemma to the
nonzero univariate degree-t polynomial P39 (ay, ..., an_1,X,), we get (2.2). This
completes the proof of the lemma. d

The following corollary simply states the above lemma in contrapositive form,
with § = F,.

COROLLARY 2.8. Let P € F,[X] be a polynomial of total degree at most d. If
ZaeJFg mult(P,a) > d-¢q" !, then P(X) = 0.

2314 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

3. A lower bound on the size of Kakeya sets. We now give a lower bound
on the size of Kakeya sets in Fy. We implement the plan described in section 1.
Specifically, in Proposition 3.1, we show that we can find a somewhat low-degree
nonzero polynomial that vanishes with high multiplicity on any given Kakeya set,
where the degree of the polynomial grows with the size of the set. Next, in Claim 3.3,
we show that the homogeneous part of this polynomial vanishes with fairly high
multiplicity everywhere in Fy. Using the strengthened Schwartz-Zippel lemma, we
conclude that the homogeneous polynomial is identically zero if the Kakeya set is
too small, leading to the desired contradiction. The resulting lower bound (slightly
stronger than Theorem 1.1) is given in Theorem 3.2.

PropPOSITION 3.1. Given a set K C F™ and nonnegative integers m,d such that

-1
(m—l—n).|K|<<d—|—n)’
n n

there exists a nonzero polynomial P = P, x € F[X] of total degree at most d such
that mult(P,a) > m for every a € K.

Proof. The number of possible monomials in P is (*I™). Hence there are (*1")
degrees of freedom in the choice for the coefficients for these monomials. For a given
point a, the condition that mult(P,a) > m imposes (m+"71) homogeneous linear
constraints on the coefficients of P. Since the total number of (homogeneous) linear
constraints is (" 7!) - |K|, which is strictly less than the number of unknowns, there
is a nontrivial solution. 0

THEOREM 3.2. If K CFy is a Kakeya set, then |K| > (2_;’1”)71.

Proof. Let £ be a large multiple of ¢ and let

m=20—1{/q,
d={qg—1.

These three parameters (¢, m, and d) will be used as follows: d will be the bound on
the degree of a polynomial P which vanishes on K, m will be the multiplicity of the
zeroes of P on K, and ¢ will be the multiplicity of the zeroes of the homogeneous part
of P, which we will deduce by restricting P to lines passing through K.

Note that by the choices above we have d < £q and (m —¢)q > d—{. A particular
form we will use later is that (m — w)q > d — w for every w < ¢ (using ¢ > 1). We
prove below that

d+n

Wherea%ﬁasﬂﬁoo.
d+n

Assume for contradiction that |K| < % Then, by Proposition 3.1, there
exist d* < d and a nonzero polynomial P(X) € F[X] of total degree exactly d* such
that mult(P,x) > m for every x € K. Note that d* > ¢ since d* > m (since P is
nonzero and vanishes to multiplicity > m at some point), and m > £ by our choice of
m. Let Hp(X) be the homogeneous part of P(X) of degree d*. Note that Hp(X) is
nonzero. The following claim shows that Hp vanishes to multiplicity ¢ at each point
of F.

q

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2315

CrAam 3.3. For each b € Fy,
mult(Hp,b) > ¢.

Proof. Fix i with wt(i) = w < ¢ — 1. Let Q(X) = P®(X). Let d’ be the degree
of the polynomial Q(X), and note that d’ < d* — w.

Let a = a(b) be such that {a + tb|t € F,} C K. Then for all t € F,, by
Lemma 2.4, mult(Q,a + tb) > m — w. Since w < ¢ —1and (m—2¥¢)-q > d* — ¥, we
get that (m —w) -¢>d* —w > d'.

Let Qa,b(T) be the polynomial Q(a+Tb) € Fy[T]. Then Qan(T) is a univariate
polynomial of degree at most d’, and by Corollary 2.6, it vanishes at each point of F,
with multiplicity m — w. Since

(m—w)-q¢>d —w>deg(Qan(T)),

we conclude that Qap(T) = 0. Hence the coefficient of T% in Qap(T) is 0. Let Hg
be the homogeneous component of @) of highest degree. Observe that the coefficient
of T% in Qau(T) is Ho(b). Hence Hg(b) = 0.

Now, if (Hp)®(X) = 0, then (Hp)®?(b) = 0. Else Ho(X) = (Hp)D(X) (by
item 3 of Proposition 2.3), and hence, as before, (Hp)®(b) = Hg(b) = 0. Since this
is true for all i of weight at most ¢ — 1, we have that mult(Hp,b) > £. O

Applying Corollary 2.8, and noting that £g" > d*q" !, we conclude that Hp(X) =
0. This contradicts the fact that P(X) is a nonzero polynomial.

Hence,

K| > (77(1?7:)1)

n

Now, by our choice of d and m,

(™) (‘0 TIR (g —1+1)

(ernfl) - (2@4/2+n71) - H?:l 20— 0/q—1+ Z)

n

Since this is true for all ¢ such that ¢ is a multiple of ¢, we get that

= Zh*rg"l»f[l (2—(]17;1117;&/1) B (2_q1/q)n' H

4. Statistical Kakeya for curves. Next we extend the results of the previous
section to a form conducive to analyzing the mergers of Dvir and Wigderson [4]. The
extension changes two aspects of the consideration in Kakeya sets, which we refer to
as “statistical” and “curves.” We describe these terms below.

In the setting of Kakeya sets, we were given a set K such that for every direction,
there was a line in that direction such that every point on the line was contained in
K. In the statistical setting we replace both occurrences of the “every” quantifier
with a weaker “for many” quantifier. So we consider sets that satisfy the condition
that for many directions, there exists a line in that direction intersecting K at many
points.

A second change we make is that we now consider curves of higher degree and
not just lines. We also do not consider curves in various directions, but rather curves

2316 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

passing through a given set of special points. We start with formalizing the terms
“curves,” “degree,” and “passing through a given point.”

A curve of degree A in Iy is a tuple of polynomials C'(X) = (C1(X),...,Cy(X)) €
F,[X]™ such that max;cp,) deg(C;(X)) = A. A curve C naturally defines a map from
Fy to Fy. For x € Fy, we say that a curve C' passes through x if there is a t € Fy such
that C(t) = x.

We now state and prove our statistical version of the Kakeya theorem for curves.

THEOREM 4.1 (statistical Kakeya for curves). Let A > 0, n > 0. Let A > 0 be
an integer such that ng > A. Let S CFy be an arbitrary set satisfying |S| = Ag™. Let
K C Ty be such that for each x € S, there exists a curve Cx of degree at most A that
passes through x and intersects K in at least ng points. Then,

n

Aq
Ag—1
A(2E) 41
In particular, if X > n, then we get that |K| > (545)".
Observe that when A = n =1 and A = 1, we get the same bound as that for

Kakeya sets as obtained in Theorem 3.2.
Proof. Let £ be a large integer and let

|K| >

d=\q—1,

Mg —1L

m=A + 4.

By our choice of m and d, we have ng(m — (£ — 1)) > A(d — (¢ — 1)). Since ng > A,
we have that for all w such that 0 <w <£¢—1, ng(m —w) > A(d —w). Just as in the
proof of Theorem 3.2, we will prove that

(dJrn)
|K| 2 (errrszl) 2 an’

where o — as £ — oo.

Aq
T B
Assume for contradiction that | K| < % Then, as before, by Proposition 3.1,

there exists a nonzero polynomial P(X) € F,[X] of total degree d*, where d* < d,
such that mult(P,a) > m for every a € K. We will deduce that in fact P must vanish
on all points in S with multiplicity /. We will then get the desired contradiction from
Corollary 2.8.

CLAM 4.2. For each xg € S,

mult(P,xq) > ¢

Proof. Fix any i with wt(i) = w < £ — 1. Let Q(X) = P®(X). Note that Q(X)
is a polynomial of degree at most d* — w. By Lemma 2.4, for all points a € K,
mult(Q,a) > m — w.

Let Cx, be the curve of degree A through xo that intersects K in at least ngq
points. Let ty € F, be such that Cx,(to) = xo. Let Qx,(T") be the polynomial
Q o Cx,(T) € Fy[T]. Then Qx,(T) is a univariate polynomial of degree at most
A(d* — w). By Corollary 2.6, for all points t € F, such that Cx,(t) € K, Qx,(T)

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2317

vanishes at ¢ with multiplicity m — w. Since the number of such points t is at least
nq, we get that Qx,(T) has at least ng(m — w) zeroes (counted with multiplicity).
However, by our choice of parameters, we know that

na(m —w) > A(d —w) = A(d" —w) = deg(@x, (T))-

Since the degree of Qx,(T) is strictly less than the number of its zeroes, Qx,(T)
must be identically zero. Thus we get Qx,(to) = Q(Cx,(to)) = Q(x¢) = 0. Hence
P (xg) = 0. Since this is true for all i with wt(i) < ¢ — 1, we conclude that
mult(P,xg) > L. O

Thus P vanishes at every point in S with multiplicity ¢. As P(X) is a nonzero
polynomial, Corollary 2.8 implies that £|S| < d*¢"~!. Hence £A\¢" < dq"~ !, which
contradicts the cho}gg of d.

Thus |K| > % By choice of d and m,
()\Zq—l—i-n)

n

K| >

(A%Mw—l) '

Picking ¢ arbitrarily large, we conclude that

(AEq—1+TL)
> . n
|K| > élgf}o (AW+;<H>+@+n—1)
g —1 A
= Elim)\q—l = + ' "
—00 qg—1 24
éA(77‘1)+€ A(’7‘1)+1

5. Improved mergers. In this section we state and prove our main result on
randomness mergers.

5.1. Definitions and theorem statement. We start by recalling some basic
quantities associated with random variables. The statistical distance between two
random variables X and Y taking values from a finite domain € is defined as

max |Pr[X € S] —PrlY € 5]|.
5CQ

We say that X is e-close to Y if the statistical distance between X and Y is at most ¢;
otherwise we say that X and Y are e-far. The min-entropy of a random variable X is
defined as

1
Ho (X £ i 1 — .
(X) =, min 1o (Pr[x - x]>

Note that the notion of having high min-entropy is closed under convex combinations.
Specifically, if 0 < o < 1 and Y and Z are random variables supported on 2 with min-
entropy at least m and X is the random variable satisfying Pr[X = z] = aPr[Y = 2]+
(1 — @)Pr[Z = z], then X also has min-entropy at least m.

We say that a random variable X is e-close to having min-entropy m if there exists
a random variable Y of min-entropy m such that X is e-close to Y.

A “merger” of randomness takes a A-tuple of random variables and “merges” their
randomness to produce a high-entropy random variable, provided that the A-tuple is
“somewhere-random” as defined below.

2318 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

DEFINITION 5.1 (somewhere-random source). For integers A and N, a simple
(N, A)-somewhere-random source is a random variable A = (A1, ..., Ap) taking values
in SN, where S is some finite set of cardinality 2V, such that for some iy € [A],
the distribution of A, is uniform over S. An (N, A)-somewhere-random source is a
convez combination of simple (N, A)-somewhere-random sources. (When N and A are
clear from context, we refer to the source as simply a “somewhere-random source.”)

We are now ready to define a merger.

DEFINITION 5.2 (merger). For positive integer A and set S of size 2V, a func-
tion f : SN x {0,1}¢ — S is called an (m,e)-merger (of (N,A)-somewhere-random
sources), if for every (N,A) somewhere-random source A = (Aq,...,Ar) taking val-
ues in S™, and for B being uniformly distributed over {0,1}%, the distribution of
f((A1,...,Ar),B) is e-close to having min-entropy m.

A merger thus has five parameters associated with it: N, A, m, ¢, and d. The
general goal is to give explicit constructions of mergers of (N, A)-somewhere-random
sources for every choice of N and A, for as large an m as possible, and with e and
d being as small as possible. Known mergers attain m = (1 — d) - N for arbitrarily
small §, and our goal will be to achieve § = o(1) as a function of N, while ¢ is an
arbitrarily small positive real number. Thus our main concern is the growth of d as
a function of N and A. Prior to this work, the best known bounds required either
d=Qog N +1logA) [4] or d = Q(A) [9]. We require only d = Q(log A).

THEOREM 5.3. For every €, > 0 and integers N, A, there exists a ((1—39)-N,¢€)-
merger of (N, A)-somewhere-random sources, computable in polynomial time, with

seed length
1 2A
d = — - log, <—) .
) €

5.2. The curve merger of [4] and its analysis. The merger that we consider
is a very simple one proposed by Dvir and Wigderson [4], and we improve their analysis
using our extended method of multiplicities. We note that they used the polynomial
method in their analysis; the basic method of multiplicities doesn’t seem to improve
their analysis.

The curve merger of [4], denoted fpw, is obtained as follows. Let ¢ > A be a
prime power, and let n be any integer. Fix some A distinct elements of F, and let
these be denoted 71, ...,va. Let ¢;(T) € F,[T] be the unique degree A — 1 polynomial
with ¢;(y;) = 1 and for all j # 4, ¢;(y;) = 0. Then the curve merger fpw maps
(F)A x Fy to F? as follows:

fow((X1,...,xp),u) = Zci(u)xi,

=1

where x = (x1,...,x7) € (F2)* and u € Fy. In other words, fow((x1,...,%A),u)
picks the (canonical) curve passing through x1,...,xa and outputs the uth point on
the curve.

THEOREM 5.4. Let ¢ > A and let A be a somewhere-random source taking
values in (IFZ)A. Let B be distributed uniformly over F,, with A,B independent. Let

C = fow(A,B). Then for
<2A>};
q Z - ’
€

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2319

C is e-close to having min-entropy (1 —6) - n -log, q.

Theorem 5.3 easily follows from the above. We note that [4] proved a similar
theorem assuming g > poly(n, A), forcing their seed length to grow logarithmically
with n as well. We should also note at this point that a representation of a finite field
F, with g a power of 2 can be found efficiently (in time polynomial in log(q)) by the
results in [16]. This makes our construction explicit even for small € and 4.

Proof of Theorem 5.3. Let ¢ = 29, so that ¢ > (%)%, and let n = N/d. Then
we may identify F, with {0,1}% and F? with {0,1}". Take f to be the function fpw
given earlier. Clearly f is computable in the claimed time. Theorem 5.4 shows that
f has the required merger property. O

We now prove Theorem 5.4.

Proof of Theorem 5.4. We first note that it suffices to prove the theorem for the
case that A is a simple somewhere-random source. Once this is done, to handle the
general case when A is a convex combination of simple somewhere-random sources,
we can simply use the fact that fpw (A, B) will be a convex combination of random
variables that are e-close to having high min-entropy, and this notion is closed under
convex combinations.

Let A be a simple somewhere-random source. Let m = (1—4)-n-log, g. We wish
to show that fpw (A, B) is e-close to having min-entropy m.

Suppose not. Then there is a set K C F' with |K| < 2™ = g1=9n < (%)" such
that

Pr[f(A,B) € K] > e.

PLlf(AB) € K]z ¢

To see why, consider the set K of the 2™ most “popular” values in the distribution

(i.e., those that have the highest probabilities). If this set is “hit” with probability at

most ¢, then the distribution is clearly € close to having min-entropy at least m.
Suppose that A;, is uniformly distributed over Fy. Let A_;, denote the random

variable

(A17"'7Ai0—1)A’i0+1)"')AA)'

By an averaging argument, with probability at least A = ¢/2 over the choice of A;,,
we have

Pr [f(A,B) e K] =1,

—igs

where 7 = ¢/2. Since A;; is uniformly distributed over Fy, we conclude that there is
a set S of cardinality at least A¢™ such that for any x € .5,

Pr(f(AB) € K | Ay =] > 7.

By fixing the values of A_;, to preserve the above probability, we conclude that
for each x € S, there is a y = y(x) = (y1,...,ya) with y;, = x such that
Prg[f(y,B) € K] > n. Define the degree A — 1 curve Cx(T) = f(y(x),T) =
Z;}:l v;¢;i(T). Recall that the ¢;’s come from the definition of fpw. Then Cx passes
through x, since Cx(7;,) = Zé\:l yici(Viy) = ¥i, = X, and Prger, [Cx(B) € K] > n
by definition of Ck.

2320 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

Thus S and K satisfy the hypothesis of Theorem 4.1. We now conclude that

n

Ag €q/2 €q\"
E (Y ()
(A—1) (M)+1 A—(A—1)/ng 27
nq
This is a contradiction, and the proof of the theorem is complete. ad

The somewhere-high-entropy case. It is possible to extend the merger analysis
given above also to the case of somewhere-high-entropy sources. In this scenario the
source is comprised of blocks, one of which has min-entropy at least . One can then
prove an analogue of Theorem 5.4 saying that the output of fpw will be close to
having min-entropy (1 —0) - under essentially the same conditions on ¢q. The proof is
done by hashing the source using a random linear function into a smaller dimensional
space and then applying Theorem 5.4 (in a black box manner). The reason this works
is that the merger commutes with the linear map (for details, see [4]). The result is
formally stated below. We do not give the details here since they are exactly the same
as in [4]. We will not make use of this case in any of our other results.

We say that a random variable X € (IFZ)A is a somewhere s-source if there exists
an index 4 € [A] such that the min-entropy of X; is at least s -log(g) (one can also
allow for convex combinations of such sources). Notice that s does not have to be an
integer.

THEOREM 5.5. For every €,0 > 0, for all integers n, A, for every prime power
q > A, and for every s > 1, the following holds: Let A be a somewhere-s-source taking
values in (IFZ)A. Let B be distributed uniformly over Fy, with A,B independent. Let

C = fow(A,B). Then for
<4A>%
q Z - ’
€

C is e-close to having min-entropy (1 —§) - s -log,q.

6. Extractors with sublinear entropy loss. In this section we use our im-
proved analysis of the curve merger to show the existence of an explicit extractor with
logarithmic seed and sublinear entropy loss.

We will call a random variable X distributed over {0,1}"™ with min-entropy & an
(n, k)-source.

DEFINITION 6.1 (extractor). A function E : {0,1}" x {0,1}¢ — {0,1}™ is a
(k, e)-extractor if for every (n,k)-source X, the distribution of E(X,Uy) is e-close to
uniform, where Ug is a random variable distributed uniformly over {0,1}4, and X, Uq
are independent. An extractor is called explicit if it can be computed in polynomial
time.

It is common to refer to the quantity k£ —m in the above definition as the entropy
loss of the extractor. The next theorem asserts the existence of an explicit extractor
with logarithmic seed and sublinear entropy loss.

THEOREM 6.2 (basic extractor with sublinear entropy loss). For every ¢; > 1,
for all positive integers k < n with k > log?(n), there exists an explicit (k, €)-extractor

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2321
E:{0,1}" x {0,1}% + {0, 1}™ with
d = O(cy - log(n)),

k - log log(n)>
log(n) /"

=0 ()

The extractor of this theorem is constructed by composing several known explicit
constructions of pseudorandom objects with the merger of Theorem 5.3. In section 6.1
we describe the construction of our basic extractor. We then show, in section 6.2, how
to use the “repeated extraction” technique of Wigderson and Zuckerman [20] to boost
this extractor and reduce the entropy loss to k —m = O(k/log®n) for any constant ¢
(while keeping the seed logarithmic). The end result is the following theorem.

THEOREM 6.3 (final extractor with sublinear entropy loss). For every c1,c2 > 1,
for all positive integers k < n, there exists an explicit (k,e€)-extractor E : {0,1}™ x
{0,1}4 {0, 1}™ with

k—m=O<

d = O(cycz - log(n)),

=0 ()

6.1. Proof of Theorem 6.2. Note that we may equivalently view an extractor
E :{0,1}" x {0,1}¢ — {0,1}™ as a randomized algorithm E : {0,1}" — {0,1}™
which is allowed to use d uniformly random bits. We will present the extractor E as
such an algorithm, which takes five major steps.

Before giving the formal proof we give a high level description of our extractor.
Our first step is to apply the lossless condenser of [7] to output a string of length
2k with min-entropy k (thus reducing our problem to the case k = Q(n)). The
construction continues along the lines of [4]. In the second step, we partition our source
(now of length n’ = 2k) into A = log(n) consecutive blocks X1,..., X € {0,1}"/A
of equal length. We then consider the A possible ways of partitioning the source into
a prefix of j blocks and suffix of A — j blocks for j between 1 and A. By a result of Ta-
Shma [19], after passing to a convex combination, one of these partitions is a (¥, k2)
block source with &’ being at least k—O(k/A) and ks being at least polylogarithmic in
k. In the third step we use a block source extractor (from [12]) on each of the possible
A partitions (using the same seed for each partition) to obtain a somewhere-random
source with block length k’. The fourth step is to merge this somewhere-random
source into a single block of length k' and entropy k' - (1 — §) with § subconstant.
In view of our new merger parameters and the fact that A (the number of blocks) is
small enough, we can get away with choosing § = loglog(n)/log(n) and keeping the
seed logarithmic and the error polylogarithmic. To finish the construction (the fifth
step) we need to extract almost all the entropy from a source of length k" and entropy
k- (1 —§). This can be done (using techniques from [12]) with logarithmic seed and
an additional entropy loss of O(4 - k).

2322 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

Proof of Theorem 6.2. We now formally prove Theorem 6.2. Let X be the input
(n, k)-source. It would be convenient for us to assume during the proof that k is not
too small. This is accomplished by noticing that for small k, there already exist very
good extractors. Formally, using Theorem 6.14 below, we can assume that

> 2Vios™,

We begin by reducing to the case where n = O(k) using the lossless condensers of [7].

THEOREM 6.4 (lossless condenser [7]). For all positive integers k < n with
k = w(log(n)), there exists an explicit function Cquy : {0,1}" x {0,1}% — {0,1}"
withn' = 2k, dp = O(log(n)), such that for every (n, k)-source X, C(X,Uq,) is (1/n)-
close to an (n’, k)-source, where Ug, is distributed uniformly over {0,1}%, and X, Ug,
are independent.

‘ Step 1: Pick Uy, uniformly from {0,1}%. Compute X; = Cquv(X,Uq,). ‘

By the above theorem, X7 is (1/n)-close to an (n’,k)-source, where n’ = 2k.
The seed length used in this step is d1 = O(log(n)). Our next goal is to produce a
somewhere-block source. We now define these formally.

DEFINITION 6.5 (block source). Let X = (X1,X3) be a random source over
{0,1}™ x {0,1}"2. We say that X is a (k1, k2)-block source if X; is an (ni, ki)-
source and for each x1 € {0,1}™ the conditional random variable Xa|X1 = x1 is an
(ne, ka)-source.

DEFINITION 6.6 (somewhere-block source). Let X = (Xy,...,Xa) be a random
variable such that each X; is distributed over {0,1}"t x {0,1}™:2. We say that X
is a simple somewhere-(k1, k2)-block source if there exists i € [A] such that X; is a
(k1, k2)-block source. We say that X is a somewhere-(k1, k2)-block source if X is a
convez combination of simple somewhere-(ky, ka)-block sources.

We now state a result of Ta-Shma [19] which converts an arbitrary source into a
somewhere-block source. This is the first step in the proof of Theorem 1 of [19, p. 44].
(Theorem 1 shows how to convert any arbitrary source to a somewhere-block source,
and then does more by showing how one could extract from such a source.)

Let A be an integer, and assume for simplicity of notation that n’ is divisible by
A. Let

X = (X1,...,Xp) € ({0,1}"’“)A
denote the partition of X into A blocks. For every 1 < j < A we denote
Y =(Xq,...,%X5),
Z; = (Xjg1,---,Xn).
Consider the function BAg : {0,1}" — ({0,1}")A~1, where
BYs(X) = ((Y1,Z1),(Y2,Z2), ..., (Ya-1,Za-1)).

The next theorem shows that the source ((Y;,Z;));e[a—1] is close to a somewhere-
block source.

THEOREM 6.7 (see [19]). Let A be an integer. Let k = k1 + ko + s. Then the
function Bl : {0,1}" — ({0,1}")A1 is such that for any (n',k)-source X, letting

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2323

X' = Bis(X), we have that X' is O(n'-27%)-close to a somewhere-(ky —O(n'/A), k2)-
block source.

Step 2: Set A = log(n) Compute X2 = (X271, XZ)Q, ceey XQ’A) = B%S(Xl)

Note that X, is a random variable taking values in ({0,1}")A~1,

Plugging k; = O(log*(n’)) = O(log*(k)), s = O(logn), and k; = k — ky — s into
the above theorem, we conclude that X» is n'~?(-close to a somewhere-(k’, kz)-block
source, where

K =k —O(n' /log(n)) =k — ko —s— O(k/log(n)) = k — O(k/log(n)),

where for the last inequality we use the fact that k > log?(n) and so both s and ks
are bounded by O(k/log(n)).

We next use the block source extractor from [12] to convert the above somewhere-
block source to a somewhere-random source.

THEOREM 6.8 (see [12]). Let n’ = ny + ne and let k', ko be such that ko >
log*(n1). Then there exists an explicit function Ersw : {0,1}™ x{0,1}">x {0,1}92
{0, 13" with m" = K, dy = O(log(n')), such that for any (K, ks)-block source X,
Ersw(X,Ug,) is (n1) =M -close to the uniform distribution over {0,1}™", where Uy,
is distributed uniformly over {0,1}92, and X,Uq, are independent.

Set d2 = O(log(n’)) as in Theorem 6.8.

Step 3: Pick U, uniformly from {0, 1}%2.
V] S [A}7 compute X3)j = Est(X27j, Udz)'

Set X3 = (X31,...,X3,4). By the above theorem, X3 is '~ close to a
somewhere-random source.

Note that X3 is a random variable taking values in ({0,1}™")A~!, where m” =
k' =k—0O(k/log(n)), one of {Xs1,..., X3 2} is (n1)~?M-close to being uniform, and
n1 > n'/A > 2k/logn (by definition of the function BZg). Since the original source
we started with had min-entropy k, and X3 is nfﬂ(l) close to having min-entropy at
least k — O(k/log(n)), so far we have lost only a sublinear fraction of the min-entropy
of the original source.

We are now ready to use the merger M from Theorem 5.3. We invoke that
theorem with entropy loss § = loglog(n)/log(n) and error e = and hence M
has a seed length of

1
log©1(n)’

ds = O (% log %) = O(c1 log(n)).

Step 4: Pick Uy, uniformly from {0, 1}%.
Compute Xy = M (X5,Uq,).

By Theorem 5.3, Xy is O(]Ogcl y)-close to a (K, (1 — &)k')-source, where k' =
k — O(k/logk). Note that 6 = o(1), and thus X4 has nearly full entropy. We now
apply an extractor for sources with extremely high entropy rate, given by the following
lemma.

LEMMA 6.9. For any k' and § > 0, there exists an explicit (k'(1 — ¢§), k'~1)-
extractor Exan : {0, 1} x {0,1}% — {0,1}-30% with dy = O(log(K')).

2324 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

Proof. The proof of this lemma will follow from Theorem 6.8. Initially, the input is
partitioned into two blocks of length &’ (1—4) —2log* k" and 6k’ +21log* k’. Intuitively,
this partition should be a block source, since fixing the first block cannot “kill” all
of the entropy of the source. Formally, using Lemma 6.2 from [13], one knows that
this partition is 1/k'-close to a (k'(1 —20) — 2log* K, log* k")-block source. This block
source is then passed through the block source extractor of Theorem 6.8, which can
extract k(1 — 26) — 2log* &’ > k’(1 — 36) bits with polynomially small error. 0

Step 5: Pick Uy, uniformly from {0, 1}%.
Compute X5 = Eurau(Xa, Ug,). Output Xs.

This completes the description of the extractor E. It remains for us to note that
d, the total number of random bits used, is at most d1 + d2 + dg + dg = O(cq logn).
The output Xj is e-close to uniformly distributed over

{0, 1}(1735)1@' = {0, 1}k—O(k~1°1gO1%)’

where € can be bounded by the sum of all the errors in all of the above steps. The
errors introduced in all steps, other than the merger step (Step 3), were polynomially
small in k. Since k& > 2V1°8" this is negligible compared to the (log®(n))~! error
introduced in the merger step. Thus, the final error of the construction is dominated
by this last quantity and so the error is as required. This completes the proof of
Theorem 6.2. d

We summarize the transformations in the following diagram.

| (n,k)-source |

| O(log n) bits ‘

‘ Ceuv

\ 2
| (2k,k)-source |

| Somewhere-(k’= k-o(k),log* k)- block source |

[Eww| | [Ollog K bits |

| (k’,O(log n))-somewhere-random source |

(k’,k’-o(k))-source

O(log k) bits

Uniform on k’-o(k) bits

6.2. Improving the output length by repeated extraction. We now use
some ideas from [12] and [20] to extract an even larger fraction of the min-entropy
out of the source. This will prove Theorem 6.3. We first prove a variant of the
theorem with a restriction on k. This restriction will be later removed using known
constructions of extractors for low min-entropy.

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2325

THEOREM 6.10 (explicit extractor with improved sublinear entropy loss). For
every c1,co > 1, for all positive integers k < n with k = log*(n), there exists an
explicit (k,e€)-extractor E : {0,1}" x {0,1}% — {0,1}™ with

d = O(cicz - log(n)),

=0 ()

We first transform the extractor given in Theorem 6.2 into a strong extractor
(defined below) via [12, Theorem 8.2] (which gives a generic way of getting a strong
extractor from any extractor). We then use a trick from [20] that repeatedly uses the
same extractor with independent seeds to extract the “remaining entropy” from the
source, thus improving the entropy loss.

DEFINITION 6.11. A (k, €)-extractor E : {0,1}" x {0,1}% + {0,1}™ is strong if
for every (n, k)-source X, the distribution of (E(X,Uq),Uq) is e-close to the uniform
distribution over {0,1}Y™ where Uq is distributed uniformly over {0,1}¢, and X, Uq
are independent.

THEOREM 6.12 (see [12, Theorem 8.2]). Any explicit (k, €)-extractor E : {0,1}"x
{0,1}% +— {0,1}™ can be transformed into an ewplicit strong (k,O(y/€))-extractor
E - {07 1}n % {0, 1}O(d) — {07 1}m7d7210g(1/6)70(1)'

THEOREM 6.13 (see [20, Lemma 2.4]). Let Ey : {0,1}" x {0, 1}% +— {0,1}™ be
an explicit strong (k, e1)-extractor, and let By : {0,1}" x {0,1}92 — {0,1}™2 be an
explicit strong (k — (mq + 1), e2)-extractor. Then the function

B3 :{0,1}" x ({0,1}% x {0,1}%) = {0,1}m ™=
defined by
E3(x7y17y2) = El(ﬂ?, yl) o EQ(Q?, y2)

is a strong (k,e1 + ea + 27")-extractor.

Proof of Theorem 6.10. Let E be the (k,e¢)-extractor with seed O(cqlogn) of
Theorem 6.2. By Theorem 6.12, we get an explicit strong (k, \/€)-extractor E’ with
entropy loss O(kli‘foi;%). We now iteratively apply Theorem 6.13 as follows. Let
E© = E'. For each 1 < i < O(cy), let E® : {0,1}" x {0,1}% — {0,1}™ be the
strong (k, €;)-extractor produced by Theorem 6.13 when we take £y = E(=1 and E,
to be the strong (k—m;—_1 —c1 logn, 1/log™ (n))-extractor with seed length O(cq logn)
given by Theorems 6.2 and 6.12. Thus,

d; = O(icy logn),

log1
m; = M;—1 + (k—mi_l —C1 logn) (1 -0 (M)) .
logn

2326 Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

Thus the entropy loss of E() is given by

k—m; = (k—mi_1) (1 - <1) (%))) +O(c1logn) = O (%}’5)(”) .

E(O(2) is the desired extractor. 0O

Remark. In fact [7] and [11] show how to extract all the min-entropy with poly-
logarithmic seed length. Combined with the lossless condenser of [7], this gives an
extractor that uses logarithmic seed to extract all the min-entropy from sources that
have min-entropy rate at most 20(viosn),

THEOREM 6.14 (corollary of [7, Theorem 4.21]). For all positive integers n > k
such that k = 20(\/@), and for all € > 0, there exists an explicit (k,¢)-extractor
E:{0,1}" x {0,1}¢ +— {0,1}™ with d = O(log(n)) and m = k+d—2log(1/¢) — O(1).

This result combined with Theorem 6.10 gives an extractor with improved sub-
linear entropy loss that works for sources of all entropy rates, thus completing the
proof of Theorem 6.3.

7. Bounds on the list size for list-decoding Reed—Solomon codes. In
this section, we give a simple algebraic proof of an upper bound on the list size for
list-decoding Reed—Solomon codes within the Johnson radius.

Before stating and proving the theorem, we need some definitions. For a bivariate
polynomial P(X,Y) € F[X,Y], we define its (a,b)-degree to be the maximum of
ai+bj over all (4, j) such that the monomial X?Y7 appears in P(X,Y’) with a nonzero
coefficient. Let N (k,d,#) be the number of monomials X*Y7 which have (1, k)-degree
at most d and j < 6d/k. We have the following simple fact.

FACT 7.1. For any k < d and 0 € [0,1], N(k,d,0) > 6-(2—6) - &.

Proof. Letting t = |0d/k|, note that

t+1

;) — (t+1)(d+1—kt/2).

t
N(k,d,0) =) (d+1—kj) = (t+1)(d+1)—k(
7=0

Using t < 0d/k <t+1, we get N(k,d,0) > (6d/k)(d+1—-0d/2) > 0-(2—6)- %. d
Now we prove the main theorem of this section. The proof is an enhancement of
the original analysis of the Guruswami—Sudan algorithm using the extended method
of multiplicities.
THEOREM 7.2 (list size bound for Reed—Solomon codes). Let

(041,51)7) (anaﬂn) € F2.

Let R,y € [0,1] with¥®> > R. Letk = Rn. Let f1(X),..., f.(X) € F[X] be polynomi-
als of degree at most k such that for each j € [L] we have |{i € [n] : fj(cu) = Bi}| > yn.

Proof. Let € > 0 be a parameter. Let 6 = %

—) Let m be a large integer (to

be chosen later), and let d = (1 +¢€) - m - ,/W’ie). We first interpolate a nonzero
polynomial P(X,Y) € F[X,Y] of (1, k)-degree at most d and Y-degree at most 6d/k,
that vanishes with multiplicity at least m at each of the points (a;, ;). Such a
polynomial exists if N(k,d,#), the number of monomials available, is larger than the
number of homogeneous linear constraints imposed by the vanishing conditions

m(m+1)

(7.1) -

n < N(k,d,0).

EXTENSIONS TO THE METHOD OF MULTIPLICITIES 2327

This can be made to hold by picking m sufficiently large, since by Fact 7.1,

2 1 2,2
d (—l—e)m.n

N(k.d,0) >0 (2= 0) 5 = ——

Having obtained the polynomial P(X,Y’), we also view it as a univariate polyno-
mial Q(Y) € F(X)[Y] with coefficients in F(X), the field of rational functions in X.

Now let f(X) be any polynomial of degree at most k such that, letting I =
{i € [n] : f(au) = Bi}, |I| = A. We claim that the polynomial Q(Y") vanishes at
f(X) with multiplicity at least m — d/A. Indeed, fix an integer j < m — d/A, and let
R;(X) = QU (f(X)) = PO (X, f(X)). Notice that the degree of R;(X) is at most
d. By Proposition 2.5 and Lemma 2.4,

mult(R;, a;) > mult(P07), (i, Bi)) = mult(P, (o, B)) —
Thus

> mult(Rj,aq) > 1]+ (m—j) > A+ (m - j) > d.
iel
By Lemma 2.7, we conclude that R;(X) = 0. Since this holds for every j < m —d/A,
we conclude that mult(Q, f(X)) > m — d/A.
We now complete the proof of the theorem. By the above discussion, for each
J € [L], we know that mult(Q, f;(X)) > m — ,;in. Thus, by Lemma 2.7 (applied
to the nonzero polynomial Q(Y) € F(X)[Y] and the set of evaluation points S =

() 5 € L))
deg(@) 2 Y- wali(Q. /() 2 (m—) -1

jelL) m

Since deg(Q) < 0d/k, we get

0d/k > (m— i) L.

yn
Usingd= (1+¢€)-m ,/9(2 gy and 0 = +2,weget
R
0
LS m k
k-g_')’_n
B 0
Ty 0 2-0) -5
1 1

Letting € — 0, we get L < 2 1+, as desired. d

Acknowledgments. We would like to thank Liangpan Li for pointing out errors
in an earlier version of this paper. We would also like to thank the anonymous
reviewers for their detailed list of errors and comments for improvement.

2328

[2]
3]

[4]

Y.

V.

V.

V.

Z. DVIR, S. KOPPARTY, S. SARAF, AND M. SUDAN

REFERENCES

CAssuTO AND J. BRUCK, A Combinatorial Bound on the List Size, Technical report ETR058,
Paradise Laboratory, California Institute of Technology, 2004.

. DVIR, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc., 22 (2009), pp.

1093-1097.

. DVIR AND A. SHPILKA, An tmproved analysis of linear mergers, Comput. Complexity, 16

(2007), pp. 34-59.

. DVIR AND A. WIGDERSON, Kakeya sets, new mergers and old extractors, in Proceedings of

the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008,
pp. 625-633.
GURUSWAMI AND A. RUDRA, Ezxplicit codes achieving list decoding capacity: Error-correction
with optimal redundancy, IEEE Trans. Inform. Theory, 54 (2008), pp. 135-150.
GURUSWAMI AND M. SUDAN, Improved decoding of Reed-Solomon and algebraic-geometric
codes, IEEE Trans. Inform. Theory, 45 (1999), pp. 1757-1767.
GURUSWAMI, C. UMANS, AND S. P. VADHAN, Unbalanced expanders and randomness extrac-
tors from Parvaresh—Vardy codes, J. ACM, 56 (2009), 20.

J. W. P. HIRSCHFELD, G. KORCHMAROS, AND F. TORRES, Algebraic Curves over a Finite Field,

C.

Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2008.
J. Lu, O. REINGOLD, S. VADHAN, AND A. WIGDERSON, Ezxtractors: Optimal up to constant
factors, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), 2003, pp. 602-611.

. PARVARESH AND A. VARDY, Correcting errors beyond the Guruswami-Sudan radius in poly-

nomial time, in Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2005, pp. 285-294.

. RAaz, O. REINGOLD, AND S. P. VADHAN, FEaxtracting all the randomness and reducing the

error in Trevisan’s extractors, J. Comput. System Sci., 65 (2002), pp. 97-128.

O. REINGOLD, R. SHALTIEL, AND A. WIGDERSON, Eztracting randomness via repeated condens-

R

ing, SIAM J. Comput., 35 (2006), pp. 1185-1209.

. REINGOLD, S. VADHAN, AND A. WIGDERSON, Entropy waves, the zig-zag graph product, and

new constant-degree expanders and extractors, in Proceedings of the 41st IEEE Symposium
on Foundations of Computer Science (FOCS), 2000, pp. 3-13.

. SARAF AND M. SUDAN, Improved lower bound on the size of Kakeya sets over finite fields,

Anal. PDE, 1 (2008), pp. 375-379.

. SHALTIEL, Recent developments in extractors, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS,

77 (2002), pp. 67-95.

. SHOUP, New algorithms for finding irreducible polynomials over finite fields, in Proceedings

of the 29th Annual Symposium on Foundations of Computer Science (FOCS), 1988, pp.
283-290.

. SUDAN, Decoding of Reed-Solomon codes beyond the error-correction bound, J. Complexity,

13 (1997), pp. 180-193.

. TA-SHMA, On extracting randomness from weak random sources, in Proceedings of the 28th

Annual ACM Symposium on Theory of Computing (STOC), 1996, pp. 276-285.

. TA-SHMA, Refining Randomness, Ph.D. thesis, The Hebrew University, Jerusalem, 1996.

WIGDERSON AND D. ZUCKERMAN, Ezpanders that beat the eigenvalue bound: Explicit con-
struction and applications, Combinatorica, 19 (1999), pp. 125-138.

. WOLFF, Recent work connected with the Kakeya problem, in Prospects in Mathematics,

Princeton, NJ, 1999, pp. 129-162.

. ZUCKERMAN, Linear degree extractors and the inapproximability of max clique and chromatic

number, Theory Comput., 3 (2007), pp. 103-128.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

