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Abstract

Motivated by questions in property testing, we search for linear error-correcting codes that have
the “single local orbit” property: i.e., they are specified by a single local constraint and its translations
under the symmetry group of the code. We show that the dual of every “sparse” binary code whose
coordinates are indexed by elements of F2n for prime n, and whose symmetry group includes the group
of non-singular affine transformations of F2n , has the single local orbit property. (A code is said to be
sparse if it contains polynomially many codewords in its block length). In particular this class includes
the dual-BCH codes for whose duals (i.e., for BCH codes) simple bases were not known. Our result gives
the first short (O(n)-bit, as opposed to the natural exp(n)-bit) description of a low-weight basis for BCH
codes.

The interest in the “single local orbit” property comes from the recent result of Kaufman and Sudan
(STOC 2008) that shows that the duals of codes that have the single local orbit property under the affine
symmetry group are locally testable. When combined with our main result, this shows that all sparse
affine-invariant codes over the coordinates F2n for prime n are locally testable. If, in addition to n being
prime, 2n − 1 does not have large divisors, then we get that every sparse cyclic-invariant code also has
the single local orbit. In particular this implies that BCH codes of such length are generated by a single
low-weight codeword and its cyclic shifts.

1 Introduction

Motivated by questions about the local testability of some well-known error-correcting codes, in this paper
we examine their “invariance” properties. Invariances of codes are a well-studied concept (see, for instance,
[25, Chapters 7, 8.5, and 13.9]) and yet we reveal some new properties of BCH codes. In the process we also
find broad classes of sparse codes that are locally testable. We describe our problems and results in detail
below.

A family of codes CN ⊆ FN2 is said to be locally testable if membership of a word w ∈ FN2 in CN
can be checked probabilistically by a few probes into w. The famed “linearity test” of Blum, Luby and
∗A preliminary version appeared in the 13th Intl. Workshop on Randomization and Computation, 2009 [16], and in Elena

Grigorescu’s PhD Thesis [14].
†Purdue University, 305 N. University Ave., West Lafayette, IN 47907. Research conducted when this author was at MIT CSAIL.

Research supported in part by NSF grant CCR-0829672 and NSF award 1019343 to the Computing Research Association for the
Computing Innovation Fellowship Program.
‡Bar-Ilan University and the Weizmann Institute of Science, Israel. Research conducted when this author was at MIT CSAIL.

Research supported in part by NSF grant CCR-0829672.
§Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142. Research conducted when this author was at

MIT CSAIL, supported in part by NSF grant CCR-0829672.

1



Rubinfeld [3] may be considered the first result to show that some code is locally testable. Locally testable
codes were formally defined by Rubinfeld and Sudan [27]. The first substantial study of locally testable
codes was conducted by Goldreich and Sudan [13], where the principal focus was the construction of locally
testable codes of high rate. Local testing of codes is effectively equivalent to property testing [27, 12] with
the difference being that the emphasis here is when C is an error-correcting code, i.e., elements of C are
pairwise far from each other.

A wide variety of “classical” codes are by now known to be locally testable, including Hadamard codes [3],
Reed-Muller codes of various parameters [27, 1, 21, 17], dual-BCH codes [18, 22], turning attention to the
question: What broad characteristics of codes are necessary, or sufficient, for codes to be locally testable.
One characteristic explored in the recent work of Kaufman and Sudan [23] is the “invariant group” of the
code, a well-studied object that we define next.

Let [N ] denote the set of integers {1, . . . , N}. A code C ⊆ FN2 is said to be invariant under a permutation
τ : [N ]→ [N ] if for every a = 〈a1, . . . , aN 〉 ∈ C, it is the case that a ◦ τ = 〈aτ(1), . . . , aτ(N)〉 is also in C.
We will often alternate between viewing a ∈ FN2 as a vector a = 〈a1, . . . , aN 〉 and as a function a : X → F2,
where X will be some appropriate domain of size N . Two particular domains X of interest to us will be F2n

and F∗2n (where F2n is the finite field with 2n elements and F∗2n = F2n \ {0} denotes the non-zero elements
in this field). Under this view, a permutation τ : [N ] → [N ] will be associated with a permutation of the
domain X , π : X → X , and the π-rotation of a is the function a ◦ π : X → F2 given by a ◦ π(i) = a(π(i))
for every i ∈ X . As before, a code C ⊆ FN2 is said to be invariant under a permutation π : X → X if for
every a ∈ C, it is the case that a ◦ π ∈ C. The set of permutations under which a code C is invariant forms a
group under composition and we refer to it as the automorphism group of C.

Kaufman and Sudan [23] suggested that the automorphism group of a code may play an important role
in its testability. They supported their suggestion by showing that if the automorphism group is an “affine
group”, then a linear code whose dual has the “single local orbit” property is locally testable. We explain
these terms (in a restricted setting) below.

We say that C ⊆ FN2 is linear if it is a F2-linear subspace of FN2 . For a, b ∈ FN2 , let a · b =
∑

i aibi
denote the inner product of a and b. The dual of C is the subspace orthogonal to C with respect to the inner
product, i.e. C⊥ = {b ∈ FN2 | b · a = 0, ∀a ∈ C}.

Let N = 2n. In this case we can associate the coordinate set [N ] of the code C ⊆ FN2 with the field F2n .
Two groups are of special interest to us in this work. The first is the “affine group” on F2n and the second is
the “cyclic group” on F∗2n .

Definition 1 (Affine invariance) A function π : F2n → F2n is an affine permutation if there exist α ∈ F∗2n
and β ∈ F2n such that π(x) = αx+ β. The affine group over F2n consists of all the affine permutations over
F2n . A code C ⊆ FN2 is said to be affine invariant if the automorphism group of C contains the affine group.

Definition 2 (Cyclic invariance) A function π : F∗2n → F∗2n is a cyclic permutation if it is of the form
π(x) = αx for α ∈ F∗2n . The cyclic group over F∗2n consists of all the cyclic permutations over F∗2n . A code
C ⊆ FN−12 is said to be cyclic-invariant (or simply cyclic) if the automorphism group of C contains the cyclic
group.

Many well-known families of codes (with minor variations) are known to be affine-invariant and/or cyclic
(under appropriate ordering of the coordinates and with some slight modifications, see [30] or [25]). In
particular BCH codes are cyclic (-invariant) and Reed-Muller codes are affine-invariant. Furthermore, under
a simple parity check extension operation BCH codes become affine-invariant, and vice versa under a simple
puncturing operation, Reed-Muller codes become cyclic. We elaborate on these later.
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In this paper our aim is to show that certain families of affine-invariant and cyclic codes have a simple
description, that we call a “single-orbit description”.

First recall some basic definitions. For a word a = 〈a1, . . . , aN 〉 ∈ FN2 its support is the set Supp(a) =
{i|ai 6= 0} and its weight is the quantity wt(a) = |Supp(a)|. For a set of vectors S = {v1, . . . , vk} ⊆ FN2 ,
let Span(S) = {

∑k
i=1 αivi|α1, . . . , αk ∈ F2} denote the linear span of S.

Definition 3 (k-single orbit code) Let k > 0 and let G be a group of permutations from [N ] to [N ]. A
linear code C ⊆ FN2 is said to have the k-single orbit property under the group G if there exists a ∈ C with
wt(a) ≤ k such that C = Span({a ◦ π|π ∈ G}).

In particular the k-single orbit property under the affine group has implications to testing that we discuss in
Section 5.1. We emphasize that for these applications N is large (N →∞) while k needs to be independent
of N , and thus is thought of as constant. Therefore, we are interested in asymptotic families of codes
{CN}N→∞ with CN ⊆ FN2 or CN ⊆ FN−12 such that each CN in the family has the k-single orbit property.
We note that all of our results hold for families of codes but we will often omit saying this explicitly, as it will
(hopefully) be clear from the context.

Conditions under which codes have the single-orbit property under any given group, seem to be less
well-studied. This is somewhat surprising given that the single-orbit property implies very succinct (nearly
explicit) descriptions of bases for codes (that have the k-single orbit property under some standard group).
More precisely, to specify a code that has the k-single orbit property, it is enough to specify the k non-zero
indices of the generating codeword, i.e. k logN bits (this is the notion of explicitness that we refer to
throughout the paper), while for an arbitrary code, one needs to specify the N bits of each basis vector.

Even for such commonly studied codes such as BCH codes such explicit descriptions of low-weight
bases1 were not known prior to this work. In retrospect, the single orbit property was being exploited in
previous results in algebraic property testing [3, 27, 1, 21, 17] though this fact was not explicit until the work
of [23].

1.1 Results, implications and approaches

In our results we are concerned with “sparse” (families of) codes {CN}N→∞, i.e. codes containing at most
polynomially many codewords in N . (More formally, {CN}N→∞ is sparse if there exists a constant t > 0
such that |CN | ≤ N t for all CN ’s in the family).

In this work we explore the single orbit property under the affine group for codes on the coordinate set
F2n , as also the single orbit property under the cyclic group for codes over F∗2n . We show that the dual of
every sparse affine-invariant code has the k-single orbit property under the affine group for some constant k,
provided N = 2n for large enough prime n.

Theorem 4 (Single orbit property in affine-invariant codes) For every integer t > 0 there exist k and n0
such that for every prime n ≥ n0 the following holds:

Let N = 2n and C ⊆ FN2 be a linear affine-invariant code containing at most N t codewords. Then C⊥
has the k-single orbit property under the affine group.

1One way to represent a sparse code C (e.g., dual-BCH codes) whose dual C⊥ has a basis among the weight k codewords is to
give Ω(N) codewords that generate C⊥. This requires space Ω(kN logN) bits. Alternately, if C is sparse and has N t codewords,
one can give t logN codewords that generate it; this requires tN logN = Ω(N logN) bits. If C⊥ has the k-single orbit property
then it can be specified using k logN bits. This representation is particularly useful for property testing applications since it provides
explicit tests. Namely, a test can be specified by the k non-zero indices of the generating codeword and by a permutation in the
automorphism group of the code.
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When N − 1 does not have large divisors, it turns out that the duals of sparse codes have the k-single
orbit property under the cyclic group for some constant k yielding an even stronger condition on the basis.

Theorem 5 (Single orbit property in cyclic-invariant codes) For every integer t > 0 and ε ∈ (0, 1) there
exist k and n0 such that for any prime n ≥ n0 for which 2n − 1 does not have any non-trivial divisor larger
than 2n(1−ε) the following holds:

Let N = 2n and C ⊆ FN−12 be a linear, cyclic-invariant, code with at most N t codewords. Then C⊥ has
the k-single orbit property under the cyclic group.

(The proofs of Theorem 4 and Theorem 5 appear in Section 4). Theorem 5 holds in particular when N −1
is a Mersenne prime. As things stand, the question of whether the number of such primes is infinite or not is
unresolved (and indeed there are conjectures suggesting there are infinitely many such primes [28, 31, 33]),
and so unconditional result should remain interesting.

Both theorems shed new light on well-studied codes including BCH codes. The actual families considered
here are broader, but the BCH codes are typical in these collections. Lemma 6 explicitly characterizes the
entire family of codes investigated in this paper.

In particular the first theorem has immediate implications for testing and shows that every sparse affine
invariant code is locally testable. This merits comparison with the results of [22] who show that sparse
high-minimum-distance codes are locally testable. While syntactically the results seem orthogonal (ours
require affine-invariance whereas theirs required high-distance) it turns out (as we show in this paper) that all
the codes we consider do have high-distance. Yet for the codes we consider our results are more constructive
in that they not only prove the “existence” of a local test, but give a much more “explicit” description of
the tester: Our tester is described by a single low-weight word in the dual and tests that a random affine
permutation of this word is orthogonal to the word being tested. 2

Given a code of interest to us, we first study the algebraic structure of the given code by representing
codewords as polynomials and studying the degree patterns among the support of these polynomials. We
interpret the single orbit property in this language; and this focuses our attention on a collection of closely
related codes. We then turn to recent results from additive number theory [4, 5, 6, 7, 8] and apply them to
the dual of the given code, as well as the other related codes that arise from our algebraic study, to lower
bound their distance. In turn, using the MacWilliams identities (as in prior work [22]) this translates to some
information on the weight distribution of the given code and the related ones. Some simple counting then
yields that the given code must have the single-orbit property.

We believe that our techniques are of interest, beyond just the theorems they yield. In particular we feel
that techniques to assert the single-orbit property are quite limited in the literature. Indeed in all previous
results [3, 27, 1, 21, 17] this property was “evident” for the code: The local constraint whose orbit generated
a basis for all constraints was explicitly known, and the algebra needed to prove this fact was simple. Our
results are the first to consider the setting where the basis is not explicitly known (even after our work) and
we manage to bring in non-algebraic tools to handle such settings. We believe that the approach is potentially
interesting in broader settings.

1.2 Subsequent developments

Subsequent to our work, Kaufman and Lovett [20] extended our results to affine invariant codes containing a
quasi-polynomial number of codewords. Moreover, their results hold for codes over Fp of length pn, where p

2In contrast the tester of [22] was less “explicit”. It merely proved the existence of many low weight codewords in the dual of
the code being tested and proved that the test which picked one of these low-weight codewords uniformly at random and tested
orthogonality of the given word to this dual codeword was a sound test.
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is a (constant) prime and n is arbitrary, thus removing the restriction that n be a prime in our results. The
work of [20] follows the footsteps of our analysis. They however manage to replace the tools we use from
additive combinatorics (which imply that every sparse affine-invariant code is of high distance) with a new
self-contained proof. This allows them to show that affine-invariant codes of quasi-polynomial size have very
high distance. In addition, [20] uses a Fourier analysis based approach to replace our use of the MacWilliams
identities for estimating the weight distributions of linear codes. This enables them to extend the result to
codes over fields with arbitrary small characteristic.

1.3 Organization

In Section 2 we describe our proof strategy and state the basic results that we rely on. In Section 3 we
describe the unique representation of affine and cyclic-invariant codes as traces of polynomials. In Section 4
we use this representation to prove our main results. Finally, we conclude with Section 5 on implications of
our results to property testing and to the study of BCH codes.

2 Overview of techniques

Theorems 4 and 5 are proved essentially by implementing the following plan:

1. We first show that the codewords in the codes we consider are expressible as the traces of sparse
polynomials (a sparse polynomial contains only a few monomials). In the affine-invariant case we also
show that these polynomials have somewhat low degree, i.e., at most N1−ε. This part follows from
standard literature in coding theory (and similar steps were employed already in [23]).

2. We then apply the recent results in additive number theory to conclude that these codes have very high
distance. This already suffices to show that the affine-invariant codes are testable by [22]. However the
tests given there are “non-explicit” and we need to work further to get an “explicit” test for these codes,
or to show the single-orbit condition.

3. The final, and the novel part of this work, is to show by a counting argument that there exists one (in
fact many) low-weight codewords in the dual of the codes we consider such that their orbit spans the
dual.

We elaborate on these steps in detail below, laying out precise statements we will prove.
We start with some notation. Recall N = 2n and n is prime. For a = 〈ai〉i, and b = 〈bi〉i ∈ FN2 define

the relative distance between a, b as δ(a, b) = 1
N |{i | ai 6= bi}|. Note δ(a, b) = wt(a−b)

N . The (relative)
distance of the code C is δ(C) = mina,b∈C;a6=b{δ(a, b)}. The relative distance of a vector a to a code C is
δ(a, C) = minb∈C{δ(a, b)}.

Also, we view elements c ∈ FN2 as functions c : FN → F2. Let {FN → F2} denote the set of all such
functions. Similarly we view elements c ∈ FN−12 as functions F∗N → F2 and let {F∗N → F2} denote the set
of all such functions.

We will also be using the representation functions as polynomials and in particular of trace polynomials.
Recall that the Trace function is defined as

Trace(x) = x+ x2 + x4 + · · ·+ x2
n−1

.

The Trace function is linear over F2, i.e. Trace(α+ β) = Trace(α) + Trace(β) ∀α, β ∈ FN .
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Throughout the paper the notation k <∞ will denote that k is finite.
For d ∈ {1, . . . , N − 2}, let the cyclotomic coset of d be

coset(d) = {d, 2d mod (N − 1), 4dmod (N − 1), . . . , 2n−1dmod (N − 1)}.

By the primality of n, we have that |coset(d)| = n for every d. Let leader(d) denote the smallest integer in
coset(d), i.e. the coset leader of its cyclotomic class, and let

D = {leader(d) | d ∈ {1, . . . , N − 2}} ∪ {N − 1}.

Note that |D| = 1 + (N − 2)/n.
For D ⊆ D let

PN,D = {α0 +
∑
d∈D

αdx
d | αd ∈ FN , α0, αN−1 ∈ {0, 1}}

and
PN−1,D = {

∑
d∈D

αdx
d | αd ∈ FN , αN−1 ∈ {0, 1}}.

The first step in our analysis of codes invariant over the affine group (respectively, cyclic group) is that
such codes can be associated uniquely with a set D ⊆ D so that every codeword in our code is the evaluation
of the trace of a polynomial from the associated family PN,D over FN (respectively, PN−1,D over F∗N ).

We note that choosing the representatives of the cyclotomic coset be the minimum elements of the cosets
is useful not only because this leads to a way of describing unique representations of the codewords in
affine/cyclic-invariant codes, but also because in our results about affine-invariant codes the representation of
codewords as low-degree polynomials allows us to use the Weil-Calitz-Uchiyama type distance bounds.

Lemma 6 For every affine-invariant code C ⊆ {FN → F2}, there exists a set D ⊆ D such that c ∈ C if and
only if there exists a polynomial p ∈ PN,D such that c(x) = Trace(p(x)) for every x ∈ FN . Furthermore,
for integer t ≥ 0, |C| ≤ 2N t iff |D| ≤ t and D ⊆ {1, . . . , N1−1/t}.

Similarly, for every cyclic-invariant code C ⊆ {F∗N → F2} there exists a set D ⊆ D such that c ∈ C
if and only if there exists a polynomial p ∈ PN−1,D such that c(x) = Trace(p(x)) for every x ∈ F∗N .
Furthermore, for integer t ≥ 0, |D| ≤ t iff |C| ≤ N t.

(The proof of Lemma 6 appears in Section 3.) Thus in both cases codes are represented by collections of
t-sparse polynomials (a t-sparse polynomial contains at most t monomials). And in the affine-invariant case,
these are also somewhat low-degree polynomials.

In what follows we use CN (D) to denote the code

CN (D) = {Trace(p(x))|p ∈ PN,D}

and we use CN−1(D) to denote

CN−1(D) = {Trace(p(x))|p ∈ PN−1,D}.

(As mentioned above, the actual codewords of these codes are of the form 〈Trace(p(x))〉x∈FN
where

p ∈ PN,D, and, respectively, 〈Trace(p(x))〉x∈F∗N , where p ∈ PN−1,D).
We next use a variant of a theorem initially due to Bourgain ([4], Theorem 7), whose proof was simplified

and extended subsequently in [20], to conclude that the codes CN (D) and CN−1(D) have very high distance
(under the given conditions on D).
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Theorem 7 (Implied by Theorem 1.3 [20]) For every ε > 0 and r < ∞, there exist n0, η > 0 such that
for every prime n ≥ n0 the following holds: Let N = 2n and F = FN and let f(x) =

∑r
i=1 aix

ki ∈ F[x]
with ai ∈ F, satisfy (1) 1 ≤ ki ≤ N − 1, (2) gcd(ki, N − 1) < N1−ε for every 1 ≤ i ≤ r, and (3)
gcd(ki − kj , N − 1) < N1−ε for every 1 ≤ i < j ≤ r. Then∣∣∣∣∣∑

x∈F
(−1)Trace(f(x))

∣∣∣∣∣ < N1−η.

Theorem 7 generalizes the standard “Weil-Carlitz-Uchiyama bound” [9, 32] which states that if f ∈ F[x]

has degree deg(f) ≤ N1/2−η then
∣∣∣∣∑
x∈F

(−1)Trace(f(x))
∣∣∣∣ < N1−η. Theorem 7 obtains the same qualitative

bound as the classical bound but for polynomials of possibly very large degrees. In particular, it holds for
polynomials whose degrees are up to N1−ε, and even for polynomials of degrees up to N − 1 but whose
monomial degrees are carefully selected as to satisfy the additional constraints of the theorem. In our
applications we will also need that η is a constant independent of N , which is ensured by the fact that the
polynomials that we focus on are sparse (i.e. have a constant number of terms).

We note that in our preliminary version [16] we attributed Theorem 7 to Bourgain [5], who strictly
speaking only considers the case where N is prime, and we commented on how to modify his proof to work
when N = 2n with n prime. A reader interested in the full proof can read [20] for a self-contained and
simplified treatment of the more general case N = pn for arbitrary n, where p is a prime.

In our language the above theorem implies that codes represented by sparse polynomials of somewhat
low degree have large distance. Furthermore if the polynomials are sparse, and N − 1 does not have divisors
larger than N1−ε, then also the codes have large distance. We thus get the following implication.

Lemma 8 For every integer t > 0 there exist n0, η > 0 such that the following holds for every N = 2n

for prime n ≥ n0. Let D = D(N) and let D ⊆ D be of size at most t such that the code C = CN (D) is
affine-invariant. Then the code C satisfies 1

2 −N
−η ≤ δ(C) ≤ 1

2 +N−η.
Similarly for every integer t and ε > 0, there exist n0, η > 0 such that the following holds for every

N = 2n such that n ≥ n0 is prime, and N − 1 does not have any non-trivial divisor greater than N1−ε.
Let D = D(N) and let D ⊆ D be of size at most t. Then the code C = CN−1(D)(which is always
cyclic-invariant) satisfies 1

2 −N
−η ≤ δ(C) ≤ 1

2 +N−η.

Proof: For p ∈ PN,D such that Trace(p) ∈ C define for the purpose of this proof

δ(p) = Pr
x←FN

[Trace(p(x)) = 1],

where the probability is taken with respect to the uniform distribution over FN . Since |D| ≤ t and CN (D) is
affine-invariant, by Lemma 6 it follows that the degrees inD are upper bounded byN1−1/t, and by Theorem 7
(with ε = 1/t and r ≤ t+ 1) there exists η′ = η′(t) such that

|
∑
x∈FN

(−1)Trace(p(x))| < N1−η′ .

Since Ex∈FN
(−1)Trace(p(x)) = 1− 2δ(p), it follows that there exists η such that

1

2
−N−η ≤ δ(p) ≤ 1

2
+N−η.
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The first part of the lemma is now immediate by noting that δ(C) = min
p∈PN,D

δ(p). The second part follows

easily by a similar argument.

We remark that such use of results from number theory in coding theory is also common. For example, the
distance of the sparse dual-BCH codes is inferred by using the Weil-Carlitz-Uchiyama bound on exponential
sums in a similar manner.

We now move to the crucial part of the paper where we attempt to use counting style arguments to claim
that the codes we are considering have the single orbit property for small k. Here our plan is as follows.

We first use a result from [22] to show that for any specific code C we consider and for every sufficiently
large k, its dual has roughly

(
N
k

)
/|C| codewords of weight k (this bound is tight to within 1± 1/N2 factor,

for large enough k, where k is independent of N and depends only on t, and the η of Lemma 8). Specifically
they show:

Theorem 9 ([22] Lemma 3.5) For every t < ∞ and η > 0 there exist k0, N0, such that for every k ≥ k0
and N ≥ N0 the following holds:

Let C ⊆ FN2 be a code with at most N t codewords satisfying

1

2
−N−η ≤ δ(C) ≤ 1

2
+N−η.

Then the number of codewords of weight k in C⊥ lies in the interval[(
N
k

)
|C|
· (1−N−2),

(
N
k

)
|C|
· (1 +N−2)

]
.

Thus for any code C = C(D) under consideration, this allows us to conclude that C⊥ has many codewords
of weight k (for sufficiently large, but constant k). What remains to be shown is that the orbit of one of these,
under the appropriate group (affine or cyclic) contains a basis for the whole code C⊥. To do so, we consider
any codeword x of weight k in the dual whose orbit under the group does not contain a basis for C⊥ (i.e.,
Span({x ◦ π|π}) 6= C⊥). We show that for every such word x there is a set D′ ⊆ D of size |D′| = |D|+ 1
such that x ∈ C(D′)⊥. The size of C(D′) is roughly a factor of N larger than the size of C and thus C(D′)⊥
is smaller than C⊥ by a factor of roughly N . We argue further that this code C(D′) also satisfies the same
invariant structure as C and so one can apply Lemma 8 and Theorem 9 to it and thereby conclude that the
number of weight k codewords in C(D′)⊥ are also smaller than the number weight k codewords in C⊥ by a
factor of approximately N . Finally we notice that the number of sets D′ is o(N) and so the set ∪D′C(D′)⊥
can not include all possible weight k codewords in C⊥, yielding the k-single orbit property for C. This leads
to the proofs of Theorem 4 and 5 (see Section 4 for the formal proof).

3 Representing sparse invariant codes by sparse polynomials

In this section we study representations of affine-invariant and cyclic-invariant codes by polynomials. That
leads to the proof of Lemma 6 which will conclude the section.

We remark that similar results appeared previously in the literature and are well-known [34, 29, 25, 23],
but we reprove everything that we need here using our own techniques and in the language of the current
exposition, for the sake of completeness.
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Recall that every function from FN to FN and hence every function from FN to F2 is the evaluation
of polynomial from FN [x]. More useful to us is the fact that every function from FN to F2 can also
be expressed as the trace of a polynomial from FN [x], however this representation is not unique. E.g.,
Trace(xd) = Trace(x2d) = Trace(x2

i·d). However if we restrict to the setting of polynomials from PN,D
then this representation is unique, as shown below.

Lemma 10 For every word w : FN → F2 (respectively w : F∗N → F2) there is a unique polynomial
p ∈ PN,D (respectively p ∈ PN−1,D) such that w(x) = Trace(p(x)). In fact, the mapping between
codewords in {FN → F2} and their associated polynomials in PN,D is 1-1. (And so is the mapping between
{F∗N → F2} and PN−1,D).

Proof: Since every function w maps FN to FN , we can write w(x) uniquely as
∑N−1

i=0 cix
i, where ci ∈ FN .

The condition that w(α) ∈ {0, 1} for every α ∈ FN , yields some constraints on ci. In particular we have
w(α)2 = w(α) for every α ∈ FN and so w(x)2 = w(x) mod (xN − x). But w(x)2 =

∑N−1
i=0 c2ix

2i and so,
equating coefficients we have, c20 = c0, c2N−1 = cN−1, and c2i mod(N−1) = c2i for every i ∈ {1, . . . , N − 2}.
Thus writing the set {0, . . . , N−1} (the set of degrees of x) as {0, N−1}∪(∪d∈D−{N−1}coset(d)), where the
sets coset(d) are disjoint, we have thatw(x) = c0x

0+cN−1x
N−1+

∑
d∈D\{N−1}Trace(cdx

d). Furthermore
c0, cN−1 ∈ F2 (since c20 = c0 and c2N−1 = cN−1). Finally, using the fact that Trace(a) = a for a ∈ F2 (using
the fact that n is odd), we have w(x) = Trace(p(x)) where p(x) = c0x

0+cN−1x
N−1+

∑
d∈D−{N−1} cdx

d,
which is by definition a member of PN,D . This concludes the proof for the case of functions mapping FN to
F2. For the case of functions w : F∗N → F2, the proof is similar except we start by writing w uniquely as∑N−1

i=1 cix
i (and so xN−1 plays the role of the constant function 1).

The final part of the lemma can be easily shown by a simple counting argument. There are 2N words
w : FN → F2 and, since |D| = 1+ (N − 2)/n, it follows that |PN,D| = 4 ·N

N−2
n = 2N . The statement for

w : F∗N → F2 and PN−1,D follows similarly.

Lemma 11 Suppose C ⊆ {FN → F2} is an affine invariant code containing the word w = Trace(p(x)) for
some p ∈ PN,D. Then, for every monomial xe in the support of p, the function Trace(xe) is in C. Furthermore,
if e 6∈ {0, N − 1} then for every β ∈ FN , Trace(βxe) ∈ C.

Similarly if C ⊆ {F∗N → F2} is cyclic-invariant code containing the word w = Trace(p(x)) for
p ∈ PN−1,D. Then, for every monomial xe in the support of p, the function Trace(xe) is in C. If e 6= N − 1
then for every β ∈ FN , Trace(βxe) ∈ C.

Proof: The proof is essentially from [23]. Since their proof is a bit more complex (and considers a more
general class of functions and non-prime n), we include the proof in our setting for completeness.

We start with the cyclic-invariant case. Let p(x) =
∑

d∈D cdx
d, where cN−1 ∈ {0, 1} and let w(x) =

Trace(p(x)). Fix e in the support of p. We first consider the case e 6= N − 1. We wish to show that
Trace(βxe) is in C for every β ∈ FN . Note that for every α ∈ F∗N , w(αx) is in C (by the cyclic invariance).
Furthermore, the function

∑
α∈F∗N

Trace(α−e)w(αx) is also in C (by linearity). But as we show below this
term is simply Trace(cex

e).
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∑
α∈F∗N

Trace(α−e)w(αx) =
∑
α∈F∗N

Trace(α−e)Trace(p(αx))

=
∑
α∈F∗N

n−1∑
j=0

α−e·2
j

(n−1∑
i=0

∑
d∈D

c2
i

d α
d·2ixd·2

i

)

=
n−1∑
j=0

n−1∑
i=0

∑
d∈D

c2
i

d x
d·2i

∑
α∈F∗N

αd·2
i−e·2j

Recall that
∑

α∈F∗N
αt is 0 if t 6= 0 mod (N − 1) and 1 if t = 0. So we conclude that the innermost sum is

non-zero only if d · 2i = e · 2j mod (N − 1), which in turn happens only when d = e and j = i (since both
d, e ∈ D − {N − 1}). We conclude

∑
α∈F∗N

Trace(α−e)w(αx) =
∑n−1

i=0 c
2i
e x

e·2i = Trace(cex
e).

Finally, we need to show that Trace(βxe) is also in C. To see this, consider the set S ⊆ FN defined as
S = {γ|Trace(ceγxe) ∈ C}. We know S is non-empty (since 1 ∈ S), S is closed under addition, and if
β ∈ S, then so is β · ζe for every ζ ∈ FN . Thus, in particular, S contains the set T = {p(ωe)|p ∈ F2[x]}
where ω is a primitive element of F∗N . T is again closed under addition and also under multiplication and so
is a subfield of FN . Finally it includes ωe as an element and so T = FN (since n is prime and hence the only
other subfield of FN is F2, which cannot contain ωe when e ∈ D). We thus conclude that both S and T equal
FN and so for every β ∈ FN , Trace(βxe) ∈ C.

To prove the lemma for the cyclic-invariant case, it remains to consider the case e = N−1. By hypothesis
cN−1 = 1 in this case. Thus we consider the simpler function

∑
α∈F∗N

w(αx) which is also in C. It can be
argued as above that this function equals cN−1xN−1 = xN−1 = Trace(xN−1). This concludes the analysis
of the cyclic-invariant case.

The affine invariant case is similar (and indeed only needs to use the facts that w(αx) is in C for every
α ∈ FN , and the linearity of C).

We now use Lemma 11 to characterize cyclic-invariant families, while also working towards the charac-
terization of affine invariant families.

Lemma 12 For every affine invariant code C ⊆ {FN → F2} there exists a (unique) set D ⊆ D such that
C = {Trace(p)|p ∈ PN,D}.

For every cyclic-invariant family C ⊆ {F∗N → F2} there exists a (unique) set D ⊆ D such that
C = {Trace(p)|p ∈ PN−1,D}.

Proof: We start with the affine-invariant case (the cyclic case is almost identical). We let D be the set of
all integers d ∈ D such that there is some polynomial p ∈ PN,D with positive support on the monomial xd

such that Trace(p) ∈ C. By Lemma 11 we have that every function Trace(βxd) ∈ C for every β ∈ FN , if
d 6∈ {0, N − 1}. Furthermore since Trace((x+ 1)d) is also in C, it follows that the constant function 1 is
also in C. We conclude that the traces of all the polynomials in PN,D are in C. Conversely, it can also be
verified that every function in C is a trace of a polynomial in PN,D.

The cyclic-invariant case is similar.

Lemma 12 essentially suffices to yield Lemma 6 for the cyclic case (though we still need to verify that
|D| is small as claimed). For the affine case we need to work a little harder to bound the size of the integers
in D. To do so we note that affine-invariant properties have further constraints on the set D.

10



For non-negative integers d and e we say e is in the shadow of d (denoted e ≺ d) if in the binary
representations d =

∑
i di2

i and e =
∑

i ei2
i with di, ei ∈ {0, 1}, it is the case that ei ≤ di for every i. We

note that affine-invariant codes are characterized by codes with a “shadow-closure” property described below.

Lemma 13 If C is an affine-invariant code, Trace(xd) ∈ C and e ≺ d then Trace(xe) ∈ C.

Proof: Since Trace(xd) ∈ C and C is affine invariant, then Trace((x + 1)d) ∈ C. But (x + 1)d =∏
i(1+x)

di2
i
=
∏
i(1+x

di2
i
) =

∑
e≺d x

e. Therefore, Trace(
∑
e≺d

xe) ∈ C and by Lemma 11 Trace(xe) ∈ C.

We can now complete the proof of Lemma 6.

Proof of Lemma 6.: We show the second part of the lemma first as it is easier to argue. Namely, for
the cyclic-invariant case, the lemma is immediate from Lemma 12 which claims that every cyclic-invariant
code C = CN−1(D) = {Trace(p)|p ∈ PN−1,D} for some D ⊆ D. Conversely, it can be verified that for
every D ⊆ D, the code C(D) is cyclic-invariant and maps F∗N to F2. Finally, since for every pair of functions
p1 6= p2 ∈ PN−1,D Trace(p1) 6= Trace(p2), we have that |C| = |PN−1,D| = 2N |D|−1, yielding |D| ≤ t if
|C| ≤ N t.

Consider an affine-invariant code C. By Lemma 12 there is a set D ⊆ D such that C = CN (D) =
{Trace(p)|p ∈ PN,D}. As above we also have |D| ≤ t if |C| ≤ N t. It remains to be shown that
D ⊆ {1, . . . , N1−1/t}.

For this part we use Lemma 13 to note first that the set D should be “shadow-closed”, i.e., if d ∈ D
and e ≺ d then e ∈ D. Now consider the “binary weight” of the integers d ∈ D, i.e., the number of
non-zero bits in the binary representation of d. We claim that for every integer d ∈ D, its binary weight
is (very crudely) at most t (or else its shadow and hence D has more than t elements). It follows that
the integer d = leader(d) ≤ 2n(1−1/t) = N1−1/t. Since this holds for every d ∈ D, we conclude that
D ⊆ {1, . . . , bN1−1/tc}. This yields the proof of Lemma 6 for the affine-invariant case.

4 Proofs of Main theorems

In this section we prove Theorem 4 and Theorem 5. While in our exposition so far we have described the
results about affine-invariant codes before the similar results for cyclic-invariant codes, mainly because our
results on affine-invariant codes are cleaner to state, in this section we will however prove Theorem 5 before
Theorem 4 since the former is simpler to prove. The essential difficulty in the analysis of affine-invariant
codes can be better emphasized by comparison to the analysis of cyclic-invariant codes.

4.1 Analysis of the cyclic case

Proof of Theorem 5: Let η = η(t, ε) and η′ = η′(t + 1, ε) be as given by applications of Lemma 8
(for integers t and t + 1), for the cyclic-invariant case (so codes of length N − 1 have distance roughly
1/2−N−η). Let k0 = k0(t, η) and k′0 = k0(t+ 1, η′) be as given by Theorem 9. We prove the theorem for
k = max{k0, k′0}.

FixN = 2n such that n is a large enough prime andN−1 does not have any non-trivial divisor larger than
N1−ε. Let C ⊆ {F∗N → F2} be a cyclic-invariant code of cardinality at most N t. Let D ⊆ D be as given by
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Lemma 6, so that C = {Trace(p)|p ∈ PN−1,D}. For d ∈ D −D, let C(d) = {Trace(p)|p ∈ PN−1,D∪{d}}.
Our analysis below will show that:

1. Every codeword w ∈ C⊥ \ ∪d∈D\D(C(d)⊥) generates the code C⊥ by its cyclic shifts, i.e., C⊥ =
Span{w(αx)|α ∈ F∗N}, and

2. There is a codeword of weight k in C⊥ \ ∪d∈D\D(C(d)⊥).

Putting the two together we get the proof of the theorem.
We start with the first part. Consider any codeword w ∈ C⊥. We claim that if Span{w(αx)} 6= C⊥, then

there must exist an element d ∈ D \D such that w ∈ C(d)⊥. To see this, first note that Span{w(αx)} is a
code invariant over the cyclic group, and is contained in C⊥. Thus if Span{w(αx)} 6= C⊥ then it must be
strictly contained in C⊥ and so (Span{w(αx)})⊥ must be a strict superset of C. Using Lemma 6 there must
exist a set D′ such that (Span{w(αx)})⊥ = PN−1,D′ . Furthermore D′ must be a strict superset of D and so
there must exist an element d ∈ D′\D. We claim thatw ∈ C(d)⊥. This is so since C(d) ⊆ (Span{w(αx)})⊥
and so w ∈ (Span{w(αx)}) ⊆ C(d)⊥. This concludes the proof of the first claim.

It remains to show that there is a codeword of weight k in C⊥\∪d∈D\D(C(d)⊥). For this we employ simple
counting arguments. We first note that, using Lemma 8, C is a code satisfying 1

2 −N
−η ≤ δ(C) ≤ 1

2 +N−η.
Hence we can apply Theorem 9 to conclude that C⊥ has at least

(
N
k

)
/(|C|) · (1− 1/N2) codewords of weight

k. On the other hand, for every fixed d ∈ D \D, we have (by Lemma 8 again) that 1
2 −N

−η′ ≤ δ(C(d)) ≤
1
2 +N−η

′
. Again applying Theorem 9 we have that C(d)⊥ has at most

(
N
k

)
/(|C(d)|)(1 + 1/N2) codewords

of weight k. In case d = N − 1, then |C(d)| = 2 · |C|. In case d 6= N − 1 then |C(d)| = N · |C|. Thus we
can bound the total number of codewords of weight k in ∪d∈D\DC(d)⊥ from above by(

N
k

)
2 · |C|

(1 +
1

N2
) + |D| ·

(
N
k

)
N · |C|

(1 +
1

N2
) ≤ 1

2|C|
·
(
N

k

)
(1 +

2

log2N
+

3

N2
),

where above we use the fact that |D| ≤ N/ log2N . For sufficiently large N (i.e., when 2/ log2N + 3/N2 ≤
1/2) we have that this quantity is strictly smaller than

(
N
k

)
/(|C|) · (1− 1/N2), which was our lower bound

on the number of codewords of weight k in C⊥. We conclude that there is a codeword of weight k in
C⊥ \ ∪d∈D\D(C(d)⊥) as claimed. This concludes the proof of the theorem.

4.2 Analysis of the affine-invariant case

Proof of Theorem 4: The proof is similar to the proof of Theorem 5 with the main difference being that we
need to argue that the polynomials associated with functions in C and C(d) are of somewhat low degree (to
be able to conclude that they have high-distance).

Let η = η(t) and η′ = η′(t+ 1) be as given by Lemma 8 for the affine invariant case (so codes of length
N have distance roughly 1/2−N−η). Let k0 = k0(t, η) and k′0 = k0(t+ 1, η′) be as given by Theorem 9.
We prove the theorem for k = max{k0, k′0}.

Fix N = 2n for prime large enough n and let C be an affine-invariant code of cardinality N t. Let
D ⊆ D be a set of cardinality at most t and consisting of integers smaller that N1−1/t such that C =
{Trace(p)|p ∈ PN,D} (as given by Lemma 6). For d ∈ D \D, let C(d) = {Trace(p)|p ∈ PN,D∪{d}}. Let

D′ = (D \D)∩{1, . . . , bN1− 1
t+1 c}. We will proceed as in the proof of Theorem 5 with the difference being

that now we focus on integers d ∈ D′. Namely, we first claim that if there is a weight k codeword w in C⊥
that is not in some C(d)⊥, for every d ∈ D′, then {Span(w(αx + β)|α ∈ F∗N , β ∈ FN} = C⊥. Then the
same counting argument as in the proof of Theorem 5 suffices to show that such a word does exist.
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To show the first claim, consider w ∈ C⊥ and the code {Span(w(αx+ β)|α ∈ F∗N , β ∈ FN}, which is
affine invariant and so is given by PN,E for some shadow-closed set E. If {Span(w(αx+ β)}⊥ 6= C then E
strictly contains D and so there must exist some element d′ ∈ E \D. Now consider the smallest positive
integer d ≺ d′ such that d ∈ E \D. We claim that the binary weight of d must be at most t+1. Indeed, this is
true since the entire shadow of d′ is in E and since elements of D have binary weight at most t. It follows that
d ≤ bN1− 1

t+1 c and C(d) is affine invariant. We conclude that w ∈ {Span(w(αx+ β)} ⊆ C(d)⊥, yielding
the claim.

We now repeat the counting argument from the proof of Theorem 5 to show that there is a codeword
of weight k in C⊥ \ (∪d∈D′C(d)⊥). Using the affine-invariant part of Lemma 8 it follows that C is a code
satisfying 1

2 −N
−η ≤ δ(C) ≤ 1

2 +N−η. Hence we can apply Theorem 9 to conclude that C⊥ has at least(
N
k

)
/(|C|) · (1 − 1/N2) codewords of weight k. On the other hand, for every fixed d ∈ D′, we have (by

Lemma 8 again) that 1
2 −N

−η′ ≤ δ(C(d)) ≤ 1
2 +N−η

′
. Again applying Theorem 9 we have C(d)⊥ has at

most
(
N
k

)
/(|C(d)|)(1 + 1/N2) codewords of weight k. Since d ≤ N1− 1

t+1 it follows that |C(d)| = N · |C|.
Thus we can bound the total number of codewords of weight k in ∪d∈D′C(d)⊥ from above by

|D′| ·
(
N
k

)
N · |C|

(1 +
1

N2
) ≤

(
N
k

)
|C|
· 1

log2N
(1 +

1

N2
),

where above we use the fact that |D′| ≤ N/ log2N . For sufficiently large N (i.e., when 1
log2N

(1 + 1
N2 ) ≤

3/4), we have that this quantity is strictly smaller than
(
N
k

)
/(|C|) · (1− 1/N2), which was our lower bound

on the number of codewords of weight k in C⊥. We conclude that there is a codeword of weight k in
C⊥ \ ∪d∈D′(C(d)⊥) as claimed, and so this codeword generates C⊥.

5 Implications of Our Results to Property Testing and BCH Codes

5.1 Implications to property testing

It follows from the work of [23] that codes with a single local orbit under the affine symmetry group are
locally testable. We recall some basic definitions below and summarize the implication of our main theorem
to testability.

Definition 14 (Locally testable code [13]) A family of codes CN ⊆ FN2 is (k(N), τ(N))-locally testable if
there exists a probabilistic algorithm T called the tester that, given oracle access to a vector v ∈ FN2 makes
at most k queries to the oracle for v and accepts v ∈ CN with probability 1, while rejecting v 6∈ CN with
probability at least τ(N) · δ(v, CN ). A family CN is said to be locally testable if there exist constants k, τ > 0
such that CN is (k, τ)-locally testable.

We note that the above definition corresponds to the strong definition of local testability ([13, Definition
2.2]). We now state the result of [23] on the testability of affine-invariant codes with the single local orbit
property.

Theorem 15 (Restatement of Theorem 2.9 from [23]) If for some fixed integer k > 0, CN ⊆ FN2 is linear
and has the k-single orbit property under the affine group, then C⊥N is (k, 1

2k2
)-locally testable.
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We note that in [23] the single-orbit property under the affine group is denoted “strong formal charac-
terization.” In what follows we make some side comments on the equivalence between Theorem 15 and
Theorem 2.9 from [23].

We start by defining “formal characterization” from [23] and then we describe its relation to the notion of
single orbit characterization.

Definition 16 (Local affine formal characterization [23]) F ⊆ {F2n → F2} has a k-local affine for-
mal characterization if there exist integer m, and linear functions `1, `2, . . . , `k : Fm2n → F2n (with

`i(y1, y2, . . . , ym) = y1 +
m∑
j=2

`ijyj) such that

f ∈ F if and only if
k∑
i=1

f(`i(y)) = 0 for all y ∈ Fm2n .

Claim 17 Let F ⊆ {F2n → F2} have the k-single orbit property under the affine group. Then F⊥ has a
k-local affine formal characterization.

Proof: Let g ∈ F be a k-single orbit generator for F , and let {α1, α2, . . . , αk} be the support of g. Let
`i : F2

2n → F2n be defined by `i(y1, y2) = y1 + αiy2, for all 1 ≤ i ≤ k. We show that f ∈ F⊥ if and only if
k∑
i=1

f(`i(y)) = 0, ∀y ∈ F2
2n .

Since g is a generator, it follows that F = Span{g ◦ π | π(x) = ax + b, a, b ∈ F2n}. Thus if f ∈ F⊥

then 〈f, g ◦ π〉 = 0 for all π. Hence
k∑
i=1

f(aαi + b) = 0, for all a, b ∈ F2n .

We only need to show now the opposite direction of the claim. Let h : F2n → F2 satisfy
k∑
i=1

h(`i(y)) =

0, ∀y ∈ F2
2n . We will show that h ∈ F⊥. Indeed, for all a, b ∈ F2n

k∑
i=1

h(aαi + b) = 0 and hence

〈h, g ◦ π〉 = 0,∀π(x) = ax + b. This immediately implies that 〈h, f〉 = 0,∀f ∈ Span{g ◦ π | π(x) =
ax+ b, a, b ∈ F2n , and hence h ∈ F⊥.

Theorem 18 (Theorem 2.9 from [23]) If F ⊆ {F2n → F2} is linear invariant and has a k-local affine
formal characterization then it is (k, 1

2k2
)-locally testable.

Proof of Theorem 15: Suppose CN has the single-orbit characterization under the affine group. Then by
Claim 17 C⊥N has a k-local formal characterization, and by Theorem 18 C⊥N is (k, 1

2k2
)-locally testable.

Returning to the applications of our results to testing, our main theorem, Theorem 4, when combined
with Theorem 15 immediately yields the following implication for sparse affine invariant codes.

Corollary 19 For every constant t there exist constants k, n0 such that if n ≥ n0 is prime, N = 2n and
CN ⊆ FN2 is a linear, affine-invariant code with at most N t codewords, then CN is (k, 1

2k2
)-locally testable.

14



5.2 Implications to BCH codes

In addition to the implications for the testability of sparse affine-invariant codes, our results also give new
structural insight into the classical BCH codes. Even though these codes have been around a long time, some
very basic questions about them are little understood. We describe the codes, the unanswered questions about
them, and the implications of our work in this context below.

We start by defining the BCH codes and the extended-BCH codes. The former are classical cyclic
(-invariant) codes, and the latter are affine-invariant. They are also commonly defined as subfield-subcodes of
Reed-Solomon codes. We refer to [25, 26] for further details.

Definition 20 For every pair of integers n and t, the (binary) BCH code with parameters n and t, denoted
BCH(n, t) ⊆ FN−12 is

BCH(n, t) = {〈f(α)〉α∈F∗2n |f ∈ F2n [x],deg(f) ≤ N − 2t+ 1} ∩ FN−12 .

The extended BCH code is the evaluation of the same polynomials over the entire field F2n .

eBCH(n, t) = {〈f(α)〉α∈F2n
|f ∈ F2n [x], deg(f) ≤ N − 2t+ 1} ∩ FN2 .

The duals of BCH(n, t) and of eBCH(n, t) can also be described in terms of traces of sparse polynomials,
a standard result in coding theory by now, initially proved by Delsarte [11].

Definition 21 For every pair of integers n and t, the (binary) dual-BCH code with parameters n and t,
denoted BCH(n, t)⊥ ⊆ FN−12n consists of the evaluations of traces of polynomials consisting of monomials
of odd degrees ≤ 2t− 1 and constant term 0 over F∗2n , i.e.,

BCH(n, t)⊥ = {〈Trace(f(α))〉α∈F∗2n |f =
t−1∑
i=0

f2i+1x
2i+1 ∈ F2n [x]}.

The extended dual-BCH code eBCH(n, t)⊥ ⊆ FN2 is

eBCH(n, t)⊥ = {〈Trace(f(α))〉α∈F∗2n |f = f0 +
t−1∑
i=0

f2i+1x
2i+1 ∈ F2n [x], f0 ∈ F2}.

Even though the BCH codes are very classical codes, much is unknown about them. Some open problems
about BCH codes are formulated in Chapter 11 of [10], where it is noted that even the exact minimum
distance of BCH codes for relatively small n’s (say n = 511) is unknown. In the asymptotic regime some
similar barriers have also been identified. For instance, while it is easy to see (by a counting argument) that
the BCH code BCH(n, t) must have codewords of weight 2t+ 1 [24] (for constant t and large enough n),
such words are not known “explicitly” in the general settings (the notion of “explicitness” was discussed
in more details in Section 1). Examples of explicit BCH codewords are rare in the literature and only for
particular settings of t and n (see for eg. Chapter 9.2 in [25]).

These observations lead to the first question: “What is an explicit low-weight codeword of BCH(n, t)?”
Till recently it was not known that the set of codewords of low weight even generate the BCH code, and this
was answered affirmatively only recently by Kaufman and Litsyn [19] who showed that words of weight
2t+ 1 and 2t+ 2 certainly include a basis for the BCH code. This proof remains “non-explicit” and the most
“succinct” description of this basis is via O(tN) field elements of F2n (i.e. by specifying the 2t+ 1 or 2t+ 2
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non-zero indices (as field elements) of each of the O(N) basis vectors). This leads to the second, harder
question: “What is an explicit basis of BCH(n, t)?”

Our result manages to make progress on the second question without making progress on the first, by
showing that the affine orbit (or in some cases the cyclic orbit) of a single low-weight codeword gives a
basis for the BCH code. While this single codeword is still not explicit, the rest of the basis is explicit given
the codeword. We note here that in the recent work of Grigorescu and Kaufman [15] they describe explicit
codewords of BCH(n, 2) that generate the code under the orbit of the affine group. We also remark that
understanding what explicit bases for BCH(n, t) codes look like is a hard problem even when t is not a
constant. In particular, in [2] it is shown that when t = 2m−2 − 1 for any m, the minimum weight codewords
of BCH(n, t) are the same as the minimum weight codewords of punctured Reed-Muller codes of order 2
(which can be described explicitly), but these don’t form a basis for the code.

We formalize next the implications discussed above.

Corollary 22 For every t there exist constants k, n0 such that for all prime n ≥ n0, eBCH(n, t) has the
k-single orbit property under the affine group.

The above follows from Theorem 4 using the observation that eBCH(n, t)⊥ is sparse (has 2N t codewords)
and affine invariant.

Corollary 23 For every t and 0 < ε < 1 there exist constants k, n0 such that for all prime n ≥ n0 such that
2n− 1 does not have any non-trivial divisors greater than 2n(1−ε), BCH(n, t) has the k-single orbit property
under the cyclic group.

The above follows from Theorem 5 using the observation that BCH(n, t)⊥ is sparse (has N t codewords)
and cyclic-invariant.

We remark that questions of this nature are relevant not only to coding theory, but also to computing. For
instance a recurring question in CS is to find explicit balls of small radius in tightly packed codes that contain
many codewords. In such problems, the goal is to find an explicit vector (not in the code) along with explicit
description of a large set of nearby codewords. Our study, in contrast, attempts to find an explicit description
of a large set of codewords near the zero vector (a codeword).

Finally, we point out that the need for various parameters (n and 2n − 1) being prime, or not having large
divisors, respectively, is a consequence of the application of some recent results in additive number theory
that we use to show that certain codes have very high distance. Indeed, as discussed above, in the recent
work of Kaufman and Lovett [20] the restriction on n being prime was removed using different techniques.
However, the work of [20] could not eliminate the restriction on 2n − 1 being prime, or not having large
divisors, as required in our result for cyclic-invariant codes.
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